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Input pathways to the Hippocampus for Episodic
Memory formation: a systematic review
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Abstract

Memories of everyday experiences involve the encoding of a rich and dynamic
representation of the present objects and their contextual features. Traditionally,
the resulting mnemonic trace is referred to as episodic memory, i.e. the ”"what”,
”where” and ”when” of a lived episode. The journey for such memory trace encod-
ing begins with the perceptual data of an experienced episode handled in sensory
brain regions. The information is then streamed to cortical areas located in the ven-
tral Medio Temporal Lobe, which produce multi-modal representations concerning
either the objects (in the Perirhinal cortex) or the spatial and contextual features
(in the parahippocampal region) of the episode. Then, this high-level data is gated
through the Entorhinal Cortex and forwarded to the Hippocampal Formation, where
all the pieces get bound together. Eventually, the resulting encoded neural pattern
is relayed back to the Neocortex for a stable consolidation. This review will de-
tail these different stages and provide a systematic overview of the major cortical
streams towards the Hippocampus relevant for episodic memory encoding.

Keywords episodic memory, Hippocampus, memory consolidation, Entorhinal cor-
tex, mental representations, Neocortex, one-shot memory, computational neuroscience,
neural networks, neuroanatomy
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1 Introduction

1.1 What Episodic Memory (E.M.) is and its place in the
human memory system

Learning incredibly quickly and building a huge mass of exploitable knowledge are
two defining features of the brain. Memory is a mental process through which we
can refer to our past experiences, make choices in the present and plan the future.
To begin with, memory is inherently divided into short (STM) and long-term
(LTM) based on duration. While the former processes last from few hundreds of
milliseconds (sensorial memory) to a few minutes (working memory), the latter can
potentially endure a lifetime. More in details, long-term memories can be further
distinguished into declarative and non-declarative depending on whether their re-
call is explicit or implicit, with the latter comprehending those where the retrieval is
possible only through sub-conscious behaviours (e.g. procedural memory and con-
ditioning) (Lynn Nadel 1995; Larry R. Squire and Dede 2015; Larry R. Squire and
Zola 1996; L. R. Squire and Zola-Morgan 1991).
In the declarative group we find the memory systems whose content can be con-
tinuously recalled with a (seemingly) conscious act . The most prominent of this
kind is Episodic Memory, which is in charge of storing the episodes we experience
during the day as a sequence of events within a specific spatio-temporal framework.
Further, the group of declarative systems also includes Autobiographical Memory,
more sensitive to content regarding the self and the personal history Conway 1996,
as well as Semantic Memory, which concerns abstract concepts and their meanings,
believed to arise partially from the generalization over several experienced episodes.
According to these declarative systems, a function of memory might be the creation
of a coherent internal representation of the persona, gluing together stacks of autobi-
ographic facts and notions about ourselves, forming the basis for high-level cognitive
states and phenomena like consciousness and self-awareness (Tulving 1983).
At the core of these cognitive performances lies the incredible episodic memory
ability of remembering an event after as little as a single exposure, resulting in
the encoding of an experience in the brain under the form of a permanent episodic
memory trace (Clayton and Dickinson 1998; Tulving 1999). In humans, this is
traduced in the capacity of remembering an extraordinary amount of information
from the past (T. F. Brady et al. 2008; Timothy F. Brady, Konkle, and Alvarez
2011; Konkle et al. 2010). From a functional perspective, the primary consequence
of this one-shot learning ability is the opportunity to overcome the usual lengthy
trial-and-error schema, providing a fast as well as durable means of acquiring new
knowledge about the world. This invaluable property comes in handy in plenty of
occasions when a repetition of an event is unlikely but the retention might be of vi-
tal importance, for instance during the eye-witnessing of an accident. Nonetheless,
it is also well documented how memories are not permanently static, but instead
are re-elaborated and transformed over time and as more experiences are recorded
(S. F. C. Bartlett, Frederic C. Bartlett, and Frederic Charles Bartlett 1995; Brewer
2000; L. Nadel et al. 2012; Semon 1921; Semon 1923). However, not everything
that happens during the day is meant to be kept forever. Instead, only what is able
to trigger a certain arousal or emotional involvement will be tagged as potentially
worth Pessoa 2010; for instance, a daily bus ride in a non-specified day of October
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Figure 1: Position of the Hippocampus - schematic sagittal section of the human
brain, the Hippocampus (cyan) is the structural continuation of the Fornix (green)
and lays on top of the Parahippocampal cortex.

stands no chance against the first birthday of your daughter in gaining a place in
long term memory.

Finally, understanding the dynamics of the processing and consolidation of ex-
periences have been an endeavour tackled by psychologists and neuroscientists for
decades. So far, we have managed to have an idea of the plethora of areas and
network involved and several computational models have been proposed and fitted
to the observations made by cognitive and neuropsychological studies In this present
review we will focus on the input involved in the episodic memory formation and
not consider the networks involved in consolidation and retrieval.

1.2 The network pathway for episodic memory encoding

From a more theoretical perspective, the structure of an episodic memory is re-
garded to encode the what, where and when something happened (Tulving 1983;
Clayton and Dickinson 1998; Sugar and M.-B. Moser 2019), namely a conjunction
of a content/object(s) and its spatio-temporal context. It is possible to trace the
relevance of this pragmatic formulation in the organization of the information flow
converging to the Hippocampus, probably the most important structure during the
stages of memory formation. In the present review, the focus will be placed solely
on the convergence of its cortical input streams.

The starting point occurs at the level of the neocortex. Here, all the relevant
information about the objects, space and time are collected and unified into a single
entity that might be called a “scene” and gated to the Hippocampus, which acts
like an hub collecting all the salient aspects of an episode. What is manipulated
is perceptual data, processed by cortical areas like the temporo-occipital regions
(for non-spatial features), whose output is routed towards the Perirhinal cortex,
and the posterior-parietal (for spatial features) regions, whose output is sent to the
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Figure 2: Overview of the Medio Temporal Lobe - sagittal section of the
human brain, the Hippocampus (cyan) is the structural continuation of the Fornix
and lays on top of the Parahippocampal, Perirhinal and Entorhinal cortex (light
green, yellow and red respectively) - From Raslau et al. 2014.

Parahipoccampal cortex, in the lower bound of the temporal lobe, as shown in figure
?7? and 2. Once there, around the Rhinal Sulci all the information is passed to the
Entorhinal Cortex (EC) and then inside the Hippocampal system, where the actual
encoding takes place. Herem, the stream firstly undergoes pattern separation in the
Dentate Gyrus (DG), then a structural binding of the features in the auto-associative
network CA3 (section 3 of the Cornus Ammonis CA, the “body” of the Hippocam-
pus) and eventually arrives in CAl and in the Subiculum, which project to higher
cortical areas as well as upstream regions through feedback connections. Further,
it is worth mentioning that several other circuits play a pivotal role in determining
what is relevant, for instance the Amygdala and the Orbito-Frontal Cortex, respon-
sible for determining the emotional valence of the perceptual information, and their
relationship with CA1 (Pessoa 2010; Dong et al. 2009; Ishikawa and Nakamura 2003).

1.3 Aim of the present Review

The literature on Episodic Memory is vast and extended, alongside the one on Hip-
pocampal processing. Nevertheless, the mechanisms underlying the formation and
management of the memory traces are still poorly understood (Baddeley, Aggle-
ton, and Conway 2002; Tulving 1999; Tulving 2002; Sugar and M.-B. Moser 2019;
Burgess, Eleanor A Maguire, and O’Keefe 2002). Current computational models
only able to capture and reproduce by simulation a fraction of the aspects exhibited
by real biological substrates. On the other hand, electrophysiological, neurobiologi-
cal, and behavioural research keep providing a large amount of data and recordings
of new details of neurobiological dynamics involved in memory formation. A good



point from which to start disentangling the complexity of the system at hand is
having an idea of its structure, in terms of architecture and components.

In this review, the objective is to illustrate the variety of input pathways leading
to the encoding of an episodic trace in terms of content and spatio-temporal features
realized within the Hippocampus, providing an overview of the information stream
from the sensory processing regions to the inner areas of the Cornu Ammonis. In
the first part, we describe how the acquisition and processing of perceptual features
take place. We first address the object-related information pathway, describing the
intricate connectivity and functional properties of the Perirhinal Cortex (PRC), in
2. Secondly, we consider the pathway for the spatial attributes, with the presen-
tation of the central role of the Para-hippocampal Cortex (PHC) and the neuronal
circuits in which its involved, in 3. Thirdly, we introduce the importance of Entorhi-
nal Cortex (EC), illustrating its centrality in intermediating between the neocortical
associative areas, like the two aforementioned, and the Hippocampal formation, in
4. Finally, we shift the focus towards the Hippocampus, with a schematic overview
of its internal connectivity and a brief description of a prominent computational
model, in 5.

1.4 Abbreviations

ACC: Anterior Cingulate Cortex; AiP: Anterior intra Parietal Cortex; BLA: Baso-
Lateral Amygdala; CA: Cornu Ammonis; DG: Dentate Gyrus; EC: Entorhinal Cor-
tex; GN: Geniculate Nuclei (Thalamus); HP: Hippocampus; IT: Infero-Temporal
cortex; LA: Lateral Amygdala; LEC: Lateral-Entorhinal Cortex; LiP: Lateral intra-
Parietal cortex; MEC: Medial-Entorhinal cortex; MPFC: Medial-Pre-Frontal Cor-
tex; MT: Medio-Temporal cortex; MTL: Medio-Temporal lobe; OFC: Orbito-Frontal
Cortex; OPFC: Orbito-Pre-Frontal Cortex; PB: Peristriate Belt; PCC: Posterior
Cingulate Cortex; PFC: Pre-Frontal Cortex; PHC: Para-Hippocampal Cortex; PiC:
Piriform Cortex; Pi: Para-Insular cortex; PP: Perforant Path; PPA: Para-Hippocampal
Place Area; PPC: Posterior-Parietal Cortex, PRC: Peri-Rhinal Cortex; RSC: Retro-
Splenial Cortex; Sb: Subiculum; STG: Superior Temporal Gyrus; TES: Tempo-
ral; TEO*: Temporo-Occipital; TF*; TH?*; Tpt: Temporo-parietal area; VMPFC:
ventro-Medial- Pre-Frontal Cortex; VITPC Ventral Temporo-Parietal Cortex

2 Information about the objects: Perirhinal Cor-
tex

The development of an object representation in the context of episodic memory is a
process involving the collaboration of several systems across the whole cortex. The
starting point is the acquisition of sensory stimuli from the external world, which are
captured by specialized receptors and neuronal circuits, the senses. They measure
the changes of specific physical quantities in the stimuli and convert their excitation
into appropriate spike trains (Purves 2012; Butler n.d.). Then, the information is
delivered to different areas in the cortex for a fine-grained perceptual processing.
All these areas are internally structured in a hierarchical fashion, so that the early
stages have the duty of dealing with the low-level aspects of the inputs, while the

§ Ambiguous, there is an active debate over the actual origin of the acronym, see Weiner 2018



latest ones will deal with more abstract features. The prototypical example is the
visual ventral system, which departs from the innermost region of the occipital lobe,
V1, sensitive to primitive geometrical elements, and then develops ventrally through
regions V2 and V4, where more convoluted shapes are detected, arriving eventually
in the inferior-temporal cortex IT, in which a context-invariant image of the stimu-
lus is formed. These processing patterns are repeated similarly in other senses, for
instance the auditory system (Bornkessel-Schlesewsky et al. 2015; Perry and Fal-
lah 2014). Once unimodal high-level feature representations are reached, they are
combined together to form more sophisticated multi-model characterization of the
object.

Nevertheless, to achieve a more complete object representation, other ingredients
than perceptions are required, such as the emotional connotation and the inference
of the object’s properties. The chief circuit dedicated to emotions is the Limbic Sys-
tem, a set of cortical and sub-cortical areas encompassing the Corpus Callosum and
classically associated with motivation, reward and first-order emotional processing.

2.1 Perirhinal cortex - Neuroanatomy

Once a high-level characterization of a particular feature is achieved, it is combined
together with other unimodal representations from other areas to form more com-
plex multi-modal mental picture of the object. When the reference is the object
identity, without spatial intendment, these multi-modal aggregation processes are
often directed towards a specific area located in the medio-temporal region: the
Perirhinal cortex, which encompass Broadman areas 35 and 36. By virtue of the
quality of its afferent inputs, the Perirhinal cortex works as a place of convergence of
the information concerning the representation of the identity of an object, ranging
from concrete features like size and shape to more abstract aspects like emotional
valence and semantic notions.

Afferences to the PRC

Several studies with macaque monkeys have allowed drawing a picture of the afferent
pathways projecting to the PRC; among them, the research of W. A. Suzuki and
D. G. Amaral used a retrograde tracing technique to investigate the neuroanatomy
of this area (W. L. Suzuki and David G. Amaral 1994). Their results showed that
a great deal of the afferent inputs comes from high-level unimodal visual areas and
especially inferior temporal areas TE and TEO up to 62%, which include regions of
the inferior and medial temporal cortex surrounding the PRC region, confirming the
great importance of vision in the formation of mental representations. Interestingly,
the configuration of the connections from inferior temporal regions to the medial ar-
eas and some amygdaloid nuclei are the results of some sort of pruning or refinement
during development (Webster, L. G. Ungerleider, and J. Bachevalier 1991). Further,
a quarter of the cortical projections originate in polymodal areas such as regions TH
and TF of the Parahippocampal cortex, which are shown to be involved in the in-
tegration of auditory data; besides, these connections from PHC are considered to
be feedforward, placing the PRC at an higher position in the associative hierarchy
(Lavenex, Wendy A. Suzuki, and David G. Amaral 2002). Part of the remain-
ing inputs are spared between some frontal areas, like the PFC (E. Hwang, Willis,
and Burwell 2018) and the OFC for 2%, dedicated mainly to emotions and reward



(Rempel-Clower 2007); the Insular cortex for 2%, involved in multisensory binding
of visual, proprioceptive, interoceptive and acoustic stimuli as well as elaboration
of taste perception (Bushara, Grafman, and Hallett 2001; Bushara, Hanakawa, et
al. 2003; Pritchard, Macaluso, and Eslinger 1999); the dorsal bank of the Superior
Temporal Sulcus for 6%, devoted to poly-sensory integration of information from
the visual, acoustic and somesthetic systems (e.g. touch, pain and heat) (Baylis,
E. T. Rolls, and Leonard 1987; Bruce, Desimone, and Gross 1981; Hollins 2010),
and some minor contribution from the Cingulate and Retro-splenial cortices (1%).
Another strong afference comes from the anterior part of Superior Temporal Gyrus
(STG), which is dedicated to acoustic processing but it is also partially sensitive to
visual stimuli, at least rostrally (Baylis, E. T. Rolls, and Leonard 1987; Mesgarani
et al. 2014). In addition, olfactory information has been shown to be involved, as
projections from the Piriform cortex have been seen targeting the Broadman area 35,
the ventral part of the PRC (Furtak et al. 2007). Additionally, another study using
antero and retro-tracing methods has demonstrated the extensive connectivity be-
tween the temporal polar portion of the PRC and the deep layers of the amygdaloid
complex , which is known to be responsible for emotional processing and arousal
(Pessoa 2010; Stefanacci, W. A. Suzuki, and D. G. Amaral 1996; Whalen 1998).
From the inner MTL, a consistent contribution from EC has been observed, mainly
targeting region 35, which is considered to be a retro-active response to the feedfor-
ward projections from the PRC. Furthermore, a direct input from the Hippocampal
structures (CA1 and the Subiculum) is also present, although modest, targeting area
36; however, these connections have to be interpreted as medium-range feedbacks
to the stream coming from EC, CA3 and DG (Aggleton 2012; Furtak et al. 2007).
In this fashion, it seems the PRC covers an important position with respect to the
Limbic System, in which several areas have been shown to project to the Rhinal
region, as it has been just illustrated. As such, the PRC is able to enrich the object
representations with an effective personal and emotional valence, in addition to the
plenty of information streamed from the sensory and poly-modal areas. Figure 3
provides a schematic overview of the main connections of the rhinal region.

Efferences from the PRC

Eventually, the same authors Suzuki and Amaral conducted another study with
an analogue methodology, but this time aiming to uncover the efferences from the
PRC. Their results showed the presence of several feedback connections back to the
input areas, especially the higher visual regions like TE and TEO. However, these
back-projections turned out to be frequently asymmetric, meaning that some cor-
tical areas receive substantially less afferent connections from the PRC than they
projected to it. This is for instance the case of the Insular cortex (Lavenex, Wendy
A. Suzuki, and David G. Amaral 2002). Other relevant efferences are those tar-
geting the posterior thalamus, especially the lateral and medial geniculate, and the
peri-sylvian region, connections that are thought to modulate various association
processes, as described in a tracing study with cats (Menno P. Witter and Groe-
newegen 1986). Regarding the Amygdala, the afferences coming from the PRC are
solid and more or less symmetric, but heterogeneously partitioned over the amyg-
daloid nuclei (Stefanacci, W. A. Suzuki, and D. G. Amaral 1996). The major output
pathway involves the lateral EC (LEC). It is in fact the gateway region that will in-
troduce the high-level information about the object to the Hippocampal structures,
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Figure 3: Connectivity of the rhinal cortex - 35/36 (Perirhinal cortex) and
TH/TF (Para-hippocampal cortex) - Legend: Dentate Gyrus, HPC Hippocampus,
Sub Subiculum, EC Entorhinal Cortex, STSv wventral Superior Temporal Sulcus,
STSd dorsal Superior Temporal Sulcus, STG Superior Temporal Gryus, LIP Lateral
Intra-Parietal area, Pi Para-insular cortex - From W. A. Suzuki and D. G. Amaral
1994.

where the memory is properly formed. On the other hand, the direct projections
towards the Hippocampus are rare and, as mentioned before, mostly concerns CA1l
and SB as feedback connections (Furtak et al. 2007).

Eventually, from the picture of this connectivity profile what emerges is the re-
sponsibility of the PRC to define the content of an experienced episode, the what
aspect, in terms of its perceptual features, through the sensory areas, and personal
connotations, from the Limbic areas. The resulting enriched mental representation
is then channeled to the Entorhinal-Hippocampal network, where it will be merged
with the contextual information and recorded in a memory trace.

Below, is illustrated a schematic overview of the connectivity presented so far (4).

2.2 Functions

In the big picture outlined in the introduction, one of the chief roles of the PRC is
to collect and process uni and polymodal perceptual information about objects from
the higher sensory areas as well as other attributes like the emotional valence from
the limbic system, eventually forming a complex non-spatial representation with a
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RSC Retro-Splenial Cortex, STS Superior Temporal Sulcus, STG Superior Temporal
Gyrus, TEO TE TF TH temporal regions, PiC Piriform Cortex, MOPFC medial
Orbito-Pre-Frontal Cortex, PFC Pre-Frontal Cortex, GN Geniculate Nuclei
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possibly elevated degree of abstraction. In other words, it contributes to the what
pathway of the episodic memory system, implemented by the consistent connectivity
with the LEC, which channels non-spatial information to the internal Hippocampal
formation. This systemic picture is backed up by several neuroanatomical studies,
as previously illustrated, and by experiments with lesioned rats, in which it has
been explicitly shown how the PRC and LEC regions prioritize non-spatial features
instead of location-related ones (Burwell and David G. Amaral 1998; Deshmukh,
Johnson, and Knierim 2012; Keene, Bladon, et al. 2016).

High-level object representation

The PRC is characterized by its object identification function, exemplified by the
sensitivity to complex features combination in virtue of its high poly-modality, thus
placing this area as a top-level stage of the Visual Ventral System (VVS) (Hold-
stock et al. 2009; Murray and Bussey 1999). This viewpoint has led T. J. Bussey,
L. M. Saksida and E. A. Murray to propose their Perceptual Mnemonic/Feature
Conjunction (PMFC) model, which considers the PRC as responsible for the cre-
ation of a high-dimensional object representation. The main prediction of this view
is that lesions in this region would not lead to any perceptual impairment, but that
complex discrimination tasks with elevated degree of ambiguity would become much

10



harder due to the unavailability of a multi-modal high-level representation and the
constraint of relying on lower level (unimodal) information. This has been corrobo-
rated by a studied with lesioned PRC monkeys, displaying the predicted weakened
performances (Bussey, Saksida, and Murray 2003; Bussey, Saksida, and Murray
2005).

Involvement in memory tasks

There is considerable evidence linking the PRC to associative memory, i.e. pairing
two elements together. In the inferior-temporal area TE and the Perirhinal area
36 (and similarly in 35), studies conducted with lesioned monkeys have identified
neurons responsive to the co-presence of two stimuli but not them alone, therefore
operating a unification into a single item (Fujimichi et al. 2010; Messinger et al.
2001; Naya et al. 2003). Similar results have also been obtained with neuroimaging
on humans (Haskins et al. 2008). Eventually, these conclusions have been efficiently
revised and substantiated by the review of K. S. Graham and colleagues (Graham,
Barense, and A. C. H. Lee 2010).

The PRC is also part of the BIC model (Binding of Item and Context) , proposed
by Diana and colleagues (Diana, A. P. Yonelinas, and Charan Ranganath 2007; H.
Eichenbaum, A. Yonelinas, and C. Ranganath 2007), which intends to capture the
dynamics of the medial temporal lobe during memory retrieval by proposing that
each component (PRN, PHC and HP) plays a role depending on the specificity of the
recognition task and the available information. Within their framework, the PRC
is thought to rely on item familiarity, where the retrieval is based on the perceived
strength of the encoded trace and does not produce a detailed memory represen-
tation, in opposition to recollection (used by PHC and HP), where specificity and
contextual information play the main roles.

Emotional and semantic features

Another important aspect of the PRC is the integration of affective and abstract
connotations, which includes both emotional valence and semantic meaning. On
the one hand, in virtue of its connections with Limbic structures like Amygdala and
the OFC, it is able to endow object representations with more motivational and
emotional attributes. Support for this comes from studies of fear and reward condi-
tioning (Kholodar-Smith, Boguszewski, and T. H. Brown 2008; Lindquist, Jarrard,
and Thomas H. Brown 2004; Liu and Richmond 2000) and the observation that
the Amygdala significantly modulates visual recognition processing (Perugini et al.
2012) especially when reward is involved (Murray 2007). On the other hand, its
elevated poly-modality and its availability of enriched object representation put the
PRC in the suitable conditions for encoding semantic meanings (Taylor et al. 2006).
Indeed, neuropsychological research with patients affected by dementia with im-
paired antero-medial temporal lobe have shown severe deficits in semantic tasks, for
instance semantic object recognition (Becker and Overman 2002; Clarke and Tyler
2014; Davies et al. 2004; Patterson, Nestor, and Rogers 2007), and also showed
the importance of the PRC in fine-grained discrimination tasks (Moss et al. 2005).
Eventually, all these properties have led researchers to the definition of a more ex-
tended network of structures, the so-called Anterior Temporal system (AT), in which
the PRC occupies the central node (Howard Eichenbaum, Otto, and N. J. Cohen
1994; Charan Ranganath and Ritchey 2012). Some other areas belonging to this
network are the amygdala, the lateral OFC and the temporo-polar cortex. Together,
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these regions account for the behaviours of the PRC in motivational, emotional and
social processing, but also in recognition of familiar objects by taking advantage
of the dense connectivity of the PRC with the sensory areas (Farovik et al. 2011;
LaBar and Cabeza 2006; Meunier, Jocelyne Bachevalier, and Mishkin 1997; Olson,
Plotzker, and Ezzyat 2007).

Finally, what can be concluded regarding the PRC is that it represents one of
the highest stages involved in the object representation. The information it is capa-
ble to transmit through its afferences is remarkably rich and multi-dimensional; an
indispensable step for the realization of a solid episodic memory trace.

3 Information about the location : Parahippocam-
pal cortex

Beside representing the object identity, it is of great interest to evaluate its spatial
features. The hierarchical sensory processing outlined before is similarly applicable
here. Again, the visual system represents the primary player, in particular the dorsal
stream developing from V2 to V3, and the Medio-Temporal cortex MT towards
the Parietal cortex (Born and Bradley 2005; Rauschecker 2018). The information
obtained concerns the location of the object in the visual field, its position, speed
and other spatial aspects. Moreover, other senses contribute to reach these where
assessments; for instance, the auditory system provides support for the localization
by exploiting the time difference of the arrival of the sound’s wave to the ears as
well as the information concerning the body movement (Shamma 2001; Bizley and
King 2008).

3.1 Parahippocampal cortex - Neuroanatomy

The Parahippocampal gyrus is an extended cortical region located in the temporal
lobe and covers a pivotal role inside the Limbic system. Nevertheless, our current
area of interest is restricted to a limited portion of it located in the posterior Parahip-
pocampal cortex, at the boundary with the Rhinal sulcus. Within this region, two
functionally and cytoarchitecturally distinct partitions have been identified: TH,
smaller and in medial position, and TF, larger and laterally located (Von Bonin and
Bailey 1947). These two areas exhibit strong coupling.

Afferences to the PHC

Over the years, several studies have shed light on the connectivity of this area and
the information pathways in which it is involved; in this regard a special mention
goes to the research using retro-tracing conducted by W. A. Suzuki and D. G. Ama-
ral, quoted above concerning the Perirhinal connectivity. Starting with the afferent
streams, the first fact to be highlighted is the predominance of the visual processing
areas as a source of stimulation; in fact, the regions belonging to the Peristriate
belt (like V4) constitutes the single largest cortical input to both TH and TF. In
addition, the caudal region of TE and the medial of TEQO, two important high-order
visual areas, have been shown to have meaningful projections to TH (Boussaoud,
Robert Desimone, and Leslie G. Ungerleider 1991; Distler et al. 1993). Another third
of the cortical afferences is brought by the Superior Temporal Gyrus (STG) display-
ing consistent connectivity with TH, especially the posterior auditory association
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cortex (Tpt), and only moderate connectivity with TF (Tranel et al. 1988). Con-
versely, the dorsal bank of Superior Temporal Sulcus (STS) projections to TF are
stronger (up to 16% of its inputs) than its projections to TH (around 8%) (Barnes
and Deepak N. Pandya 1992; Seltzer and Deepak N. Pandya 1978). In addition,
the Perirhinal regions, 35, and 36, have afferent connections to TH and TF, but
their strength is considerably inferior to those going in the opposite direction and
are considered to be feedback instead of feedforward (Lavenex, Wendy A. Suzuki,
and David G. Amaral 2002). Moving towards the Parietal lobe, extensive investi-
gations have confirmed its tight relationship between the PHC; in particular, the
lateral intra-Parietal and the Posterior Parietal cortex are connected to TF (R. A.
Andersen et al. 1990; Marek-Marsel Mesulam et al. 1977).

—p afferences
- efferences

STG
PRC
. )

Figure 5: Main connections to and from the Parahippocampal cortex -
the strongest weights are in bold; - Legend: CA1l Cornu Ammonis 1, LEC lat-
eral Entorhinal Cortex, PPC Posterior-Parietal Cortex, AiP Anterior intra Parietal
Cortex, RSC Retro-Splenial Cortex, STS Superior Temporal Sulcus, STG Superior
Temporal Gyrus, PB Peristriate Belt, Tpt Temporo-parietal area, TEO TE temporal
regions, PRC Perirhinal Cortex, MOPFC medial Orbito-Pre-Frontal Cortex, PFC
Pre-Frontal Cortex, Sb Subiculum

A moderate input stream is also the one coming from the Frontal lobe, more
specifically forming the dorso-lateral PFC and targeting both TH and TF (R. A.
Andersen 1997; Selemon and Goldman-Rakic 1988). Another functionally important
afferent pathway is constituted by sub-regions in two Hippocampal structures, the
proximal CA1 and the distal Sb, with the hypothesized role of sending a feedback on
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the spatio-temporal information that is being processed upstream (Aggleton 2012;
Furtak et al. 2007; Charan Ranganath and Ritchey 2012). Lastly, one of the most
relevant afferent stream to the PHC is represented by the Cingulate cortex, with the
RSC being the primary source (Baleydier and Mauguiere 1980; Kobayashi and David
G. Amaral 2007; Markowska et al. 1989; D. N. Pandya, Hoesen, and M.-M. Mesu-
lam 1981). An explanation behind this latter close relationship between the PHC
and the RSC is the involvement of these two regions in the Default-Mode Network,
an important cerebral structure responsible for mind-wandering, self-reference, and
resting state (Raichle 2015; Raichle et al. 2001).

Efferences from the PHC
The outputs from the Parahippocapal cortex partially overlap with the PRC, in
that it also targets the OFC, a frontal hub receiving salient sensory and subcortical
data (Cavada et al. 2000), the medial PFC (Carmichael and Price 1995), and EC,
although unlike the PRC it aims at the medial part instead of the lateral and the
feedback it receives from EC is significantly stronger (W. A. Suzuki and D. G.
Amaral 1994). Besides, a relevant output is directed right at the areas 35 and 36 of
the PRC and, as mentioned before, they are stronger than the afferent counterparts.
Going further, other feedback connections were identified by using an anterograde
tracing technique, like the projections to the Auditory Association cortex (Tpt), an
area dedicated to sound processing and learning (Tranel et al. 1988). Another tem-
poral region targeted by strong Parahippocampal output is the STG, as emerged in a
retrograde tracing research in macaque monkey (Munoz and Insausti 2005); withing
the same study, also connections with the Parietal cortex have been individuated.
Taken together, the inputs converging to the PHC enable it to build up a rep-
resentation of the contextual features of an episode like the spatio-temporal con-
notations, answering the where and partially the when something occurred. The
downstream projections to the LEC further stream this information towards the
next stage of memory encoding and those to the frontal and Perirhinal regions con-
stitute mainly feedforward contributions, while the back-projections to the other
source areas provide feedback. In figure 5, I presented an illustration of the overall
PHC connectivity (5).

3.2 Functions

Primarily, the PHC is particularly relevant for early spatial processing and the recog-
nition of familiar places, unlike the PRC described before. This contrast suggested
a double dissociation, i.e. the attribution of two cognitive functions to two distinct
areas by alternatively assessing the functional performance of one while the other
is impaired. Eventually, this intuition has found good support in the literature
both from cognitive studies (Davachi, J. P. Mitchell, and Wagner 2003; Davachi
2006; H. Eichenbaum, A. Yonelinas, and C. Ranganath 2007; Weis et al. 2004) and
from lesioning studies in monkeys (Alvarado and Jocelyne Bachevalier 2005). From
these, the common findings link the posterior PHC to the encoding and recollection
of contextual information, and the PRC to item recognition and more generally to
the object-related features instead of spatiality. In this regard, the BIC model men-
tioned previously in 2.2 configures the PHC as capable of recollection-based retrieval
relying on contextual information prompted by Hippocampal activation. Further,
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the model makes the prediction that the PHC may be processing contextual data
not only on spatiality, but also on semantics (Moshe Bar and Elissa Aminoff 2003).

Scene perception

As such, the prominent functions of the PHC have been prompted to be contextual
memory and scene perception. During various neuroimaging fMRI investigations
where participants witnessed different scenes (either passively or task-oriented), an
increased activation of the PHC have been observed, especially in the so-called
Para-hippocampal Place Area (PPA), an inferior-temporal division of the PHC par-
ticularly devoted to the encoding and recognition of complex scenes (Moshe Bar and
Elissa Aminoff 2003; R. Epstein and Kanwisher 1998; R. Epstein, Harris, et al. 1999;
Mullally and Eleanor A. Maguire 2011). However, other regions like the anterior
PHC also respond to places, but they tend to be more inactive during recognition,
suggesting that when the input cue is strong enough, the scene is perceived as fa-
miliar and the sole PPA is sufficient for its elaboration (Kohler, Crane, and Milner
2002; E. A. Maguire et al. 1998; Weis et al. 2004). Neuropsychological studies have
further confirmed the primary role of these regions in contextual processing and the
emergence of spatial agnosia. For instance, scene memory was compromised upon
lobectomy of the Anterior Temporal lobe (with or without PPA) (Pigott and Milner
1993), while a loss of environmental familiarity occurred after damages at the medial
temporo-occipital cortex, in a similar fashion of prosopagnosia to faces (Landis et al.
1986).

Relations with the RSC

In addition, the RSC is highlighted to be a relevant region for spatial processing,
although it differs from the MTL as it is involved in more self-referenced represen-
tations, supported by the presence of head-direction cells (Chen et al. 1994; R. A.
Epstein 2008). Furthermore, a review of the neuropsychological literature concluded
that damages at the RSC often lead to topographical amnesia, whose symptoms are
heavy disorientation and deficits in spatial navigation (E. Maguire 2001). Another
lesioning study in rats showed how the RSC might be involved in context-fear con-
ditioning, which represents a good example of spatial self-centred non-declarative
memory system (Keene and Bucci 2008).

Models of the PHC

Eventually, various studies have proposed different models for generalizing better the
actual function of PHC and RSC. One of these proposals comes from E. M. Aminoff
and colleagues. They suggested that the PHC and RSC belong to a broader net-
work, comprising also the MPFC, devoted to process spatial and non-spatial context-
associations, where a context has been operationalized as an environment surround-
ing a meaningful collection of objects, with possibly spatial relationship with each
other (Aminoff, Gronau, and Bar 2007; E. M. Aminoff, Kveraga, and Moshe Bar
2013). Another model is the one of C. Ranganath and colleagues, in which they con-
sider the PHC and RSC within a larger network, called Posterior Medial System,
the mammillary bodies, anterior thalamic nuclei and pre/para-Subiculum. Some
of the roles of this extended network cover spatial navigation, mainly through the
PPA and RSC just described, and the elaboration of “situational models”, intended
as mental representations that integrate and group together internal and external
instances, spatial and non-spatial; indeed, this last function can be easily connected
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with Episodic Memory (Diana, A. P. Yonelinas, and Charan Ranganath 2007; Cha-
ran Ranganath and Ritchey 2012; Zwaan and Radvansky 1998). Lastly, the in-
volvement of the PHC in the Default Mode Network as part of the MTL subsystem,
together with the PHC, RSC, LiP, VMPFC and HP. Functionally, the role of this
sub-network is related to reasoning about the present and the future through episodic
simulation and mnemonic scene construction, especially by providing contextual in-
formation (Andrews-Hanna et al. 2010; Daniel L Schacter and Addis 2007; Daniel L.
Schacter, Addis, and Buckner 2007). Further, the Default Mode Network comprises
also another subsystem, composed of frontal and temporo-parietal areas, devoted
to process more self-referential content and oriented to meta-cognition and mind-
reading (Ochsner et al. 2004; Vanderwal et al. 2008). More broadly, both subsystem
interact and converge on two midline hubs, the MPFC and PCC (Buckner et al.
2009), endowing the Default Mode Network with the ability to picture an internal
representation of oneself in salient events and his own mental states, besides aspects
of social cognition and mental simulation. For these reasons, the PHC has been
suggested to account also for the generation of autobiographical memories, which
can be loosely seen as exceptionally self-referenced episodic memories (Svoboda,
McKinnon, and Levine 2006).

4 The Entorhinal cortex bottleneck

After collecting information about the object and its spatial features in the Perirhinal
and Post-rhinal cortices, the journey towards a unified experience representation
encounters the Entorhinal cortex, covering the Broadman’s areas 28 and 34. It is
commonly considered as the main intermediary between the Hippocampus and the
Neocortex, and thus plays a primary role in the genesis of episodic memory and
spatial processing in general. One of its principal function is to act as a gateway,
channeling inputs from the Rhinal regions to the inner Hippocampal loop. At this
stage spatial and object-related information still not merge together, but instead
pass through two distinct Entorhinal regions, respectively medial and lateral.

4.1 MEC neuroanatomy

The medial entorhinal cortex (MEC) receives afferent connections from a variety of
neo-cortical areas mainly devoted to spatial processing. The most prominent ones
are the PHC, RSC and some visual-spatial regions in the parietal lobe, which bring
highly-elaborated information. Besides, the dorso-caudal side also receives connec-
tions from the Hippocampus and specifically from the Pre and Para-Subiculum,
generally considered as the last component of the Hippocampal circuit. The con-
tributions from these last two parts concern the representation of spatial direction,
confirmed by the abundance of head-direction cells and the experiments with le-
sioned rats (Canto et al. 2012; Fyhn et al. 2004). Regarding the efferences from the
MEC, by means of the Perforant Path, the Hippocampus represents the main target,
to which positional and directional information is delivered. Among the different
neuronal population in the MEC, grid cells are undoubtedly the most investigated
since their discovery (Hafting et al. 2005) and provide one third of the connection
to Hippocampus, while the rest is largely composed of non-selective cells (50%),
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head-direction cells, speed cells and boundary cells (Sasaki, S. Leutgeb, and Jill K
Leutgeb 2015).

4.2 MEC functions

As already anticipated, the MEC is thought to play a primary role in gating spatial
information from the Neocortex; however, an active contribution to spatial process-
ing itself is also well documented.

Grid cells

Most notably, grid cells are specialized neurons possessing grid-like spatial fields
and their firing rate is relative to the subject’s position in the environment (Gio-
como, M.-B. Moser, and E. I. Moser 2011; Rowland et al. 2016), independently of
locomotion (Killian, Jutras, and Buffalo 2012). Further, grid cells are known to be
the precursors of Hippocampal place cells, which can be regarded to provide an up-
graded and fine-tuned encoding of the subject’s location (Neher, Azizi, and Cheng
2017; Solstad, E. I. Moser, and Einevoll 2006). For instance, recordings from the
dorsolateral-ventromedial axis of the MEC have exposed how grid cells in this region
are involved in building an allocentric spatial representation, highly correlated with
the downstream place cell’s activity (Fyhn et al. 2004). This and other studies have
uncovered the relations between Entorhinal grid cells and Hippocampal place cells
in CA1, showing how grid cells are helpful but not sufficient for orthogonal repre-
sentations and the emergence of global remapping in the Place cells. Place cells are
also able to operate in the absence of MEC inputs. Nonetheless, the exchange be-
tween the two regions is required for stabilizing their theta rhythms (4-8Hz). Theta
rhythms have been extensively linked to spatial and episodic memory processing,
especially during encoding of events sequences and recall when coupled with gamma
waves (theta-gamma coupling) (Buzsdki 2015; Jezek et al. 2011; Oliva et al. 2016;
Tort et al. 2009; Theodoni et al. 2018; Jensen and Lisman 2005). In particular, grid
cells are necessary for processing temporality in CA1l as in phase precession (S. J.
Mitchell and Ranck 1980; Schlesiger et al. 2015). This last property, exhibited in
MEC and CA1 spatially-tuned cells, is defined as a progressive anticipation of the
firing activation within the theta cycle, in other words the cells spike earlier. The
computational advantages of such behaviour are yet to be validated, but some ac-
credited hypothesis are the encoding of relevant information beyond spatial position,
facilitation of a more efficient synaptic plasticity and the contribution in represent-
ing behavioural sequences (Jaramillo and Kempter 2017; Qasim, Fried, and Jacobs
2021; Reifenstein and Kempter 2020).

Object encoding

Another spatial property of MEC in its superficial layers is the positional encoding
of objects. This ability is achieved by the so called “object-vector coding”, an al-
locentric representation of objects in space, independent of the animal’s location, a
behaviour that resembles that of landmark cells in CA1 (Deshmukh and Knierim
2013; Hgydal et al. 2019; Colgin 2015). Furthermore, the co-existence of two distinct
circuits, both populated by grid cells, have been proposed within two of the layers
of the MEC. The first one is composed of pyramidal neurons, devoted to intra-
Entorhinal processing and supporting spatial computations like path integration.
The second one is composed of stellate neurons, more oriented to support down-
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stream Hippocampal activity, for instance by stabilizing phase precession (Sasaki,
S. Leutgeb, and Jill K Leutgeb 2015). Besides encoding for egocentric and allocen-
tric positions, feature-based processing has also been observed in MEC, specifically
from non-grid cells in the superficial layers, which compose the two third of the
neuronal population. In a study where MEC cells were recorded before and after
modification of features in the environment, while grid cells maintained stable ac-
tivity fields, non-grid cells underwent total remapping, suggesting their specificity
in representing non-spatial characteristics (Diehl et al. 2017).

Taken together, these results provide a picture of the MEC, which goes beyond
spatiality itself and in which the integration with feature-based processing creates
already in MEC an almost multi-modal representation that will serve downstream
computations for a more complete picture of the experience.

4.3 LEC neuroanatomy

The lateral Entorhinal cortex receives its main input stream from the PRC, which
constitutes a high stage of the ventral pathway related to object features; other
afferences come from the ACC and the MPFC (Deshmukh, Johnson, and Knierim
2012). Of particular relevance to the interactions between LEC and PER is the
connectivity with the inhibitory network composed of the Anterior intra Parietal
cortex (AiP) and the lateral Amygdala (LA), which targets the superficial and deep
layers of LEC and PRC. Experiments using electrical stimulation have shown the
importance of the influence of the emotional circuits in the transmission of the
information from the Neocortex to the Hippocampus. Indeed, saliency, attention and
expectation (encoded in AiP and LA) can modulate the sub-cortical Hippocampal
loop (Curtis and Paré 2004; Kajiwara, Takashima, et al. 2003; Willems, Wadman,
and Cappaert 2016).

4.4 LEC functions

The functions of the LEC concern mainly non-spatial processing. In this regard,
lesions to this area impair context and place-object recognition memory, although
non-associative recognition seems to be preserved (Wilson et al. 2013). This suggests
a role of LEC in constructing a joint representation rather than simply selecting in-
dependent features. In addition, two distinct sub-populations of cells were identified
as elaborating objects: one type firing when the animal was close to the objects,
the other type firing at places where the objects were presented on previous trials,
providing a readout of past experiences in the environment. The last cells generally
did not respond to the object when it was present, suggesting that they responded to
the object-trace (Tsao, M.-B. Moser, and E. I. Moser 2013). Together, these studies
converge towards an idea that the LEC links object, location, and context for mem-
ory consolidation. Besides, it has been suggested that it might play an intermediary
position between the Hippocampus and the ACC, a region documented to hold long-
term memory for objects and their location (A. Weible et al. 2012; A. P. Weible et al.
2009). Moreover, an experiment with rats in which the connections between LEC
and MPFC of opposite hemisphere were lesioned, demonstrated the importance of
these interactions for the associative episodic-like memory (integration of the what,
where and when of an experience), but not for the non-associative-like memory, for
which the characteristics were taken singularly (Chao et al. 2016).
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4.5 Double dissociations

The functional distinction between medial and lateral EC is a claim supported by
several studies, suggesting a double dissociation is taking place. The main results
have shown that MEC lesions provoke impairment of spatial processing, non-spatial
object recognition and path integration, while LEC lesions preserve space navigation
and path integration but do impair the detection of spatial and non-spatial changes,
although the presence of spatial cells is weak (Deshmukh and Knierim 2011; Har-
greaves et al. 2005). Nevertheless, the distinction might be blurrier, with the LEC
dealing with joint spatial and non-spatial information and the MEC dealing tangen-
tially with context. This suggests the existence of interactions between objects and
space as early as the Entorhinal cortex; however, these observations are not intended
to fundamentally challenge the assumed functions of the BIC model aforementioned
(2.2) (Hunsaker et al. 2013; Van Cauter et al. 2013).

5 Hippocampus

The Hippocampus is a sub-cortical structure belonging to the “ancient brain”. Its
two primary functions are spatial navigation and memory. It is located ventrally
respect to the Para-hippocampal area and it develops around the body of the Fornix.
Its main region develops as a horn-like shape, which gave it the name of Cornus
Ammonis (CA), further subdivided into 4 sub-areas. The other two principal regions
are the Dentate Gyrus and the Subiculum, which together with CA form a circular
functional structure unfolding as DG — CA3 — CA1 - Sb (P. Andersen et al. 2006).
In the brain, the Hippocampus is present in double copy, as well as the rest of
the MTL, one for each hemisphere, which display some internal composition and
functional dissimilarities; for instance, the left CA3 area is thought to represent
space in a discrete way while the right CA3 area would represent space in a more
continuous way (Hou, Yang, and Yuan 2013; Jordan 2020).

Figure 6: representation of the Hippocampal network in rats - Legend: CA3
Cornu Ammonis 3, CA1 Cornu Ammonis 1, EC Entorhinal Cortex, DG Dentate
Gyrus, MF Mossy Fibers, SC Schaffer Collateral pathway, STS Superior Temporal
Sulcus, STG Superior Temporal Gyrus, PB Peristriate Belt, Tpt Temporo-parietal
area, AC Associational Commissural pathway, Sb Subiculum - From R. Kesner 2013
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5.1 Hippocampus - input and output channels

The most prominent input stream to the Hippocampus comes from EC, a gate for
the information coming from the MTL. From EC it departs the so-called Perforant
Path (PP), a pack of connections that projects with various densities to all the Hip-
pocampal sub-regions that owes its name to the fact that it perforates the Sb to
arrive at the DG (Groen, Miettinen, and Kadish 2003). In addition, the upstream
MEC and LEC generally targets different strata of their destination areas, and in
particular layer IT of EC aims at DG and CA3 meanwhile layer 11T aims at CA1 and
Sb. Figure 7 depicts the principal Hippocampal afferences from the MTL.

Besides EC, several other structures send information directly downstream. The
PCC and other Parietal areas have been correlated with spontaneous activity and
successful item recollection (Vincent et al. 2006). The MPFC and medial OFC turn
out to be important pieces in autobiographical memory and self-referential process-
ing, besides belonging to the Default Mode Network (Cabeza et al. 2004; Cavada
et al. 2000; Eleanor A. Maguire and Mummery 1999; Zhou et al. 2008) The PHC
represents a direct gateway for the Neocortex, as documented by Diffusion Tensor
imaging (Powell et al. 2004; M. P. Witter et al. 2000) and neurological studies (Ta~
lamini et al. 2005). The Fornix, a structure of white matter belonging to the Limbic
system, is generally considered as the main relay of Hippocampal connections. Its
activity has been extensively linked to memory performances both in animal models
(Douet and Chang 2015; Gaffan 1994) and humans patients affected by neurodegen-
erative diseases, such as Alzheimer’s disease. In addition, in psychiatric disorders,
such as schizophrenia, where studies using diffusion-tensor-imaging showed marked
abnormal Fornix connectivity (Kubicki et al. 2005; Kuroki et al. 2006). Further,
CA1 and the subicular area exchange projections with the baso-lateral Amygdala,
with which share convergent excitatory and inhibitory inputs to the medial OPFC
(R. P. Kesner et al. 1996; Baldwin, Sadeghian, and Kelley 2002). Ventral CA1 has
also been shown to connect with hypothalamic periventricular area, which is impli-
cated in autonomic and somatic responses,like digestion, reproduction and defense
(Dong et al. 2009). Interestingly, the posterior cortical nuclei of the amygdaloid
complex, a region that in rats receives pheromonal information from the olfactory
bulb, also projects to the hypothalamus as well as to CA1 and proximal Sb, sug-
gesting another pathway through which Amygdala’s activity may affect memory
formation (Kemppainen, Jolkkonen, and Pitkdnen 2002; Petrovich, Canteras, and
Swanson 2001).

5.2 Hippocampus - internal connectivity

Focusing on the internal connectivity of the hippocampal formation, the general
direction is circular although several backward streams are present. The starting
area is the Dentate Gyrus, whose granule cells heavily projects to the pyramidal
neurons in CA3 through the so-called mossy fibers (Lim et al. 1997). Although not
so well known, backward connectivity to multiple strata of DG has been observed
(David G. Amaral, Scharfman, and Lavenex 2007; Blaabjerg and Zimmer 2007). In
addition, CA3 is well known for its substantial recurrent structure that confers self-
association properties. Next, CA3 innervate CA1 via Schaeffer’s collaterals, which
target both interneurons and pyramidal cells. On the other hand, ascending retro-
projections from CA1 are weak or absent, although inhibitory feedback from CA1l
to other Hippocampal sub-regions was observed from a small subset of GABAergic

20



NEOCORTEX PHR HF

Figure 7: Projections from the Rhinal Sulci to the hippocampal formation
- where: DG Dentate Gyrus, CA3 Cornu Ammonis 3, CA1 Cornu Ammonis 1,
Sub Subiculum, LEC Lateral Entorhinal Cortex, MEC Medial Entorhinal Cortex,
PER Perirhinal Region [Cortex], POR Post-Rhinal Region, PHR Para-Hippocampal
Region [Cortex], HF Hippocampal Formation - from Menno P. Witter 2010.

neurons (Cappaert, Wadman, and Menno P. Witter 2007; Kajiwara, Wouterlood,
et al. 2008; Megias et al. 2001). Recurrent connectivity in this area has been doc-
umented, but it is modest compared to that in CA3. Thereafter, projections from
CA1 to Sb are robust and generally target opposite parts: proximal to distal and
vice-versa. From SB, the feedback to CAl is weak and not sufficiently detected,
while its main destination, together with parts of the CA1l outputs, is layer V of
the Entorhinal Cortex as well as back-projections also directly to the Perirhinal and
Para-hippocampal Cortices, mainly from the Pre and Para-subiculum (Mulders,
West, and Slomianka 1997). Figure 7 shows the internal Hippocampal connectivity
as well as the principal afferences from the medio-temporal cortex and EC. For a
quality in-depth illustration of the connectivity structure, we highly recommend the
review “Connectivity of the Hippocampus” (Menno P. Witter 2010).

5.3 A computational model of Hippocampal dynamics

Among the models that have been developed to describe the neuroanatomical path-
ways involved in Episodic memory (REFs??)we have chosen to focus on the one
developed by Edmund Rolls, who applied a computational approach to the un-
derstanding of Hippocampal functioning (Edmund T. Rolls 2010). He proposed a
theoretical model explaining a variety of features at play. The motivation behind the
description of this theoretical model is to propose an integration of the neuroanatom-
ical connection provided in the previous paragraph. According to Edmund Roll’s
model, the entrance is EC, as described before, gating high-quality information
about the experience coming from the Neocortex. The next passage is DG, whose
granule cells projects to pyramidal CA3 neurons with a rather low ratio, around 50:1.
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Further, the DG is well known to exhibit active neurogenesis also in adult brains
(Cameron and Mckay 2001; McDonald and Wojtowicz 2005) a phenomenon that,
coupled with the seemingly random connectivity with downstream CA3 neurons and
competitive learning, allows an effective orthogonalization of the Neocortical inputs
and makes the DG earn the role of “pattern separator” (Jill K. Leutgeb and E. L.
Moser 2007; Jill K. Leutgeb, S. Leutgeb, et al. 2007; Santoro 2013). The effect of
this input separation is pivotal for maximizing the downstream storage capacity and
improve the ability to discriminate different experiences. Then, in the next step,
there is the first formation of a trace linking together aspects of the episode that
have been separated until then, encoding spatial and object-related information.
CA3 is usually pictured as a continuous attractor network, whose dynamics heavily
rely on its large number of recurrent connections, around 10’000 per cell (Cerasti
and Treves 2013; Miles et al. 2014). In practice, after the imposition of a specific
neural firing pattern, initially retained as a short-term memory, it is consolidated
through long-term potentiation (LTP). The following stage is represented by CAl,
receiving streams from the Schaffer collaterals and the Perforant Path. Some of the
computational functions of this area have been proposed as recording memory traces
and facilitating retrieval. For these properties, the features that could support it
are: associatively scalable connections from CA3, minimizing information loss; prop-
agation and expansion of input patterns over a large number of cells, aided by the
larger size of CA1; and the abstraction and chunking of sequential patterns through
competitive learning, which would facilitate retrieval in the sense that fewer cells
would be needed to represent temporal patterns.

6 Conclusion

The formation of an episodic memory trace is the results of the activity of a large
number of regions.

6.1 A schematic model

Figure 8 above illustrates the emerged connectivity delineated in this review. Infor-
mation about objects and people flows from the higher stages of the ventral sensory
areas and generally converges in the PRC (35 and 36 Broadman areas), where it
gets combined with top-down data coming from the Frontal lobe and emotional va-
lence from the Amygdala, as showed in figure above in orange. These inputs enable
the PRC to produce an enriched representation of the objects in an episode, the
episodic what, as it is pictured by the PMFC model in 2.2. Similarly, spatial in-
formation travel from the sensory dorsal pathways towards the PHC (TH and TF
areas), where it is fused with other cortical contribution from Default Mode Net-
work’s components (such as RSC and OPFC, blue in the figure), and provides a fine
elaboration of the contextual features of the environment, the episodic where and
partially the when, and the ground for scene perception. Eventually, the functional
roles of these two Rhinal regions are becoming better understood, with the main
directions being a high-level abstract representation of environmental features for
use in spatial navigation, memory processes, sense of self (relying on the Default
Mode Network), social cognition and other cognitive functions requiring enriched
representations. The PRC and the PHC were placed respectively inside the Ante-
rior Temporal System and the Posterior Temporal System.
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Figure 8: Diagram of the input streams to the Hippocampal formation - SB
Subiculum, CA1 Cornu Ammonis 1, CA3 Cornu Ammonis 3, DG Dentate Gyrus,
MEC Medial Entorhinal Cortex, LEC Lateral Entorhinal Cortex, PHP gyrus 77
, PCC Posterior Cingulate Cortex, STG Superior Temporal Gyrus, STS Superior
Temporal Sulcus, TEO TE temporal regions, VIPC Ventral Temporo-Parietal Cor-
text missing ref, OFC Orbito-Frontal Cortext, PFC Pre-Frontal Cortex, PPC
Posterior-Parietal Cortext, RSC Retro-Splenial Cortex - Only the moderate-strong
connections have been considered; acronyms same as before, reciprocal connections
are not mentioned for clarity

Continuing the journey downstream, from the Rhinal cortex, the information is
passed to EC (green in the figure), where the spatial and object data remain sep-
arated. The MEC receives projections mainly from the PHC and it constitutes an
additional stage in spatial processing and context memory, thanks also to the pres-
ence of grid-cells, the precursors of the Hippocampal place-cells (Neher, Azizi, and
Cheng 2017). Thus, this Para-hippocampal route provides the elements for answer-
ing the where of an episodic memory, defining its spatial content. Meanwhile, the
LEC has afferent connections from the PRC and it further elaborates information
about the object and it starts to link spatial and contextual data. As such, this
route could account for the what part of an episodic memory, as it provides an high-
level and multi-dimensional picture of the items at play. However, the mechanisms
accounting for the when, namely the temporal features, turned more subtle to iden-
tify. The encoding of the sequence of events is thought to be partially propagated by
means of the population behaviours like the theta-gamma code, network-level syn-
chronizations where spatial cells fire in specific order, and neuron-level behaviours
like phase precession, a shift of timing of the firing activity. Both these properties
are shared by MEC and Hippocampal neurons.

Finally, objects, context and locations arrive in the Hippocampus formation, the
yellow semi-circle, where in a few words they get orthogonalized in the DG, effi-
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ciently merged in CA3, re-coded in CAl, and then returned to the Neocortex via
the Fornix, with feedback connections to the upstream input areas.

6.2 Interest in a deeper comprehension of network connec-
tivity and dynamics in encoding Episodic memory

Memory, and episodic memory especially, plays an essential role in our mental life. It
is at the centre of a plethora of important cognitive processes ranging from decision-
making to language and abstract reasoning. By means of the deep connections of
the areas involved in its formation with cerebral networks devoted to perception and
emotions, memory has a lot to do in the construction of our personal identity, the
self, and our interaction with the external world (Williams, Conway, and G. Cohen
2008). Gaining a better comprehension of its development could have a great im-
pact on sectors such as Neuropsychology, where it could provide a wide framework
to favour the tracking of some aspects of the cognitive decline in neurodegenerative
diseases. In this regard, well known are the marked memory deficits in Alzheimer
patients, about which some studies have individuated part of the causes in the at-
rophy of the medio-Temporal cortex and their lead in impairing the formation of
new episodic traces (Carlesimo and Oscar-Berman 1992; Chan et al. 2001; Wenk
2003). Likewise, in Parkinson’s disease patients the impairments in memory have
been traced back to atrophy right in the Hippocampal core, in CA3 and CA2 (and
to a lesser extent in CA1 and Sb), pivotal components for encoding and recollecting
old episodes (Das, J. J. Hwang, and Poston 2019; Economou, Routsis, and Papa-
georgiou 2016; La et al. 2019).

Moving on more computational fields like Cognitive Science and Al, having an
insight of how the brain implements its one-shot learning algorithm would be an
invaluable treasure for building machines more efficient in terms of time, energy,
and memory requirements (Lake et al. 2011; S. W. Lee, O’Doherty, and Shimojo
2015; Thompson et al. 2020). Moreover, a fast learner should be much more flexi-
ble and able to generalize better to new domains (transfer of knowledge). Current
Machine Learning is still struggling in finding effective strategies to do this, and
instead requires incredibly large training datasets (thousands or millions of inputs)
and a considerable amount of time. Although some solutions found so far might be
claimed capable of learning a new object class or task in one go (Romani, D. J. Amit,
and Y. Amit 2008), most of the times, they eventually rely on special training tricks
that do not exactly configure in a one-shot learning paradigm as genuine as the bio-
logical brain does (Bertinetto et al. 2016; Vinyals et al. 2016). Maybe the solutions
rely in the spiking neural network approach, closer to the real brain environment,
and some promising solutions in this direction have been devised (Edmund T. Rolls,
Tromans, and Stringer 2008). Combining more sophisticated network architectures
might allow developing optimal training procedures.
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