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Abstract: Prostate cancer is a major public health concern and one of the most prevalent forms of
cancer worldwide. The definition of altered signaling pathways implicated in this complex disease is
thus essential. In this context, abnormal expression of the receptor of Macrophage Colony-Stimulating
Factor-1 (M-CSF or CSF-1) has been described in prostate cancer cells. Yet, outcomes of this expression
remain unknown. Using mouse and human prostate cancer cell lines, this study has investigated
the functionality of the wild-type CSF-1 receptor in prostate tumor cells and identified molecular
mechanisms underlying its ligand-induced activation. Here, we showed that upon CSF-1 binding,
the receptor autophosphorylates and activates multiple signaling pathways in prostate tumor cells.
Biological experiments demonstrated that the CSF-1R/CSF-1 axis conferred significant advantages in
cell growth and cell invasion in vitro. Mouse xenograft experiments showed that CSF-1R expression
promoted the aggressiveness of prostate tumor cells. In particular, we demonstrated that the ligand-
activated CSF-1R increased the expression of spp1 transcript encoding for osteopontin, a key player
in cancer development and metastasis. Therefore, this study highlights that the CSF-1 receptor is
fully functional in a prostate cancer cell and may be a potential therapeutic target for the treatment of
prostate cancer.

Keywords: M-CSF; CSF-1 receptor; prostate; C2H cell line; TRAMP; osteopontin; SPP1; transcriptome

1. Introduction

Prostate cancer is the most frequently diagnosed cancer in men worldwide. It repre-
sents a major public health concern in Western countries, and its incidence is increasing
rapidly in Asia [1]. Despite major advances in its treatment, prostate cancer remains the
leading cause of cancer death among men in 48 counties, including many developing
countries in sub-Saharan Africa and Central and South America [2]. Since the androgen-
signaling axis plays a pivotal role in this pathogenesis, androgen deprivation therapy
(ADT) has been the basis of therapeutic strategies against locally advanced and metastatic
prostate cancer. Although halted by prostatectomy and ADT, the disease often recurs
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as aggressive castration-resistant prostate cancer (CRPC) with capacities of invasion and
metastasis. The emergence of this aggressive phenotype involves a variety of mechanisms,
especially the interaction between cancer cells and the tumor microenvironment [3]. Since
the pejorative prognosis of prostate cancer is mainly linked to its metastatic potential and
therapies resistance, it is then important to understand the molecular events underlying
these processes and to identify biomarkers of metastatic CRPC [3].

Receptor tyrosine kinases (RTKs) are key regulators of normal cellular processes
since they lie at the head of a signal transduction cascade that modulates cell survival,
proliferation, differentiation, adherence, and migration. Consequently, uncontrolled/biased
RTK signaling plays a critical role in the majority of cancers, which made many RTKs
attractive targets for cancer therapy [4,5], including for advanced prostate cancers [6].

The macrophage colony-stimulating factor (M-CSF or CSF-1) receptor (CSF-1R), en-
coded by the c-fms proto-oncogene [7,8], belongs to the RTK of class III that includes
Kit, Flt3, and platelet-derived growth factor (PDGF) receptors [9]. This receptor binds
both CSF-1 and interleukin 34 [10,11]. CSF-1R/CSF-1 receptor/ligand pair has essential
physiological functions in monocyte/macrophage and osteoclast for proliferation and dif-
ferentiation [12,13], which makes them of therapeutic interest [14,15]. The binding of CSF-1
induces CSF-1R dimerization and its autophosphorylation onto specific tyrosyl residues of
the cytoplasmic domain. This creates binding sites for Src-homology 2 (SH2)-containing
proteins such as Src, p85 subunit of PI3 Kinase, and Grb2 adapter, which in turn initiate
multiple intracellular signaling pathways cooperating to regulate gene expression and,
ultimately, cell survival, proliferation, and differentiation [16,17].

In addition to their role as an important regulator of hematopoiesis and bone resorp-
tion, CSF-1 and CSF-1R play a role in numerous cell types of non-hematopoietic origin.
CSF-1R is expressed in normal placental trophoblast epithelium, and its activation by
the locally high levels of CSF-1 produced by the endometrial epithelium is essential for
normal embryonic implantation and placental development [18]. CSF-1R is also expressed
in microglia and neural progenitor cells participating in central nervous system devel-
opment [19]. CSF-1 and its receptor play a role in normal breast tissue during puberty,
pregnancy, and lactation [13,20] and in breast carcinogenesis [21,22].

In normal mouse prostate, CSF-1R expression is restricted to early development. Though,
CSF-1R expression has been reported in mouse and human prostate cancer tissues and cell
lines [23,24]. This reexepression in adult cancer cells suggested a potential role of CSF-1R in
prostate carcinogenesis. However, the functionality and biological effects of CSF-1R in prostate
cells have not been investigated yet, unlike in other types of cancers [25,26]. Therefore, this
study has endeavored to establish whether CSF-1R is functional in prostate cancer cells. Here
we show that CSF-1R is functionally active in mouse and human prostate cancer cells. In the
presence of CSF-1, CSF-1R activation induced tyrosine phosphorylation of intracellular signaling
pathways and elicited proliferation and biological response. Most noticeably, CSF-1R expression
greatly increased in vivo xenograft tumor growth. Moreover, we showed that the expression of
numerous genes was increased by CSF-1 in prostate cancer cells, including the spp1 gene that
encodes for osteopontin, a major actor in prostate carcinogenesis.

2. Results
2.1. CSF-1 Receptor Is Functional in Murine Prostate Cancer Cells

To investigate the effects of CSF-1 receptor (CSF-1R or Fms) expression and activation
in prostate cancer cells, the murine C2H prostate tumor cell line was used as a model. This
clonal epithelial cell line was established from a prostate tumor of the transgenic adeno-
carcinoma mouse prostate (TRAMP) model [27]. The C2H cell line expresses cytokeratins,
the androgen receptor, and is tumorigenic [28]. First, we transfected these cells with a
firefly luciferase-expressing vector for further xenograft experiments. Thus, three stable
luciferase-transfected C2H clones were obtained and called H9, N10, and N18 subclones.
Transcripts of CSF-1 were detected by RT-PCR in C2H cells (Figure 1A). CSF-1 protein was
detected in the culture medium conditioned by C2H parental cells and its three subclones,
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demonstrating that these cell populations produced and secreted CSF-1R ligand (Figure 1B).
Although the C2H cell line derived from TRAMP tumors that express CSF-1R protein [23]
and that Fms transcript was detected in these cells (Figure 1A), CSF-1R protein was not
detected in these cell populations, neither by flow cytometric (Figure 1C) nor by western
blot analyses (Figure 1D). Thus, murine c-fms cDNA was transduced in the H9, N10, and
N18 subclones using a retrovirus vector [29]. Infected cells were sorted twice by flow
cytometry to obtain cell populations expressing similar CSF-1R protein expression levels.
This was assessed by flow cytometric (Figure 1C) and western blot (Figure 1D) analyses.
Both CSF1-R isoforms (namely the gp140 Fms precursor and the gp165 Fms mature re-
ceptor) were detected, demonstrating the correct maturation of the CSF-1R as compared
to FCP1-Fms myeloid progenitors and Raw264.7 macrophages (Figure 1D). Proteolytic
cleavage of the CSF-1R [30] appeared to generate a fragment higher in prostate cells than
in myelomonocytic FDCP1-Fms cells with the production of a 50–55 kDa intracellular
fragment (Figure 1D). In order to assess its functionality, CSF-1R signaling was analyzed
after stimulation by recombinant murine CSF-1. Myeloid FDCP1-Fms cells were used as
a positive control [29]. Upon CSF-1 treatment, we clearly observed the autophosphoryla-
tion of the receptor and the activation of its two main canonical signaling pathways with
phosphorylation of PKB/AKT and MAPK/ERKs (Figure 1E). Altogether, these results
demonstrated that CSF-1R was functional in the prostate cellular environment.

2.2. CSF-1 Receptor Expression Promotes Prostate C2H Cell Growth and Invasion

We then evaluated the effect of CSF-1R expression on cell growth in the presence or ab-
sence of exogeneous CSF-1. As shown in Figure 2A, the addition of CSF-1 had no effect on
the growth and morphology of H9, N10, and N18 cell parental clones that did not express
CSF-1R. On the contrary, growth was significantly increased in CSF-1R-expressing cells,
although no exogeneous CSF-1 was added to the culture medium, suggesting an autocrine
activation of the receptor. Surprisingly, the addition of exogeneous CSF-1 significantly
decreased cell growth (Figure 2A). This slowdown of growth was concomitant with a de-
tachment of the cells from the substratum. Cells lost their flattened morphology, acquiring
a rounded cell appearance (Figure 2B) which is similar to that of cells immediately after
plating. Since all three clones displayed very similar responses in regard to cell growth, one
clone was chosen to investigate cell invasion in response to CSF-1. The invasive potential
of N18 and N18-Fms cells was determined by measuring invasion through a barrier of the
reconstituted basement membrane, Matrigel, over a 72 h-period in the presence or absence
of exogenous CSF-1 (Figure 2C). N18 cells were not able to invade through Matrigel with
or without CSF-1. Similarly, N18-Fms cells did not show invasive activity in the absence of
CSF-1 (Figure 2C). However, after the addition of exogeneous CSF-1, N18-Fms invasive
activity was significantly increased (Figure 2C). Altogether, these data showed that CSF-1R
expression in prostate cancer cells altered their potential in terms of growth, adherence,
and invasion. Since all these biological properties play key roles in tumor development,
this strongly suggests that CSF-1R has the ability to stimulate prostate cancer progression.

2.3. CSF-1 Receptor Expression Increased Tumor Cell Growth In Vivo

We next tested both parental and CSF-1R-expressing C2H subclones for their growth
in vivo after subcutaneous injection in male immunodeficient SCID mice. The results obtained
with the cells inoculated in both flanks, either as parental cells or those expressing the CSF-1R,
are shown in Figure 3. Two subclones were selected for tumor growth monitoring, each of them
with a different technique. First, H9 and H9-Fms cell growth was monitored by non-invasive
bioluminescence imaging (BLI). After an initial latency, H9-Fms cells displayed rapidly growing
tumors, illustrated by a considerable increase in radiance (Figure 3A). In contrast, parental H9
cells demonstrated a long lag phase before producing a slight increase in radiance (Figure 3A).
Figure 3B shows the progression of tumor burden by BLI analysis of two representative mice
at two different time points (17 and 31 days after cell injection). The positive effect of CSF-1R
expression on tumor growth was confirmed in a second experiment using N18 and N18-Fms
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cells (Figure 3C). Measurements of xenograft tumors collected with manual calipers showed
that N18 control cells produced small tumors after a long lag phase (Figure 3C,D). In contrast,
the rapid development of tumors was observed after N18-Fms injection (Figure 3C,D).
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Figure 1. The CSF-1 receptor is functional in C2H murine prostate cells and activates major signaling
pathways. (A) RT-PCR analysis of CSF-1, CSF-1 receptor (Fms) and GAPDH transcripts in C2H
cells. N = 3. Reverse transcriptase (RT) (B) ELISA assay to quantify CSF-1 secretion by C2H parental
cells and three subclones, H9, N10, and N18. N = 4 (C) murine c-fms cDNA encoding CSF-1R was
trans-duced in the three subclones by retroviral infection; CSF-1R-expressing cells were isolated
by FACS and three cell populations were obtained, called H9-Fms, N10-Fms, and N18-Fms. Cell
surface expression was analyzed by flow cytometry. (D) Immunoblot shows that CSF-1R protein
was expressed and matured as compared to Raw 264.7 and FDCP1-Fms (FD-Fms) myelomonocytic
cell lines. (E) Western blot analysis shows that CSF-1 stimulation of Fms-expressing prostate cells
activates receptor kinase activity and phosphorylation of AKT and p42/p44 ERKs substrates. As a
control, activation of myeloid FD-Fms cells by CSF-1 shows similar AKT and ERKs phosphorylation.
For all immunoblot images presented throughout this manuscript, the membrane was cut into pieces
according to the estimated molecular weight of proteins of interest and probed with the indicated
antibodies. All cropped blots were run under the same experimental conditions. Data presented here
are representative of at least 3 independent experiments.
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Figure 2. Biological effects of CSF-1R signaling on prostate cancer cells. (A,B) Effects on cell growth
in 2D culture: 2 × 104 prostate cells were seeded in the presence (+) or absence (-) of CSF-1 for 3 days
and enumerated. (B) Representative photographs (n = 3) of each cell populations after 3 days of
culture in the presence (+) or absence (-) of CSF-1, scale bars, 10 µm. (C,D) Effects on cell invasion.
Invasive capacities of parental N18 prostate cells and CSF-1R-expressing N18 prostate cells (N18-Fms)
were determined by transwell assay in the presence (+) or absence (-) of CSF-1. (C) Representative
photographs (n = 3) of each cell populations after 5 days of culture in the presence (+) or absence (-) of
CSF-1; cells were stained with calcein AM. Scale bars, 100 µm. (D) Fluorescence values are expressed
as mean ± s.d of 3 independent experiments. ns = not significant, * p < 0.05, ** p < 0.01.
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Figure 3. Tumor volume evolution of xenografted prostate C2H subclones. (A) Each male SCID
mice were injected subcutaneous with H9-Fms (left flank) and control H9 (right flank) cells, both
cell populations stably expressing luciferase gene. Every 3 or 4 days, luminescence was measured in
radiance (photon/second/cm2/steradians). (B) Photographic demonstration of comparative tumor
size of 2 mice at day 17 (left panels) and day 31 (right panels). (C) Each male SCID mice were injected
subcutaneous with N18-Fms (left flank) and control N18 (right flank) cells. Tumor volume was
measured using calipers. (D) Forty-three days after cell injection, tumors were removed from 4 mice
and photographed. For all these experiments, each group contained eight mice. The values are
expressed as mean ± s.d. * p < 0.05, ** p < 0.01, *** p < 0.001.
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2.4. Transcriptome Analysis Discovered Key Functions Regulated by CSF-1R in Murine Prostate
Cancer Cells

We next compared the transcriptome profiling of prostate cancer cells stimulated or
not by CSF-1 for 24 h or 48 h. For this purpose, the N18-Fms cells were chosen. The analysis
of the 60K Agilent microarrays revealed 1258 and 1117 mRNA were significantly differently
expressed between unstimulated cells and 24 h or 48 h CSF-1-stimulated cells, respectively
(Figure 4A,B). A total of 546 genes were both upregulated after 24 h and 48 h of CSF-1
stimulation as compared to unstimulated cells (Figure 4B, upper panel), and 194 genes
were both downregulated after 24 h and 48 h upon CSF-1 stimulation as compared to
unstimulated cells (Figure 4B, lower panel).

Genes upregulated in both 48 h and 24 h upon CSF-1 treatment when compared to
untreated control (as shown in Figure 4B upper panel) were subjected to a gene ontology
enrichment analysis using the GO Biological Process (Figure 4C, left panel) and Reactome
terms (Figure 4C, right panel). Several immune-related biological processes, including
regulation of viral genome replication, Jak-STAT signaling pathway, inflammatory response,
cytokine, and interferon signaling, were significantly enriched in CSF-1 stimulated cells.
This suggested that some CSF-1R functions in macrophages were conserved in prostate
cancer cells. Interestingly, gene ontology enrichment analysis of genes downregulated
revealed the enrichment in the cell adhesion process and negative regulation of epithelial
cell proliferation (Figure 4D, left panel). This result was then in agreement with the
biological effect of CSF-1 that we observed in prostate cancer cells stimulated by exogenous
CSF-1 (Figures 2 and 3).

An overview of all enriched biological categories and gene pathways revealed in the
analysis is given in Supplementary Table S1. Notably, several genes that were previously
reported to be associated with cancer development were changed in their expression
after CSF-1 stimulation. Among them, spp1 encoding for osteopontin was significantly
upregulated both after 24 h and 48 h of CSF-1 stimulation (Figure 4A). This prompted us to
investigate the expression of spp1/osteopontin in CSF-1-stimulated prostate cancer cells.

2.5. Spp1 Gene Encoding Osteopontin Is a Target of CSF-1R in Murine Prostate Cancer Cells

Osteopontin (OPN) is a secreted protein produced by numerous cell types, including
macrophages [31]. Since CSF-1 is the primary regulator of macrophages, this prompted us
to test if ligand-activated CSF-1R is regulating spp1 gene expression in macrophages. First,
using the CSF-1-dependent macrophage cell line Bac1.2F5 (Figure 5A), we measured a net
increase in the expression of osteopontin transcripts in response to CSF-1 (Figure 5B). Next,
we investigated the expression of the spp1 gene in the three different prostate subclones
stimulated by CSF-1. As shown in Figure 5C, CSF-1 induced a significant increase in
osteopontin transcript in the three CSF-1R-expressing clones but not in the control cell
populations that did not express the CSF-1R. To extend these results to two other cell
lineages, we tested the C3-223 mammary cancer cell line and the NIH 3T3 fibroblast cell line
where CSF-1R was overexpressed similarly to prostate C2H subclones (Figure 5D). CSF-1
stimulation increased spp1 gene expression only in the C3-223-Fms mammary cancer cells
(Figure 5E) but not in the NIH 3T3. Together, these results showed that spp1/osteopontin
is a target gene of the CSF-1/CSF-1R axis in both prostate and breast cancer cells but not in
the NIH3T3 fibroblast cell line.
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Figure 4. Transcriptome analysis of N18-Fms cells stimulated by CSF-1. (A) Volcano plots showing
all genes differentially expressed with p < 0.05 when comparing 24 h (left plot) and 48 h (right
plot) of CSF-1 treatment with untreated control (0 h) (N = 2 for each group). Genes upregulated
and downregulated with a fold change of 2 (shown by the grey line) or more after treatments are
shown by red and green dots, respectively. The Spp1 gene is shown by a blue dot. (B) Venn diagram
showing the intersection between genes upregulated (upper diagram) and downregulated (lower
diagram) by the 24 h and 48 h CSF-1 treatments when compared to the untreated control. (C) Genes
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upregulated in both 48 h and 24 h of CSF-1 treatment when compared to untreated control (as shown
in (B)) were subjected to a gene ontology enrichment analysis using the GO Biological Process (left
panel) and Reactome terms (right panel). The −log10 of the FDR is shown for each enriched term
with a FDR < 0.005 for Biological Process terms and a FDR < 0.01 for Reactome terms (shown by
the dotted line). These thresholds were chosen for clarity purpose and the complete list of enriched
terms is shown in Supplementary Table S1. (D) Same as in (C) using the genes downregulated in
both 48 h and 24 h of CSF-1 treatment when compared to untreated control. All enriched terms with
a FDR < 0.05 are shown.

2.6. CSF-1R Is Functional in Human Prostate Cancer Cells and Increases Osteopontin
Gene Expression

To determine if CSF-1R is also functional in human prostate cancer cells, we selected
two malignant prostate cancer cell lines. M12 is a subline derived from the P69 prostate
cell line and displays a mesenchymal-like, highly tumorigenic, and metastatic pheno-
type [32,33]. Interestingly, we observed that M12 cells express low levels of CSF-1R on
the cell surface (Figure 6A, left panels). PC3 is an androgen-independent cell line derived
from bone metastasis [34]. No CSF-1R expression could be detected on the cell surface
(Figure 6A, left panels). Human CSF-1R was then overexpressed in both cell lines leading
to a cell surface expression similar to those obtained with C2H subclones (Figure 6A, right
panels). After CSF-1 stimulation of M12-Fms cells, we observed tyrosine phosphorylation
of the CSF-1R, AKT, and ERKs, demonstrating the functionality of the CSF-1R in these cells
(Figure 6B). In PC3-Fms cells, CSF-1 stimulation properly induced autophosphorylation of
its receptor (Figure 6B). AKT was highly phosphorylated in the absence of CSF-1, and no
detectable increase in AKT phosphorylation was observed in response to CSF-1 (Figure 6B).
Although CSF-1R is functional in these cells, no ERK phosphorylation was observed in
response to CSF-1 (Figure 6B). These results were similar to those demonstrating that in PC3
cells, the absence of PTEN induced constitutive AKT activity, leading to the inactivation of
the MAPK/ERK pathway [35]. In culture, the addition of CSF-1 modified PC3-Fms cell
morphology to a more rounded shape (Figure 6C). Finally, CSF-1 induced a significant
increase in spp1/osteopontin gene expression in both Fms-expressing PC3 and M12 cells
but not in the PC3 control cells that do not express the CSF-1R (Figure 6D). A low but
significant induction was observed in M12-Ctl cells, probably due to low cell surface Fms
expression in this cell line (Figure 6A). All together and in agreement with those obtained
in murine cells, these results confirmed the functionality of CSF-1R in prostate cancer cells
and osteopontin as a downstream target of CSF-1 signaling in these cells.
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Figure 5. CSF-1 increases spp1/osteopontin mRNA expression in murine macrophages, prostate
cancer cells and breast cancer cells. (A) Representative image (n = 3) of Bac1.2F5 murine macrophages
cultured in the presence of CSF-1. (B) Relative expression of spp1/osteopontin mRNA was assessed
by qRT-PCR performed in triplicate (normalized against RPLP38). Starved Bac1.2F5 cells were
cultured or not in the presence of CSF-1 for 12 or 24 h. (C) Relative expression of spp1/osteopontin
mRNA was assessed by qRT-PCR performed in triplicate (normalized against RPLP38). H9 and
H9-Fms prostate cells (upper panel), N10 and N10-Fms prostate cells (middle panel), and N18 and
N18-Fms prostate cells (lower panel) were cultured or not in the presence of CSF-1 for 12 or 24 h.
(D) murine c-fms cDNA encoding CSF-1R was transduced in murine fibroblast NIH3T3 cells and
murine mammary cancer C3-223 cells by retroviral infection; CSF-1R-expressing cells were isolated by
FACS and two populations were obtained, named as NIH-Fms and C3-Fms. Cell surface expression
was analyzed by flow cytometry. (E) Parental NIH3T3 fibroblast cells, NIH-Fms fibroblast cells,
parental mammary C3-223 cells, and mammary C3-Fms cells were cultured in the presence of CSF-1
for 24 h and total RNA was isolated for analysis. The values are expressed as mean ± s.d. of
3 independent experiments. ns = not significant, * p < 0.05, ** p < 0.01. Data presented here are
representative of 3 independent experiments.
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Figure 6. The CSF-1 receptor is functional in human prostate cells and increases spp1/osteopontin
gene expression. (A) Two human prostate cancer cell lines, M12 and PC3, were transfected with
human c-fms cDNA encoding CSF-1R or with the empty vector as a control (Ctl). Selected cell
populations were analyzed for cell surface expression of CSF-1R by flow cytometry: each cell
population transfected either with an empty vector (M12-Ctl and PC3-Ctl) or with c-Fms-vector
(M12-Fms and PC3-Fms) were stained with anti-CD115-PE antibody (empty graph) or no antibody
(grey filled graph). (B) Western blot analysis of CSF-1R signaling in Fms-expressing prostate cells
after CSF-1 stimulation for 1 and 10 min. All cropped blots were run under the same experimental
conditions. (C) Representative photographs (n = 3) of PC3-Ctl cells (upper panels) and PC3-Fms
cells (lower panels) cultured in the absence (left panels) or the presence of CSF-1 (right panels) for
1 day. (D) Relative expression of spp1/osteopontin mRNA was assessed by qRT-PCR performed
in triplicate (normalized against RPLP0). M12-Clt and M12-Fms cells (upper panel) and PC3-Ctl
and PC3-Fms cells (lower panel) were cultured in the absence or the presence of CSF-1 for 12 h and
24 h. The values are expressed as mean ± s.d. of 3 independent experiments. * p < 0.05, ** p < 0.01,
ns = not significant.
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3. Discussion

Abnormalities in RTK expression and activation are associated with a wide range of
diseases. In cancer, RTK plays a key role in the development, progression, and resistance
to therapy [5]. Of particular interest, multiple RTKs and their respective ligand are impli-
cated in complex signaling pathway crosstalks supporting both tumor cell metastasis and
resistance to therapy [36]. A large number of studies aimed to dissect the RTK signaling
pathways and the consequences of their inhibition on tumor development. In the case of
the CSF-1/Fms receptor, two aspects are relevant to tumor biology. First, CSF-1R regulates
tumor-associated macrophages (TAM) to promote tumor progression. TAM represents a
major part of immune cell populations that infiltrate into tumors and contribute to tumor
progression at multiple levels, including immunosuppression. CSF-1R is thus a prime tar-
get for treating solid tumors such as prostate or breast cancer alone or in combination with
chemotherapy [37] or radiation therapy [38]. Though targeting CSF-1R expression on TAM
appears as a promising strategy [39], the beneficial effects still need to be further investi-
gated [40–42]. Second, numerous studies have demonstrated that CSF-1R also drives tumor
cell progression in several cancer types, including renal cell carcinoma [43], ovarian can-
cer [44], colorectal cancer [45], bladder cancer [46], mesothelioma [47], and melanoma [48].
Breast cancer is the most consistently documented type of cancer concerning the expression
and function of CSF-1R. Its expression has been demonstrated in various breast cancer cell
lines and tissues specimen. In breast carcinoma cells, CSF-1R has been demonstrated as
being functional and implicated in various biological effects, such as proliferation, invasion,
and epithelial-mesenchymal transition [21,25,49–55]. Moreover, its expression is correlated
with poor clinical outcomes [22,56]. Thus, the role of the CSF-1/CSF-1R axis in supporting
the growth and motility of several solid tumors has been well documented [57].

Few studies have investigated the expression of CSF-1R and its ligand in prostate
cancer. Ide et al. [23] described CSF-1R expression in the adenoma of the prostate of the
TRAMP mouse model of prostate cancer [27] and in human prostate cancer cell lines. Using
a panel of the human prostate cancer tissue specimen, they showed by immunohisto-
chemistry that CSF-1R is expressed by almost all specimens with the most intense signal
in prostatic intraepithelial neoplasia (PIN) and carcinomas of histological Gleason grade
three or four. Richardsen et al. [58] showed that both CSF-1R and CSF-1 were expressed
in prostate tumors with higher expression in patients with metastatic prostate cancer as
compared to patients with non-metastatic prostate cancer. Yet no study has been performed
that specifically aimed at determining the biological effects of CSF-1R in prostate cancer
cells. This prompted us to explore whether CSF-1R expression is functional in prostate
cancer cells.

Here we have shown that in response to CSF-1, CSF-1R autophosphorylated and
activated two major signaling pathways, ERK1/2 and AKT. Thus, signaling pathways
downstream of CSF-1R in prostate cancer cells were similar to those in myelomonocytic
cells [16]. Interestingly, tyrosine phosphorylation patterns after CSF-1 stimulation were
similar but slightly different between myeloid FDCP1-Fms cells and prostate C2H-Fms cells
(Figure S1), suggesting that tissue specificity for the CSF-1R substrates may exist. These
notable differences warrant further research to decipher the specific substrates of CSF-1R
in carcinoma. A previous analysis of the downstream substrates of CSF-1R in breast cancer
cells has unveiled novel CSF-1R targets, which could then play a specific role in epithelial
tumorigenesis [50]. Expression of CSF-1R alone was sufficient to increase cell proliferation
in monolayer culture, suggesting an autocrine stimulation of these cells, which produce
CSF-1. Upon addition of CSF-1 to the culture medium, the cellular response was modified
with a decrease in cell proliferation and a change from flattened to rounded cell morphology
with a trend to detachment. The addition of CSF-1 also increased cell invasiveness in the
presence of a matrix gel. This suggested that CSF-1 concentration could influence the
nature of cell response. Interestingly, we have previously demonstrated that strong CSF-1R
stimulation was required in myelomonocytic cells to obtain a differentiation response, with
a central role in MAPK pathway activation [59]. Similarly, in lung cancer cells, CSF-1 level
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and duration of stimulation controlled the cell invasiveness [60]. Thus, a local environment
with high CSF-1 concentration may favor tumor cells to invade and metastasize. Tumor
stroma contains several cell types capable of producing CSF-1, such as endothelial cells
and fibroblasts. However, the first candidates to consider are TAM, which produces CSF-1
and is implicated in most of the steps of tumoral development, especially invasion [61,62].
Macrophages may also favor carcinoma cell invasion through a CSF-1/epidermal growth
factor paracrine loop, as described in breast cancer [63]. Here we have shown that CSF-1R
expression had a tremendous effect on tumor growth as compared to cells that did not
express CSF-1R. Altogether, these results strongly suggest that CSF-1R is able to play an
active role during prostate cancer development, which is in accordance with the previous
studies demonstrating that CSF-1R expression is correlated with poor prognosis of prostate
cancer [23,58]. A recent study by Kwon et al. using transgenic mice expressing CSF-1 in the
prostate gland demonstrates that forced CSF-1 expression promotes immune cell infiltration
and low-grade PIN but fails to transform prostate cells [64]. Interestingly, CSF-1R was not
detected in prostate cells in these PIN lesions, suggesting that CSF-1R expression might be
an important step in tumor progression toward carcinoma. The mechanisms of abnormal
CSF-1R in all the various types of tumors, prostate, breast, and ovary, still remain unknown
and warrant further investigations.

While conducting cDNA microarray assays for differentially expressed genes down-
stream of CSF-1R signaling, we identified spp1/osteopontin as a gene of interest. Osteo-
pontin is a multifunctional phospho-glycoprotein secreted in the microenvironment and a
key regulator of tumor progression and immunomodulation [65,66]. We showed that osteo-
pontin transcript expression was increased by CSF-1 both in murine and human prostate
cancer cells. Interestingly, we showed that the spp1 gene was a CSF-1R-responsive gene in a
macrophage cell line, a mammary cell line, but not in a fibroblast cell line. This suggests that
spp1/osteopontin is one example of CSF-1-responsive genes shared between myelomono-
cytic lineage and carcinoma cells expressing CSF-1R. Considering the complex relationship
between CSF1/CSF-1R-expressing carcinoma cells and macrophages, synthesis of OPN is
of particular interest since OPN is a chemoattractant for macrophage and regulates its adhe-
sion, migration, differentiation, and production of cytokine [65,67,68]. Thus, Zhu et al. have
shown that OPN stimulates the synthesis of CSF-1 by TAM of hepatocellular carcinoma and
identifies the OPN/CSF-1/CSF-1R axis as a critical mediator in the immunosuppressive na-
ture of the cancer microenvironment [69]. In prostate cancer, numerous pieces of evidence
have shown that OPN is closely associated with the proliferation and metastasis of cancer
cells [70]. In prostate cancer mouse models, OPN expression was observed at all different
levels of tumor progression and increased from PIN to adenocarcinoma, with the highest
level during metastatic progression [71]. OPN has been described as a biomarker and a
potential therapeutic target for metastatic castration-resistant prostate cancer [72]. Messex
et al. have recently shown that macrophage-produced OPN that stimulates the growth of
prostate cancer cells [73]. Thus, OPN is one example of how prostate cancer cells, via the
CSF-1/CSF-1R axis, are able to remodel the extracellular matrix and the immune landscape.

In summary, this study has demonstrated the functionality of CSF-1R in prostate
cancer cells and has unveiled osteopontin as a CSF-1R-target gene. Given that CSF-1R also
plays a critical role in the tumor immune landscape, more research is warranted in this area
for a better understanding of how CSF-1R regulates prostate cancer development and how
this knowledge could be used in terms of therapeutic strategies.

4. Materials and Methods
4.1. Cell Lines and Cell Culture

TRAMP-C2 cell lines were established from the spontaneous TRansgenic Adenocar-
cinoma of Mouse Prostate (TRAMP) model [27]. TRAMP C2H clonal cell line, a gift of
Dr. Norman Greenberg, was established by three rounds of dilutional cloning from the
previously characterized tumorigenic TRAMP-C2 cell line [28]. TRAMP C2H cells were
transfected with pGL4.50 [luc2/CMV/hygro] or pGL4.50 [luc2/CMV/neo] (Promega,
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Charbonnières-les-bains, France) using PEI/ExGen 500 (Euromedex, Souffelweyersheim,
France), according to the manufacturer’s instructions. Transfected cells were selected us-
ing either hygromycin (Sigma, Saint-Quentin-Fallavier, France; 250 µg/mL) or neomycin
(Sigma, G418, 1 mg/mL), and individual clones were isolated by limiting dilution and
tested for luciferase activity using dual-luciferase reporter assay system (Promega). Two
C2H neomycin-resistant clones (N10 and N18) and one hygromycin-resistant clone (H9)
were selected for further analysis. Cells were maintained in Gibco high-glucose Dulbecco’s
modified Eagle’s medium (DMEM, Invitrogen, Illkirch-Graffenstaden, France) containing
10% fetal bovine serum (FBS, Invitrogen) supplemented with antibiotics (Zell Shield, Bio-
valley, Illkirch-Graffenstaden, France) and dihydrotestosterone (100 µM, Androstan, Sigma,
#A8380) at 37 ◦C in a humidified atmosphere containing 5% CO2. The murine hematopoi-
etic interleukin-3 (IL3)-dependent cell line FDCP1-Fms was maintained in DMEM-10% FBS
supplemented with IL3 and antibiotics [29]. NIH 3T3 mouse fibroblasts and C3-223 mouse
mammary cancer cells were maintained in DMEM-10% FBS supplemented with antibiotics.
The C3-223 cell line has been established from the transgenic FVB C3(1)-Tag mouse model of
breast cancer [74]. Briefly, a mammary tumor was dissociated, and single cells were placed
in culture in a 10 cm-plastic dish (Corning, Dutscher, Bernolsheim, France). Adherent
cells were kept in culture for up to 40 passages (5 months) without any sign of senescence.
C3-223 cells are of epithelial origin, as evidenced by T antigen expression (Figure S2) that
occurred in the mammary epithelium of C3(1)-Tag female mice [75]. The human M12 cell
line [32] was a gift from Dr. BS Kundsen (Fred Hutchinson Cancer Research Center, Seattle,
USA). The human PC3 cell line was obtained from American Type Culture Collection. Both
human cell lines were maintained in Gibco Roswell Park Memorial Institute -1640 medium
(RPMI, Invitrogen) supplemented with 10% FBS and antibiotics.

4.2. CSF-1R Transduction

Murine wild-type Fms receptor was introduced in different murine cells by retroviral
infection using 0.45 µm-filtered supernatants of packaging Psi-2 Fms cells in the pres-
ence of polybrene (4 µg/mL) as previously described [29]. Infected cells were selected
twice for cell surface Fms expression by FACS Aria II (BD Biosciences, Le Pont de Claix,
France) after staining with anti-mouse CD115 antibody, APC (Thermo Fisher Scientific,
Illkirch-Graffenstaden, France, eBioscience #17-1152-80). Human PC3 and M12 cells were
transfected with a human CSF-1R expression vector (GenScript, Piscataway, NJ, USA,
#OHU24034) or empty pcDNA3.1 vector as a control, using JetPRIME transfection reagent,
according to the manufacturer’s guidelines (Polyplus Transfection, Illkirch-Graffenstaden,
France). Transfected cells were selected using G418 (0.5 mg/mL), then cells transfected with
CSF-1R expression vector were further selected for cell surface Fms expression by FACS
Aria II (BD Biosciences) after staining with anti-human CD115 antibody, PE (eBioscience,
#12-1159-42).

4.3. Growth Studies

Cell proliferation was evaluated by plating 2 × 104 cells per plate in a 6-well plate
in 2 mL of culture medium with or without 50 ng/mL of recombinant murine CSF-1
(rmCSF-1) (#315-02, Peprotech, Neuilly-sur-Seine, France). After 72 h, cells were isolated af-
ter trypsinization using trypsin–versene (EDTA) solution, and cell counting was performed
under the microscope using a Malassez counting chamber.

4.4. Invasion Assay

Invasion assay was performed using inserts BD Falcon FluoroBlok (#351152, BD
Biosciences) with 8 µm pore size PET membrane on 24-well insert companion plate (#353504,
BD Biosciences). Inserts were coated with 50 µL of Matrigel® matrix diluted to half in
serum-free DMEM, then incubated for 1 h at 37 ◦C. For the experiment, each condition
was performed in triplicate; 500 µL of DMEM-1% FBS containing 104 cells were deposited
on each insert. Inserts are introduced into insert companion plate containing 750 µL of
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DMEM-1% FBS with or without rmCSF-1 (50 ng/mL). After five days at 37 ◦C in 5% CO2
atmosphere, the invasive potential of cells was measured by fluorescence using FLUOstar
OPTIMA plate reader (BMG Labtech, Champigny-sur-Marne, France) after cell staining
with calcein AM (#65-0853, eBioscience) for 1 h at 37 ◦C.

4.5. ELISA

For CSF-1 quantification, 5 × 104 cells per well were plated in 1 mL of culture medium
in 6-well plates for 48 h. Conditioned medium was collected, filtered 0.45 µm, and subjected
to ELISA using commercially available mouse M-CSF ELISA Kit (#900-K245, Peprotech)
according to the manufacturer’s instructions. The CSF-1 secretion was measured with a
standard curve.

4.6. RT-PCR

Total RNA was isolated using the RNeasy mini kit (Qiagen, Courtaboeuf, France). The
QuantiTect reverse transcription kit (Qiagen) was used to convert RNA to cDNA as per
manufacturer’s instructions. Standard PCR was performed in 0.2 mL thin-walled tubes
(Thermo Fisher Scientific) using KAPA2G hot start kit (Kapa Biosystem, KK562). Thermal
cycling was carried out in an MJ Research PTC-100 instrument (Watertown, MA) in a
25 µL reaction volume. PCR products were size-fractionated on a 1.5% ethidium bromide-
containing agarose gel. For quantitative PCR (qPCR), diluted cDNAs were transferred to
96-well PCR optical plates (Axygen). KAPA SYBR FAST qPCR kit (Kapa Biosystems, Saint-
Quentin-Fallavier, France) was used. qPCR was performed using the Agilent Mx3000P
detection system (Agilent Technologies, Les Ullis, France). Relative mRNA levels were
determined following normalization to mouse RPLP38 or human RPLP0 housekeeping
genes and analysis of the comparative threshold cycle (2−∆∆Ct) method. Experiments were
performed in duplicate. Primer sequences are presented in Table A1 (Appendix A)

4.7. Microarray Analysis

N18-Fms cells were stimulated by rmCSF-1 (100 ng/mL) for 12 h or 24 h or left unstim-
ulated. Total RNA from two independent experiments was extracted with the RNeasy Plus
Kit (Qiagen) and was quantified with the NanoDrop ND-1000 (Thermo Fisher Scientific).
Quality of the extracted RNA was evaluated with the Agilent 2100 Bioanalyzer system (Agi-
lent Technologies). cRNA labeling, hybridization, and detection were carried out according
to supplier’s instructions (Agilent Technologies). For each microarray, Cyanine 3-labeled
cRNA was synthesized with the low input Quick Amp WT labeling kit from 100 ng of total
RNA. RNA Spike-In was added to all tubes and used as positive controls of labeling and
amplification steps. Labeled cDNA samples (600 ng) were used for 17- hour hybridization
at 65 ◦C to the SurePrint G3 mouse GE 8 × 60K Microarrays (Agilent Technologies). All
procedures were carried out according to the manufacturer’s instructions. The hybridized
microarrays were scanned with the Agilent DNA Microarray Scanner (G2505C). Signal
intensity was quantified from the scanned image by using Feature Extraction software ver-
sion 11.0.1 (Agilent Technologies). Statistical comparisons and filtering were achieved with
the Genespring® software version GX12.0 (Agilent Technologies). All these experiments
were performed by Imaxio Company (Clermont- Ferrand, France). Further investigations
were carried out using the GO biological process and Reactome pathways databases.

4.8. Immunoblotting and Antibodies

Prostate cell lines were starved overnight at 37 ◦C in DMEM-0.5% FBS medium.
FDCP1-Fms cells were starved in DMEM-1% FBS for 3 h at 37 ◦C. Cells were washed in
phosphate-buffered-saline (PBS, Thermo Fisher Scientific) and stimulated by 2500 U/mL
of recombinant murine CSF-1 [29] or 500 ng/mL of recombinant human CSF-1 (Pepro-
tech, #AF-300-25) for different times at 37 ◦C. They were then lysed with 100 µL RIPA
buffer (20 mM HEPES, 1% NP40, 0.1% SDS, 5% glycerol, 142 mM KCl, 5 mM MgCl2,
1 mM EDTA, pH 7.45) supplemented with phosphatase inhibitors (1/200 Phosphatase
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Inhibitor Cocktail 2, Sigma # P5726) and protease inhibitors (1/400 Protease Inhibitor
Cocktail, Sigma # P8340). Lysates were centrifuged and the supernatant collected. The
total protein concentration was determined with the Pierce BCA Protein Assay Reagent
Kit (Thermo Fisher Scientific #23225), and equal amounts of proteins (20–30 µg) were
resolved on NuPAGE 4–12% Bis-Tris gels (Thermo Fisher Scientific, #NP0335BOX). Sepa-
rated proteins were transferred onto a polyvinyl difluoride membrane in Towbin buffer
(10% methanol, 10% Tris-glycine 1X, 0.0025% SDS). The membrane was then equilibrated
in blocking buffer (casein 2 g/L, PBS 1X, 0.05% Tween). Proteins were analyzed by west-
ern blotting with anti-phosphorylated mouse/human M-CSF receptor (PhosphoTyr723,
Ozyme, Saint-Cyr-L’école, France, Cell Signaling #3155), anti-phosphorylated-Akt (D9E)
(Ser473, Cell Signaling #4060), anti-Akt (Cell Signaling #4691), anti-phosphorylated-p44/42
MAPK (Erk1/2) (Thr202/Tyr204, Cell Signaling® #9106), anti-Erk2 (C14) (Santa Cruz, Hei-
delberg, Gerrmany, sc-154), and anti-actin (C4) (Santa Cruz, sc47778). After incubation with
the appropriate species-specific horseradish-peroxidase-conjugated secondary antibodies
(anti-rabbit (#711-035-152), ant-mouse (#115-035-146), or anti-goat (#705-035-003) (Jackson
ImmunoResearch Lab®, Saint-Cyr-L’école, France), the antigen-antibody complexes were
detected using Super Signal West Dura Extended Duration Substrate (Thermo Fisher Scien-
tific, #34076). Luminescence was captured by digital imaging with a cooled-charge-coupled
device camera (LAS 4000, Fuji, Tokyo, Japan). For all immunoblot images presented
throughout this manuscript, the membranes were cut into horizon pieces according to the
estimated molecular weight of proteins of interest and probed with the indicated antibodies.
All cropped blots were run under the same experimental condition.

4.9. Tumor Xenograft Assay

Eight-week-old male severe combined immunodeficient (SCID) mice were purchased
from Pasteur Institute of Lille (Lille, France) and were maintained in accordance with
the Institutional Animal Care and Use Committee procedures and guidelines. Further,
1.5 × 105 C2H-derived clones were resuspended in 150 µL of PBS before subcutaneous
injection into flanks, with Fms-expressing cells on the left flank and control cells on the
right flank of the same mice (n = 8). Tumor volume was calculated as follows: tumor
volume = width × length × (width + length)/2. In order to determine the tumor volume
using a bioluminescence imager (IVIS Lumina XR Caliper LS, PerkingElmer, Villebon-
sur-Yvette, France), each mouse was monitored at the indicated time after intraperitoneal
injection of luciferase substrate luciferin (D-luciferin Firefly potassium salt, Caliper Life-
sciences, Villepinte, France, #122796) at 150 mg/kg body weight.

4.10. Statistical Analysis

Data are presented as mean values± standard deviation (s.d.) of at least 3 independent
experiments. The statistical analysis was performed by using a 2-sided Student t-test;
p values < 0.05 were considered to be significant.
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Appendix A

Table A1. Primers for PCR.

Primer Reverse (5′ → 3′) Forward (5′ → 3′)

Mouse CSF-1 ACTTGCTGATCCTCCTTCC CATCTCCATTCCCTAAATCAAC
Mouse CSF-1R GTGCACCAGTTGGCATAGTAAATGTAGAGGCT GACTGGAGAGGAGAGACCAGGACTATG
Human CSF-1 CATGCTCTTCATAATCCTTG GCTGTTGTTGGTCTGTCTC

Human CSF-1R GGCTCCAGCTCCGAGGGTCTT TGCTGCTCCTGCTGCTATTG
Mouse GAPDH GCCTTCTCCATGGTGGTGAA GCACAGTCAAGGCCGAGAAT
Human RPLP0 GATGACCAGCCCAAAGGAGA GTGATGTGCAGCTGATCAAGACT
Mouse RPLP38 TGACAGACTTGGCATCCTTCC GGTTCTCATCGCTGTGCGG

Mouse OPN CTAGTTGACCTCAGAAGATGAACTC GGACCTCACCTCTCACATGAAGAGC
Human OPN CATCAGACTGGTGAGAATCATC ATCTCCTAGCCCCACAGAAT
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