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ABSTRACT

An accurate estimate of patient survival at diagnosis is critical to plan effi-
cient therapeutic options. A simple and multiapplication tool is needed to
move forward the precision medicine era. Taking advantage of the broad
and high CD10 expression in stem and cancers cells, we evaluated the
molecular identity of aggressive cancer cells. We used epithelial primary
cells and developed a breast cancer stem cell–based progressive model.
The superiority of the early-transformed isolated molecular index was
evaluated by large-scale analysis in solid cancers. BMP2-driven cell trans-
formation increases CD10 expression which preserves stemness properties.
Our model identified a unique set of 159 genes enriched in G2–M cell-cycle
phases and spindle assembly complex. Using samples predisposed to trans-
formation, we confirmed the value of an early neoplasia index associated
to CD10 (ENI10) to discriminate premalignant status of a human tissue.
Using a stratified Cox model, a large-scale analysis (>10,000 samples, The
Cancer Genome Atlas Pan-Cancer) validated a strong risk gradient (HRs

reaching HR = 5.15; 95% confidence interval: 4.00–6.64) for high ENI10
levels. Through different databases, Cox regression model analyses high-
lighted an association between ENI10 and poor progression-free intervals
for more than 50% of cancer subtypes tested, and the potential of ENI10 to
predict drug efficacy. The ENI10 index constitutes a robust tool to detect
pretransformed tissues and identify high-risk patients at diagnosis. Owing
to its biological link with refractory cancer stem cells, the ENI10 index con-
stitutes a unique way of identifying effective treatments to improve clinical
care.

Significance:We identified a molecular signature called ENI10 which, ow-
ing to its biological link with stem cell properties, predicts patient outcome
and drugs efficiency in breast and several other cancers. ENI10 should al-
low early and optimized clinicalmanagement of a broad number of cancers,
regardless of the stage of tumor progression.

Introduction
Originally identified in leukemia as a tumor-specific antigen, CD10 (encoded
by theMME gene) is associated with multiple cellular functions in normal and
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pathologic contexts (1). This cell-surface zinc-dependent endopeptidase is ex-
pressed on normal stem cells (SC) and involved in their regulation through the
cleavage of peptides from the microenvironment (2–4). CD10 expression char-
acterizes sphere-forming cells in several humanprimary tissues and contributes
to maintaining immature properties of the mammary gland by controlling SC
fate and preventing differentiation (5). CD10 expression is increasingly associ-
ated with cancer stem cells (CSC; refs. 6–11). At the clinical level, CD10 may
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be a marker of both good and poor prognosis, likely related to the stage of
the cancer, the cell type expressing it, the tissue of origin, the associated fac-
tor explored and clinical treatment (1, 6, 8, 12–15). The functional link between
CD10 at the (stem) cellmembrane and the bonemorphogenetic proteins (BMP)
differentiation signal has been identified in different processes (16–18). We
and others revealed the implication of BMP signaling in the transformation
of hematopoietic (19, 20) or epithelial (21–23) SCs. This small population of
cells that self-renew and differentiate into other cancer cell types is associated
with tumor heterogeneity, progression, metastatic dissemination, and resis-
tance to treatment (24). Identifying such BMP-responding SCs (i.e., through
CD10 expression) and deciphering their transformation mechanism, may im-
prove their targeting and eradication. However, the detection of CSC at an early
stage to predict tumor aggressiveness and adapt therapeutic strategies remains
a challenge as CSC are difficult to identify and distinguish from their normal
counterparts (25, 26).

Here, we evaluated the importance of CD10-expressing cells in early stages of
SC transformation driven by the bone morphogenetic protein 2 (BMP2). We
revealed that, while CD10 expression increases during BMP2-drivenmammary
epithelial transformation and is characteristic of cell populations with stemness
properties, it does not impact the transformed phenotype. After transformation
cells retained their SC properties and themolecular identity related to the CD10
control of key elements of the asymmetric division machinery. Consequently,
we derived from our results a unique molecular tool (ENI10 score) applicable
to a broad range of tumors for the early detection of transformation and patient
follow-up, to predict survival and potentially support therapeutic choices.

Materials and Methods
Animal Experimentation
Animal experiments were authorized by the ethics committee for animal ex-
perimentation of the Rhône-Alpes region (CECCAPP), France. Following
long-term treatment with BMP2 and IL6, 2 or 5 million MCF10A, MC26 or
M1B26 cells were mixed with 50% growth factor–reduced Matrigel (BD Bio-
sciences) and injected subcutaneously close to the fourth inguinal mammary
gland of 6–7 weeks old athymic nude mice (RRID:IMSR_JCL:MID-0001, Har-
lan). Ten mice were injected per group. A 10 mg/mL β-estradiol solution was
applied to the neck region of the animals twice a week. Tumor formation
was monitored by measuring the size of the tumor. Mice were sacrificed after
6 weeks, and tumors were fixed, paraffin-embedded, sectioned, and subjected
to hematoxylin and eosin (H&E) staining.

Human Primary Tissue
The obtention of human tissue samples was approved by the ethics board of
the Léon Bérard Cancer Center in accordance with the Declaration of Helsinki
guidelines and patients gave written informed consent. Normal and BRCA-
mutated human mammary glands were obtained from patients undergoing
reduction mammoplasty or prophylactic mastectomy, respectively. Mammary
epithelial cells from healthy or BRCA carriers (three BRCA1 and three BRCA2)
were prepared by BB-0033-00050, CRB Centre Léon Bérard, Lyon France as
described in ref. 5.

Cell Isolation, Culture, and Breast Cancer
Transformation Model
Primary cells were obtained from healthy human adult undergoing breast re-
duction mammoplasty, BRCA mutations carriers undergoing prophyalactic

mastectomy or breast tumors after surgical removal (informed consent was
obtained from the patients) as described previously (5, 21). MCF10A cells
(RRID:CVCL_0598) were purchased from the ATCC in 2008 (batch 7635052)
without additional authentication and cultured according to themanufacturer’s
recommendations in phenol red–free DMEM/F-12 nutrient mix supplemented
with 5% horse serum (Life), 10 μg/mL insulin, 0.5 μg/mL hydrocortisone,
100 ng/mL cholera toxin and 20 ng/mL EGF (all supplied by Sigma), 1% peni-
cillin/streptomycin (Life Technologies). Exposure of MCF10A cells to BMP2
and IL6 (both at 10 ng/mL) led to the generation of the MC26 cell line that
mimics luminal breast tumors (21). Because we showed that BMP2-mediated
transformation was dependent on bone morphogenetic proteins receptor 1B
(BMPR1B) expression, we also used sorted BMPR1B+ MCF10A cells, in that
case transformation was observed after only a few weeks of BMP2 and IL6
treatment. Three soft-agar clones from these BMP2/IL6-treated BMPR1B+

MCF10A cells were selected and expanded in the presence of BMP2/IL6, giving
rise to theM1B26 cell line. Absence ofMycoplasmawas routinely tested by PCR
in all cell lines.

Functional Assay in Cell Lines
For mammosphere assays, single cells were seeded onto 96-well ultra-low at-
tachment plates (BD Corning) at limiting dilutions (100 cells/well) for 7 days
using the described sphere assay protocol (21). Resulting spheres were counted.
For the epithelial colony-forming cell (E-CFC) assay, cells were seeded in
MCF10A 2% serum medium at a limiting dilution (250 cells/well of a 12-well
plate) on an irradiated fibroblast layer for 7 days, and resulting colonies were
counted and classified using size and shape criteria. For three-dimensional (3D)
terminal duct lobular units (TDLU) assays, 500 cells were seeded in growth
factor–reducedMatrigel (BDCorning) and assays were carried out in complete
medium (22). Analysis of 3D structures and all other assays were performed us-
ing Axiovert 25 microscope (RRID:SCR_002677), and images were analyzed
with the AxioVision 4.6 software (AxioVision Imaging System). Structures
were then washed with PBS 1X, fixed using formaldehyde 1% for 2 hours, and
sent to the AniPATH facility (Lyon) for inclusion, section and H&E staining.

Soft-Agar Colony Formation
To evaluate the transformation of cells, soft-agar colony formation assays were
performed as follows: the bottom agar layer was prepared from 1.8% agar
(Promega) diluted in an equal volume of 2X culture medium to a final concen-
tration of 0.9%, added to cell culture plates and incubated at room temperature
for 30 minutes. The top agar layer was prepared accordingly at a final density of
0.45%. Cells were mixed into the liquid top agar and added on top of the bot-
tom agar at a final concentration of 10,000 cells/mL. Colonies were quantified
and measured after 15 to 21 days of culture at 5% CO2 and 37°C.

Retroviral Production and Infection
The CMV-BMP2-mPGK-hygromycin lentiviral vector construct and its cor-
responding control were a gift from Dr R. Iggo, University of Bordeaux,
France. The pLenti X2 Puro empty control vector (RRID:Addgene_20957)
and the pLenti X2 puro DEST (RRID:Addgene_17296) used to clone the pX2-
shBMPR1B vector were purchased from Addgene. Lentiviruses were produced
by calcium phosphate cotransfection of lentiviral constructs with a VSV-G
envelope construct (pMD2.G, RRID:Addgene_12259) and gagpol packaging
construct (PCMV-dR8.74) into HEK293T cells (RRID:CVCL_HA71) accord-
ing to standard techniques. Medium was replaced 6 hours after transfection.
Lentiviral particles were collected 48 hours after transfection. Lentiviral titers
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were determined for each viral batch by serial dilution infections of MCF10A
cells and subsequent puromycin or hygromycin B (both from Sigma-Aldrich)
treatment. MCF10A cells were seeded one day prior to infection and cells were
infected overnight at a multiplicity of infection of 5–10. Forty-eight hours af-
ter infection, transduced cells were selected by puromycin or hygromycin B
treatment for 96 hours to 2 weeks.

qRT-PCR
RNA was extracted using the RNeasy Plus Mini Kits (Qiagen) containing a
gDNA eliminator column or TriReagent (Sigma-Aldrich) and chloroform ex-
traction using Phase Lock Gel columns (5Prime). RNA concentration was
measured on a Nanodrop ND-1000 spectrophotometer (RRID:SCR_016517).
Reverse transcription was conducted using Superscript II (Invitrogen) accord-
ing to themanufacturer’s instructions. cDNAwas stored at−80°C.Quantitative
PCR (qPCR) was performed using sequence-specific primers on a LightCycler
480 II system (RRID:SCR_020502, Roche Applied Science) with SyBR Green I
technology (QuantiFAST SyBRkit fromQiagen) and LightCycler 480Multiwell
Plate 96 (Roche Applied Science). CPB and ACTB were selected by geNORM
(RRID:SCR_006763) analysis as reference genes.

Flow Cytometry and Cell Sorting
Cells were resuspended in PBS and incubated for 30 minutes to 1 hour with
8 μL of PE-conjugated anti-CD10 (HI10a clone, mouse IgG1κ, RRID:AB_
396586, BD Biosciences) per 106 cells. After centrifugation, cells were resus-
pended in HBSS, 2% FBS for flow cytometry cell sorting at a concentration of
5–10 × 106 cells/mL. Cell sorting was performed using a FACS Aria cell sorter
(RRID:SCR_019595, BD Biosciences) at low pressure (psi: 20) with 488 and
633 nm lasers. For phenotypic analysis, cells were suspended in PBS 1X and in-
cubated for 30 minutes to 1 hour with 1 μL PE-conjugated anti-CD10 antibody
or PE-conjugated isotype (MOPC-21 clone; mouse IgG1κ, RRID:AB_394195)
from BD Biosciences. Flow cytometry was performed using a FACSCalibur cell
analyzer (RRID:SCR_000401, BD Biosciences) and analyzed using the FlowJo
software (RRID:SCR_008520).

Transcriptomic Analysis
Microarray analysis was performed by the platform ProfileXpert (SFR Santé
Lyon-Est UCBL-UMS 3453 CNRS – US7 INSERM) using a high-density
oligonucleotide array (GeneChip Human Genome U133 plus 2.0 array,
Affymetrix). Total RNA (50 ng) from healthy human adult breast reduc-
tion mammoplasty cells, or BRCA carriers were amplified and biotin-labeled
using GeneChip 3′ IVT PLUS kit. Before amplification, spikes of synthetic
mRNA at different concentrations were added to all samples; these posi-
tive controls were used to ascertain the quality of the process. Biotinylated
antisense cRNA for microarray hybridization was prepared. After final pu-
rification using magnetic beads, cRNA quantification was performed on a
Nanodrop and quality checked with an Agilent 2100 Bioanalyzer (Agilent
Technologies, Inc). Hybridization was performed following the Affymetrix
protocol. Briefly, 10 μg of labeled cRNA was fragmented and denaturated
in hybridization buffer, then hybridized on chip for 16 hours at 45°C with
constant mixing by rotation at 60 rpm in a Genechip hybridization oven
640 (RRID:SCR_019346, Affymetrix). After hybridization, arrays were washed
and stained with streptavidin-phycoerythrin (GeneChip Hybridization Wash
and Stain Kit) in a fluidic 450 (RRID:SCR_018034, Affymetrix) according to
the manufacturer’s instruction. The arrays were read with a confocal laser
(Genechip scanner 3000, RRID:SCR_016522, Affymetrix). CEL files were then

generated using the Affymetrix GeneChip Command Console (AGCC) soft-
ware 3.0. Identification of the genes composing the CD10 signature was
conducted using the GenePattern modules (27). Briefly, CEL files were con-
verted to RES files using the “ExpressionFileCreator module”, log2 transformed
using the “PreprocessDataset” module and different probe set values for a
gene were converted to a single value by the “CollapseDataset” module using
the “maximum” collapse mode. Differentially expressed genes between CD10−

and CD10-positive (CD10+) MCF10A-CT cells were then identified using the
“ComparativeMarkerSelection” module.

For RNA sequencing (RNA-seq) analysis, total RNA was extracted using
the RNeasy Mini Kit Plus (Qiagen). Poly-A RNA libraries were prepared
for sequencing using standard Illumina reagent and procedures and paired-
end sequenced on an Illumina NovaSeq6000 apparatus (RRID:SCR_016387).
Raw sequencing reads were aligned on the human genome (GRCh38) with
STAR (v2.7.3a, RRID:SCR_004463), with the annotation of known genes from
gencode v33. Gene expression was quantified using Salmon (1.1.0) and the
annotation of protein coding genes from gencode v33.

Bioinformatics Analysis
Data analysis was performedusing theArray Studio software (Omicsoft Corpo-
ration) and the Bioconductor (RRID:SCR_006442) packages in the R language
(http://www.bioconductor.org; ref. 28). Raw data from microarrays were pro-
cessed using quantile normalization and the robust multiarray average (RMA)
algorithm and were log2 transformed.

Gene set enrichment analysis (GSEA) was performed using the “preranked”
tool (29). The single-sample GSEA (ssGSEA) function of the GSVA package
from Bioconductor or the ssGSEA 2.0 package (30) was used to compute sepa-
rate scores for each sample of a given dataset using the ENI10 signature or other
gene sets derived or not from ENI10 that are described in the Results section.

Analysis of the melanoma cohort was done thanks to the RNA-seq data ac-
quired during routine molecular diagnosis performed at the Centre Léon
Bérard Cancer Center. RNA-seq data from this cohort are available on simple
request. Expression values were extracted usingKallisto version 0.42.5 tool with
GENCODE release 23-genome annotation based on GRCh38 genome refer-
ence. Kallisto transcript permillion (TPM) expression values were transformed
in log2(TPM+2) and all samples were normalized together using the quantile
method from the R LIMMA package within R (version 3.1.2) environment.

The results shown here are in whole or part based upon data generated by The
Cancer Genome Atlas (TCGA) Research Network: https://www.cancer.gov/
tcga (RRID:SCR_003193). TCGA RNA data were obtained from the GDC data
portal available at https://portal.gdc.cancer.gov/. Curated clinical data were ob-
tained from Supplementary Table S1 of TCGA-CDR article (31). Following
the author’s recommendations, we used progression-free interval (PFI) as the
outcome endpoint for survival analysis excepted for acute myeloid leukemia
(LAML) cancers for which overall survival (OS) was used. PAM50 breast can-
cer subtypes for TCGA-BRCA samples were obtained from additional file 2 of
the following article (32), where the normal-like samples were removed because
this subtype is likely to be an artifact caused by normal cells contamination of
the tumor (33).

Statistical Analysis
Data from the differentMCF10A cell–derivedmodels were compared using the
paired Student t test, when data were normally distributed, or the Wilcoxon
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signed-rank test when data were not normally distributed. Unpaired Student
t test or Mann–Whitney test were performed to compare continuous data be-
tween two groups and one-way ANOVA or Kruskal–Wallis test if more than
two groups. Pearsonχ2 test or Fisher exact test were used to analyze qualitative
data. OS as well as progression-free survival (PFS) curves were estimated using
theKaplan–Meiermethod and comparedwith the log-rank test between groups
of patients defined by the median of the signature enrichment scores (low vs.
high score). For TCGA data analysis, the effect of the ENI10 score on survival
outcome was estimated, for each cancer separately, by HRs corresponding to
one SD of the ENI10 score taken as a continuous variable in the Cox model. To
obtain an “overall Pan-Cancer” estimate of the effect of the ENI10 score, unad-
justed and multivariable Cox models were fitted with a strata term on cancer
type (i.e., each tumor type had a specific baseline hazard function) so that vari-
ations in survival between the different cancers were taken into account and
treated as a “nuisance parameter”. For this Pan-Cancer analysis, the ENI10 score
was discretized into deciles, to finely investigate a putative dose–response rela-
tionship of the effect of the ENI10 score on survival outcome. To compare the
ENI10 score levels in tumor and normal paired samples, the Wilcoxon signed-
rank test was used. All statistical tests were two sided, and P values <0.05 were
considered to be statistically significant. The statistical analysis was performed
using GraphPad Prism version 6.00 (RRID:SCR_002798) and Bioconductor
packages in the R language.

Data Availability
Transcriptomic data were deposited on the Gene Expression Omnibus repos-
itory under the accession numbers GSE123053 (for the microarray data on
CD10 sorted cell lines), GSE186734 (for the RNA-seq data on unsorted cell
lines), GSE186733 (for the RNA-seq data on healthy or BRCA-mutated pri-
mary human epithelial cells), and GSE186735 (for the RNA-seq data on
shCD10-expressing MCF10A cells).

Results
CD10 Expression and BMP2-driven Mammary SC
Transformation
To evaluate the early association between CD10 and the first steps of breast
cancer development, we developed new human models of breast cancer. We
used MCF10A cells [nonmalignant fibrocystic mammary cells, p/CDKNA
deleted, MYC amplified (34)] that display immature properties in 3D cultures
(35, 36) and like primary human mammary SC reconstruct a duct and lobule
3D structure in TDLU assay (37, 38). Indeed, to avoid any immediate, non-
physiologic, massive and sharp alteration, we chose not to overexpress master
oncogenes but used a more physiologic protocol based on a prolonged chronic
exposure to soluble factors known to be overproduced in breast cancer and to
promote tumorigenesis (21, 39, 40). Hence, based on our previous description
that BMP2-transforming effect were mediated by the BMPR1B (21), unsorted
or BMPRIB+-sorted MCF10A cells were transformed by long-term exposure
to BMP2 and IL6 to generate the MC26 or M1B26 cell line, respectively
(Fig. 1A). Consistently with our previous finding, BMP2-mediated transforma-
tion was much faster on cells sorted for high BMPR1B expression (Fig. 1A).
The parental and transformed cells showed similar doubling time albeit M1B26
proliferates slightly slower than MCF10A-CT and MC26 cells (Supplementary
Fig. S1A). The relative levels of transformation of the differentMCF10A-derived
models were then assessed using soft-agar colony formation assays (Fig. 1B)
and engraftment assays in immunocompromised mice (Fig. 1C). Results in-

dicated that both MC26 and M1B26 cells have an increased ability to form
anchorage-independent clones and were able to engraft in mice, compared
with untreated control MCF10A cells (CT). In both assays, M1B26 cells dis-
played a higher level of transformation than MC26 (Fig. 1B and C), suggesting
that they constitute novel models of progressive transformation to study early
steps of tumorigenesis. A transcriptomic analysis of these cell lines revealed
that both MC26 and M1B26 cells present a molecular expression profile highly
similar to primary breast cancer cells for upregulated and downregulated genes
while MCF10A-CT cells displayed a profile close to normal tissue compared
with breast ductal carcinoma or normal breast tissue (ref. 41; Fig. 1D). We then
applied a GSEA to the genes differentially expressed between MC26, M1B26,
and parental CT cells using hallmark gene sets from the Molecular Signature
DataBase (MSigDB; ref. 42). Genes involved in the response to interferon alpha
and gamma, in TNFα signaling and genes activated following KRAS signaling
were upregulated in MC26 and M1B26 cells compared with CT cells. In addi-
tion, genes involved in oxidative phosphorylation were downregulated in the
transformed cell lines (Fig. 1E). A complete Gene Ontology (GO) enrichment
analysis comparing MC26 and M1B26 cells with MCF10A-CT cells is shown
in the Supplementary Table S1. As MCF10A cells display immature properties
similar to primary human mammary cells (such as TDLU, sphere and epithe-
lial colony-forming ability as well asmolecular immaturemarkers), we assessed
the ability of MC26 and M1B26 cells to generate spheres, TDLU and the pres-
ence of E-CFCs (22, 37).We observed no differences in the frequency of E-CFC
betweenMCF10A-CT,MC26, andM1B26 (Fig. 1F) and an increase in mammo-
sphere frequency with transformation (Fig. 1G). As for to parental MCF10A
cells and primary breast epithelial cells, MC26 and M1B26 models produced
TDLU, further demonstrating that these transformed cells retained their im-
mature properties (Fig. 1H and I). In accordance with the expression of CD10
on mammary SCs (5), flow cytometry analysis revealed a higher proportion of
membrane CD10+ cells inM1B26 (51.6%) andMC26 (18.5%)models compared
with CT (5.9%) cells (Fig. 1J, left).Moreover, highermean fluorescence intensity
indicated that CD10+ transformed cells also displayed more CD10 molecules
per cell than their nontransformed counterparts (Fig. 1J, right).

Collectively, these data indicate that MC26 and M1B26 cells constitute novel
models of early steps of progressive transformation associatedwith an increased
CD10 expression.

The ENI10 Molecular Signature, Related to CD10+ Mammary
SCs, Identifies Patients with High-risk Breast Cancer

On the basis of the high expression of CD10 in our transformed models, we
then checked CD10 expression within the breast cancer cohort of The Cancer
Genome Atlas Program cohort (TCGA-BRCA; ref. 43). CD10 transcript lev-
els were relatively stable among prediction analysis of microarray 50 (PAM50)
subtypes in breast tumors and frequently under the level of expression observed
in healthy tissue (Fig. 2A). Similarly, we observed no CD10 differential expres-
sion between breast cancer molecular subtypes in the Molecular Taxonomy of
Breast Cancer International Consortium (METABRIC) cohort (ref. 44; Sup-
plementary Fig. S1B). The CD10 transcript level was not predictive of patient
outcome in TCGA-BRCA cohort (Fig. 2B) and high expression was associated
with a marginally better survival in the METABRIC cohort (Supplementary
Fig. S1C). We then evaluated CD10 protein expression in breast cancer by IHC
staining in a breast tumor microarray (TMA). In total, only 2% of breast can-
cers of the different molecular subtypes tested (8/438 of the TMA) displayed a
positive (≥20% CD10+ cells) intratumoral CD10 staining, while no significant
difference between breast tumor subtypes was observed for CD10 staining in
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FIGURE 1 BMP2 induces early transformation of a model of breast SCs and increases CD10 expression. A, Schematic representation of the
experimental protocol used to obtain the MCF10-CT, MC26, and M1B26 cell lines from the MCF10A cells. B, Quantification of soft-agar colony formation
[error bars represent the SD (n = 7), significance measured using the Mann–Whitney test is indicated on the graph by the P values. ns for P > 0.05].
C, Xenografts of the indicated number cells of MCF10A-derived models injected into nude mice presented as the number of successful grafts after
4 weeks/mouse (n = 10). D, GSEA of transcriptomic data comparing MC26 cells (top row) or M1B26 cells (bottom row) with MCF10A-CT cells. Data
represent enrichment plots analyzed using public gene sets (41) of upregulated (left) or downregulated (right) genes in human primary ductal
carcinoma compared with healthy tissues. E, GSEA of transcriptomic data comparing MC26 (first column) (Continued on the following page.)
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(Continued) or M1B26 (second column) with CT cells and M1B26 with MC26 cells (third column). The “hallmarks” gene sets from the MSigDB were used
and the NES (normalized enrichment score) with P values inferior to 0.05 are shown. F, E-CFC Progenitor content from MCF10A-CT cells (n = 5), MC26
cells (n = 8) or M1B26 cells (n = 6) quantified after 6 days by scoring colonies numbers and presented/10,000 cells. G, Number of spheres per 100
seeded cells after 1 week from MCF10A-CT cells (n = 4), MC26 cells (n = 6), and M1B26 cells (n = 6). H, TDLU, 3D structures from primary human
breast cells (top) and MCF10A cell line (bottom). I, Images at day 21 of 3D structures in the TDLU assay from MCF10A-CT, MC26, or M1B26 cells. A
representative TDLU section from MCF10A-CT, stained with H&E, is shown on the top right. J, Flow cytometry analysis of CD10 expression on
MCF10A-CT (n = 4), MC26 (n = 7), and M1B26 (n = 6) presented as the percentage of positive cells (left) and mean fluorescence intensity (right).

the stroma (Supplementary Table S2). The CD10+ tumors were mostly of the
triple-negative molecular subtype that represented half of the CD10+ tumors
(Fig. 2C). Finally, we observed a significant correlation between high CD10+

staining in tumors and poor OS of patients (Fig. 2D) that could be due to
the poor prognosis of triple-negative tumors compared with other molecular
subtypes.

While we uncovered an increased CD10 expression in our models of BMP2-
driven transformation, no correlation was observed between CD10 mRNA
expression in primary human breast cancers and prognosis. The pertinence
of the correlation between CD10 protein expression and prognosis is reduced
by the very low number of positive tumors. This suggests that the increase
in CD10 expression could be specific to immature cells or SCs that are rel-
atively scarce in primary tumors. This may have precluded any meaningful
detection by bulk transcriptomic strategies. We wondered whether a molec-
ular signature associated with CD10+ cells could be more easily detected and
relevant in terms of patient prognosis. We performed a transcriptomic analy-
sis of MCF10A cells sorted according to CD10 membrane expression (Fig. 2E),
which led us to identify 159 genes upregulated in CD10+ comparedwith CD10−

cells (Supplementary Table S3). We called this molecular signature ENI10 (for
early neoplasia index associated to CD10).We thenmeasured ENI10 expression
(called ENI10 score from now on) in our models of BMP2-driven transfor-
mation using ssGSEA and observed an increase in the ENI10 score between
MCF10A-CT and M1B26 cells with an intermediate albeit not significantly
different score for MC26 cells (Fig. 2F).

To assess the ENI10 score in early primary human breast transformation, we
analyzed transcriptomic data from human ductal carcinoma in situ (DCIS)
and normal breast tissue (45). This showed a significantly higher ENI10 score
in DCIS versus healthy tissues (Fig. 2G). An increase in the ENI10 score was
also observed in TCGA-BRCA dataset in each molecular breast cancer subtype
comparedwith normal tissue (Fig. 2H). Interestingly, the ENI10 scorewas lower
in the less aggressive Luminal A tumors compared with other subtypes. An in-
crease in ENI10 score with breast tumor aggressiveness was also observed in the
METABRIC dataset (Supplementary Fig. S1D).

In addition, we performed a RNA-seq analysis of human breast samples
obtained fromhealthy donors undergoing esthetic surgery for breast size reduc-
tion or preventive mastectomies for BRCA-mutation carriers. Compared with
mutation-free donors, breast tissue from BRCA-mutated carriers displayed an
altered and variable ENI10 score indicating its potential value to follow pre-
transforming events (Fig. 2I). Considering the correlation between an increase
in ENI10 score and breast cancer subtype aggressiveness, we evaluated the rela-
tionship between ENI10 score and patient survival in TCGA-BRCA dataset. A
high ENI10 score was associated with a lower PFI in patients with breast cancer
(Fig. 2J, first panel). The same observation wasmade in theMETABRIC dataset
(Supplementary Fig. S1E). Interestingly, when considering breast tumors ac-
cording to stage, a high ENI10 score was also correlated with a lower PFI in

early and late breast cancer stages (Fig. 2J). Nonetheless, the ENI10 score was
not correlated to patient survival when breast tumors were stratified accord-
ing to molecular subtypes, this suggests that in breast cancers the correlation
between low ENI10 score and good prognosis could be due to the Luminal A
tumors having both the lower ENI10 score andbetter prognosis (Supplementary
Fig. S1F and S1G).

Next, using gene expression profiles from breast cancer cell lines included in
the Cancer Cell Line Encyclopedia (46), we evaluated the correlation between
the ENI10 score and the IC50 of 441 drugs already in clinical use or under devel-
opment. The ENI10 score was correlated with response to several drugs, either
indicative of resistance or sensitivity, depending on the drug. When focusing
on drugs where the ENI10 score was inversely correlated with the IC50 (Sup-
plementary Table S4), this analysis identified bleomycin, a drug that induces
an arrest in the G2-phase of the cell cycle (47), as well as Refametinib (MEK
inhibitor), as potential potent treatments for breast tumors that display a high
CD10 score (Fig. 2K; Supplementary Table S5).

The ENI10 Molecular Signature is Enriched in Asymmetric
Division-related Genes Controlled by CD10

To gain insight into the functions enriched in the ENI10 molecular signature,
we performed a GO analysis that revealed a strong enrichment in genes in-
volved in the regulation of cell division, especially in the mechanistic control of
chromosome condensation and segregation during the G2–M-phase (Fig. 3A).
No significant enrichment in genes involved in S-phase was detected. A cell-
cycle analysis of sorted CD10+ or CD10− MCF10A cells revealed no imbalance
in G2–M cells between the two populations, indicating that the enrichment
in genes involved in G2–M molecular mechanisms in the ENI10 signature is
not linked to cell-cycle status (Fig. 3B). The relationship between genes that
define the ENI10 signature and the expression of CD10 itself was evaluated
by knocking down CD10 expression using short interfering RNA (shRNA) in
MCF10A cells (Supplementary Fig. S2A and S2B). No significant enrichment
of the whole ENI10 signature in genes either upregulated or downregulated by
the shCD10 was detected by GSEA (Fig. 3C, top). Interestingly, when we used
as gene set in GSEA only the genes of the ENI10 signature belonging to the
GO terms shown in Fig. 3A, we observed a strong enrichment in genes down-
regulated by the CD10 knockdown (Fig. 3C, middle). Of particular interest,
a number of genes (TKK/MPS, BUB, BUBB, AURKA, AURKB) repressed
in shCD10-MCF10A cells are known to play a role in the spindle assembly
checkpoint (SAC). The SAC controls the asymmetric division mechanism and
chromosome integrity/stability, and its dysregulation promotes aneuploidy and
cancer (48, 49). When we used only the genes of the ENI10 signature belong-
ing to the GO term “mitotic spindle assembly checkpoint signaling” shown in
Fig. 3A forGSEA,we observed that all these geneswere downregulated byCD10
knockdown (Fig. 3C, bottom). We then evaluated the contribution of genes in-
volved in the G2–M-phase and in the SAC to the ability of the ENI10 signature
to discriminate early transformed from normal tissues. As previously shown
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FIGURE 2 The molecular identity of untransformed CD10-positive cells increase with mammary gland transformation. A, CD10 transcript expression
in TCGA breast tumors according to the molecular classification compared with normal samples. B, Kaplan–Meier plot of patients with breast cancers
in TCGA cohort as a function of CD10 expression level. C, Quantification in a TMA of the percentage of tumors with CD10 IHC staining higher than 20%
according to tumor subtype. D, Kaplan–Meier plot of patients with breast cancers from the TMA (as in C) as a function of CD10 protein expression level.
E, Schematic representation of the experimental protocol used to obtain identify the ENI10 molecular signature. (Continued on the following page.)
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(Continued) F, ssGSEA quantification of the CD10 signature score in the different MCF10A-derived cell lines with nontransformed (CT, n = 6), early
(MC26, n = 6) and more aggressive (M1B26, n = 8) transformed models. G, ssGSEA ENI10 score of human primary DCIS versus healthy mammary
gland (series GSE21422). H, ssGSEA ENI10 score of matched normal or tumoral breast tissue from breast cancer subtypes from TCGA’s Pan-Cancer
Atlas. I, ssGSEA ENI10 score from RNA-seq transcriptomic data from three normal breast epithelial cells samples (wildtype) and six BRCA mutated
healthy epithelial cells samples. J, Kaplan–Meier plots of patients with breast cancers in TCGA cohort as a function of cancer stage and ENI10 score.
K, Using transcriptomic data from the “Genomics of drug sensitivity in cancer” project from the Sanger Institute, ENI10 score of human breast cancers
cell lines were correlated with their IC50 to 441 drugs. Drugs showing a significative negative correlation between the ENI10 ssGSEA score and IC50

(indicating a sensitivity to the drug when the ENI10 score increase) are shown. According to the GDSC guidelines, red dots show drugs with a
significative IC50 correlation with the ENI10 score with a P value inferior to 0.001 and a Benjamini–Hochberg FDR inferior to 0.25. Black dots show
suggestive correlations with a P value inferior to 0.005 and a nonparametric P value inferior to 0.1.

in Fig. 2G, the ENI10 ssGSEA score discriminated DCIS from healthy breast
tissue. In that case, the variation of the ENI10 score is higher and therefore
more discriminant than the ssGSEA score of genes known to be overexpressed
in the G1–S or G2–M-phases of the cell cycle (Dominguez 2016), suggesting
that the ability of ENI10 to distinguish between normal and transformed tis-
sues is not solely a reflection of a higher proliferative state of the tumors. In
addition, when restricting the ENI10 signature to genes belonging to the GO
terms enriched in the signature or to the “mitotic spindle assembly checkpoint
signaling” term, we observed a more stringent discrimination between healthy
tissues and DCIS (Fig. 3D). This suggests that genes regulating the proper sep-
aration of the genetic material duringmitosis could be specifically dysregulated
in DCIS. Given the link between the SAC and asymmetric division as well
as the importance of the latter in SC renewal, we tested the impact of CD10
knockdown on the SC population in our models. As MCF10A cells display
immature properties similar to primary human mammary cells, we assessed
the ability of MC26 and M1B26 cells to generate spheres and E-CFC (22, 37).
Knocking down CD10 resulted in a significant increase in E-CFC frequency
in both MC26 and M1B26 models illustrating their engagement in differentia-
tion (Fig. 3E). Conversely, impairing CD10 expression significantly reduced the
number of cell-forming spheres in MC26 and M1B26 cells (Fig. 3F). This in-
dicates that, as for healthy mammary tissue (5), the CD10 protein is involved
in the maintenance of stemness properties of transformed mammary epithelial
cells. Interestingly, CD10 knockdown or overexpression did not significantly
modify the ability of our cells to form soft-agar colonies, demonstrating that
CD10 by itself is not required or sufficient for the maintenance or induction of
the transformed phenotype (Fig. 3G; Supplementary Fig. S2A–S2F).

ENI10 Predicts Pan-Cancer Survival

Next, we quantified the ENI10 score in a large series of tumor samples from
TCGA Pan-Cancer database (43). Our analyses showed a strong enrichment
in the ENI10 score in tumor cells compared with non-tumor cells in a large
range of tumors (>10,000 samples from 35 distinct solid tumors represented
in this database), indicating a global association of ENI10 with the transfor-
mation status (Fig. 4A). To gain further insight into the prognostic value of
ENI10 across tumor types, we adjusted multivariable stratified Cox models
with a different baseline hazard for each tumor type. Remarkably, HRs ad-
justed according to age at diagnosis were almost identical to unadjusted HRs,
and statistical adjustment based on stage or grade of disease did not alter the
strong risk gradient (Fig. 4B). As the 159 genes used to compute the ENI10
score included a large number of genes associated with the G2–M-phases of
the cell cycle (Fig. 3A), we further investigated the possibility that the ENI10
score could predict survival simply by measuring cell proliferation inside the
tumor. To achieve this, we compared the predicted value of the ENI10 score us-

ing all of the 159 genes listed or an alternative ENI10 score excluding 25 genes
shown to be upregulated in theG2–M-phases (ref. 50;TTK, FAMA,NUSAP,
BUB, PRC,CDCC, SPAG,CCNA, TOPA, ESPL,CCNF, BUBB,CCNB,
KIFC, HMMR, UBEC, CENPE, KPNA, CENPF, CDCA, TACC, KIF,
MKI, NEK, HMGB). This analysis indicated that this alternative ENI10
score remained similarly predictive of patient survival (Fig. 4C).

Next, we tested the added predictive value of the ENI10 over two previously
identified signatures obtained from healthy adult tissue SCs (51, 52). These two
studies aimed at understanding the relationship between epithelial cancers and
SC transcriptional programs using, as in our present study, epithelial SCs as
a starting point. Pece and colleagues identified a CSC molecular signature of
20 genes specifically expressed in normal epithelial mammary SCs (51). Smith
and colleagues used a pan-SC and Pan-Cancer approach to identify a transcrip-
tional signature shared by epithelial adult normal SCs and tumors (52) and
isolated a signature consisting of the top 50 genes associated with adult SCs,
naive or primed human embryonic SCs, with no gene overlap among the three
SC signatures. To investigate the added value of ENI10 compared with these
two other signatures, we calculated their respective score by ssGSEA and fitted
Cox models for the ENI10 score, including the two other scores as adjustment
variables. The ENI10 score, which represents the molecular signature of pre-
malignant SCs, displayed high HRs when adjusted against the Smith (ref. 52;
Fig. 4D) or Pece (ref. 51; Fig. 4E) cancer and SC-related scores. Of note, after ad-
justment against the ENI10 score, the predictive value of the Pece and colleagues
score wasmarkedly reduced and the Smith and colleagues score completely lost
statistical significance. These findings indicate that the ENI10 score is a more
robust and powerful way to predict clinical outcomes in many different solid
tumors than signatures of normal and CSCs.

ENI10 is a Robust and Independent Prognostic Factor for
Several Solid Tumors and to Screen Drugs

Because using the pan-cancer strategy shown in Fig. 4, it can be difficult to test
all confounding variables, especially cancer type, due to the high number of
samples required to use the decile approach,we then evaluatedCD10 expression
as well as the association of the ENI10 signature with the transformation at the
level of individual solid tumors represented inTCGAdatabase. At the transcript
level, there was no clear CD10 dysregulation compared with normal tissues in
any TCGA cancer type (Supplementary Fig. S3A).Moreover, data from theHu-
man Protein Atlas (53) showed that at the protein level, CD10 is only detectable
in a fraction of cancer types (Supplementary Fig. S3B). On the other hand, in
all cancer types but one where matched normal tissues were available, we ob-
served a significant increase in the ENI10 score in tumors (Fig. 5A). We next
analyzed the ability of the ENI10 score to predict patient survival in 33 differ-
ent cancers of TCGA database. Analyses by Cox regression models highlighted
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FIGURE 3 The ENI10 molecular signature is enriched in genes involved in chromosome segregation during mitosis. A, GO analysis on the CD10
signature genes using the “Biological Process” terms. The most downstream terms in the hierarchy with an FDR less than 0.01 are shown. B, Ratio of
the percentage of CD10+ over CD10-negative cells in each phase of the cell cycle determined by flow-cytometry analysis of MCF10A-Fucci-CA cells
stained with an anti-CD10 antibody. C, GSEA using RNA-seq experiments comparing MCF10A cells expressing a scramble (shCTRL) or CD10 specific
shRNA (shCD10), the gene sets used are the ENI10 genes (top), ENI10 genes belonging to all enriched GO terms shown in A (middle) and ENI10 genes
belonging to the “mitotic spindle assembly checkpoint signaling” GO term (bottom). D, ssGSEA quantification of the indicated gene sets in normal
healthy breast tissue (H) or in DCIS (D) from GSE21422 series. E, Quantification of E-CFC from CD10+ MC26 or M1B26 cells infected with lentiviruses
carrying a scramble (sh ctl) or sh CD10 vector. F, Quantification of spheres forming cells from CD10+ MC26 or M1B26 cells infected with lentiviruses
carrying a scramble (sh ctl) or sh CD10 vector. G, Quantification of soft-agar clones from M1B26 CD10+ cells infected with lentiviruses carrying a
scramble (sh ctl) or sh CD10 vector.
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FIGURE 4 ENI10 predict pan-cancer survival independently of the cell cycle and more efficiently than other SC–derived signatures. A, ssGSEA score
of the ENI10 signature in all tumors and normal samples from TCGA database. B, Correlation of CD10 signature score and survival in TCGA’s
Pan-Cancer Atlas. All tumor samples were pooled and the effect of the CD10-signature score discretized by deciles on survival outcome was evaluated
from Cox models stratified on cancer types, using unadjusted (black marks), adjusted on age alone (blue marks, modeled with a 3-degree polynomial
spline) or with a supplemental stratification term for stage (I/II/III/IV; green marks) or grade (1/2/3/4; red marks) pathologic scoring systems. Dots
show the HR for PFI and adjacent bars the 95% confidence interval. C, Left: Overall Pan-Cancer analysis of the correlation between the ENI10 score and
survival in TCGA’s Pan-Cancer Atlas. All tumor samples were pooled and the effect of the ENI10 score discretized by deciles on survival outcome was
evaluated from Cox models stratified on cancer types. Right: Same analysis with a reduced ENI10 signature were genes known to be regulated during
the cell cycle were removed. D and E, Overall Pan-Cancer analysis of the effect of CD10 score on survival in TCGA’s Pan-Cancer atlas. All tumor samples
were pooled and the effect of the CD10 enrichment score discretized by deciles on survival outcome was evaluated using a multivariable Cox model
including as covariables both the CD10 score and the Smith and colleagues (D) or Pece and colleagues (E) signatures. Dots show the hazard ratio for
PFI and adjacent bars the 95% confidence interval.
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FIGURE 5 An increased ENI10 score predicts patient’s survival in several cancer types. A, ssGSEA ENI10 score in pairs of normal and tumor samples
from TCGA’s Pan-Cancer atlas linked by gray lines and the difference are color coded on the dots representing the tumor samples. ACC: adrenocortical
carcinoma, BLCA: bladder urothelial carcinoma, BRCA: breast invasive carcinoma, CESC: cervical squamous cell carcinoma and endocervical
adenocarcinoma, CHOL: cholangiocarcinoma, COAD: colon adenocarcinoma, DLBC: lymphoid neoplasm diffuse large B-cell lymphoma,
ESCA: esophageal carcinoma, HNSC: head and neck squamous cell carcinoma, KICH: kidney chromophobe, (Continued on the following page.)
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(Continued) KIRC: kidney renal clear cell carcinoma, KIRP: kidney renal papillary cell carcinoma, LAML: acute myeloid leukemia, LGG: low-grade glioma,
LIHC: liver hepatocellular carcinoma, LUAD: lung adenocarcinoma, LUSC: lung squamous cell carcinoma, MESO: mesothelioma, OV: ovarian cancer,
PCPG: pheochromocytoma and paraganglioma, PRAD: prostate adenocarcinoma, READ: rectum adenocarcinoma, SARC: sarcoma, SKCM: skin
cutaneous melanoma, STAD: stomach adenocarcinoma, TGCT: testicular germ cell tumor, THCA: thyroid carcinoma, THYM: thymoma, UCEC: uterine
corpus endometrial carcinoma, UCS: uterine carcinosarcoma, UVM: uveal melanoma. B, Correlation of the ENI10 score and survival outcome for each
type of cancer of TCGA Pan-Cancer atlas estimated by HRs of PFS corresponding to one SD of the score taken as a continuous variable. Dots show the
HR and adjacent bars the 95% confidence interval. C, Examples of PFS curves from TCGA Pan-Cancer atlas in the whole cohort and as a function of
stage estimated using the Kaplan–Meier method and compared with the log-rank test between groups of patients defined by the median of the ENI10
score (low scores in blue and high scores in red). D, ssGSEA ENI10 score in transcriptomic data from nevus or melanoma at different stage of clinically
defined transformation. E, Using transcriptomic data from the “Genomics of drug sensitivity in cancer” project from the Sanger Institute, ENI10 score of
all human cancers cell lines available were correlated with their IC50 to 441 drugs. Targets of the drugs with a significative negative correlation between
the ENI10 ssGSEA score and IC50 (indicating a sensitivity to the drug when the ENI10 score increase) are shown. According to the GDSC guidelines, red
dots show drugs with a significative IC50 correlation with the ENI10 score with a P value inferior to 0.001 and a Benjamini–Hochberg FDR inferior to
0.25. Black dots show suggestive correlations with a P value inferior to 0.005 and a nonparametric P value inferior to 0.1.

that the CD10 score is associated with poor PFI formore than 50% (18/33) of the
tested cancer types (Fig. 5B). Kaplan–Meier curves for all cancer types where
the ENI10 score predicted survival are shown (Supplementary Fig. S3C). Impor-
tantly, when available we analyzed the predictive value of the ENI10 score as a
function of tumor stage. This analysis revealed that in a number of cancers, the
ENI10 score discriminates patientswith aworse prognosis even at an early stage,
including for the very aggressive pancreatic adenocarcinoma (Fig. 5C). Patient
survival was the most strongly determined by the ENI10 score for TCGA uveal
melanoma (UVM; Supplementary Fig. S3C). Because UVM is a rare and very
specific type of melanoma, we explored an in-house cohort of skin nevus or
melanoma at different stages of clinically-defined transformation. As observed
in breast tissue, the ENI10 score increased within tumor cells even at very early
stages of skin transformation (Fig. 5D). The same increase in ENI10 score was
found using transcriptomic data from another cohort of benign melanocytic
nevi and primary melanoma from the literature (ref. 54; Supplementary
Fig. S3D).

We then attempted to correlate the ENI10 score and drug response using all
cancer types represented in the Cancer Cell Line Encyclopedia. A subset of 9
drugs appeared to efficiently target a broad range of cancer cell lines expressing
high levels of the ENI10 score (Fig. 5E; Supplementary Tables S5 and S6). This
included cetuximab (as in the breast cancer specific analysis), IGF1R and LCK
inhibitors, all identified to modulate the SAC (55, 56). Very interestingly, three
of the nine drugs are inhibitors of PARP also reported to downregulate the SAC
and induce a G2–M arrest (57).

Collectively, these findings indicate that using the ENI10 molecular signature
is a robust and powerful way to predict clinical outcome in a large number of
different solid tumors. In addition, our analyses unveiled a short list of drugs
that may efficiently target cancer cells with a high ENI10 score, likely owing to
their ability to modulate SAC-related elements. Altogether, these data strongly
suggest that the ENI10 signature may help to identify high-risk patients and
tailor systemic therapy in patients with cancer.

Discussion
We explored the importance of CD10 expression during mammary SC
transformation using a new series of breast cancer models based on non–
oncogene-driven transformation of the MCF10A cell line that we developed
by chronic exposure to BMP2 (21). We unveil that CD10 expression increases

with cell transformation and remains linked to SC-like properties in fully trans-
formed cells, though it was not necessary to maintain a transformed state. This
is consistent with data reported in breast cancer (7), melanoma (58), lung can-
cer, mesothelioma (59, 60), or head and neck squamous cell carcinoma (6), and
indicates that CD10+ cells share common features with SC both in their normal
and transformed state. We extracted a CD10+ SC-specific molecular signature
of 159 genes enriched in primary breast cancers and identified this ENI10 index
as a reliable marker for breast cancer prognosis (44, 45).

The ENI10 was significantly enriched in various solid tumor tissues compared
with paired healthy tissues regardless of the initial ENI10 level. In addition,
using our breast cancer MCF10A-derived BMP2-driven early transformation
model or primary non-tumoral tissues from BRCA-mutated carriers, we estab-
lished that the ENI10 is a powerful tool to identify very early transformation
processes, further confirmed in the context of melanoma in which CD10
has been associated with aggressiveness and treatment escape (58). The in-
creased risk gradient observed in a Pan-Cancer Cox model, highlighted a
dose–response relationship of the effect of the ENI10 on patient outcome. A
role for BMP signaling has been reported in cancers for which we identify that
a high ENI10 was predictive of poor prognosis [melanoma (61, 62), lung adeno-
carcinoma (63), Glioma (64, 65), clear renal carcinoma (66), prostate (67, 68)
or pancreas (69, 70)]. In addition, a direct link between CD10-expressing cells
and a BMP-SC response is described in lymphoid (17), breast (38) or nervous
system (18) as well as during cancer formation or progression (23). Altogether,
it suggests that within CD10-expressing immature cells a cellular subset could
constitute a preferential target of the transformation process which will con-
sequently lead to an enrichment of the ENI10. Therefore, CD10+ cells could
constitute a preferential pool of cells highly sensitive to a BMP-driven trans-
formation (70). Modulation of CD10 expression confirmed its direct control
of a significant number of genes of the ENI10 involved in G2–M, such as the
SAC. Importantly, SAC-related genes are involved in asymmetric cell division,
a key SC feature (71, 72) that allows one of the two daughter cells to preferen-
tially inherit the leading strand (mother) chromatid (73). This ensures fidelity
of chromosome segregation and prevents chromosome instability. Dysregula-
tion of the SAC promote aneuploidy, tumor initiation, and progression (48, 49).
Interestingly, in breast cancer cells, BMP signaling controls genes of the mi-
totic checkpoints of the SAC (TTK/MPS; ref. 74), highlighting a link between
BMP-responsive SCs, CD10 and the asymmetric division process ensured by
SAC-related genes. It suggests a role for CD10 in preventing the acquisition of
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chromosomal instability by SC that could contribute to resistance and main-
tenance of CD10-expressing CSC. Also, drugs that induce a G2–M arrest and
target the SAC, such as PARP inhibitors (PARPi; ref. 57), cetuximab (75), IGF1R,
and LCK inhibitors (46, 55, 56), seemed to particularly predict efficiency against
cancer cells with a high ENI10 score. In this context, pancreatic cancer (PAAD)
is especially impressive as the ENI10 score identify patients with PAAD at early
stages or grades that could benefit from PARPis as suggested (76).

In summary, we identified a molecular signature related to the CD10 function
on SC features and representative of premalignant cells even though CD10 itself
does not drive cell transformation. This ENI10 is linked to cancer evolution and
patient survival andmay contribute to identifying effective therapies. This score
appears to be unique, powerful and highly robust to help predict cancer evo-
lution in many different cancer types including very early stages of the disease
in the worst types of solid cancers. Further analysis in various clinical settings,
for example, focusing on specific cancers like PAAD or response to treatments
like PARPi could lead to define in each case clinically useful thresholds of the
ENI10 score for patient management.
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