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r j=1 a j x j • x q i j j -x j -λ, where i ∈ N; λ ∈ F q k . In [START_REF] Coulter | The number of rational points of a class of artin-schreier curves[END_REF], the author has determined the number of rational points on F q of the curve y p n -y = ax p α +1 + L(x), where a ∈ F × q , t = gcd(n, e) divides d = gcd(α, s) and L ∈ F q [X] is a F p t -linearized. In [START_REF] Coşgun | Further results on rational points of the curve y q n -y = γx q h +1 -α over F q m[END_REF], the author has determined the number of rational points on F q m of the curve y q n -y = γx q h +1 -α in certain cases, for all positive integers h, n, m with n divides m and γ, a ∈ F q m , γ ̸ = 0. In [START_REF] Bouw | Zeta functions of a class of Artin-Schreier curves with many automorphisms[END_REF], the authors have determined the zeta function of the curve y p -y = xR(x) and in [START_REF] Blache | Zeta functions of quadratic artin-schreier curves in characteristic two[END_REF], the authors have also determined the zeta function of the curve y 2 + y = xR(x), where R is an additive polynomial with coefficients in F q .

The main aim of this paper is to express, using Gauss sums, the number of rational points on F q n and the zeta function on F q of the curve X A,d : A(y) = x d and also give some results on the curve X d : y p -y = x d . The integer d is positive, prime to p and A is a F q -linearized polynomial.

This paper is organized as follows: in section 2, we recall some technical results that will be used later in the document. In section 3, we gives, on one side, the main results on the X A,d curve and on the other hand, some results on the particular case; the X d curve.

Preliminary.

Throughout this paper, we denote by ψ the non-trivial additive character defined on the finite field F p and χ a multiplicative character of F q , q = p s . The trace and norm functions, noted respectively Tr Fq/Fp and N Fq/Fp , of F q on F p are defined by

Tr Fq/Fp : F q -→ F p x -→ s-1 i=0 x p i ; N : F q -→ F p x -→ s-1 i=0
x p i Proposition 2.1. Let q = p s ; F p ⊂ F q ⊂ F q n with n ∈ N * , for all x ∈ F q n , we have

1. Tr F q n /Fp (x) = Tr Fq/Fp • Tr F q n /Fq 2. N F q n /Fp (x) = N Fq/Fp • N F q n /Fq
We take this opportunity to state the following versions of Hilbert's Theorem 90.

Theorem 2.2.

1. The trace application of F q on F p is a surjective application and we have ;

Tr Fq/Fp (x) = 0 ⇐⇒ ∃y ∈ F q ; x = y p -y 2. The norm application of F q on F p is a surjective application and we have ;

N Fq/Fp (x) = 1 ⇐⇒ ∃y ∈ F q ; x = y p-1
In order to express the number of points and the zeta function of the curve X A,d : A(y) = x d using Gauss sums, we take the liberty of giving some results on the polynomial A. Definition 2.3. If p is a prime number, we call an additive polynomial defined over the finite field F q , with q = p s , any polynomial of the form

A(y) = m i=0 a i y p i ∈ F q [y]
We assume that a m ̸ = 0, which means that this polynomial is of degree p m . Definition 2.4. For all n ≥ 1, We associate to the polynomial A an application A n of F q n defined by

A n (y) = A(y)

Proposition 2.5. The application

A n is F p -linear of F q n .
Proposition 2.6. The sets of images and kernel of A n satisfy the following relation

♯ im(A n ) • ♯ ker(A n ) = q n
Definition 2.7. We associate to the polynomial A a another application A * defined on F q by

A * (y) = m i=0 a p -i i y p -i
where a p -i i is the image of a i by the i-th iteration of the reciprocal bijection of the Frobenius automorphism.

Similarly, we define the application Ā, associated with the application A * by :

Ā(y) = (A * (y)) p m
Lemma 2.8. The polynomial A has only simple roots if and only if a 0 ̸ = 0. It is then said to be separable.

We conclude this section with some definitions and results on additive and multiplicative characters, exponential sums, Gauss sums and the zeta function of a curve. Definition 2.9. For q = p s , the additive characters on F p are defined as follows:

ψ k : F p -→ C * x -→ exp 2iπxk p with 0 ≤ k ≤ p -1
Remark 2.10. On F p , additive characters are defined as follows:

∀k ∈ F p , ∀x ∈ F p ; ψ k (x) = exp 2iπxk p
We will note ψ = exp 2iπ p the non-trivial additive character of F p . Then for all x, y ∈ F q we have ψ y (x) = ψ • Tr Fq/Fp (xy) Proposition 2.11. Let ψ be a non-trivial additive character of F q . If z ∈ F q , then we have

ψ∈ Fq ψ(z) = y∈Fq ψ y (z) = 0 if z ̸ = 0 q if z = 0
Definition 2.12. Consider the multiplicative group F × q , where q = p s . The multiplicative characters of F q are defined as follows:

χ : F × q -→ C * x -→ χ(x) such as ∀x, y ∈ F × q , χ(xy) = χ(x)χ(y)
We can extend the multiplicative character on F q by posing

χ(0) = 1 if χ = χ 0 0 if χ ̸ = χ 0
where χ 0 is the trivial character.

Definition 2.13. Let F q be a finite field with q elements, q = p s , ψ the non-trivial additive character of F p . The exponential sums associated with a polynomial

f of F q [x] are defined for all n ≥ 1 by S n (f ) = x∈F q n ψ • Tr F q n /Fp (f (x))
Definition 2.14. Let ψ be an additive character of F p and χ a multiplicative character of F × q . The Gauss sum associated with the characters ψ and χ, denoted G(χ, ψ), is defined as follows:

G(χ, ψ) = x∈F × q χ(x) • ψ • Tr Fq/Fp (x)
Proposition 2.15. For all y and all natural numbers j, we have

G(χ j , ψ y ) = χ j (y -1 )G(χ j , ψ)
Proof. We have,

G(χ j , ψ y ) = x∈F × q χ j (x)ψ y (x) = x∈F × q χ j (x)ψ • Tr Fq/Fp (xy)
By a change of variables; z = xy, we have

G(χ j , ψ y ) = x∈F × q χ j (zy -1 )ψ • Tr Fq/Fp (z) = χ j (y -1 )G(χ j , ψ)
Theorem 2.16. Let q = p s , ψ be an additive character of F p and χ a multiplicative character of F p , then

G χ • N Fq/Fp , ψ • Tr Fq/Fp = (-1) s-1 G(χ, ψ) s
Definition 2.17. Let X be a non-singular projective algebraic curve of genus g defined over the finite field F q , q = p s . The zeta function associated with the curve X is the formal series Z X /Fq , T , defined by

Z X /Fq , T = exp n≥1 N n (X) T n n where n≥1 N n (X)
T n n is a formal series and N n (X) = #X (F q n ) the number of points on F q n of the curve X.

Theorem 2.18. The zeta function is a rational function of the form

Z X /Fq , T = L(X, T ) (1 -T )(1 -qT )
L(X, T ) being a polynomial of degree 2g.

Remark 2.19. The zeta function of a curve X over the finite field F q is determined by determining the function L(X, T ) which is its numerator.

3 Number of points and zeta function.

Number of points and zeta function of the curve X

A,d : A(y) = x d .
Let A be an additive polynomial defined over the finite field F q . Assume that all the roots of this polynomial are in F q , q = p s . In this section, we'll try to express the number of points and the zeta function of the curve X A,d : A(y) = x d using Gauss sums. For all a ∈ F × p , we will first try to express the exponential sum S n (ax d ) using Gauss sums.

We will need the following lemma:

Lemma 3.1. Let ℓ = gcd(d, q -1) and let χ be a multiplicative character of order ℓ of F q , then the number of solutions on F q of the equation x d = a, with a ∈ F q , is given by:

m(a) = ℓ-1 j=0 χ j (a) 5 
Proof. If a = 0, then the equation x d = 0 has a unique solution which is x = 0 and

m(0) = ℓ-1 j=0 χ j (0)
Now, by the definition of 2.12, we have χ 0 (0) = 1 and for j ̸ = 0, we have χ j (0) = 0. Hence

m(0) = ℓ-1 j=0 χ j (0) = 1
If a ̸ = 0 and a is not a ℓ-th power in F q , then the equation x d = a has no solution in F q and χ(a) ̸ = 1. Thus

m(a) = ℓ-1 j=0 χ j (a) = 1 -χ ℓ (a) 1 -χ(a) = 1 -1 1 -χ(a)
= 0

If a ̸ = 0 and a is a ℓ-th power in F q , this means that there exists z ∈ F × q such that a = z ℓ . Then the equation x d = a has ℓ solutions. We have

χ(a) = χ(z ℓ ) = χ ℓ (z) = 1. Hence m(a) = ℓ-1 j=0 χ j (a) = ℓ-1 j=0 1 = ℓ
We can then give the result for expressing the exponential sum S n (ax d ) using Gauss sums.

Proposition 3.2. Let χ be a multiplicative character of F q and ψ a non-trivial additive character of F p . For all a ∈ F × p , we have

S n (ax d ) = (-1) n-1 d-1 j=1 χ j (a -1 )G χ j , ψ • Tr Fq/Fp n
Proof. By definition of the exponential sum, we have

S n (ax d ) = x∈F q n ψ a • Tr F q n /Fq (x d ) = z∈F q n ψ a • Tr F q n /Fq (z) • #{x ∈ F q n ; z = x d }
Let θ be a multiplicative character of order d of F q n and by application of the lemma 3.1, we have

S n (ax d ) = z∈F q n ψ a • Tr F q n /Fq (z) • d-1 j=0 θ j (z) = d-1 j=1 z∈F q n θ j (z) • ψ a • Tr F q n /Fq (z) = d-1 j=1 z∈F q n θ j (z) • ψ • Tr F q n /Fp (az) = d-1 j=1 x∈F q n θ j (a -1 ) • θ j (x) • ψ • Tr F q n /Fp (x) = d-1 j=1 θ j (a -1 )G n θ j , ψ • Tr F q n /Fp
Let χ be a multiplicative character of F q , then we can write

θ = χ • Tr F q n /Fq
From this we can deduce, on the one hand;

θ j (a -1 ) = χ j • Tr F q n /Fq (a -1 ) = χ j (a -1 ) n
and on the other;

S n (ax d ) = d-1 j=0 χ j (a -1 ) n G n χ j • Tr F q n /Fq , ψ • Tr Fq/Fp • Tr F q n /Fq
Then, by applying the 2.16 theorem, we have

S n (ax d ) = d-1 j=0 χ j (a -1 ) n (-1) n-1 G χ j , ψ • Tr Fq/Fp n =(-1) n-1 d-1 j=0 χ j (a -1 )G χ j , ψ • Tr Fq/Fp n
We know that the generalized Artin-Schreier curve with equation X A,d : A(y) = x d has a single point at infinity, so the set of points on this curve is written:

{(x, y) ∈ (F q n ) 2 ; A(y) = x d } ∪ {P ∞ } Thus, noting N n (X A,d
) the number of points on the curve X A,d and N n,af f (X A,d ) the number of affine points on this curve, we have

N n (X A,d ) = 1 + N n,af f (X A,d ) (1) 
The following result expresses the number of affine points on the curve X A,d using Gauss sums.

Theorem 3.3. Let χ be a multiplication character of F q and ψ a non-trivial additive character of F p . The number of affine points, N n,af f (X A,d ), on F q n , of the curve X A,d : A(y) = x d , using Gauss sums, has the expression:

N n,af f (X A,d ) = q n + (-1) n-1 y∈ker( Ān)\{0} d-1 j=1 χ j (y -1 ) n G χ j , ψ • Tr Fq/Fp n Proof.
Let ψ be the non-trivial additive character of F p , then according to Proposition 3, page 38 of [START_REF] Joly | Équations et variétés algébriques sur un corps fini[END_REF], the number of affine points on F q n of the curve X A,d is written;

q n • N n,af f (X A,d ) = a∈F q n x∈F q n y∈F q n ψ • Tr F q n /Fq (a(x d -A(y))) = a∈F q n   y∈F q n ψ • Tr F q n /Fq (-aA(y))   S n (ax d )
By applying the properties of the Frobenius endomorphism and the definition 2.7, we have

y∈F q n ψ • Tr F q n /Fq (-aA(y)) = y∈F q n ψ • Tr F q n /Fq (-y p m Ān (a))
Moreover, according to proposition 2.11, we have

y∈F q n ψ • Tr F q n /Fq (-aA(y)) = y∈F q n ψ • Tr F q n /Fq (-y p m Ān (a)) = q n if a ∈ ker( Ān ) 0 if a / ∈ ker( Ān ) Thus, N n,af f (X A,d ) = a∈ker( Ān) S n (ax d ) =q n + a∈ker( Ān)\{0} S n (ax d ) =q n + (-1) n-1 a∈ker( Ān)\{0} d-1 j=1 χ j (a -1 )G χ j , ψ • Tr Fq/Fp n
We can then state the result for expressing the numerator of the zeta function of the curve X A,d using Gauss sums. Theorem 3.4. Let χ be a multiplicative character of F q and ψ a non-trivial additive character of F p . The numerator of the zeta function of the curve X A,d : A(y) = x d is given by

L(X A,d , T ) = y∈ker( Ān)\{0} d-1 j=1 1 + χ j (y -1 )G χ j , ψ • Tr Fq/Fp T Proof.
Using the definition 2.17, we have

Z X A,d /Fq , T = exp n≥1 N n (X A,d ) T n n = exp n≥1 (1 + N n,af f (X A,d ))
T n n and according to the theorem 3.3, we have

Z X A,d /Fq , T = exp   n≥1   1 + q n + (-1) n-1 y∈ker( Ān)\{0} d-1 j=1 χ j (y -1 )G χ j , ψ • Tr Fq/Fp n   T n n  
By applying the power function property of the exponential function and using integer series development, we have

Z X A,d /Fq , T = exp   n≥1   (-1) n-1 y∈ker( Ān)\{0} d-1 j=1 χ j (y -1 )G χ j , ψ • Tr Fq/Fp n   T n n   (1 -T )(1 -qT )
We deduce, from the theorem 2.18, that In this section, we will try to express the number of points and the zeta function of the curve X d : y p -y = x d . This is in fact an Artin-Schreier extension, totally branched above the single infinite square, of the genus g = (p-1)(d-1)

L(X A,d , T ) = exp   n≥1   (-1) n-1 y∈ker( Ān)\{0} d-1 j=1 χ j (y -1 )G χ j , ψ • Tr Fq/Fp n   T n n   = y∈ker ( 
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. According to the relation (1), we have

N n (X d ) = 1 + N n,af f (X d )
Proposition 3.5. Let ψ be a non-trivial additive character. The number of affine points on the curve X d has the expression;

N n,af f (X d ) = a∈Fp x∈F q n ψ a • Tr F q n /Fp (x d ) = p#{x ∈ F q n ; Tr Fq/Fp (x d ) = 0} 9 
Proof. Let ψ be a non-trivial additive character, we use the orthogonality relation of the proposition 2.11:

N n,af f (X d ) = q -n a,x,y∈F q n ψ • Tr F q n /Fp (a(x d -y p + y)) = q -n a∈F q n x∈F q n ψ • Tr F q n /Fp (ax d ) y∈F q n ψ • Tr F q n /Fp (-ay p + ay) = q -n a∈F q n x∈F q n ψ • Tr F q n /Fp (ax d ) y∈F q n ψ • Tr F q n /Fp (-ay p + a p y p ) = q -n a∈F q n x∈F q n ψ • Tr F q n /Fp (ax d ) y∈F q n ψ • Tr F q n /Fp (y p (a p -a))
Now,

y∈F q n ψ • Tr F q n /Fp (y p (a p -a)) = q n if a p -a = 0 0 if a p -a ̸ = 0 Moreover, a p -a = 0 ⇐⇒ a ∈ F p Thus, N n,af f (X d ) = a∈Fp x∈F q n ψ • Tr F q n /Fp (ax d ) = a∈Fp x∈F q n ψ • Tr Fq/Fp • Tr F q n /Fq (ax d ) = a∈Fp x∈F q n ψ • Tr Fq/Fp (a Tr F q n /Fq (x d )) = x∈F q n a∈Fp ψ a • Tr F q n /Fq (x d ).
Thus proved the first equality. The sum a∈Fp ψ(a Tr F q n /Fq (x d ))

being zero, except for values x ∈ F q n such that Tr F q n /Fq (x d ) = 0. We then deduce that

N n,af f (X d ) = p #{x ∈ F q n ; Tr F q n /Fq (x d ) = 0}
We can then give the result allowing us to express the number of affine points on the curve X d using Gauss sums. Proposition 3.6. Let χ be a multiplicative character of F q , ψ a non-trivial additive character of F p , and n a non-zero natural number. The number of affine points, N n,af f (X d ), on F q n , of the curve X d , using Gauss sums, has the expression:

N n,af f (X d ) = q n + (-1) n-1 a∈F × p d-1 j=1 χ j (a -1 )G χ j , ψ • Tr Fq/Fp n Proof.
According to the propositions 3.5 et 3.2, we have

N n,af f (X d ) = a∈Fp S n (ax d ) = q n + (-1) n-1 a∈F × p d-1 j=1 χ j (a -1 )G χ j , ψ • Tr Fq/Fp n
The following result allows us to express the numerator of the zeta function of the X d curve using Gauss sums. Theorem 3.7. Let χ be a multiplicative character of F q and ψ a non-trivial additive character of F p . The numerator, L(X d , T ), of the zeta function of the curve X d has the expression:

L(X d , T ) = a∈F × p d-1 j=1
1 + χ j (a -1 )G χ j , ψ • Tr Fq/Fp T Remark 3.8. We can apply the previous result to the Hermitian curve with equation H q : y q + y = x q+1 defined on F q 2 since this is the decomposition body of y q + y, and q + 1 divides q 2 -1.

We'll calculate the reciprocal roots of its function L: these are the G(χ j , ψ y ) with ord(χ) = q + 1, 1 ≤ j ≤ q and y q + y = 0, y ̸ = 0. First we have G(χ j , ψ y ) = χ -j (y)G(χ j , ψ).

According to [3, Berndt B. C and co, 1998, Theorem 11.6.1], since χ j is of order q+1 pgcd(j,q+1) then G(χ j , ψ) = (-1) pgcd(j,q+1) q = (-1) j q because q + 1 is even. Since χ is of order q + 1, we can write χ = ω q-1 where ω is a generator of the multiplicative character group of F q 2 . We have y q + y = 0, hence y q-1 = -1 and χ -j (y) = ω -j(q-1) (y) = ω -j (y q-1 ) = ω -j (-1) = (-1) -j

We deduce that the number of points on F q 2n is N n (H q , T ) = 1 + q n (1 + (-1) n 2g) and the numerator of the zeta function is L(H q , T ) = (1 + qT ) q(q-1) = (1 + qT ) 2g .

We can then see that the H q curve is maximal on F q 2 . 11
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