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Abstract

This paper investigates some theoretical properties of the Partial Least Square (PLS)

method. We focus our attention on the single component case, that provides a useful frame-

work to understand the underlying mechanism. We provide a non-asymptotic upper bound

on the quadratic loss in prediction with high probability in a high dimensional regression con-

text. The bound is attained thanks to a preliminary test on the first PLS component. In a

second time, we extend these results to the sparse partial least squares (sPLS) approach. In

particular, we exhibit upper bounds similar to those obtained with the lasso algorithm, up to

an additional restricted eigenvalue constraint on the design matrix.

Keywords: Partial least squares; dimension reduction; regression; sparsity

1. Introduction

We are interested in the classical linear model in a high dimensional context. We observe a n-

sample (Xi, Yi), i = 1, . . . , n, where the Yi ∈ R are outcome variables of interest and the Xi ∈ R
p

p-dimensional covariates. We consider a linear relationship within each couple (Xi, Yi), represented

by the equation

Y = Xβ + ε, (1)

where ε = (ε1, . . . εn)
T ∼ Nn

(
0, τ2In

)
, X = (X1, . . . , Xn)

T ∈ R
n×p and Y = (Y1, . . . , Yn)

T ∈ R
n.

The matrix In is the identity matrix of size n and the parameter τ characterizes the noise level. The
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1 INTRODUCTION 2

exponent T denotes the transpose operator. In this context, one might be alternatively interested in

providing inference on the parameter β itself, or on Xβ (prediction task). The regression model (1)

has a long history. Several issues may arise, in particular in a high dimensional context, namely

when p is of the same order, or much larger, than the number n of available observations. We refer

to Giraud (2021) for a comprehensive introduction to this topic.

In this paper, we will focus our attention on the Partial Least Squares (PLS) principle. PLS was

mainly developed in the chemometrics community (Martens and Naes, 1992). This approach has

shown its ability for the prediction of regression models with many predictor variables (Garthwaite,

1994). It has been widely used in chemometrics (Wold, 1995; Wold, Sjöström, and Eriksson, 2001)

but also in other fields such as social science (Sawatsky, Clyde, and Meek, 2015), and biology

(Palermo, Piraino, and Zucht, 2009; Yang et al., 2017). Several extensions have been proposed

over the years as, e.g., Delaigle and Hall (2012) for functional data or Naik and Tsai (2000) for the

single-index models.

The idea of PLS is to seek a fixed number of directions – say K ∈ {1, . . . , p} – formed by linear

combinations of X coordinates, which are highly correlated with the target variable Y (see Mateos-

Aparicio (2011) for a comprehensive introduction). These K directions are gathered in a weight

matrix W ∈ R
p×K . The parameter β is then estimated by an appropriate linear combination of

the columns of W . More formally, the PLS estimator satisfies

β̂W = argmin
w∈[W ]

‖Y −Xw‖2, (2)

where [W ] ⊂ R
p denotes the space spanned by the columns of the weight matrix W , and ‖.‖

is the ℓ2-norm on R
n. The objective of the dimension reduction given by W is to decrease the

number of features from p to K while retaining as much information as possible. On the contrary

to Principal Components Reduction where the directions are built only considering the covariates

X , PLS regression builds the weights W iteratively, considering the successive correlations with

the outcome Y , to increase the prediction quality. We refer to Frank and Friedman (1993) and

Krämer and Sugiyama (2011) and to Section 2 for more details regarding the way in which W is

constructed.

Although the PLS principle has attracted a lot of attention over the years, few theoretical results

have been obtained. Among others, we can mention Helland (1990) where the space [W ] resulting

from the PLS approach has been characterised, or Cook, Li, and Chiaromonte (2010) and Cook,

Helland, and Su (2013) for a connection between PLS regression and envelopes. While Chun and

Keleş (2010) proved inconsistency of the PLS estimator when the number of covariates is too large,

Cook and Forzani (2017) and Cook and Forzani (2019) established – up to strong constraints on

β and the design matrix X – the asymptotic behavior of the mean squared error of prediction and

prove that it may tend to 0 as the number of observations goes to infinity. Additional investigations

have also proposed to take into account sparsity constraints in the PLS algorithm. We refer for

instance to Durif et al. (2017) and Alsouki et al. (2023).

The aim of this paper is to investigate the theoretical performances of the PLS algorithm. We will

focus our attention on the single component PLS algorithm, namely K = 1. Despite its apparent

simplicity, this setting provides numerous statistical challenges. In particular, the non-linearity of
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the corresponding estimator requires a careful attention. In this context, our aim is twofold:

• Obtaining non-asymptotic prediction bounds on the PLS estimator with high probability. In

particular, we want to provide an extensive description of the performances and limitations

of this approach with a minimal set of assumptions.

• Extend these results to a sparse scenario, and discuss existing similarities with alternative

methods like the lasso estimator (see, e.g., Tibshirani (1996) and Section 2.3).

To this end, we establish in a first time a non-asymptotic bound on the prediction loss. Denoting

by β̂PLS be the PLS estimator with K = 1, we prove in particular that with high probability,

1

n
‖Xβ̂PLS −Xβ‖2 ≤ B(β) + C

τ2

n
max

(
Tr(Σ)

λ
,
ρ(Σ)Tr(Σ)

λ2

)
,

where C is a positive constant, Tr(.) is the trace operator on R
p×p, and Σ = 1

nX
TX ∈ R

p×p is

the Gram matrix associated to the design X . The term λ corresponds to the norm of the first

theoretical PLS component while B(β) is a measure on the bias induced by the algorithm. The

variance term can be read as a signal-to-noise ratio and allows to describe scenarios where the

PLS estimator provides satisfying results. The formal result, along with an extended discussion,

is displayed in Section 3.

Next, we extend this result to the parsimonious case using a sparse version β̂sPLS of the algorithm,

including an ℓ1 constraint in the optimisation process. Assuming that the Gram matrix Σ satisfies

a restricted eigenvalue condition, we establish that, with high probability,

1

n
‖Xβ̃sPLS −Xβ‖2 ≤ B(β) + C

τ2s

n
ln(p),

where s denotes the number of non-zero coefficient of the first PLS axis. In particular we recover,

up to the bias term, the same kind of bound as those obtained for the Lasso procedure. See

Section 4 for more details on our results and related consequences.

The contribution is structured as follows. Section 2 provides a brief overview on the PLS algorithm

and on its extensions. We detail in particular the case of a projection on a single component, that

is, K = 1. We also present the sparse algorithm studied in this paper. Section 3 gathers our first

theoretical bound on the single PLS estimator and a discussion on some specific scenarios that may

shed some light on the behaviour of the PLS principle. An extension to the sparse case is presented

in Section 4, together with a corollary that involve an additional assumption on the Gram matrix

Σ. The proofs of our main results are displayed in the Appendix.

All along the paper, we use the following notation. The ℓ2 (resp. ℓ1) norm in R
p is written ‖.‖2

(resp. ‖.‖1), while ‖.‖ corresponds to the ℓ2 norm in R
n. For any matrix A, AT corresponds to

the transpose matrix, and [A] to the vectorial space spanned by the columns of A. If A is a square

matrix, we write Tr(A) (resp. ρ(A)) for the trace (resp. spectral radius) of A. Here and below,

the design matrix X is considered as deterministic. We denote by Σ = XTX/n the Gram matrix

associated to the design X , σ̂ = XTY/n the empirical covariance between X and the target Y and

σ = E[σ̂] = Σβ its population counterpart.
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2. A short PLS overview

In this section, we first recall the PLS algorithm. We will focus our attention on the single

component case, and will briefly discuss existing results in this particular setting. Next, we present

a sparse extension of this approach that includes a lasso type penalization in the optimisation

process.

2.1. The PLS algorithm

For a fixed number of components K ∈ {1, . . . , p}, the PLS algorithm summarizes some direc-

tions wk for k ∈ {1, . . . ,K} whose associated components tk are the most possible correlated with

the target variable Y . The K PLS components (tk)k=1,...,K form an orthogonal basis of Rp. They

are build to compress the data in uncorrelated terms at each iterative step. The corresponding

weights W = (wk)k=1,...,K are computed iteratively, seeking the components which are the most

correlated with the predicted variable Y on residuals.

For each new iteration, the algorithm advances by executing a deflation step: it takes the influence

of the previously computed components out of the design matrix X . Let X(1) = X and for

k ∈ {2, . . . ,K}, define

X(k) = X − P[t1,t2,...,tk−1](X) = X(k−1) − P[tk−1](X
(k−1)),

where P[t1,t2,...,tk] denotes the orthogonal projection on the subspace spanned by t1, t2, . . . , tk. The

weight wk is then solution of the following optimisation problem

wk = argmin
w∈Rp

(−Y TX(k)w) s.t. ‖w‖2 = 1. (3)

Components tk are defined as tk = X(k)wk, for all k = 1, . . . ,K.

The formal PLS algorithm is displayed in Algorithm 1 below.

Algorithm 1 PLS Algorithm

Input X,Y and K

X1=X
for k=1,. . . , K do

wk=X(k)T Y/‖X(k)T Y ‖2 (loadings computation)

tk=X(k)wk (component construction)

X(k+1)=X(k) - P[tk](X
(k)) (deflation step)

end for

This algorithm is described for example in Helland (1990) where some of its properties are dis-

cussed. Alternative versions of this algorithm have been proposed over the years. For example,

the components tk, k ∈ {1, . . . ,K} can be calculated using variants as the NIPALS (non linear

iterative least squares) introduced in Wold (1975) or SIMPLS (straightforward implementation of

a statistically inspired modification of the PLS method) proposed by de Jong (1993) which com-
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putes linear combinations of the original variables. We refer to Qin, Liu, and Tang (2023) for an

overview of PLS algorithms, as well as the equivalence with the conjugate gradient method.

The PLS components (t1, . . . , tK) can be gathered in a matrix T ∈ R
n×K , where each column k

of T corresponds to the component tk. In particular, it can be noticed that [T ] = [XW ] where

W = (w1, . . . , wK) ∈ R
p×K is the weight matrix. The PLS prediction ŶPLS := Xβ̂PLS is given by

ŶPLS = T (T TT )−1T TY = P[XW ](Y ).

It immediately follows that the corresponding estimator of β is computed as

β̂PLS = β̂W = W (WTΣW )−1WT σ̂, (4)

where σ̂ = XTY/n denotes the empirical covariance vector between X and Y .

The iterative nature of the PLS algorithm makes the corresponding estimation problem difficult to

handle. However, Helland (1990) proved that [W ] = Ĝ, where Ĝ denotes the Krylov space which

is the space generated by {σ̂,Σσ̂, . . . ,ΣK−1σ̂}. In particular, the optimisation problem (2) can be

rewritten as

β̂PLS ∈ argmin
w∈Ĝ

‖Y −Xw‖2. (5)

The latter provides an alternative expression which is sometimes useful from a mathematical point

of view (see for instance Cook and Forzani, 2019). Nevertheless, whatever the optimisation form,

the resulting PLS estimator is always non-linear in the target Y . This induces several issues for

obtaining accurate prediction bounds. In this context, we will focus in this paper on the single

component case (K = 1). This case is a starting point preceding further additional investigations.

2.2. The single component PLS

In the specific case where the number of component K is constrained to be equal to 1, an explicit

and workable expression of β̂PLS can be obtained. Indeed, a direct application of (3), (4) or (5)

leads to

β̂PLS =
σ̂T σ̂

σ̂TΣσ̂
σ̂. (6)

In particular, it can be noticed that the estimator β̂PLS is handled by the empirical covariance σ̂

which corresponds to the first PLS direction w1 up to a normalizing constant.

The formulation (6) has been at the core of the investigations presented in Cook and Forzani

(2017). The latter established, up to our knowledge, the first consistency results for this estimator

in several scenarios, including in particular high dimensional frameworks. Nevertheless, a central

assumption made by the authors is the fact that the so-called population version of the Krylov

space is of dimension 1. More formally, writing σ = Σβ and Σ = E(Σ) (assuming that the covariates

are random variables), they suppose that dim G = 1 where G is the vectorial space generated by

{σ,Σσ, . . . ,Σp−1
σ}. An immediate consequence of this assumption is that the coefficient vector β
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is strongly constrained. Indeed

dim(G) = 1 ⇒ β ∈ [σ],

provided Σ is invertible. Moreover, dim(G) = 1 implies that σ is an eigenvector of Σ.

In Section 3, we propose a bound on the prediction error with a controlled probability that does

not use the assumption dim(G) = 1. Moreover, our bound is non-asymptotic and does not require a

specific regime for n and p. This non-asymptotic analysis shed lights on some particular scenarios,

missing from Cook and Forzani (2017), where the term σTΣσ is too small to ensure a precise

control of the denominator in (6).

2.3. Sparse-PLS

In presence of a high number of regressors, one might want to promote dimension reduction during

the estimation process. Following Tibshirani (1996), a possible strategy is to keep the more relevant

variables and to shrink the others to zero by adding a ℓ1-penalty on the coefficients in the objective

function. Using this principle, the Sparse Partial Least Squares (sPLS) algorithm uses a sparse

constraint to select a subset of variables that have the highest correlation with the response variable

in the construction of the components. It is is an effective tool for variable selection, dimension

reduction, and developing predictive models using a limited set of relevant predictors. The sPLS

estimator has been considered in several frameworks and application fields as, e.g., Lee et al. (2011)

and Abdel-Rahman et al. (2014) in chemometrics, Cao et al. (2008) and Chun and Keleş (2010) in

genomics or Fuentes, Poncela, and Rodríguez (2015) in ecometrics.

Following Durif et al. (2017), a sparsity constraint is included in the estimation process by adding

a ℓ1-penalty in the optimisation problem (3). More formally, the latter is replaced by

w̃k = argmin
w∈Rp

[
− 1

n
Y TX(k)w + µ‖w‖1

]
s.t. ‖w‖2 = 1, (7)

where µ > 0 denotes a regularization parameter that determines the sparsity level of the solu-

tion and where, for k ∈ {2, . . .K}, X(k) is a deflated version of X on the previous components

t̃1, . . . , t̃k−1, with t̃j = X(j)w̃j , j ≤ k − 1. Several alternative approaches have been proposed over

the last two decades to try to force sparsity of the solution. We refer, e.g. to Cao et al. (2008) and

Chun and Keleş (2010).

Durif et al. (2017) provide a closed-form solution for the optimisation problem using proximal

operator. This expression can be made even simpler in the specific case where K = 1 which is at

the core of this paper. In particular, the corresponding estimator β̂sPLS involves a soft-thresholded

version of σ̂ (see Donoho and Johnstone (1994) and Proposition C.1).

In Section 4, we provide a complete non-asymptotic analysis of the prediction error associated with

the estimator β̂sPLS , still in the single component case. We exhibit and discuss several scenarios

where this algorithm provides accurate predictions in a high dimensional context. These scenarios

include in particular the specific cases where the Gram matrix Σ satisfies a restricted eigenvalue
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condition (see for instance Bickel, Ritov, and Tsybakov, 2009).

3. Theoretical results with single component PLS

Our first contribution is a non asymptotic control of the prediction loss, with an explicit upper

bound. We also take into account in our procedure the reliability of the PLS algorithm. That is,

we identify in the estimation scheme when the PLS regression does not bring enough information

to ensure a good quality of prediction. Our estimator is modified accordingly.

3.1. Non-asymptotic control

We can notice from (6) that the single component PLS estimator is made of a direction σ̂ and a

so-called intensity σ̂T σ̂/σ̂TΣσ̂. A random term appears in the denominator of this last quantity.

If the deterministic counterpart of this random part is too small, in a sense which is made precise

in the proof, we cannot expect to have an accurate control of the variance term. To this end, we

slightly modify the PLS estimator and introduce a threshold for the denominator. Namely β̂PLS is

considered for the estimation if and only if σ̂TΣσ̂ is large enough compared to a minimal reference

value pn (see Theorem 3.1 for more detail). We stress that

σ̂TΣσ̂ =
1

n
‖Xσ̂‖ =

1

n
‖t̂1‖2,

where t̂1 denotes, up to a normalizing constant, the first PLS component. Intuitively, if the norm

of the first component is close to zero, the PLS estimation will not be accurate and the estimator

is replaced by 0. On the other hand, if its value is above a fixed level of inertia, we use the PLS

regression algorithm. Applying this principle, which can be considered as a pre-processing testing

procedure, we obtain the following theorem.

Theorem 3.1. Let δ ∈ (0, 1). Define

β̂δ =

{
β̂PLS if σ̂TΣσ̂ > tδ pn

0 otherwise
with pn =

τ2

n
ρ(Σ)Tr(Σ),

for some explicit threshold constant tδ depending only of δ. Then, with a probability higher than

1− δ, there exist a constant Cδ > 0, depending on δ, such that

1

n
‖Xβ̂δ −Xβ‖2 ≤ 2

n
inf
v∈[σ]

‖X(β − v)‖2 + Cδ
τ2

n
max

(
Tr(Σ)

λ
,
ρ(Σ)Tr(Σ)

λ2

)
, (8)

where

λ =
σTΣσ

‖σ‖22
. (9)

The proof of Theorem 3.1 is postponed to Appendix B. It is mainly based on non-asymptotic

deviation results on non-centered weighted χ2 distributions. The proof manages the different values

of the indicator function 1{σ̂TΣσ̂≥tδpn} where tδ is defined in (29). In particular, we prove that the
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latter is equal to 1 when the amount of signal inside the first (theoretical) PLS component σTΣσ

is large enough. On the other hand, we get an upper bound on the prediction loss when β̂δ = 0.

This situation corresponds to the case where the first component does not contain significant

information. We highlight the fact that it implies that Xβ is relatively low, compared to the level

of noise. The analysis of the bound displayed in Theorem 3.1 is discussed in the next subsection.

3.2. Discussion

The bound displayed in Theorem 3.1 is composed of two terms. The first one, equal to

2

n
inf
v∈[σ]

‖X(β − v)‖2,

represents a bias term. It measures the distance between the true signal Xβ and the best possible

prediction based on the first theoretical PLS axis [σ]. This term cancels out provided β ∈ [σ].

This situation occurs for instance in the case where both the dimension of the Krylov space

G = Vect
{
σ,Σσ, . . . ,Σp−1σ

}
is equal to 1 and the matrix Σ is invertible. This assumption was –

in a slight different version – at the core of Cook and Forzani (2017).

The second term displayed in the right hand side of (8) can be considered as a variance term. It

essentially measures the impact of the noise ε on the PLS algorithm. It involves a ratio between

the trace of Σ and the term λ introduced in (9). The latter exactly corresponds to the norm of the

first theoretical PLS component t1 := 1√
n
Xw1 associated to the first normalized theoretical PLS

axis w1 = σ/‖σ‖2. In other words, the term

1 ≤ Tr(Σ)

λ
≤ +∞,

can be considered as an inverse relative inertia. This interpretation makes sense in the particular

case where dim(G) = 1. In such a case, it can be proved that the first PLS axis w1 is an eigenvector

of Σ associated to the eigenvalue λ (see Cook and Forzani, 2017). In the general case, namely when

dim(G) is not necessarily equal to 1, it provides in some sense an inverse of a signal-to-noise ratio

that controls the accuracy of the single PLS component. If this ratio is close to 1, the first PLS

component captures most of the inertia of the data and we obtain a variance term with a parametric

rate τ2/n. On the other hand, if this ratio is large, we cannot expect to get accurate results for the

single component PLS: the amount of signal captured in the first component is not large enough

to counterbalance the presence of the noise in the data.

This discussion can be illustrated by considering two extreme examples. First, assume that Σ = Ip,

the identity matrix in R
p×p. In this particular case, we get that Tr(Σ) = p and λ = 1. The variance

term in Theorem 3.1 is then of order τ2p/n, which can be dramatically large in a high dimension

setting. This appears to be quite natural since in such a situation, the explanatory variable are

uncorrelated: nothing can be expected from the PLS algorithm which is designed to express the

couple (Y,X) in a low dimensional space. On the other hand, the case where Σ has a rank equal

to one with largest eigenvalue λ is the most favorable case since in such a setting, Tr(Σ)/λ = 1

and the variance term is equal to τ2/n.
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To conclude this discussion, we stress that our bound on the prediction loss is a generalization of

the one displayed in Cook and Forzani (2017). It nevertheless differs from this former result by

several items. First, as discussed above, it does not impose an assumption on the dimension of the

Krylov space G and on the rank of X . An immediate consequence is the presence of a bias term.

Secondly, our bound is non-asymptotic: we provide a control with high probability, whatever the

values of n and p. Such an approach allows to consider all the possible values of ‖w1‖2 and ‖t1‖:
we do not require that these quantities are bounded from below. In particular, the fact the our

variance term is slightly different from Cook and Forzani (2017) is an immediate consequence of

this approach.

4. Sparse estimation

4.1. Statistical performances of the single component s-PLS estimator

First, we focus our attention on the sparse version of the single component PLS estimator. In

particular, we consider the estimator β̂sPLS defined in (4) with W = w̃1 where w̃1 is solution of

the optimisation problem (7). Recall that the latter aims at providing a sparse approximation of

the first theoretical PLS axis w1 = σ/‖σ‖2. We are hence implicitly interested in the situations

where the number of non-zero coefficients of σ ∈ R
p is small compared to the number of available

data n. In particular, we take advantage of the expression of β̂sPLS which involves a shrinkage

operator.

Denote by J0 = {j = 1, . . . , p, σj 6= 0} the support of σ. Hereafter, a vector vI denotes the vector

v where all vj are set to 0 for j /∈ I. The purpose of this section is to achieve bounds on the

quadratic loss in prediction with terms depending only on the variables which contribute to the

first component. Writing ΣJ0
= 1

nX
T
J0
XJ0

with (XJ0
)ij = 0 if j /∈ J0, i = 1, . . . , p, we expect to

reduce the variance appearing in (8) by exhibiting terms of order Tr(ΣJ0
) instead of Tr(Σ). Before

presenting our results, we need two different assumptions on the model.

Assumption A.1. The columns of X are normalized, namely

Σjj =
1

n

p∑

i=1

X2
ij = 1 ∀j ∈ {1, . . . , p}.

This assumption is quite standard for the linear model (1). It allows to get simpler expression

for the penalty level µ that appears in the optimisation process (7). This assumption can be

guaranteed thanks to a scaling of the explanatory variables.

Assumption A.2. Let δ ∈ (0, 1) be fixed. There exists a term dδ,p such that

σTΣσ > dδ,p
τ2

n
ρ(ΣJ0

)Tr(ΣJ0
).
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We recall that, up to a normalizing constant, the quantity σTΣσ corresponds to the norm of the

first theoretical PLS component. Assumption A.2 can hence be understood as minimal energy on

the signal. In Section 3, we have discussed the fact that situations where σTΣσ is small create

numerous issues in the control of the prediction loss. These issues have been circumvented in

Theorem 3.1 thanks to the introduction of a threshold on the denominator. In a sparse context,

constructing a test allowing to get rid of this assumption appears to be quite involved. It would

require in particular a precise knowledge on the location of the support J0. This is not reasonable

in practice. Nevertheless, we will present in Section 4.2 below an alternative procedure that allow

to remove Assumption A.2, up to an additional constraint on the design matrix.

A control for the prediction loss associated to the sPLS estimator β̂sPLS is displayed below. The

proof is postponed to Appendix D.1.

Theorem 4.1. Let δ ∈ (0, 1/2) be fixed. Assume that Assumption A.1 and Assumption A.2 are

satisfied with dδ,p = C0

(
ln
(
10
δ

)
+ ln

(
p
δ

))
, with C0 > 0 an explicit constant. Let

µ = 2τ

√
2

n
ln

(
2p

δ

)
. (10)

Then, we get, with probability greater than 1− δ,

1

n
‖X(β̂sPLS − β)‖2 ≤ 2

n
inf
v∈[σ]

‖X(β − v)‖2 +Dδ
τ2s

n
max

(
ρ(ΣJ0

)

λ2
,
1

λ

)
ln
(p
δ

)
, (11)

where s := |J0| = Tr(ΣJ0
) denotes the size of the support and Dδ a positive constant depending

only on δ.

The constant C0 is not detailed here for the sake of clarity. It is given explicitly in the proof, in

Appendix D.1.4.

The variance term in the bound obtained above differs from the one displayed in Theorem 3.1 (al-

though the bias remains the same). This an immediate consequence of the ℓ1 constraint introduced

during the optimisation process. While the first PLS direction ŵ1 is equal to σ̂ (up to a normalizing

constant) in the framework of Section 3, here we have ŵ1 = σ̃ where σ̃ is a thresholded version of

σ̂. In particular, the support of σ̃ is expected to be close (in a sense which is made precise in the

proof) of J0. As a consequence, the variance associated to the estimation of the σ is

τ2

n
Tr(ΣJ0

) =
τ2s

n
≤ τ2

n
Tr(Σ),

where for the first equality, we have used Assumption A.1. In the same spirit, we can notice that

ρ(ΣJ0
) ≤ ρ(Σ). In particular, we can expect a significant improvement of our bounds in the

situation where the first theoretical PLS direction w1 = σ is sparse, namely when |J0| = s << p.

The counterpart of this improvement is a term of order log(p) in the bound. Such a term is quite

standard in the literature.

As for the standard framework (Section 3), the ratio between the amount of signal available in the

first PLS component described by λ and the noise term discussed above plays an important role

in the behaviour of the method. We can get rid of this ratio by using a classical assumption when
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dealing with sparsity contraints.

Assumption A.3 (Restricted eigenvalue condition) There exists a constant φ > 0 such that,

min
γ:‖γ

JC
0

‖1≤3‖γJ0
‖1

1

n

‖Xγ‖2
‖γ‖22

≥ 1

φ
.

This kind of assumption has been at the core of several contributions and discussions. It requires

that for any γ ∈ R
p, the norm of ‖Xγ‖/√n is comparable to ‖γ‖2 provided the signal in γ in

mainly concentrated in J0. We refer to Bickel, Ritov, and Tsybakov (2009) among others, where

this assumption is discussed and compared to other types of constraints. In the following, we

apply this assumption on some vectors γ ∈ R
p whose support is included in J0. Accordingly,

Assumption A.3 could be weakened by just assuming that the restricted matrix XJ0
is full rank.

The following result is an almost immediate consequence of Theorem 4.1 that takes advantage of

Assumption A.3.

Corollary 4.2. Let δ ∈ (0, 1/2) be fixed. Assume that Assumption A.1, Assumption A.2 and

Assumption A.3 are satisfied. Setting

µ = 2τ

√
2

n
ln

(
2p

δ

)
,

we get, with probability greater than 1− δ,

1

n
‖X(β̂sPLS − β)‖2 ≤ 2

n
inf
v∈[σ]

‖X(β − v)‖2 +Dδ
τ2s

n
max (ρ(ΣJ0

), 1) ln
(p
δ

)
, (12)

for some positive constant Dδ.

The proof is postponed to Appendix D.2. Assumption A.3 allows to lower bound the quantity λ.

Up to the spectral radius ρ(ΣJ0
) (which can reasonably be assumed to be bounded), we hence

obtain a variance term

Dδ
τ2

n
ln
(p
δ

)
,

which is exactly of same order as those obtained for the Lasso estimator and its variants. We refer,

e.g., to Bickel, Ritov, and Tsybakov (2009), Meinshausen (2013) or Dalalyan, Hebiri, and Lederer

(2017).

4.2. An alternative procedure

We recall that the results displayed in Theorem 4.1 heavily rely on Assumption A.2 which in some

sense requires a minimal energy in the first theoretical PLS component. To get round of this issue,

we slightly modify the single component sparse PLS estimator β̂sPLS . Recall the latter is defined in

(4) with W = w̃1 and where w̃1 is solution of the optimisation problem (7). Using simple algebra,

we can in particular establish that

β̂sPLS = (w̃T
1 Σw̃1)

−1w̃T
1 σ̂ × w̃1, (13)
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(see Proposition C.1). Under Assumption A.2, the inverse of w̃T
1 Σw̃1 exists with high probability.

We propose here to replace σ̂ in (13) by a thresholded version σ̃,

σ̃j = sgn(σ̂j)(|σ̂j | − µ)+ ∀j ∈ {1, . . . , p},

where for any x ∈ R, sgn(x) = 1 if x > 0, −1 if x < 0, and 0 if x = 0, and where x+ = x if x ≥ 0

and 0 otherwise. This heuristic leads to the the following estimator

β̃ = (w̃T
1 Σw̃1)

−1w̃T
1 σ̃ × w̃1 := λ̃−1w̃1. (14)

By taking advantage of the restricted eigenvalue condition (Assumption A.3), we are able to man-

age the values of λ̃ without using Assumption A.2. This discussion is formalized in the following

theorem.

Theorem 4.3. Let δ ∈ (0, 1/2) be fixed and β̃ the estimator introduced in (13). Assume that

Assumption A.1 and Assumption A.3 are satisfied. Setting

µ = 2τ

√
2

n
ln
(p
δ

)
,

we get, with probability greater than 1− δ,

1

n
‖X(β̃ − β)‖2 ≤ 2

n
inf
v∈[σ]

‖X(β − v)‖2 +D′
δ

τ2s

n
max (ρ(ΣJ0

), 1) ln
(p
δ

)
, (15)

where s := |J0| = Tr(ΣJ0
) denotes the size of the support and D′

δ a positive constant depending

only on δ.

The proof is displayed in Appendix D.3. The bound displayed in Theorem 4.3 can be compared

to the one presented in Corollary 4.2. We obtain, up to some constants, exactly the same bounds,

but without requiring Assumption A.2.

5. Conclusion

In this contribution, we have provided non-asymptotic bounds on the prediction loss for the single

component PLS estimator, including a sparse version. Our aim was to introduce minimal assump-

tions on the model allowing a control on the prediction loss. This allows in particular to shed light

on several scenarios where the PLS estimator can lead to interesting and pertinent predictions.

The different contributions displayed all along our paper (Theorems 3.1, 4.1 and 4.3 in particular)

entail that the PLS algorithm does not immediately lead to satisfying theoretical results. Indeed,

we need either strong additional constraints on the signal (Assumption A.2) or the introduction

of a pre-processing step in the algorithm: a test (Theorem 3.1) or a soft-thresholding rule for σ̂

(Theorem 4.3).

Our investigations are limited to the single component PLS estimator. We can indeed notice that

this setting already brings a lot of technical issues. Nevertheless, it is expected to propose a similar
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non-asymptotic treatment in the general case with K PLS components for some K ∈ {1, . . . , p}.
This might be the core of a future contribution.

Acknowledgements

The authors would like to dedicate this contribution to François Wahl who suddenly passed away

in April 2022. He initiated discussions on the PLS algorithm some years ago that created new

research opportunities in our team.

A. Technical results

This section is dedicated to some specific technical results that will be used all along the proofs.

A.1. Distributions of σ̂ and Σ
1

2 σ̂

We first state the moments and the distribution of the main quantities appearing in the construction

of the single component PLS estimator.

Lemma A.1. We have

σ̂ ∼ Np

(
σ,

τ2

n
Σ
)

and Σ
1

2 σ̂ ∼ Np

(
Σ

1

2σ,
τ2

n
Σ2

)
.

In particular

E[σ̂T σ̂] = σTσ +
τ2

n
Tr(Σ), E[σ̂TΣσ̂] = σTΣσ +

τ2

n
Tr(Σ2),

and

E[(σ̂ − σ)TΣ(σ̂ − σ)] =
τ2

n
Tr(Σ2).

The results of this lemma are a direct consequence of Model (1) and of the fact that ε ∼ N (0, τ2In).

The proof is thus omitted.

A.2. Deviation inequalities on σ̂ and Σ1/2σ̂

The following proposition is an extension of a result established in Laurent, Loubes, and Marteau

(2012). It provides deviation inequalities for some quadratic function of a Gaussian vector.

Proposition A.2. Let U ∼ ND(m, tA) with D ∈ N, m ∈ R
D, t ∈ R+ and A ∈ R

D×D a symmetric

positive matrix. Define, for any s ∈ N,

Θs = t2Tr(A2(s+1)) + 2tρ(As+1)‖A s
2m‖2,
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Then, for all s ∈ N and x ≥ 0,

i) P

(
UTAsU − E[UTAsU ] ≥ 2

√
Θsx+ 2tρ(A)s+1x

)
≤ e−x,

ii) P

(
UTAsU − E[UTAsU ] ≤ −2

√
Θsx

)
≤ e−x.

Proof. Denote by (λi)
D
j=1 the eigenvalues of A and Λ = diag(λ1, . . . , λD). Set θ = PTA

s
2m, where

P is a matrix verifying A = PΛPT . First remark that

UTAsU = UTA
s
2PPTA

s
2U = ‖PTA

s
2U‖2,

Moreover, PTA
s
2U ∼ N (θ, tΛs+1) where Λs+1 is a diagonal matrix. The result then follows from a

direct application of Lemma 2 from Laurent, Loubes, and Marteau (2012) on the Gaussian vector

PTA
s
2U and from the bound

D∑

j=1

λs+1
j θ2j ≤ max

j=1...D
λs+1
j × ‖θ‖2 = ρ(As+1)‖A s

2m‖2.

Before stating additional results, we introduce, for any x ∈ R
+, the following quantities:

T1(x) = g(x)
τ2

n
Tr(Σ) + 2

√
2

√
τ2

n
ρ(Σ)

1

2

√
x‖σ‖2, (16)

T2(x) = g(x)
τ2

n
Tr(Σ2) + 2

√
2

√
τ2

n
ρ(Σ)

√
x‖Σ 1

2 σ‖2, (17)

T3(x) = g(x)
τ2

n
Tr(Σ2), (18)

with

g(x) = 1 + 2x+ 2
√
x. (19)

The following proposition will be the core of the proof of our main results. It provides deviation

results on the main quantities of interest.

Proposition A.3. For any 0 < δ < 1, let (Ai,δ)
3
i=1 the events respectively defined as

A1,δ =
{∣∣σ̂T σ̂ − σTσ

∣∣ ≤ T1(xδ)
}
, (20)

A2,δ =
{∣∣σ̂TΣσ̂ − σTΣσ

∣∣ ≤ T2(xδ)
}
, (21)

and A3,δ =
{
(σ̂ − σ)TΣ(σ̂ − σ) ≤ T3(xδ)

}
, (22)

with xδ = ln(5/δ). Then,

P(Aδ) ≥ 1− δ where Aδ := A1,δ ∩ A2,δ ∩ A3,δ.

Remark. The bounds displayed in Lemma A.2 are sharp in some sense (up to the constant terms)

and are particularly useful for testing issues. Since we are working in an estimation context, we do
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not need such a level of accuracy. The quantities T1(xδ), T2(xδ) and T3(xδ) respectively defined

in (20), (21), (22) hence correspond to rough bounds on the deviation terms. In particular, in the

proof below, we often the use of the inequality Tr(Σ2) ≤ Tr2(Σ) which is not sharp but well suited

for our analysis.

Proof. First, applying item i) of Lemma A.2 on the variable σ̂ with s = 0, t = τ2

n , m = σ and

A = Σ, we get

P

(
σ̂T σ̂ ≥ σTσ +

τ2

n
Tr(Σ) + 2

√
xδ

√
τ4

n2
Tr(Σ2) + 2

τ2

n
ρ(Σ)‖σ‖22 + 2

τ2

n
ρ(Σ)xδ

)
≤ δ

5
.

Then, remark that

τ2

n
Tr(Σ) + 2

√
xδ

√
τ4

n2
Tr(Σ2) + 2

τ2

n
ρ(Σ)‖σ‖22 + 2

τ2

n
ρ(Σ)xδ ≤ T1(xδ),

where we have used the bounds
√

Tr(Σ2) ≤ Tr(Σ), ρ(Σ) ≤ Tr(Σ) and
√
a+ b ≤ √

a+
√
b for any

a, b ∈ R+. Similarly,

P

(
σ̂T σ̂ ≤ σTσ +

τ2

n
Tr(Σ)− 2

√
xδ

√
τ4

n2
Tr(Σ2) + 2

τ2

n
ρ(Σ)‖σ‖22

)
≤ δ

5
.

Using again a rough bound

−τ2

n
Tr(Σ) + 2

√
xδ

√
τ4

n2
Tr(Σ2) + 2

τ2

n
ρ(Σ)‖σ‖22 ≤ T1(xδ),

we get

P(Ac
1,δ) ≤

2δ

5
.

Using again Lemma A.2 with s = 1, t = τ2

n , A = Σ and m = σ (resp. m = 0), we obtain

respectively

P(Ac
2,δ) ≤

2δ

5
and P(Ac

3,δ) ≤
δ

5
.

Using the union bound

P(Ac) ≤ P(Ac
1,δ) + P(Ac

2,δ) + P(Ac
3,δ),

allows to conclude the proof.

A.3. Control of λ̂−1

Recall that the single component PLS estimator of β can be written as

β̂ = λ̂−1σ̂ with λ̂−1 =
σ̂T σ̂

σ̂TΣσ̂
.
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To get a bound for the prediction loss, we need to control the deviation of λ̂−1 with respect to its

deterministic counterpart

λ−1 =
σTσ

σTΣσ
.

The stochastic term σ̂TΣσ̂ in the denominator creates statistical issues. To get rid of them, we

need a minimal value for σTΣσ as presented in the following proposition.

Lemma A.4. Assume that

r σTΣσ ≥ g(xδ)
τ2

n
ρ(Σ)Tr(Σ), (23)

for some r ∈ (0, 1). Then, on the event Aδ defined in Proposition A.3, we have

λ̂−1λ ≤ Cδ,r,

for some explicit constant Cδ,r depending only on δ and r.

Proof. First write

λ̂−1λ =
σ̂T σ̂

σTσ︸ ︷︷ ︸
:=S1

× σTΣσ

σ̂Σσ̂︸ ︷︷ ︸
:=S2

.

We first concentrate our attention on S2. For any s ∈ (0, 1),

−2σTΣ(σ − σ̂) ≥ −2
√
σTΣσ

√
(σ̂ − σ)TΣ(σ̂ − σ),

≥ −sσTΣσ − s−1(σ̂ − σ)TΣ(σ̂ − σ),

since 2ab ≤ sa2 + s−1b2 for all a, b > 0. Then, on the event Aδ introduced in Proposition A.3,

σ̂TΣσ̂ = (σ̂ − σ)TΣ(σ̂ − σ) − 2σTΣ(σ − σ̂) + σTΣσ,

≥ (σ̂ − σ)TΣ(σ̂ − σ) − sσTΣσ − s−1(σ̂ − σ)TΣ(σ̂ − σ) + σTΣσ,

≥ (1− s)σTΣσ + (1− s−1)(σ̂ − σ)TΣ(σ̂ − σ),

≥ (1− s)σTΣσ − (s−1 − 1)T3(xδ),

where for the last two lines, we have used the fact that s ∈ (0, 1). Provided (23) holds, we obtain,

since Tr(Σ2) ≤ ρ(Σ)Tr(Σ),

σ̂TΣσ̂ ≥ (1− s)σTΣσ − (s−1 − 1)rσTΣσ = (1 + r − s− s−1r)σTΣσ.

In order to obtain a positive bound, parameters s and r have to satisfy (1− s) > (s−1 − 1)r, which

holds as soon as r < s. Setting for instance s = 1+r
2 , we get

σTΣσ

σ̂Σσ̂
≤ 1

1 + r − (1+r
2 + 2r

1+r )
. (24)

Now, we provide a bound on the term S1. Still on the event Aδ, we have

σ̂T σ̂

σTσ
≤ σTσ +T1(xδ)

σTσ
= 1 +

T1(xδ)

σTσ
.
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Using the simple bound σTΣσ ≤ σTσρ(Σ), we get that the constraint (23) induces the inequality

rσTσ ≥ g(xδ)
τ2

n
Tr(Σ).

Using the definition of T1(xδ), we hence obtain

σ̂T σ̂

σTσ
≤ 1 + r + 2

√
2r

xδ

g(xδ)
. (25)

The conclusion follows from (24) and (25) with

Cδ,r =
1 + r + 2

√
2r xδ

g(xδ)

1 + r − (1+r
2 + 2r

1+r )
. (26)

B. Proof of Theorem 3.1

Introduce the parameter β as

β =
σTσ

σTΣσ
σ := λ−1σ = argmin

u∈[σ]

‖Xβ −Xu‖2. (27)

Using a simple bound, we can first notice that

1

n
‖X(β̂δ − β)‖2 ≤ 2

n
‖X(β − β)‖2 + 2

n
‖X(β̂δ − β)‖2. (28)

The first term in the r.h.s. of (28) exactly corresponds to the bias term appearing in Theorem 3.1.

Let

β̂δ,r =
σ̂T σ̂

σ̂TΣσ̂
σ̂ ×Ψδ,r with Ψδ,r = 1{σ̂TΣσ̂>tδ,rpn},

where tδ,r is a threshold defined below in (29) and r is some parameter. We choose to keep this

parameter here, to highlight the test-like procedure. In particular, r determines the low signal set

(see below). Actually, Theorem 3.1 will be provided by taking r = 1/2. That is, with β̂δ = β̂δ,1/2

and tδ = tδ,1/2.

Until the end of the proof, we will focus our attention on the second term in the r.h.s. of (28). To

this end, we consider three different scenarios:

i) The low signal case: the norm ‖σ‖2 is small (in a sense which is made precise latter on). In

such a case, our estimator β̂δ,r is equal to 0 with high probability (w.h.p.).

ii) The high signal case: the norm of σ exceeds a given level. Then, the indicator function in

β̂δ,r is equal to 1 w.h.p. and we use deviation results established in the previous section to

obtain a bound in prediction.

iii) The intermediate case: we are not able to control w.h.p. the behaviour of the indicator
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function, but we take advantage of the bounds obtained in both previous cases.

B.1. Low signal case (Case i)

We introduce SL(C) where, for any C ∈ R
+,

SL(C) = {σ ∈ R
p, σTΣσ ≤ Cpn} and pn =

τ2

n
ρ(Σ)Tr(Σ).

We assume in this section that σ ∈ SL(g(xδ)/r) where r ∈ (0, 1) appears in Lemma A.4. Firstly,

we prove that in this case Ψδ,r = 0 on the event Aδ. Indeed, according to (17) and (21), we have

σ̂TΣσ̂ ≤ 2σTΣσ + g(xδ)
τ2

n
Tr(Σ2) + 2

τ2

n
ρ(Σ)2xδ

≤ 2
g(xδ)

r

τ2

n
ρ(Σ)Tr(Σ) + g(xδ)

τ2

n
Tr(Σ2) + 2

τ2

n
ρ(Σ)2xδ

≤
[
2
g(xδ)

r
+ g(xδ) + 2xδ

]
τ2

n
ρ(Σ)Tr(Σ)

= tδ,r
τ2

n
ρ(Σ)Tr(Σ),

where tδ,r is defined as

tδ,r = 2
g(xδ)

r
+ g(xδ) + 2xδ. (29)

This entails that Ψδ,r = 0 and β̂δ,r = 0. Using (28) and taking advantage of σ ∈ SL(g(xδ)/r), we

hence get

1

n
‖Xβ̂δ −Xβ‖2 ≤ 2

n
‖X(β − β)‖2 + 2

n
‖Xβ‖2

=
2

n
‖X(β − β)‖2 + 2

(
σTσ

σTΣσ

)2

σTΣσ

≤ 2

n
‖X(β − β)‖2 + 2

g(xδ)

r

τ2

n

ρ(Σ)Tr(Σ)

λ2
. (30)

This concludes the proof in this first specific regime.

B.2. High signal case (Case ii)

For any C ∈ R
+, let us define

SH(C) = {σ ∈ R
p, σTΣσ ≥ Cpn} where pn =

τ2

n
ρ(Σ)Tr(Σ).

We assume in this section that σ ∈ SH(hδ,r) where

hδ,r = 2 (tδ,r + g(xδ) + 4xδ) .
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In this specific regime, Ψδ,r = 1 on the event Aδ. Indeed, using first (17) and (21), we obtain

σ̂TΣσ̂ ≥ σTΣσ − g(xδ)
τ2

n
Tr(Σ2)− 2

(
4xδ

τ2

n
ρ(Σ)2

)1/2(
σTΣσ/2

)1/2

Since for all a, b ∈ R, a2 − 2ab ≥ −b2, we get

σ̂TΣσ̂ ≥ 1

2
σTΣσ − g(xδ)

τ2

n
Tr(Σ2)− 4xδ

τ2

n
ρ(Σ)2

≥ hδ,r

2

τ2

n
ρ(Σ)Tr(Σ)− g(xδ)

τ2

n
Tr(Σ2)− 4xδ

τ2

n
ρ(Σ)2

≥
(
hδ,r

2
− g(xδ)− 4xδ

)
τ2

n
ρ(Σ)Tr(Σ)

= tδ,r
τ2

n
ρ(Σ)Tr(Σ),

according to the definition of hδ,r. This entails in particular that, on the event Aδ, Ψδ,r = 1 and

β̂δ,r =
σ̂T σ̂

σ̂TΣσ̂
σ̂ = λ̂−1σ̂ = β̂PLS .

According to (28), we have

1

n
‖X(β̂δ,r − β)‖2 ≤ 2

n
‖X(β − β)‖2 + 2

n
‖X(β̂ − β)‖2.

In the following, we study the second term in the r.h.s. of the previous equality. First remark that

β̂PLS − β = λ̂−1σ̂ − λ−1σ = λ̂−1(σ̂ − σ)− λ̂−1 σ̂
TΣσ̂ − σTΣσ

σTΣσ
σ +

σ̂T σ̂ − σTσ

σTΣσ
σ.

It yields

2

n
‖X(β − β̂PLS)‖2 ≤ 4

n
λ̂−2‖X(σ̂ − σ)‖2 + 8 λ̂−2 (σ̂

TΣσ̂ − σTΣσ)2

σTΣσ
+ 8

(σ̂T σ̂ − σTσ)2

σTΣσ
. (31)

Remark that λ̂−2 = (λ̂−1λ)2λ−2. The term (λ̂−1λ) illustrates the ratio between the estimation

of the norm of the first PLS component and its theoretical value. Using Lemma A.4, still on the

event Aδ, we have

λ̂−1λ ≤ Cδ,r,

where Cδ,r defined in (26). Consequently,

2

n
‖X(β − β̂PLS)‖2 ≤ 4C2

δ,r

1

n
λ−2‖X(σ̂ − σ)‖2 + 8C2

δ,rλ
−2 (σ̂

TΣσ̂ − σTΣσ)2

σTΣσ
+ 8

(σ̂T σ̂ − σTσ)2

σTΣσ
.

A direct application of Lemma A.4 entails that

2

n
‖X(β − β̂)‖2 ≤ 4C2

δ,rλ
−2

T3(xδ) + 8C2
δ,rλ

−2T2(xδ)
2

σTΣσ
+ 8

T1(xδ)
2

σTΣσ
. (32)
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Using (17) and the fact that σ ∈ SH(hδ,r), we first get

T2(xδ)
2

σTΣσ
≤ 2g(xδ)

2

(
τ2

n
Tr(Σ2)

)2

× 1

σTΣσ
+ 16xδ

τ2

n
ρ2(Σ),

≤ 2
g(xδ)

2

hδ,r

τ2

n
ρ(Σ)Tr(Σ) + 16xδ

τ2

n
ρ(Σ)Tr(Σ),

=

(
2
g(xδ)

2

hδ,r
+ 16xδ

)
τ2

n
ρ(Σ)Tr(Σ). (33)

Similarly, using (16) and σ ∈ SH(hδ,r), we obtain

T1(xδ)
2

σTΣσ
≤ 2g(xδ)

2

(
τ2

n
Tr(Σ)

)2

× 1

σTΣσ
+ 16xδ

τ2

n
ρ(Σ)× λ−1,

≤ 2
g(xδ)

2

hδ,r

τ2

n
Tr(Σ)× 1

ρ(Σ)
+ 16xδ

τ2

n
ρ(Σ)× λ−1,

≤
(
2
g(xδ)

2

hδ,r
+ 16xδ

)
τ2

n
Tr(Σ)× λ−1, (34)

since λ ≤ ρ(Σ). Gathering (32), (33) and (34), we obtain

2

n
‖X(β − β̂)‖2 ≤

(
4C2

δ,r + 16Cδ,r
g(xδ)

2

hδ,r
+ 128Cδ,rxδ

)
λ−2 τ

2

n
ρ(Σ)Tr(Σ)

+

(
16

g(xδ)
2

hδ,r
+ 128xδ

)
τ2

n
Tr(Σ)× λ−1,

which provides a bound in this regime.

B.3. Intermediate case (Case iii)

We finish the proof with the scenario where σ ∈ SI with

SI =

{
σ ∈ R

p,
g(xδ)

r
pn ≤ σTΣσ ≤ hδ,rpn

}
.

Remark that SI depends on δ and r, but we omit the dependence in the notation. We stress that

SI = SL(g(xδ)/r)
c ∩ SH(hδ)

c. This section hence covers all the situations that have not been

considered before. The fact that σTΣσ is both bounded from above and below allows to control

the risk in prediction on Aδ whatever the value of the indicator function Ψδ,r is. Indeed, starting

form (28), we have

1

n
‖X(β̂ − β)‖2 ≤ 2

n
‖X(β − β)‖2 + 2

n
‖X(β̂δ,r − β)‖21{Ψδ,r=0} +

2

n
‖X(β̂δ,r − β)‖21{Ψδ,r 6=0},

≤ 2

n
‖X(β − β)‖2 + 2

n
‖Xβ‖2 + 2

n
‖X(β̂PLS − β)‖2.

Using SI ⊂ SL(hδ,r) and the same algebraic method as in (30), we first obtain

‖Xβ‖2 ≤ hδ,r
τ2

n

ρ(Σ)Tr(Σ)

λ2
.
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Similarly, using SI ⊂ SH(g(xδ)/r) and the same bounds as those displayed between (31) and (34),

we get

2

n
‖X(β − β̂)‖2 ≤

(
4C2

δ,r + 16Cδ,rrg(xδ) + 128Cδ,rxδ

)
λ−2 τ

2

n

ρ(Σ)Tr(Σ)

λ2

+ (16rg(xδ) + 128xδ)
τ2

n

Tr(Σ)

λ
.

B.4. End of the proof

Considering the three cases i), ii) and iii), we get

2

n
‖X(β − β̂δ,r)‖2

≤ 2

n
‖X(β − β)‖2

+

(
2
g(xδ)

r
+ 4C2

δ,r + 16Cδ,r r g(xδ)max(1,
g(xδ)

r hδ,r
) + 128Cδ,r xδ

)
τ2

n

ρ(Σ)Tr(Σ)

λ2

+

(
16 r g(xδ)max(1,

g(xδ)

r hδ,r
) + 128 xδ

)
τ2

n

Tr(Σ)

λ
,

:=
2

n
‖X(β − β)‖2 + C′

δ,r

τ2

n
max

(
Tr(Σ)

λ
,
ρ(Σ)Tr(Σ)

λ2

)
.

As stated previously, the hyperparameter r can be fixed to any value in (0, 1). The calibration

of r may be used to improve the constants obtained in the above bound. As we are not looking

for optimal constants, we can choose an arbitrary value of r. Theorem 3.1 follows considering e.g.

r = 1/2, that is, β̂δ = β̂δ,1/2, Cδ = C′
δ,1/2.

C. Technical results - The sparse case

This section contains technical results that will be useful for the proofs of the results presented in

Section 4. To this end, we need some additional notation. For any x ∈ R, we write

sgn(x) =





1 if x > 0,

−1 if x < 0,

0 if x = 0.

and x+ = x1{x≥0}. In the next two parts, we will write |J0| = Tr(ΣJ0
) according to Assumption A.1.

C.1. Deviation inequalities

We start with a proposition that lays out the estimator β̂sPLS explicitly. Durif et al. (2017) provide

a proof with a closed form, for the sake of clarity we reproduce a proof below.
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Proposition C.1. The solution w̃1 of the optimisation problem (7) satisfies

w̃1 =
σ̃

‖σ̃‖2
with σ̃j = sgn(σ̂j)(|σ̂j | − µ)+ ∀j ∈ {1, . . . , p}.

Moreover, β̂sPLS defined in (4) with W = w̃1 can be written as

β̂sPLS =
σ̃T σ̂

σ̃TΣσ̃
× σ̃.

Proof. Applying the method of Lagrange multipliers, the optimisation problem (7) becomes

argmin
w∈Rp,ν>0

{
− σ̂Tw + ν(‖w‖22 − 1) + µ‖w‖1

}
(35)

This problem writes as min{f(w)+g(w)} with f : w 7→ −σ̂Tw+ν(‖w‖22−1) a differentiable convex

function and g : w 7→ µ‖w‖1 a convex function. Then, w∗ is a global optimal solution of (35) if

and only if

−∇f(w∗) ∈ ∂g(w∗),

where ∂g is the sub-differential of the function g (see, e.g., (Bach et al., 2012) for more details).

This condition can be written as

− ∇f

µ
(w∗) ∈ ∂‖ · ‖1(w∗) ⇔ σ̂ − ρw∗

µ
∈ ∂‖ · ‖1(w∗) (36)

where in the formula above, ‖.‖1 denotes the function w 7→ ‖w‖1. If w∗
i = 0, condition (36) leads

to σ̂i ∈ [−µ, µ]. If w∗
i > 0, we obtain σ̂i − νw∗

i = µ, which implies w∗
i = σ̂i−µ

ν . In a similar way for

w∗
i < 0 we have w∗

i = σ̂+µ
ν . We deduce that if w∗

i 6= 0, then sgn(w∗
i ) = sgn(σ̂i).

These computations lead to the closed form

w∗
i =

(|σ̂i| − µ)+sgn(σ̂i)

ν
∀i ∈ {1, . . . , p}.

The solution w̃1 = (w∗
1 , . . . w

∗
p) is then chosen with ν such that the solution has a unitary norm.

We derive the formula for β̂sPLS thanks to Algorithm 1 with weight w̃1.

The following proposition makes precise the relationship between the σ̂j and the threshold µ.

Proposition C.2. For any 0 < δ < 1, let Mδ the event defined as

Mδ =

p⋂

j=1

{
|σ̂j − σj | ≤

µ

2

}
,

with µ as defined in (10). Then, under Assumption A.1,

P
(
Mδ

)
≥ 1− δ

2
.

Proof. Using Lemma A.1, σ̂j ∼ N (σj ,
τ2

n ) for all j ∈ {1, . . . , p} since Σ is normalized according to
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Assumption A.1. We get

P(|σ̂j − σj | > µ) ≤ δ

2p
∀j ∈ {1, . . . , p}.

Then,

P(Mc
δ) = P




p⋃

j=1

{
|σ̂j − σj | >

µ

2

}

 ≤

p∑

j=1

P

(
|σ̂j − σj | >

µ

2

)
≤ δ

2
.

In the following, we denote by Ĵ the support of σ̃, namely

Ĵ = {j ∈ {1, . . . , p} s.t. |σ̂j | > µ}.

The exponent C will denote the complementary set i.e. for any set I, IC = {j ∈ {1, . . . , p}, j /∈ I}.
On the event Mδ introduced above, we are able to localize Ĵ as shown in the next lemma.

Lemma C.3. On the event Mδ we have,

J0,2 ⊂ Ĵ ⊂ J0,1 ⊂ J0,

where

J0,1 =
{
j ∈ {1, . . . , p} s.t. |σj | >

µ

2

}
and J0,2 = {j ∈ {1, . . . , p} s.t. |σj | > 2µ}.

Proof. On the event Mδ, for any j ∈ {1, . . . , p},

|σj | > 2µ ⇒ |σ̂j | > µ.

This entails that J0,2 ⊂ Ĵ . Similarly, on the event Mδ, for any j ∈ {1, . . . , p},

|σ̂j | > µ ⇒ |σj | >
µ

2
,

which implies Ĵ ⊂ J0,1.

By employing a similar line of reasoning as in Proposition A.3, we introduce the following quantities

and events:

T0,1(x) = g(x)
τ2

n
Tr(ΣJ0

) + 2
√
2

√
τ2

n
ρ(ΣJ0

)
1

2

√
x‖σ‖2, (37)

T0,2(x) = g(x)
τ2

n
Tr(ΣJ0

), (38)

T0,3(x) = g(x)
τ2

n
Tr(Σ2

J0
), (39)

with

g(x) = 1 + 2x+ 2
√
x, ∀x ∈ R. (40)
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The following proposition will be the core of the proof for the sparse case. It provides deviation

results on the main quantities of interest.

Proposition C.4. For any 0 < δ < 1, let (Bi,δ)
2
i=1 the events respectively defined as

B1,δ =
{
|σ̂T

J0
σ̂J0

− σTσ| ≤ T0,1(x0,δ)
}
, (41)

B2,δ =
{
(σ̂J0

− σ)T (σ̂J0
− σ) ≤ T0,2(x0,δ)

}
, (42)

and B3,δ =
{
(σ̂J0

− σ)TΣ(σ̂J0
− σ) ≤ T0,3(x0,δ)

}
, (43)

with x0,δ = ln(10/δ). Then,

P(Bδ) ≥ 1− δ

2
where Bδ := B1,δ ∩ B2,δ ∩ B3,δ.

Proof. The proof is a straightforward generalization of Proposition A.3 and is thus omitted.

Using a simple bound, we can easily prove that P(Mδ ∩ Bδ) ≥ 1− δ.

C.2. Control of λ̃

In the following, we introduce

λ̃ =
σ̃TΣσ̃

σ̃T σ̂
.

The purpose of this section and of the following proposition is to prove that the ratio λ̃−1λ is

controlled with high probability by a constant. The control is acquired under Assumption A.2,

that is, when the amount of signal on the component is high enough. It yields, hence, the calibration

of the parameter dδ,p in Assumption A.2.

Proposition C.5. Assume that Assumption A.2 is satisfied, namely that

σTΣσ > dδ,p
τ2

n
ρ(ΣJ0

)Tr(ΣJ0
),

with dδ,p = 4 g(x0,δ) + 192 ln(2pδ ). Then, on the event Mδ ∩ Bδ,

λ̃−1λ ≤ F,

with F = 112.

Proof. First, remark that

λ̃−1λ =
σ̃T σ̂

σTσ
× σTΣσ

σ̃TΣσ̃
.

To start the proof, we focus our attention on the first ratio in the r.h.s. of the previous equality.

Introduce

Sj = sgn(σ̂j) ∀j ∈ {1, . . . , p}.



C.2 Control of the approximation of lambda 25

We remark that, on the event Mδ ∩ Bδ,

|σ̃T σ̂| ≤
∑

j∈Ĵ

|σ̃j σ̂j | ≤
∑

j∈Ĵ

|(σ̂j − µSj)σ̂j | ≤ σ̂T
J0
σ̂J0

+ µ
∑

j∈Ĵ

|σ̂j |,

since Ĵ ⊂ J0,1 ⊂ J0 according to Lemma C.3. Using these inclusions and the Cauchy-Schwarz

inequality, we get

|σ̃T σ̂| ≤ σ̂T
J0
σ̂J0

+
√
µ2|J0|

√
σ̂T
J0
σ̂J0

≤ 2σ̂T
J0
σ̂J0

+ µ2|J0|.

Proposition C.4 implies that

|σ̃T σ̂| ≤ 2σTσ + 2T0,1(x0,δ) + µ2|J0|.

Using the rough bound σTΣσ ≤ ρ(ΣJ0
)σTσ, Assumption A.2 with dδ,p = 4 g(x0,δ) + 192 ln(2pδ )

yields
1

4
σTσ ≥

(
τ2

n
g(x0,δ) + 6µ2

)
Tr(ΣJ0

).

We obtain

σ̃T σ̂ ≤ 2σTσ + 2g(x0,δ)
τ2

n
Tr(ΣJ0

) + 4
√
2

√
τ2

n
g(x0,δ)

√
Tr(ΣJ0

)‖σ‖2 + µ2Tr(ΣJ0
)

≤ 2σTσ +
1

2
σTσ + 2

√
2σTσ +

1

24
σTσ

≤ 7σTσ. (44)

Now, we turn our attention to the ratio σTΣσ/σ̃TΣσ̃. We first bound the quantity using the set

Ĵ as follows:

σ̃TΣσ̃ = σ̃T
ĴΣσ̃Ĵ

= (σ̂ − µS)TĴΣ(σ̂ − µS)Ĵ

= σ̂T
ĴΣσ̂Ĵ + µ2ST

ĴΣSĴ − 2µσ̂T
ĴΣSĴ

≥ 1

2
σ̂T
ĴΣσ̂Ĵ − µ2ST

ĴΣSĴ

≥ 1

2
σ̂T
ĴΣσ̂Ĵ − µ2ρ(ΣĴ )|Ĵ |

≥ 1

2
σ̂T
ĴΣσ̂Ĵ − µ2ρ(ΣJ0

)|J0|,

where the last inequality comes from the inclusion Ĵ ⊂ J0. Now we want to find a bound relying
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only on the set J0. Note that

σ̂T
ĴΣσ̂Ĵ = (σ̂J0

− σ̂J0∩ĴC )
TΣ(σ̂J0

− σ̂J0∩ĴC )

= σ̂T
J0
Σσ̂J0

− 2σ̂T
J0
Σσ̂J0∩ĴC + σ̂T

J0∩ĴC
Σσ̂J0∩ĴC

≥ σ̂T
J0
Σσ̂J0

2
− σ̂T

J0∩ĴC
Σσ̂J0∩ĴC

≥ σ̂T
J0
Σσ̂J0

2
− µ2

1
T
J0∩ĴC

ΣJ0
1J0∩ĴC

≥ σ̂T
J0
Σσ̂J0

2
− µ2ρ(ΣJ0

)|J0|.

We deduce the following inequality:

σ̃TΣσ̃ ≥ σ̂T
J0
Σσ̂J0

4
− µ2

2
ρ(ΣJ0

)|J0| − µ2ρ(ΣJ0
)|J0|

≥ σ̂T
J0
Σσ̂J0

4
− 3µ2

2
ρ(ΣJ0

)|J0|

≥ 1

4

(
σ̂T
J0
Σσ̂J0

− 6ρ(ΣJ0
)µ2|J0|

)
. (45)

Finally, we obtain a bound that does not depend on J0. Indeed,

σ̂T
J0
Σσ̂J0

− 6ρ(ΣJ0
)µ2|J0|

= (σ̂ − σ)TJ0
Σ(σ̂ − σ)J0

+ 2σTΣ(σ̂ − σ)J0
+ σTΣσ − 6ρ(ΣJ0

)µ2|J0|

≥ (σ̂ − σ)TJ0
Σ(σ̂ − σ)J0

− 1

2
σTΣσ − 2(σ̂ − σ)TJ0

Σ(σ̂ − σ)J0
+ σTΣσ − 6ρ(ΣJ0

)µ2|J0|

≥ 1

2
σTΣσ − (σ̂ − σ)TJ0

Σ(σ̂ − σ)J0
− 6ρ(ΣJ0

)µ2|J0|.

Using the fact that we are on the event Bδ, we have

σ̂T
J0
Σσ̂J0

− 6ρ(ΣJ0
)µ2|J0| ≥

1

2
σTΣσ −T0,2(x0,δ)− 6ρ(ΣJ0

)µ2|J0|

≥ 1

2
σTΣσ − g(x0,δ)

τ2

n
Tr(Σ2

J0
)− 6ρ(ΣJ0

)µ2|J0|,

≥ 1

2
σTΣσ −

(
τ2

n
g(x0,δ) + 6µ2

)
ρ(ΣJ0

)Tr(ΣJ0
),

≥ 1

4
σTΣσ, (46)

where we have used Assumption A.2 for the last inequality, with dδ,p = 4 g(x0,δ) + 192 ln(2pδ ).

We deduce from (45) and (46) that

σ̃TΣσ̃ ≥ 1

16
σTΣσ. (47)

Inequalities (44) and (47) lead to

λ̃−1λ ≤ 7× 16,

which concludes the proof.
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D. Proof of the results displayed in Section 4

D.1. Proof of Theorem 4.1

From now on we work on the event Mδ ∩ Bδ. First

1

n
‖Xβ̂sPLS −Xβ‖2 ≤ 2

n
‖X(β̂sPLS − β)‖2 + 2

n
‖X(β − β)‖2,

with β = σT σ
σTΣσ

σ. We use again the segmentation proposed in the proof of Theorem 3.1,

β̂sPLS − β = λ̃−1σ̃ − λ−1σ = λ̃−1(σ̃ − σ)− λ̃−1 σ̃
TΣσ̃ − σTΣσ

σTΣσ
σ +

σ̃T σ̂ − σTσ

σTΣσ
σ.

It yields

2

n
‖X(β − β̂sPLS)‖2 ≤ 4

n
λ̃−2‖X(σ̃ − σ)‖2 + 8 λ̃−2 (σ̃

TΣσ̃ − σTΣσ)2

σTΣσ
+ 8

(σ̃T σ̂ − σTσ)2

σTΣσ
. (48)

Remark that λ̃−2 = (λ̃−1λ)2λ−2. The term (λ̃−1λ) represents the ratio between the estimation of

the norm of the first PLS component and its true value. Using Proposition C.5,

λ̃−1λ ≤ 112 := F.

Consequently,

2

n
‖X(β − β̂sPLS)‖2 ≤ 4F 2 1

n
λ−2‖X(σ̃ − σ)‖2

︸ ︷︷ ︸
I

+8F 2λ−2 (σ̃
TΣσ̃ − σTΣσ)2

σTΣσ︸ ︷︷ ︸
II

+8
(σ̃T σ̂ − σTσ)2

σTΣσ︸ ︷︷ ︸
III

.

(49)

The proof naturally falls into three parts.

D.1.1. Study of term I

First, we focus on the deviation of

1

n
‖X(σ̃ − σ)‖2 = (σ̃ − σ)TΣ(σ̃ − σ).

Let us decompose this quantity as follows,

(σ̃ − σ)TΣ(σ̃ − σ) ≤ 2(σ̃ − σ)TJ0,1
Σ(σ̃ − σ)J0,1

+ 2(σ̃ − σ)TJC
0,1

Σ(σ̃ − σ)JC
0,1

, (50)

with indexes set J0,1 defined in Lemma C.3. We consider separately the two terms on the right

hand side.
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Using the inclusion J0,1 ⊂ J0,

(σ̃ − σ)TJ0,1
Σ(σ̃ − σ)J0,1

≤ 2(σ̂ − σ)TJ0,1
Σ(σ̂ − σ)J0,1

+ 2µ2ST
J0,1

ΣSJ0,1

= 2
(
σ̂J0

− σJ0
− (σ̂ − σ)J0∩JC

0,1

)T
Σ
(
σ̂J0

− σJ0
− (σ̂ − σ)J0∩JC

0,1

)
+ 2µ2ST

J0,1
ΣSJ0,1

≤ 4(σ̂ − σ)TJ0
ΣJ0

(σ̂ − σ)J0
+ 4(σ̂ − σ)TJ0∩JC

0,1
Σ(σ̂ − σ)J0∩JC

0,1
+ 2µ2ρ(ΣJ0

)|J0|.

As stated in Lemma C.3, on Mδ, J C
0,1 ⊂ Ĵ C . Hence, writing 1 = (1, . . . , 1)T ∈ R

p,

(σ̂ − σ)TJ0∩JC
0,1

Σ(σ̂ − σ)J0∩JC
0,1

≤ (µ1+
µ

2
1)TJ0∩JC

0,1
ΣJ0

(1µ+ 1
µ

2
)J0∩JC

0,1
≤ 9µ2

4
ρ(ΣJ0

)|J0|,

since for all j ∈ J C
0,1, |σj | < µ/2. Consequently,

(σ̃ − σ)TJ0,1
Σ(σ̃ − σ)J0,1

≤ 4(σ̂ − σ)TJ0
ΣJ0

(σ̂ − σ)J0
+ 11µ2ρ(ΣJ0

)|J0|. (51)

Similarly,

(σ̃ − σ)TJC
0,1

Σ(σ̃ − σ)JC
0,1

≤ σT
JC

0,1
ΣσJC

0,1

= σT
J0∩JC

0,1
ΣJ0

σJ0∩JC
0,1

≤ 2
µ2

4
ρ(ΣJ0

)|J0|. (52)

With inequalities (50), (51) and (52), we obtain

(σ̃ − σ)TΣ(σ̃ − σ) ≤ 8(σ̂ − σ)TJ0
ΣJ0

(σ̂ − σ)J0
+ 23µ2ρ(ΣJ0

)|J0|.

We bound the first term using inequality (43), since we are working on the event Bδ. For the

second term, we replace µ by its expression. We obtain

(σ̃ − σ)TΣ(σ̃ − σ)

λ2
≤ 8 g(x0,δ)

τ2

n

Tr(Σ2
J0
)

λ2
+ 8 · 23 τ2

n
ln

(
2p

δ

)
ρ(ΣJ0

)|J0|
λ2

. (53)

Hence, for 0 < δ < 1/2,

(σ̃ − σ)TΣ(σ̃ − σ)

λ2
≤ CI ln

(p
δ

) τ2

n

ρ(ΣJ0
)Tr(ΣJ0

)

λ2
, (54)

with CI a positive constant.

D.1.2. Study of term II

The task is now to bound the term

λ−2 (σ̃
TΣσ̃ − σTΣσ)2

σTΣσ
.
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We use the equality

σ̃TΣσ̃ − σTΣσ = (σ̃ − σ)TΣ(σ̃ − σ) + 2σTΣ(σ̃ − σ).

Using the Cauchy Schwarz inequality on the last term,

σ̃TΣσ̃ − σTΣσ ≤ (σ̃ − σ)TΣ(σ̃ − σ) + 2
√
σTΣσ

√
(σ̃ − σ)TΣ(σ̃ − σ).

Then,

(σ̃TΣσ̃ − σTΣσ)2 ≤ 2
(
(σ̃ − σ)TΣ(σ̃ − σ)

)2
+ 8σTΣσ × (σ̃ − σ)TΣ(σ̃ − σ).

Using inequality (53) on the first term, we get

(
(σ̃ − σ)TΣ(σ̃ − σ)

)2

σTΣσ λ2
≤

(
2 · 64 · g(x0,δ)

2 + 2 · 2242
)(τ2

n

)2 ρ(ΣJ0
)2|J0|2

σTΣσλ2
ln

(
2p

δ

)2

.

Applying inequality (54) on the second term, we get

σTΣσ(σ̃ − σ)TΣ(σ̃ − σ)

σTΣσ λ2
≤ CI ln

(p
δ

) τ2

n

ρ(ΣJ0
)Tr(ΣJ0

)

λ2
.

We bound 1/(σTΣσ) in the first term using Assumption A.2. We obtain

(σ̃TΣσ̃ − σTΣσ)2

σTΣσ λ2
≤ 2(128 g(x0,δ)

2 + 2 · 2242)d−1
δ,p ln

(
2p

δ

)2
τ2

n

ρ(ΣJ0
)Tr(ΣJ0

)

λ2

+ 8CI ln
(p
δ

) τ2
n

ρ(ΣJ0
)Tr(ΣJ0

)

λ2
.

When dδ,p = 4 g(x0,δ) + 192 ln(2pδ ), we deduce

λ−2 (σ̃
TΣσ̃ − σTΣσ)2

σTΣσ
≤ CII,δ ln

(p
δ

) τ2

n

ρ(ΣJ0
)Tr(ΣJ0

)

λ2
, (55)

where CII is a positive constant.

D.1.3. Study of term III

Finally we focus on the last term,
(σ̃T σ̂ − σTσ)2

σTΣσ
.

Using the inclusion Ĵ ⊂ J0 given by Lemma C.3, we get

σ̃T σ̂ − σTσ = σ̃T
J0
σ̂J0

− σT
J0
σJ0

= (σ̃ − σ)TJ0
(σ̂ − σ)J0

+ σT
J0
(σ̂ − σ)J0

+ σT
J0
(σ̃ − σ)J0

≤
√
(σ̃ − σ)T (σ̃ − σ)

√
(σ̂ − σ)TJ0

(σ̂ − σ)J0

+
√
σTσ

(√
(σ̃ − σ)T (σ̃ − σ) +

√
(σ̂ − σ)TJ0

(σ̂ − σ)J0

)
.
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Using the inequality 2ab ≤ a2 + b2 for all a, b ∈ R, it follows that

(σ̃T σ̂ − σTσ)2

≤ 2(σ̃ − σ)T (σ̃ − σ)× (σ̂ − σ)TJ0
(σ̂ − σ)J0

+ 4 σTσ ×
(
(σ̃ − σ)T (σ̃ − σ) + (σ̂ − σ)TJ0

(σ̂ − σ)J0

)

≤
(
(σ̃ − σ)T (σ̃ − σ)

)2
+
(
(σ̂ − σ)TJ0

(σ̂ − σ)J0

)2
+ 4 σTσ

(
(σ̃ − σ)T (σ̃ − σ) + (σ̂ − σ)TJ0

(σ̂ − σ)J0

)
.

(56)

First, we concentrate our attention on the quantity (σ̃−σ)T (σ̃−σ). Using Lemma C.3, we obtain

(σ̃ − σ)T (σ̃ − σ) ≤ 2(σ̃ − σ)TJ0,1
(σ̃ − σ)J0,1

+ 2(σ̃ − σ)TJC
0,1

(σ̃ − σ)JC
0,1

≤ 2(σ̂ − σ − µS)TJ0,1
(σ̂ − σ − µS)J0,1

+ 2σT
J0∩JC

0,1
σJ0∩JC

0,1

≤ 4(σ̂ − σ)TJ0
(σ̂ − σ)J0

+ 4µ2ST
J0
SJ0

+
1

2
µ2|J0|

≤ 4(σ̂ − σ)TJ0
(σ̂ − σ)J0

+
9

2
µ2|J0|.

Starting from (56), we obtain

(σ̃T σ̂ − σTσ)2 ≤
(
4(σ̂ − σ)TJ0

(σ̂ − σ)J0
+

9

2
µ2|J0|

)2

+
(
(σ̂ − σ)TJ0

(σ̂ − σ)J0

)2

+ 4σTσ

(
5(σ̂ − σ)TJ0

(σ̂ − σ)J0
+

9

2
µ2|J0|

)
.

Note that, on the event Bδ, equation (42) in Proposition C.4 reads as

(σ̂ − σ)TJ0
(σ̂ − σ)J0

≤ g(x0,δ)
τ2

n
Tr(ΣJ0

).

Hence,

(σ̃T σ̂ − σTσ)2 ≤ 33 g(x0,δ)
2(
τ2

n
)2Tr(ΣJ0

)2 + 2 · 362(τ
2

n
)2 ln

(2p
δ

)2|J0|2

+ 4 σTσ

(
5g(x0,δ)

τ2

n
Tr(ΣJ0

) + 36
τ2

n
ln(

2p

δ
)|J0|

)
.

Observe that Assumption A.2 yields

σTΣσ = λσTσ ≥ λ
τ2

n
Tr(ΣJ0

).

Hence,

(σ̃T σ̂ − σTσ)2

σTΣσ
≤ 33

g(x0,δ)
2

dδ,p

τ2

n

Tr(ΣJ0
)

λ
+ 2 · 362 ln

(
2p
δ

)2

dδ,p

τ2

n

Tr(ΣJ0
)

λ

+ 20 g(x0,δ)
τ2

n

Tr(ΣJ0
)

λ
+ 144

τ2

n
ln

(
2p

δ

)
Tr(ΣJ0

)

λ

≤ CIII,δ ln(
p

δ
)
τ2

n

Tr(ΣJ0
)

λ
(57)
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where CIII,δ is a positive constant depending only on δ, when dδ,p = 4 g(x0,δ) + 192 ln(2pδ ).

D.1.4. End of the proof

Theorem 4.1 follows directly from (49), (54), (55) and (57). It has been proven under Assumption A.2

when dδ,p = 4g(x0,δ)+192 ln
(
2p
δ

)
. Hence, the result still holds considering dδ,p = C0

(
ln
(
10
δ

)
+ ln

(
p
δ

))

with C0 = 384.

D.2. Proof of Corollary 4.2

Since the support of σ is J0, we have immediately that

‖σJ c
0
‖1 = 0 < ‖σJ0

‖1.

Hence, using Assumption A.3, we get that

λ :=
σTΣσ

σTσ
=

1

n

‖Xσ‖2
‖σ‖2 >

1

φ
.

A direct application of Theorem 4.1 then indicates that

1

n
‖X(β̂sPLS − β)‖2 ≤ 2

n
inf
v∈[σ]

‖X(β − v)‖2 +Dδ
τ2s

n
max

(
ρ(ΣJ0

)

λ2
,
1

λ

)
ln
(p
δ

)

≤ 2

n
inf
v∈[σ]

‖X(β − v)‖2 +Dδ
τ2s

n
max

(
φ2ρ(ΣJ0

), φ
)
ln
(p
δ

)
,

which exactly corresponds to the desired results.

D.3. Proof of Theorem 4.3

We first remark that the estimator (13) can be rewritten as

β̃ =
σ̃T σ̃

σ̃TΣσ̃
σ̃ := (λ̃⋆)−1σ̃ where λ̃⋆ =

σ̃TΣσ̃

σ̃T σ̃
.

We use similar steps as those used in Theorem 4.1. First

1

n
‖Xβ̃ −Xβ‖2 ≤ 2

n
‖X(β̃ − β)‖2 + 2

n
‖X(β − β)‖2 with β =

σTσ

σTΣσ
σ.

Then, using the previous segmentation studied in the proofs of Theorem 3.1 and Theorem 4.1, we

get

β̃ − β = (λ̃⋆)−1σ̃ − λ−1σ = (λ̃⋆)−1(σ̃ − σ)− (λ̃⋆)−1 σ̃
TΣσ̃ − σTΣσ

σTΣσ
σ +

σ̃T σ̃ − σTσ

σTΣσ
σ.
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It yields

2

n
‖X(β − β̃)‖2 ≤ 4

n
(λ̃⋆)−2‖X(σ̃ − σ)‖2 + 8 (λ̃⋆)−2 (σ̃

TΣσ̃ − σTΣσ)2

σTΣσ
+ 8

(σ̃T σ̃ − σTσ)2

σTΣσ
. (58)

From now on, we work on the event Mδ ∩ Bδ. We first concentrate our attention on λ̃⋆. Using

Lemma C.3, Ĵ ⊂ J0. Hence ‖σ̃J c
0
‖1 = 0 ≤ 3‖σ̃J0

‖1, which entails, using Assumption A.3 that

λ̃⋆ :=
σ̃TΣσ̃

σ̃T σ̃
=

1

n

‖Xσ̃‖2
‖σ̃‖22

≥ 1

φ
.

Then inequality (58) immediately leads to

2

n
‖X(β − β̃)‖2 ≤ 4

n
φ2‖X(σ̃ − σ)‖2 + 8φ2 (σ̃

TΣσ̃ − σTΣσ)2

σTΣσ
+ 8

(σ̃T σ̃ − σTσ)2

σTΣσ
. (59)

A direct application of Proposition C.4 then allows to control each of the terms involved in (59)

and then to conclude the proof.
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