Raphaël Côte

Emmanuel Franck

Laurent Navoret

Guillaume Steimer

Vincent Vigon

Hamiltonian reduction using a convolutional auto-encoder coupled to an Hamiltonian neural network

Keywords: Hamiltonian dynamics, model order reduction, convolutional auto-encoder, Hamiltonian neural network, non-linear wave equations, shallow water equation AMS subject classifications: 65P10, 34C20, 68T07

Introduction

Hamiltonian reduced order modeling techniques have been successfully developed in order to perform accelerated numerical simulations of some parameterized Hamiltonian models of large dimension [START_REF] Peng | Symplectic model reduction of Hamiltonian systems[END_REF][START_REF] Hesthaven | Reduced basis methods for timedependent problems[END_REF][START_REF] Tyranowski | Symplectic model reduction methods for the Vlasov equation[END_REF]. The spatial discretization of some wave-like partial differential equations gives rise to very large such Hamiltonian systems. Reduced order models can be essential for real-time simulations or when a large number of simulation instances are required as part of a control, optimisation or uncertainty quantification algorithm. Starting from the initial model, a large differential system, the methods consist into constructing a differential system of a smaller size that can produce valid approximate solutions for a predefined range of times and parameters. Many physical models have a Hamiltonian structure and this gives the system a certain number of geometrical properties like the 1 conservation of energy. In particular, the preservation of this structure at the discrete level enables to ensure large-time stability of the numerical simulations [START_REF] Hairer | Geometric numerical integration, Structurepreserving algorithms for ordinary differential equations[END_REF]. In order to build consistent and robust reduced models, it is therefore interesting to preserve this Hamiltonian structure through the reduction.

The construction of reduced models can be divided in two steps: (i) find a so-called pair of encoder and decoder operators that goes from the full to the reduced variables and inversely; (ii) identify the dynamics followed by the reduced variables. The construction of the encoder and decoder operators relies on a large number of data produced by numerical simulations in the range of time and parameters of interest.

The first approach to reduce a large Hamiltonian system relies on a linear approximation: the solutions manifold is approximated with a hyperplane of small dimension [START_REF] Peng | Symplectic model reduction of Hamiltonian systems[END_REF]. The encoder is here a linear mapping, which is also assumed to be symplectic so that the Hamiltonian structure is preserved into the reduced model. Such symplectic mapping can be constructed from data through greedy algorithms [START_REF] Afkham | Structure-preserving model-reduction of dissipative hamiltonian systems[END_REF] or through a Singular Value Decomposition (SVD) methodology: this is the Proper Symplectic Decomposition (PSD) proposed in [START_REF] Peng | Symplectic model reduction of Hamiltonian systems[END_REF]. In this work, several algorithms have been proposed to define approximated optimal symplectic mappings: for instance, the cotangent-lift algorithm devise a symplectic mapping which is also orthogonal and have a block diagonal structure. Then the reduced model is obtained using the Galerkin projection method: the model is constructed by supposing that a symplectic projection of the residual vanishes, where the residual stands for the error obtained after replacing the original variables by the decoded reduced variables.

Such linear reductions, however, can hardly handle non-linear dynamics: this is the case for convection-dominated or non-linear wave like problems for which the solution manifold is badly approximated by hyperplanes. In order to build more expressive reduced models, one possibility is to consider time adaptive reduced methods [START_REF] Pagliantini | Dynamical reduced basis methods for hamiltonian systems[END_REF][START_REF] Hesthaven | Adaptive symplectic model order reduction of parametric particle-based Vlasov-Poisson equation[END_REF]. Another widely investigated possibility is to consider non-linear reduction methods.

Regarding the construction of non-linear encoder-decoder operators, a first class of methods rely on manifold learning techniques [START_REF] Sonday | Manifold learning techniques and model reduction applied to dissipative pdes[END_REF][START_REF] Bhattacharjee | A nonlinear manifold-based reduced order model for multiscale analysis of heterogeneous hyperelastic materials[END_REF]. Such methods are based on the geometrical analysis of the neighbors graph of the data thanks to the computation of geodesic distances (ISOMAP method, [START_REF] Tenenbaum | A Global Geometric Framework for Nonlinear Dimensionality Reduction[END_REF]), of eigenfunctions of the graph Laplacian (EigenMaps method [START_REF] Belkin | Laplacian eigenmaps for dimensionality reduction and data representation[END_REF]) or of diffusion processes (DiffusionMaps method [START_REF] Coifman | Diffusion maps[END_REF]). This provides reduced variables for each data that can be further interpolated using the Nyström formula [START_REF] Bengio | Learning eigenfunctions links spectral embedding and kernel PCA[END_REF].

Since the explosion of deep learning in the early 2010s, new dimension reduction methods grounded on neural networks have been developed. The convolutional auto-encoder architecture [START_REF] Goodfellow | Deep learning[END_REF] seems particularly appropriate since its very purpose is to determine latent variables: the neural network is indeed divided into an encoder part and decoder part and they are trained simultaneously so that the sequence of encoder and decoder is close to the identity map. This was originally developed for image generation, but has been also used for reduced order modeling for models coming from the spatial discretization of partial differential equations on a grid [START_REF] Lee | Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders[END_REF][START_REF] Kim | A fast and accurate physics-informed neural network reduced order model with shallow masked autoencoder[END_REF][START_REF] Romor | Non-linear manifold reduced-order models with convolutional autoencoders and reduced over-collocation method[END_REF]. In [START_REF] Buchfink | Symplectic model reduction of Hamiltonian systems on nonlinear manifolds and approximation with weakly symplectic autoencoder[END_REF], the authors use auto-encoder neural networks for Hamiltonian reduction: the encoder and the decoder are weakly constrained to be symplectic thanks to a penalization term in the cost functional.

Once non-linear encoders and decoders have been devised from data, the dynamics of the reduced variables still has to be determined. Two strategies can be considered. The first one relies on a Galerkin projection of the Hamiltonian system as in the linear case [START_REF] Buchfink | Symplectic model reduction of Hamiltonian systems on nonlinear manifolds and approximation with weakly symplectic autoencoder[END_REF]. Note that the reduced model is indeed Hamiltonian provided the decoder is a symplectic map. However, the reduced model still requires the evaluation of the vector field in the original large dimension space of size 2N : this is a well-known difficulty in non-linear reduction.

To overcome this difficulty, hyper-reduction methods have been proposed like the discrete empirical interpolation method (DEIM) [START_REF] Chaturantabut | Nonlinear model reduction via discrete empirical interpolation[END_REF] but they have to be adapted to not destroy the symplectic structure of the equations [START_REF] Hesthaven | Adaptive symplectic model order reduction of parametric particle-based Vlasov-Poisson equation[END_REF].

Another approach is to learn about the dynamics of the reduced variables using a neural network: given the initial state, the neural network provides the full trajectory. As the learning is done directly in the reduced dimension, the obtained reduced model does not require an evaluation of non-linear terms in the original variables: this is a clear advantage of the method compared with projection-based ones. The reduced dynamics can be captured for instance by Recurrent Neural Networks (RNNs), Long Short Term Memory (LSTM) neural networks [START_REF] Maulik | Reduced-order modeling of advectiondominated systems with recurrent neural networks and convolutional autoencoders[END_REF], or by fully connected networks [START_REF] Fresca | A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs[END_REF]. This has also been considered as correction of the Galerkin-type reduced models [START_REF] Wang | Recurrent neural network closure of parametric POD-Galerkin reduced-order models based on the Mori-Zwanzig formalism[END_REF].

Here we consider another strategy which consists in learning the vector field that generates the observed reduced dynamics. The neural network is trained so as to minimize its deviation from the finite difference time derivative of the reduced data obtained after encoding. As we aim at conserving the Hamiltonian structure at the reduced level, the vector field is further supposed to be associated with a reduced Hamiltonian function. Therefore, we can learn directly the Hamiltonian function instead of the vector field. This is a so-called Hamiltonian Neural Network (HNN) strategy proposed in [START_REF] Greydanus | Hamiltonian neural networks[END_REF] where a symplectic time integrator is used.

The present paper proposes to combine an auto-encoder strategy for the encodingdecoding part and a HNN method to learn the reduced dynamics: this will be referred to as the AE-HNN method. Note that there is a priori no reason for the auto-encoder neural networks to spontaneously provide reduced variables compatible with Hamiltonian dynamics. Therefore, some constraints on the auto-encoder have to be added. This can be done by imposing symplecticity as in [START_REF] Buchfink | Symplectic model reduction of Hamiltonian systems on nonlinear manifolds and approximation with weakly symplectic autoencoder[END_REF]. Here, we propose instead to train it simultaneously with the HNN. With this joint training, the auto-encoder will gradually converge to a set of reduced variables compatible with a Hamiltonian system. Of course, this means that the loss functions associated with each neural network must be weighted judiciously during training. Note that such a joint training of the encoding-decoding operators and the reduce dynamics have been explored in [START_REF] Fresca | A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs[END_REF], but without considering Hamiltonian structures.

The outline of the article is as follows. In Section 2, we introduce parameterized Hamiltonian systems as well as the main steps for the construction of reduced order models. Section 3 then presents the non-linear AE-HNN reduction method. In particular we describe the architectures and the loss functions used for the trainings. Finally, Section 4 is devoted to the numerical results: we apply our reduction method on the Hamiltonian systems obtained after spatial discretization of linear, non-linear wave equations and a shallow water system and compare it with the linear PSD reduction technique.

Parameterized Hamiltonian systems and reduction

In this section, we introduce the notations used for the parameterized Hamiltonian systems and the main steps for the construction of a reduced model.

In the following, we often write vectors of interest with bold script letters, operators with capital italic letters, with their parameters as indices, and overline quantities when related to the reduced model.

Parameterized Hamiltonian dynamics

We consider a parameterized autonomous Hamiltonian system, whose solution,

y(t; µ) ∈ R 2N with N ∈ N * ,
y(0; µ) = y 0 (µ), (1)
where y 0 (µ) ∈ R 2N is a given initial condition and J 2N refers to the canonical symplectic matrix

J 2N = 0 N I N -I N 0 N ,
with I N the identity matrix of dimension N . Introducing the canonical coordinates y = (q, p) T , the system becomes:

               d dt q(t; µ) = ∇ p H (q, p; µ) , ∀t ∈ (0, T],
d dt p(t; µ) = -∇ q H (q, p; µ) , ∀t ∈ (0, T], q(0; µ) = q 0 (µ), p(0; µ) = p 0 (µ).

(

) 2
with q 0 , p 0 ∈ R N such that y 0 = (q 0 , p 0) T . A key property of such systems is that the associated flow is symplectic, meaning that ϕ t y 0 (µ); µ = y(t; µ) satisfies the relation

∇ y ϕ t y 0 (µ); µ T J 2N ∇ y ϕ t y 0 (µ); µ = J 2N .
One consequence is that the Hamiltonian H is preserved along the flow

∀t > 0, µ ∈ Ξ, H (y(t; µ); µ) = H y 0 (µ); µ ,
which is of particular importance when considering physical systems.

In this work, we are specifically interested in Hamiltonian systems resulting from the space discretization of one-dimensional wave-type equations. In such systems, q ∈ R N refers to the height of the wave at grid points and p ∈ R N to the velocity of the wave also at grid points. Examples will be detailed in the numerical section.

In order to provide numerical approximations of the solution, specific numerical schemes have been developed to ensure the symplectic property at the discrete level [START_REF] Hairer | Geometric numerical integration, Structurepreserving algorithms for ordinary differential equations[END_REF]. These schemes also guarantee large time stability of the numerical solutions. Here we consider the standard second-order Störmer-Verlet scheme. Denoting y n µ = q n µ , p n µ T ∈ R 2N the approximate solution at time t n = n∆t, with time step ∆t > 0, one iteration of the scheme is defined by:

                   p n+ 1 2 µ = p n µ -1 2 ∆t ∇ q H q n µ , p n+ 1 2 µ ; µ , q n+1 µ = q n+ 1 2 µ + ∆t ∇ p H q n µ , p n+ 1 2 µ ; µ + ∇ p H q n+1 µ , p n+ 1 2 µ ; µ , p n+1 µ = p n+ 1 2 µ -1 2 ∆t ∇ q H q n+1 µ , p n+ 1 2 µ ; µ . (3)
Under the further assumption that the Hamiltonian H is separable, i.e. is the sum of a function depending only q and another depending only p:

H(y; µ) = H 1 (q; µ) + H 2 (p; µ),
the implicit first two steps of (3) become explicit and the scheme simplifies into:

                 p n+ 1 2 µ = p n µ -1 2 ∆t ∇ q H 1 q n µ ; µ , q n+1 µ = q n µ + ∆t ∇ p H 2 p n+ 1 2 µ ; µ , p n+1 µ = p n+ 1 2 µ -1 2 ∆t ∇ q H 1 q n+1 µ ; µ . (4)

Hamiltonian reduced order modeling

Solving Hamiltonian systems with large dimension 2N ≫ 1 numerically can be relatively costly, and this is especially true when we want to solve a large number of them for a parametric study, for example. Therefore, methods have been developed in order to construct reduced Hamiltonian systems of smaller size 2K ≪ 2N , which capture the main dynamics for a range of times t and reduction parameters µ. We first have to define an appropriate change of variable. To do that, we search for a 2K-dimensional manifold M that approximates well the manifold

M = {y(t; µ) with t ∈ [0, T], µ ∈ Ξ} ⊂ R 2N
formed by the solutions. The manifold M is defined thanks to a so-called decoding operator

D θ d : R 2K → R 2N : M = D θ d (y) with y ∈ R 2K ⊂ R 2N .
We also consider a pseudo-inverse operator E θe : R 2N → R 2K , called the encoder, which satisfies the relation

E θe • D θ d = Id R 2K .
To determine D θ d and E θe , we therefore ask for the projection operator D θ d • E θe onto M to be close to the identity on a data set U ⊂ M:

∀u ∈ U, D θ d • E θe (u) ≈ u. (5
)
The data set U is composed of snapshots of the solutions at different times and various parameters, obtained with the symplectic algorithm defined above in (3); it writes

U = y 0 µ1 , . . . , y M µ1 , . . . , y 0 µ P , . . . , y M µ P ,
where M ∈ N * is the number of time-step chosen and P ∈ N * the number of sampled parameters.

Once the changes of variables are defined, we are interested in the dynamics in the reduced variable:

y(t; µ) = E θe (y(t; µ)) ∈ R 2K .
With specific constraints on the change of variables, we can expect the reduced variables to follow a reduced Hamiltonian dynamics:

   d dt y(t; µ) = J 2K ∇ y H θ h (y(t; µ); µ), ∀t ∈ (0, T], y(0; µ) = E θe (y 0 (µ)), (6)
where H θ h : R 2K × Ξ → R is a reduced Hamiltonian to be built. The most common approach for Hamiltonian reduced order modeling is called the Proper Symplectic Decomposition (PSD) [START_REF] Peng | Symplectic model reduction of Hamiltonian systems[END_REF]. This method is briefly described in Appendix A. Although efficient for linear dynamics, it fails into reducing non-linear ones. This is why several non-linear Hamiltonian reduction techniques have been developed [START_REF] Buchfink | Symplectic model reduction of Hamiltonian systems on nonlinear manifolds and approximation with weakly symplectic autoencoder[END_REF][START_REF] Hesthaven | Adaptive symplectic model order reduction of parametric particle-based Vlasov-Poisson equation[END_REF]. In the next section, we present a strategy based on the coupling of an Auto-Encoder (AE) and a Hamiltonian Neural Network (HNN) method.

A non-linear Hamiltonian reduction method

The method proposed in this work consists in constructing the Hamiltonian reduced model via neural networks. More precisely, we aim at defining the following three neural networks:

• a decoder D θ d : R 2K → R 2N , • an encoder E θe : R 2N → R 2K , • a reduced Hamiltonian H θ h : R 2K × Ξ → R,
where (θ d , θ e , θ h) stands for their parameters, such that the resulting reduced dynamics provides a good approximation of the initial one. An auto-encoder strategy will be used to define D θ d and E θe while a Hamiltonian Neural Network will be considered for H θ h . Note that the encoder and decoder are not enforced to be symplectic but the reduced model is.

Figure 1 illustrates how the reduced model is expected to be used for prediction. The initial condition y(t = 0; µ) is converted by the encoder E θe to the reduced initial condition y(t = 0; µ). Then several iterations of the Störmer-Verlet scheme with the reduced Hamiltonian H θ h are performed to obtain an approximated reduced solution y(t = T ; µ) at time T . Finally, by using the decoder D θ d , the latter is transformed into y(t = T ; µ) ≃ y(t = T ; µ). Note parameter µ has to be supplied to the Hamiltonian function.

In order to determine the appropriate parameters of the three neural networks D θ d , E θe and H θ h , we have to define both their architectures and the loss functions used for their training. This section focuses on the latter.

y(t = 0) µ y(t = 0) µ + / y(t = T) ŷ(t = T) E θe D θ d H θ h

Reduction with an Auto Encoder (AE)

An auto-encoder (AE) is a classical architecture of neural networks to find a reduced representation of data [START_REF] Goodfellow | Deep learning[END_REF]. It is composed of two neural networks, D θ d and E θe , which are trained together such as to make the projection operator D θ d • E θe the closest to the identity map on the training data set U . Therefore, the AE is trained so as to minimize the following loss

L AE (θ e , θ d) = y∈ U ∥y -D θ d (E θe (y))∥ 2 2 . (7
)
To account for the particular structure of y made of coordinates and momenta, the encoder input is a tensor of size (N, 2). This AE will be referred as the bichannel AE. Another choice would be to define two separate auto-encoders for coordinates and momenta: the coordinates AE is denoted

(E 1 θe,1 , D 1 θ d ,1
) and the momenta AE is denoted (E 2 θe,2 , D 2 θ d ,2); each encoder input has shape (N, 1). The AEs are trained by minimizing the loss:

L split,AE (θ e , θ d) = (q,p)∈ U q -D 1 θ d ,1 E 1 θe,1 (q) 2 2 + p -D 2 θ d ,2 E 2 θe,2 (p) 2 2 .
These AEs will be called the split AE. The architectures of the neural networks are chosen specifically to the Hamiltonian systems in consideration. In this work, we focus on systems resulting from the spatial discretization of wave-like equations: networks will be more efficient if they take into account the spatial structure of the data. Consequently, the encoder E θe is first composed of several pairs of convolution layer and down-sampling before ending with some dense layers, as depicted in Figure 2. As usual for AE networks, the decoder is constructed in a mirror way, i.e. starting with some dense layers and then ending with pairs of up-sampling and convolution layers in reversed size order.

More precisely, the encoder takes as input a vector y = (q, p) and starts with a succession of so-called encoder blocks, made of a stride 1 convolution with kernel size 3 and a downsampling step (stride 2 convolution with kernel size 2). An encoder block results in an output that has twice as many channels and half as many rows as the input. After possibly composing several encoder blocks, we add a last convolution layer with kernel size 3 and then a flattening operation by concatenating every channels. Then, dense layers are added until reaching the desired reduced dimension 2K of y. As already said, the decoder is built as a mirror: the flattening operation is replaced by unflattening and the encoder blocks by the decoder blocks made of an up-sampling layer of size 2 smoothed out with a convolution with kernel size 2 and a convolution layer with kernel size 3, which symmetrically results in output that has half as many channels and twice as many rows as the input. The architecture of the auto-encoder is thus defined with the number of encoder and decoder blocks and the dense layer sizes for both encoder and decoder. Figure 2 illustrates an example of auto-encoder architecture with one block for the encoder and one block for the decoder.

y y ŷ (N, 2) (N, 2) (N, 2) (N, 2) 1 2 N, 4 1 2 N, 4 1 2 N, 4 1 2 N, 4 (2N,) (2N

Reduced model with a Hamiltonian Neural Network (HNN)

The AE constructed in the previous section enables us to define the reduced trajectories:

y(t; µ) = E θe (y(t; µ)). (8
)
To obtain the dynamics of these reduced variables, we propose to use a Hamiltonian Neural Network strategy [START_REF] Greydanus | Hamiltonian neural networks[END_REF]. We thus look for a neural network function H θ h , parameterized by θ h , such that:

d dt y(t; µ) = J 2K ∇ y H θ h (y(t; µ); µ).
Note that the Hamiltonian is supposed to depend on parameter µ. We remind that µ ∈ Ξ stands for known parameters of the model, unlike θ h that is the neural networks parameters to be learnt. The architecture of the reduced Hamiltonian is a classical MLP neural network. The size of the neural network is chosen to be small so that the reduced model remains competitive. This reduced dynamics are in practice defined through a time discretization. We therefore introduce the prediction operator:

P s y; H θ h ,µ ,
which consists in performing s ∈ N * iterations of the Störmer-Verlet scheme, defined in (3), starting from y and where H θ h ,µ stands for the Hamiltonian function H θ h (.; µ). The number of steps s considered in this prediction is called the watch duration. This is a hyperparameter of the method that has to be set. The parameters of the reduced Hamiltonian are finally obtained by minimizing the following loss:

L s pred (θ e , θ h) = y n µ ,y n+s µ ∈ U y n+s µ -P s y n µ ; H θ h ,µ 2 2 (9)
where y n µ , y n+s µ ∈ U denote the sampling of random pairs (y n µ , y n+s µ) on the data set U . In other words, random time series of size s are sampled and only the data at both ends are considered. This loss thus compares the reduced trajectories [START_REF] Goodfellow | Deep learning[END_REF] with the ones obtained with the reduced Hamiltonian. The name of the loss function, "pred", refers to the prediction in the reduced variables. Note that the encoder neural network is required to obtain the reduced data y = E θe (y) and this is why the loss also depends on θ e . This kind of loss function, based on a model, has been widely used in physics based deep learning methods [START_REF] Thuerey | Physics-based deep learning[END_REF].

Then, we constrain the reduced trajectories to preserve the reduced Hamiltonian with the following loss function :

L s stab (θ e , θ h) = y n µ ,y n+s µ ∈ U H θ h ,µ y n+s µ -H θ h ,µ y n µ 2 2 , (10
)
where y n+s µ and y n µ are still obtained using the encoder E θe . The aim is to ensure some stability of the reduced model, hence its name "stab" . At first sight, this loss seems redundant with the prediction-reduced loss since using Störmer-Verlet schemes in the prediction step ensures that the reduced Hamiltonian is preserved at least approximately. Hence if the prediction-reduced loss becomes small, so does the stability loss. However, this additional loss may help the coupling to converge.

Strong coupling of the neural networks

The prediction-reduced and the stability-reduced losses (9) already introduce a coupling between the encoder neural networks and the reduced Hamiltonian one. To make the coupling stronger, we could ask for the trajectories in the initial variables to be well recovered. This is why we introduce the following fourth loss function named "pred" which refers to the model prediction in the FOM space:

L s pred (θ e , θ d , θ h) = y n µ ,y n+s µ ∈ U y n+s µ -D θ d P s y n µ ; H θ h ,µ 2 2 . (11
)
This is the only loss function that couples the three neural networks. It compares the trajectories in the initial variables with the full process of encoding, predicting in reduced variables over s iterations and then decoding.

To sum up, we use four different loss functions L AE , L s pred , L stab and L s pred , given by (7)-(9)-(10)-(11) that couple both AE and HNN neural networks. The training aims to find the parameters (θ e , θ d , θ h) that are solution to the minimization problem:

min θe,θ d ,θ h ω AE L AE (θ e , θ d) + ω pred L s pred (θ e , θ h) + ω stab L s stab (θ e , θ h) + ω pred L s pred (θ e , θ d , θ h),
where ω AE , ω pred , ω stab , ω pred are positive weights: these are hyper-parameters of the method. The four loss functions interact during training and possibly compete with each other. Note that in the end, the only loss value that really quantifies the quality of the reduction and prediction process is the one corresponding to L s pred . The other loss functions are only useful in the training process.

Training hyper-parameters

In addition to the parameters of the neural networks (number of layers, size of the layers), the training of the model also depends on several hyper-parameters.

Watch duration in predictions. One of the hyper-parameter to set is the watch duration s in the loss functions L s stab , L s pred and L s pred that make predictions. This quantity should be not too small to capture the dynamics but also not too large as the computation of the gradients of the associated loss functions may generate vanishing gradient problems. In our numerical setting, the watch duration will be typically set to s = 16.

Loss functions weights. Losses weights have been chosen experimentally as follows:

ω pred = 0.1, ω AE = 0.1, ω pred = 80, ω stab = 7 × 10 -4 .
A typical loss functions history is shown in Figure 3b: each loss function is represented multiplied by its weight. We first notice that the prediction loss function L s pred and the auto-encoder loss function L AE have the same magnitude and actually are almost equal: the error in prediction is mostly due to the encoder-decoder step. We keep this behavior by assigning them the same weight ω pred = ω AE = 0.1. This value is determined in proportion to the learning rate chosen below. As the prediction loss function L s pred is the most important one for the applications, we want it to dominate over the others. We therefore set the weight ω pred = 80 so that the weighted reduced prediction loss function ω pred L s pred is about 10 times smaller than the previous two. Finally, we want the weighted reduced stability loss function ω stab L s stab to act as a quality control that remains small compared to the other loss functions. To this end, we set ω stab = 7 × 10 -4 in order to make it about 100 times smaller than the weighted reduced prediction loss. [START_REF] Kingma | A method for stochastic optimization[END_REF] is used for the training. The learning rate follows the following rule: ρ k = (0.99) k/150 0.001.

Gradient descent. An Adam optimizer

where the division operator stands here for the integer division, and k is the train step. Thus, the learning rate is constant over 150 iterations, then decreases. It has an exponential decay with the shape of a staircase. In addition, we can reset this decay i.e. set k = 0 at any time if we notice that the loss is reaching a plateau. The main goal of this reset strategy is to escape poor local minima of the minimization problem with a sudden large learning rate. On Figure 3a is shown a typical training and validation loss history as functions of the training step k as well as the learning rate at each step. The resets enable to make the training loss go from 1 × 10 -3 to 5 × 10 -4 and then to 1 × 10 -4 . With the loss functions weights above-mentioned, we consider 1 × 10 -5 to be a correct plateau value to stop the training process.

Pre-processing Data pre-processing is required to optimize the learning process. Here we use usual standardization techniques.

Numerical results

This section is devoted to the numerical results obtained with the proposed Hamiltonian reduction method. We consider one-dimensional discretizations of three wave-type equations: the linear wave equation, the non-linear wave equation and the shallow water equation.

Wave equations

We introduce a parameterized one-dimensional wave equation:

       ∂ tt u(t, x) -µ a ∂ x w ′ ∂ x u(t, x), µ b + g ′ (u(t, x), µ c) = 0, (t, x) ∈ (0, T] × [0, 1], u(0, x) = u init (x), x ∈ [0, 1], ∂ t u(0, x) = v init (x), x ∈ [0, 1], (12)
complemented with periodic boundary conditions. The solution u(t, x) represents the vertical displacement of a string over the interval [0, 1]. The model depends on two given functions w, g : R → R and three parameters: µ = (µ a , µ b , µ c)

T ∈ Ξ ⊂ R 3 + . Defining the vertical displacement velocity v(x, t) = ∂ t u(t, x), Equation (12) can be reformulated as a first order in time system:

           ∂ t u(x, t) -v(x, t) = 0, (t, x) ∈ (0, T] × [0, 1], ∂ t v(x, t) + µ a ∂ x w ′ ∂ x u(t, x), µ b + g ′ (u(x, t), µ c) = 0, (t, x) ∈ (0, T] × [0, 1] u(0, x) = u init (x), x ∈ [0, 1], v(0, x) = v init (x), x ∈ [0, 1].
Then, we consider a spatial finite difference discretization of this system. Introducing a uniform mesh of the interval [0, 1], with N cells, space step ∆x = 1/(N -1) and nodes x i = i∆x, for i ∈ 0, N -1 , the approximate solution (u, v) = (u i (t), v i (t)) i∈ 0,N -1 ∈ R N × R N satisfies the following system:

               d dt u i (t) = v i (t), t ∈ (0, T] d dt v i (t) = -µ a 1 ∆x w ′ u i+1 (t) -u i (t) ∆x , µ b -w ′ u i (t) -u i-1 (t) ∆x , µ b + g ′ (u i (t), µ c) u i (0) = u init (x i), v i (0) = v init (x i). (13
) These equations actually form a Hamiltonian system of size 2N , with a separable Hamiltonian function ((u, v) stands for variables (q, p)) given by

H(u, v; µ) = H 1 (u; µ) + H 2 (v; µ), (14
)
with

H 1 (u; µ) = ∆x N -1 i=0 µ a w u i+1 -u i ∆x , µ b + µ a w u i -u i-1 ∆x , µ b + g(u i , µ c) , H 2 (v; µ) = 1 2 ∆x N -1 i=0 v 2 i .
In the following, we test the AE-HNN method for two choices of functions w and g.). For the auto-encoder (AE), the number of convolution blocks and the sizes of the hidden of layers are those of the encoder. The decoder is constructed in a mirror way.

Reduction of the linear wave equation

Here we consider the linear wave equation:

∂ tt u(t, x) -µ a ∂ xx u(t, x) = 0, (t, x) ∈ (0, T] × [0, 1], u(0, x) = u init (x), x ∈ [0, 1].
corresponding to w(x, µ b) = 1 2 x 2 and g(x, µ c) = 0. In particular, we conserve only one parameter µ a ∈ [0.2, 0.6], which corresponds to the square of the wave velocity. The initial condition is taken equal to:

u init (x) = h(10|x -1 2 |), v init (x) = 0. (15
)
where h is the compactly supported (single bump) function:

h(r) = 1 -3 2 r 2 + 3 4 r 3 1 [0,1] (r) + 1 4 (2 -r) 3 1 (1,2] (r). (16
)
The initial condition can be observed in Figure 5a. We consider N = 1024 discretization points, set T = 0.4 and ∆t = 1×10 -4 . In Figure 4, we observe the solution at final time T = 0.4 as a function of µ a . Each color corresponds to a different value of µ a . As we can expect, large values of µ a generate waves farther from the initial condition. 2.

Then we test the obtained model on 3 test values:

µ a = 0.2385 (test 1), µ a = 0.3798 (test 2), µ a = 0.5428 (test 3).

To evaluate our model, we compute the relative L 2 discrete error between the reference solution u ref and the reduced model prediction u pred :

err = M n=1 ∆t N i=1 ∆x(u n ref,i -u n pred,i) 2 M n=1 ∆t N i=1 ∆x(u n pred,i) 2 ,
where M is the total number of time steps. Table 3 compares the errors of the AE-HNN method with the ones obtained with the PSD and the POD for different reduced dimensions K. We have colored in blue the cells of the PSD and POD methods with an error lower than the AE-HNN for K = 1 (in yellow). As shown in Table 3, we succeed in capturing the dynamics with a AE-HNN model of dimension K = 1 with a relative error equal to 1 × 10 -2 . To obtain comparable performance, K = 6 modes are needed for the PSD and K = 10 modes for the POD. The reduction capability of the PSD is nevertheless quite good and this is due to the linearity of the problem. Also, the POD results show that taking into account the symplecticity of the problem enables us to improve significantly the reduction.

Figure 5 shows the simulations of the reduced models for both the AE-HNN (K = 1) and the PSD (K = 6) methods at different times for test 3. As expected, both methods provide good results.

L s pred L AE L s pred L s stab
Linear wave 8.25×10 -4 8.19×10 -4 2.52×10 -7 1.54×10 -5 Non-linear wave 3.47×10 -5 3.53×10 -5 1.84×10 -8 1.98×10 -6 Shallow water 6.49×10 -5 6.51×10 -5 7.70×10 -9 1.19×10 -7

K = 1 1.20×10 -2 6.05×10 -2 7.07×10 -3 5.84×10 -2 1.43×10 -2 8.09×10 -2 K = 2 6.71×10 -3 2.24×10 -2 1.48×10 -2 3.99×10 9.71×10 -3 2.30×10 -2 K = 5 1.67×10 -2 2.54×10 -2 1.48×10 -2 2.90×10 -2 1.79×10 -2 3.55×10 -2 PSD K = 4 6.70×10 -1 3.67×10 -1 7.01×10 -1 8.69×10 -1 7.30×10 -1 3.65×10 -1 K = 5 1.28×10 -1 1.34×10 -1 1.60×10 -1 1.43×10 -1 1.91×10 -1 1.52×10 -1 K = 6 4.80×10 -3 2.11×10 -2 5.52×10 -2 2.14×10 -2 5.89×10 -3 2.23×10 -2 POD K = 6 3.07×10 -2 1.08×10 -1 1.30×10 -2 2.67×10 -2 6.00×10 -2 1.54×10 -1 K = 8 1.28×10 -2 4.89×10 -2 1.12×10 -2 2.66×10 -2 3.96×10 -2 7.05×10 -2 K = 10 9.78×10 -3 4.36×10 -2 2.30×10 -3 9.07×10 -3 1.58×10 -2 5.93×10 -2
Table 3: (Linear wave) Relative L 2 errors for different reduced dimensions K. Blue cells correspond to POD and PSD simulations with lower errors than the corresponding AE-HNN simulation in yellow.

Reduction of non-linear wave equation

Now, we consider the following non-linear wave equations:

∂ tt u(t, x) -µ a ∂ xx u(t, x) -µ b ∂ x (cos(µ b ∂ x u(t, x))) + 30µ c x 2 = 0, (t, x) ∈ (0, T] × [0, 1], u(0, x) = u init (x), x ∈ [0, 1]. corresponding to w(x, µ b) = 1 2 x 2 + sin (µ b x) and g(x, µ c) = 10µ c x 3 .
There are three parameters µ a ∈ [0.2, 0.6], µ b ∈ [0.025, 0.5] and µ c ∈ [0.4, 2.4]. The initial condition is given by Eq. (15)- [START_REF] Liang | Proper orthogonal decomposition and its applications -part i: Theory[END_REF].

The number of discretization points is still N = 1024 but the final time is taken equal to T = 0.3 and the time step ∆t = 1×10 -4 . These parameters have been chosen so that the numerical simulations remain stable despite the strong non-linearities. In Figure 6, we observe the numerical solutions at final time for several sets of parameters.

Training data are obtained using P = 20 different values (µ a , µ b , µ c) regularly spaced in the segment [(0.2, 0.025, 0.4), (0.6, 0.5, 2.4)]. The validation set is also made of 6 different triplets define on the same domain. At the end of the training, the validation loss takes the values given in Table 2.

The obtained model is tested on 3 sets of parameters:

(µ a , µ b , µ c) = (0.2385, 0.088, 0.5485) (test 1), (µ a , µ b , µ c) = (0.3785, 0.281, 1.354) (test 2), (µ a , µ b , µ c) = (0.5528, 0.437, 2.128) (test 3),
and Table 4 presents the relative errors. A relative error of order 1×10 -2 can be reached with the AE-HNN method with a reduced dimension of K = 3 only. In comparison, the PSD and the POD require K = 15 and K = 30 reduced dimensions to obtain similar results. Figure 7 shows numerical solutions obtained for parameters corresponding to test 3. While the AE-HNN method with K = 3 remains close to the reference solution (Fig. 7a), the PSD with the same reduced dimension does not provide satisfactory results (Fig. 7b). Increasing the reduced dimension to K = 15 for the PSD allows us to recover comparable results (Fig. 7c).

= (µ a , µ b , µ c) test 1 test 2 test 3 error u error v error u error v error u error v AE-HNN K = 3 4.34×10 -3 1.17×10 -2 5.82×10 -2 8.65×10 -2 1.06×10 -2 1.36×10 -2 PSD K = 3 4.04×10 -1 2.55×10 -1 4.21×10 -1 2.49×10 -1 4.33×10 -1 2.73×10 -1 K = 10 3.26×10 -2 4.92×10 -2 3.84×10 -2 4.53×10 -2 5.63×10 -2 4.94×10 -2 K = 15 8.48×10 -3 1.66×10 -2 6.45×10 -3 1.66×10 -2 5.29×10 -3 1.87×10 -2 POD K = 3 1.86×10 -1 3.16×10 -1 5.72×10 -2 6.66×10 -2 2.44×10 -1 2.89×10 -1 K = 20 2.08×10 -2 4.00×10 -2 3.10×10 -2 7.00×10 -2 3.66×10 -3 1.01×10 -2 K = 30 5.36×10 -3 2.09×10 -2 9.54×10 -3 2.26×10 -2 8.87×10 -3 1.93×10 -2

Gain in computation time

In this section, we compare the actual computation time on an Intel(R) Xeon(R) CPU. To obtain a fair comparison, we use the same implementation of the Störmer-Verlet algorithm for all the methods. The only difference between the PSD and the AE-HNN methods lies in the gradient computations. For the former, we use the explicit expression of the reduced Hamiltonian as defined in Appendix A and for the latter, we use the HNN backpropagation algorithm. We use 32 bits floating-point numbers and include the encoding or decoding of the data in the computation time. We consider the non-linear wave test case with the following parameters: N = 1024, K = 3, T = 0.4 and ∆t = 1×10 -4 . The reference solution without reduction is computed in 2 200 ± 14 ms. In comparison, the AE-HNN method spends 452 ± 20 ms, which is five times faster. On the contrary, the PSD method spends 2 382 ± 12 ms, which is a bit slower than the reference solution. This results from the evaluation of the gradient of the Hamiltonian in the non-reduced dimension. Hyper-reduction technic like Hamiltonian DEIM would accelerate the computations [START_REF] Hesthaven | Adaptive symplectic model order reduction of parametric particle-based Vlasov-Poisson equation[END_REF]. However, this could also deteriorate the precision, and one should then consider larger reduced dimensions.

Shallow water system

We consider the one-dimensional Shallow Water system under the following formulation:

         ∂ t χ(t, x) + ∂ x (1 + χ(t, x)) ∂ x ϕ(t, x) = 0, ∀(t, x) ∈ (0, T] × [-1, 1], ∂ t ϕ(t, x) + 1 2 (∂ x ϕ(t, x)) 2 + χ(t, x) = 0, χ(x, 0) = χ init (x), ∀x ∈ [-1, 1], ϕ(x, 0) = ϕ init (x),
where χ(x, t) denotes the perturbation of the equilibrium and ϕ(x, t) is the scalar velocity potential. Periodic boundary conditions are considered. This system admits a Hamiltonian function given by:

H cont (χ, ϕ) = 1 2 1 -1 (1 + χ)(∂ x ϕ) 2 + χ 2 dx.
Like the wave equation, we consider a spatial discretization of this model, still using a uniform mesh grid with N nodes (x i) i∈ 0,N -1 on [-1, 1]. The approximate solution is denoted χ = (χ i) i∈ 0,N -1 , ϕ = (ϕ i) i∈ 0,N -1 . We then introduce the discrete Hamiltonian function:

H(χ, ϕ) = ∆x 2 N i=1 (1 + χ i) ϕ i+1 -ϕ i-1 ∆x 2 + χ 2 i , (19
)
and the resulting discrete shallow water equation: [START_REF] Peng | Symplectic model reduction of Hamiltonian systems[END_REF] where ⊙ denotes the element-wise vector multiplication and D x the centered second-order finite difference matrix with periodic boundary condition

         d dt χ = -D 2 x ϕ -D x (χ ⊙ D x ϕ), d dt ϕ = -1 2 (D x ϕ) ⊙ (D x ϕ) -χ, χ i (0) = χ init (x i), ϕ i (0) = ϕ init (x i),
D x = 1 2∆x       0 1 -1 -1 1 1 -1 0       .
We note that Hamiltonian (19) is not separable. As a consequence, the numerical resolution of (20) with the Störmer-Verlet scheme is implicit.Therefore, applying a reduction is all the more attractive.

Reduction of the Shallow-water system

The number of discretization points is taken equal to N = 1024, the final time equal to T = 0.5 and the time step ∆t = 2 × 10 -4 . The initial condition is parameterized with 2 The set of hyper-parameters is almost identical to the previous test cases except for the HNN architecture, activation functions and the watch duration, which here is taken equal to 48. They are gathered in Table 1. As in the previous sections, we inspect the validation loss functions and obtain value given in Table 2.

parameters µ = (c, σ) ∈ [0, 0.2] × [0.2, 0.05] χ init (x) = 0.02 σ √ 2π exp - 1 2 x -c σ 2 , ϕ init (x) = 0.
We choose three different sets of parameters to test the AE-HNN method:

(c, σ) = (0.105, 0.11), (

(c, σ) = (0.195, 0.053), (test 1)
(c, σ) = (0.21, 0.045). (

As in the previous test cases, we compute the relative errors of the AE-HNN method with respect to the reference solution (see Table 6) and compare them to the results obtained with the PSD and POD methods for different values of K.

The AE-HNN method achieves a mean error of about 3×10 -2 with a reduced dimension of K = 4 only. To achieve a similar performance, the PSD requires a reduced dimension of K = 24 and the POD need a value larger than K = 32. Table 6 also shows that the AE-HNN method has a different behavior with respect to K than the POD and PSD methods. For the latter, increasing K improves accuracy (at the expense of computation time). With the AE-HNN method, increasing K improves the encoder-decoder performance but makes it more difficult to learn the reduced dynamics for the HNN neural network. Therefore, the HNN performance requires a balance between an adequate compression and a low-dimensional reduced model.

Comparison with a non Hamiltonian reduction

In this section, we perform a study similar to that performed in Section 4.1.3 to show the importance of having a Hamiltonian AE-HNN reduction instead of a classical AE-Flow reduced model. We consider the same test case as in Section 4.2.1 with the same hyper-parameters described in Table 1. We stop both AE-HNN and AE-Flow training after reaching a validation loss value of 3×10 -5 . The obtained validation loss functions for the AE-Flow are as follows

L s pred = 7.02×10 -5 , L AE = 6.97×10 -5 , L s Flow = 2.85×10 -7 .
They are of comparable magnitude to that of the AE-HNN method in Table 2. Relative errors are provided in Table 7 for the different test values. The AE-HNN method is about 4 times more precise than the AE-Flow method. Figure 13 shows the time evolution of the L 2 errors for test case 2 and Figure 14 depicts the solution at different times. The AE-Flow drifts away from the reference solution while the AE-HNN remains close to it. Finally, Figure 15 shows that the AE-HNN method preserves the Hamiltonian more effectively than the AE-Flow method.

Conclusion

We Obviously, the results will have to be extended to partial differential equations in two or three spatial dimension. As convolution layers are used in the auto-encoder, the increase of dimension should not require too large an increase in the size of the neural networks. In consequence, we expect that the computational gain will be even larger for such dynamics. Other extensions would be to consider time-dependent reductions as in [START_REF] Hesthaven | Adaptive symplectic model order reduction of parametric particle-based Vlasov-Poisson equation[END_REF] and adapt the method for the reduction of large Hamiltonian differential equations that do not have spatial structures [START_REF] Hesthaven | Adaptive symplectic model order reduction of parametric particle-based Vlasov-Poisson equation[END_REF].

A Linear reduction

A.1 Proper Symplectic Decomposition

Here we briefly present the Proper Symplectic Decomposition (PSD) [START_REF] Peng | Symplectic model reduction of Hamiltonian systems[END_REF]. In this approach, we assume that the decoder is a linear operator

D θ d (y) = Ay,
with A ∈ M 2N,2K (R). To be consistent with the notations, we keep the subscript θ d to refer to the decoder parameters, which here are the coefficients of the matrix A. The trial manifold M is a hyperplane. We further assume that A is symplectic, i.e. satisfies A T J 2N A = J 2K , and we denote by Sp 2N,2K (R) the set of symplectic matrices. The encoder is thus defined as the symplectic inverse of A:

E θe (y) = A + y,

with A + = J T 2K A T J 2N ∈ Sp 2K,2N (
where (y i) i∈ 1,p are p values obtained from numerical simulations of the original problem at different times and for different parameters, and ∥X∥ F = ij X 2 ij is the Frobenius norm of X ∈ M 2N,p (R).

An approximate solution to this problem can be obtained with the cotangent lift algorithm [START_REF] Peng | Symplectic model reduction of Hamiltonian systems[END_REF]. First, the snapshot matrix Y is reshaped into Ỹ = q 1 , . . . , q p , p 1 , . . . , p p ∈ M N,2p (R).

Its Singular Value Decomposition (SVD) is computed leading to Ỹ = U ΣV T , where Σ is the diagonal matrix of the singular values and U (resp. V) the matrix of the left (resp. right) singular vectors. Then, we define Φ = U [:, :K] composed of the K-th left eigenvectors associated with the K-th largest singular values and we consider the following orthogonal symplectic matrix:

A = Φ 0 0 Φ .
The reduced model satisfied by the reduced variable y = A + y can be obtained by multiplying (1) by A + so that

d dt y = A + J 2N ∇ y H(y) = J 2K A T ∇ y H(y) ≈ J 2K ∇ y (H • A) (y) ,
where we use the expression of A + , the identity J 2 2N = -Id and the approximation y ≈ Ay = AA + y. The reduced model involves the following reduced Hamiltonian

H θ h = H • A,
where θ h = θ e = θ d still denotes the coefficients of the matrix A, and whose evaluation requires to compute the non-reduced quantity Ay ∈ R N . To avoid this evaluation in large dimension, approximations of the reduced Hamiltonian can be constructed using the discrete empirical interpolation method (DEIM) [START_REF] Wang | Structure-Preserving Galerkin POD-DEIM Reduced-Order Modeling of Hamiltonian Systems[END_REF][START_REF] Peng | Symplectic model reduction of Hamiltonian systems[END_REF].

The non-symplectic version of the algorithm is called the Proper Orthogonal Decomposition (POD) [START_REF] Liang | Proper orthogonal decomposition and its applications -part i: Theory[END_REF], where the matrix A is obtained using the K first singular vectors of the SVD of the original snapshot matrix Y defined in [START_REF] Romor | Non-linear manifold reduced-order models with convolutional autoencoders and reduced over-collocation method[END_REF].

Figure 1 :

 1 Figure 1: Prediction using the reduced model. The closed loop in the middle refers to the application of several iterations of the Störmer-Verlet scheme.

Figure 2 :

 2 Figure2: Auto-encoder architecture: encoder in blue, decoder in green. Symbols. * : stride 1 convolution with periodic padding, ⇓ down-sampling (stride 2 convolution), ⇑: up-sampling (repeat once each value along the last axis then smooth it with a kernel size 2 convolution).

(a)

 a Training loss function (blue) and validation loss function (red) as functions of the training step. (b) All the weighted loss functions as functions of the training step.

Figure 3 :

 3 Figure 3: Example of loss functions history during a training, overlaid with the evolution of the learning rate (green).

Figure 4 :

 4 Figure 4: (Linear wave) Solution (u, v) at final time T = 0.4 for various parameters µ = µ a

6 Figure 5 :

 65 Figure 5: (Linear wave) Solution (u, v) at different times on test 3, reference solution (full lines) and prediction (dashed lines).

Figure 6 :

 6 Figure 6: (Non-linear wave) final condition (u, v)(t = T ; µ) for various parameters µ = (µ a , µ b , µ c)

 (a) AE-HNN, K = 3 (b) PSD, K = 3 (c) PSD, K = 15

Figure 7 :

 7 Figure 7: (Non-linear wave) Solutions (u, v) at different times on test 3. Reference solution in solid lines and prediction in dashed lines.

Figure 8 :Figure 9 :Figure 10 :

 8910 Figure 8: (Non linear wave) L 2 errors on test 3 as a function of time for the AE-Flow (purple) and the AE-HNN (red)

For

 the training data, we use 20 different solution parameters (c, σ): we take regularly spaced values in the segment [(0, 0.2), (0.2, 0.05)]. Let us observe the influence of the parameters on the solutions at initial and final time on Figure 11. Non-linear patterns appear for small values of the standard deviation σ.

 (a) AE-HNN, K = 4 (b) PSD, K = 4 (c) PSD, K = 24

Figure 12 :

 12 Figure 12: (Shallow Water) (χ, ϕ) as a at different times on test 2 and K = 8, reference solution (full lines) and prediction (dashed lines).

2 Table 7 :Figure 14 :Figure 15 :

 271415 Figure 13: (Shallow Water) L 2 errors on test 2 as a function of time for the AE-Flow (purple) and the AE-HNN (red)

 have developed a new Hamiltonian reduction method. It is based on an auto-encoder (AE) to transform initial variables into reduced variables and vice versa, and on a Hamiltonian Neural Network (HNN) to learn the Hamiltonian reduced dynamics. Using a set of coupled loss functions, we are able to learn a reduced model (AE-HNN), which has an Hamiltonian structure. It already has better reduction properties than the PSD in linear test-cases, but the gain is much larger in non-linear test-cases, as expected. Due to its Hamiltonian structure, the reduced model also shows good stability properties.

 R) and where θ e = θ d also denotes the coefficients of the matrix A. Then the projection operator onto M writes AA + and A is determined by solving the minimization problem minA∈Sp 2N,2K (R) ∥Y -AA + Y ∥ 2 F ,where Y refers to the snapshot matrix: Y = y 1 , . . . , y p ∈ M 2N,p (R),

 depends on time t ∈ [0, T], with T > 0, and on a parameter µ ∈ Ξ ⊂ R d , with d ∈ N. The dynamics derives from a given Hamiltonian function H : R 2N × Ξ → R

	and writes	 	d dt	y(t; µ) = J 2N ∇ y H (y(t; µ); µ) , ∀t ∈ (0, T],
				

Table 1 :

 1 The same hyper-parameters are used in both test-cases. They are summarized in Table 1. Hyper-parameters. Activation functions are used except for the last layer of the neural networks. ELU refers to the function elu(x) = x1 x>0 + (e

	Wave equations Shallow water system

x -1)1 x<0 and swish to the function swish(x) = x/(1 + e -x

Table 2 :

 2 Values of the loss functions on validation data for the different test-cases.

Table 4 :

 4 (Non-linear wave) Relative L 2 errors for different reduced dimensions K and different parameters. Blue cells correspond to POD and PSD simulations with lower errors than the corresponding AE-HNN simulation in yellow.

Acknowledgements. This research was funded in part by l'Agence Nationale de la Recherche (ANR), project ANR-21-CE46-0014 (Milk).

Comparison with a non Hamiltonian reduction

In this section, we want to highlight the importance of the Hamiltonian framework for the reduced dynamics. Indeed, if the Hamiltonian structure is ignored, then the reduced system can be written:    d dt y(t; µ) = F(y(t; µ); µ), ∀t ∈ (0, T], y(0; µ) = E(y 0 (µ)), [START_REF] Afkham | Structure-preserving model-reduction of dissipative hamiltonian systems[END_REF] where F : R K × Ξ → R K is the reduced vector field. Then the reduced dynamics can be learnt by designing a neural network approximation F θ f , with a classical MLP architecture.

To this aim, we can consider the following loss function:

where the prediction operator is here a simple RK2 scheme. We discard the stability loss function L s stab and keep all the other hyper-parameters identical to those of the previous section. Coupled with the auto-encoder, this reduction method will be referred to as AE-Flow.

We compare the two resulting method on the non-linear wave test-case considered in Section 4.1.2. The HNN parameters are unchanged. For a fair comparison, the flow neural network F θ f has the same amount of parameters: the hidden layers have [32, [START_REF] Thuerey | Physics-based deep learning[END_REF][START_REF] Liang | Proper orthogonal decomposition and its applications -part i: Theory[END_REF][START_REF] Liang | Proper orthogonal decomposition and its applications -part i: Theory[END_REF] units, which results in 1 886 parameters instead of 1 728 for the HNN. We train both models up to reach a loss value of about 1 × 10 -5 . The obtained validation loss functions are as follows L s pred = 9.46×10 -5 , L AE = 9.88×10 -5 , L s Flow = 7.92×10 -7 . They are of comparable magnitude to that of the AE-HNN method in Table 2.

Relative errors are provided in Table 5. The errors of the AE-HNN method are about 5 times smaller than those of the AE-Flow method. Figure 8 shows the time evolution of the relative error for test case 3 and Figure 9 depicts the solutions at different times. We observe that the AE-HNN solution remains close to the reference while the AE-Flow solution drifts from it. Furthermore, we compare in Figure 10 the time evolution of the Hamiltonian for the reference solution, the AE-HNN solution, and the AE-Flow solution on test case 3. We observe that the AE-HNN method results in a better preservation of the Hamiltonian than the AE-Flow solution. Then, we compare the solutions obtained with the AE-HNN method and the PSD in Figure 12. For a given reduced dimension K = 4, the AE-HNN method solution remains close to the reference as expected (Fig. 12a) while the PSD solution oscillates and stays far from the reference solution, even for the initial condition (Fig. 12b). When increasing the dimension of the reduced model to K = 24 for the PSD method (Fig. 12c), we recover similar results as the ones obtained with the AE-HNN.

.10×10 -2 6.98×10 -1 2.99×10 -1 K = 24 4.22×10 -2 9.91×10 -3 3.31×10 -2 7.81×10 -3 3.10×10 -1 7.96×10 -2 K = 32 8.70×10 -3 1.67×10 -3 1.32×10 -2 2.31×10 -3 1.35×10 -1 2.43×10 -2