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DESINGULARIZATIONS OF SHEAVES AND

REDUCED INVARIANTS

ALBERTO COBOS RABANO, ETIENNE MANN, CRISTINA MANOLACHE,
RENATA PICCIOTTO

Abstract. Given F a coherent sheaf on a Noetherian integral algebraic stack

P, we give two constructions of stacks P̃, equipped with birational morphisms

p : P̃ → P such that p∗F is simpler: in the Rossi construction, the torsion free

part of p∗F is locally free; in the Hu–Li diagonalization construction, p∗F is
a union of locally free sheaves. We use these constructions to define reduced

Gromov–Witten invariants of complete intersections in all genera.
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1. Introduction

Overview of the problem. Let X be a smooth projective variety. We denote by
Mg,n(X, d) the moduli space of genus g, degree d ∈ H2(X;Z) stable maps to X

(see [Kon95]). By [LT98, BF96] Mg,n(X, d) has a virtual class [Mg,n(X, d)]
vir ∈

A∗(Mg,n(X, d)). Gromov–Witten invariants of X are defined as intersection num-
bers against this virtual class. They are related to counts of curves in X of genus
g and class d, but they often encode contributions from degenerate maps. These
degenerate contributions can be explained by the geometry of the moduli space of
stable maps.

We have little information about moduli spaces of stable maps to a variety X,
even when X is complete intersection, but the moduli space of stable maps to
projective spaces are better understood. The space of genus zero stable maps to a
projective spaceM0,n(Pr, d) is a smooth Deligne–Mumford stack and the resulting
genus zero Gromov–Witten invariants are enumerative. For g > 0, the moduli space
Mg,n(Pr, d) has several irreducible components and moreover, in genus one and two,

we have explicit local equations forMg,n(Pr, d): see [Zin09c, HL10, HLN12]. The
existence of components consisting of maps with reducible domain is reflected by
Gromov–Witten invariants: these components contribute lower genus stable maps.

In order to define invariants which do not have contributions from degenerate
maps with reducible domains, we need to define a virtual class on the closure of the
locus of maps with smooth domain. This is not possible directly, we need to replace
this component with a birational one, which admits a virtual class. In genus one and
two there are several such constructions [Zin09c, VZ08, HL10, RSPW19a, HLN12,
BC23, HN19, HN20]. The resulting numbers are called reduced Gromov–Witten
invariants.

Main result 1.0.1 (See Definition 7.3.10). We define reduced Gromov–Witten
invariants in any genus for any complete intersection in a projective space.

In genus one and two, our reduced Gromov–Witten invariants agree with the
reduced invariants defined previously.

Genus one reduced invariants for varietes of any dimension are related to Gromov–
Witten invariants [Zin08]. For three-folds the relation is much simpler. Let X be a
threefold which is a complete intersection and let γ ∈ H∗(X)⊕n be a collection of
cohomology classes of X. Let Ng

β (γ) be the genus g and degree β Gromov–Witten

invariants of X with insertions given by γ, and let rgβ(γ) be the corresponding
reduced invariants.

Conjecture 1.0.2. [Zin09a], [HL11, Conjecture 1.1] Let X be a Calabi–Yau three-
fold. Then, there are universal constants Ch(g) ∈ Q, such that for deg(β) > 2g−2,
we have

Ng
β =

∑
0≤h≤g

Ch(g)r
h
β .

When X is the quintic threefold, the above formula in genus one is the formula
in [Zin09a, LZ09]

(1) N1
d =

1

12
N0
d + r1d.
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If X is a Fano threefold, then reduced invariants are expected to be equal to
Gopakumar–Vafa invariants. Indeed, the Gopakumar–Vafa invariants are by def-
inition related to Gromov–Witten invariants by a recursive formula, which takes
into account degenerate lower genus and lower degree boundary contributions. For
Fano varieties, there are no lower degree contributions. Boundary contributions
were computed by Pandharipande in [Pan99]. The conjectural equality between
reduced Gromov–Witten invariants and Gopakumar–Vafa invariants (see [Pan99,
Section 0.3]) for Fano threefolds gives the following.

Conjecture 1.0.3. [Zin09a, Zin11] Let X be a Fano threefold and let CXh,β(g) be
defined by the formula∑

g≥0

CXh,β(g)t
2g =

(
sin(t/2)

t/2

)2h−2−KX ·β

.

Then, we have the following

Ng
β (γ) =

g∑
h=0

CXh,β(g − h)rhβ(γ).

The above should also hold in the Calabi–Yau case, when CXh,β(g) do not depend
on X and β.

The above conjectures have been proved in genus one and two. These are the
only cases in which a definition of reduced invariants existed prior to this work.

Approach. In a first step we use the geometry ofMg,n(Pr, d) in the following way.

The moduli space of stable maps admits a mapMg,n(Pr, d)→ Pic, where Pic de-
notes the stack which parameterises genus g curves with n marked points, together
with a line bundle of degree d. One important observation is that Mg,n(Pr, d) is
an open substack in an abelian cone Spec SymF, with F a sheaf on Pic (see (20)
and (21)).

In a second step we use the sheaf F to construct P̃ic (or P̃ic
HL

) together with

a birational morphism p : P̃ic → Pic. By base change, this gives M̃g,n(Pr, d) →
Mg,n(Pr, d), and M̃g,n(Pr, d) allows us to define reduced Gromov–Witten invari-
ants.

The stack P̃ic can be constructed in two ways: using the Rossi construction (see
Section 3) or using the Hu–Li diagonalization construction (see Section 4). In both

approaches we start with an atlas Ui → Pic, and then we consider Ũi as defined

by Rossi (see Section 3), or by Hu–Li (see Section 4). In the end, we glue Ũi to a

global object P̃ic (see Theorem 6.2.1). The resulting stack P̃ic is called the Rossi

construction or the Hu–Li construction, depending on the definition of Ũi.
In general, the Rossi construction is different from the Hu–Li construction (see

4.3.1). By Example 8.1.5 the Rossi construction gives a new moduli space which is
different from the Vakil–Zinger blow-up. However, by Proposition 7.3.9 this does
not change the reduced invariants: they are the same for all birational models of
Pic.

The Rossi construction for P̃ic is enough to prove the Main Result 1.0.1, but
the Hu–Li construction is better behaved in relation to Conjecture 1.0.2 and Con-
jecture 1.0.3.
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Relation to previous approaches. The structure of this paper is different from
the ones in [VZ08, HL10, HLN12, HN19, HN20]. In the mentioned papers, the

authors have a three step strategy to constructing the stack M̃◦
g,n(Pr, d):

(1) they find equations of local embeddings Ui ⊂Mg,n(Pr, d) in smooth spaces
Vi;

(2) they blow up of Ui to obtain Ũi;

(3) they show that Ũi glue to a (smooth) stack M̃◦
g,n(Pr, d).

The first step becomes involved in higher genus, due to the rather complicated
geometry ofMg,n(Pr, d). Steps 2 and 3 are done by constructing an explicit blow
of Pic (or Mg,n). Finding a candidate for this blow-up is the hardest part of the
construction.

We omit Step 1 completely. For us Step 2 is minimal in a suitable sense – it
is given by a universal property. The main ingredient in Step 3 is that the (local)
constructions proposed in Section 3 and in Section 4 commute with smooth pull-
backs and this allows us to glue them. Explicit equations of the charts Ui are thus

not necessary to construct M̃◦
g,n(Pr, d). The advantage of this approach is that the

gluing is conceptual and straightforward. This is similar to what Hu and Li do in
[HL11] – our construction heavily relies on their ideas.

Main technical result. In Sections 1–6 we work in the the following, completely
general setup. Given P a stack and F a coherent sheaf on it, we want to construct

P̃ with a proper birational morphism p : P̃ → P such that p∗F is better behaved.
We present two general constructions:

(1) the Rossi construction and
(2) the Hu–Li diagonalization construction.

(1) Given an integral, Noetherian algebraic stack P, we construct p : P̃ → P,
such that the torsion free part of p∗F is locally free. We show that the Rossi con-
struction has a universal property in Theorem 6.2.4, in particular it is the minimal
stack such that the torsion free part of p∗F is locally free.

(2) The Rossi construction does not change torsion sheaves. The Hu–Li diago-
nalization construction also produces a sheaf p∗F with the torsion free part of p∗F
locally free. In addition to this, p∗F also has a well-behaved torsion in the sense
of Definition 4.1.1. For schemes this is achieved by a construction by Hu and Li

[HL11]. In theorem 6.2.1 we produce global object P̃HL. In Theorem 6.2.7 we

show that P̃HL satisfies a universal property and in Theorem 5.2.1 we show that
the irreducible components of Spec Sym p∗F are vector bundles.

Applying this construction with P = Pic, we obtain a well-behaved M̃g,n(Pr, d)
as follows. In the following we fix d > 2g − 2 (see the explanation before 7.1.3 for
details) and we consider X a hypersurface of degree k in Pr. In Section 7 we define

P̃ic and a proper and birational morphism pk : P̃ic→ Pic. We define

M̃g,n(Pr, d) :=Mg,n(Pr, d)×Pic P̃ic,

which comes equipped with a morphism p̄k : M̃g,n(Pr, d) → Mg,n(Pr, d). We

denote byM◦
g,n(Pr, d) the closure inMg,n(Pr, d) of the locus of maps with smooth

domain. The condition on d ensures that M◦
g,n(Pr, d) is generically smooth and



DESINGULARIZATIONS OF SHEAVES AND REDUCED INVARIANTS 5

unobstructed. As before, we consider the base-change

M̃◦
g,n(Pr, d) :=M

◦
g,n(Pr, d)×Pic P̃ic.

We have the following result in all genera.

Theorem 1.0.4 (See Theorem 7.3.4). Let M̃g,n(Pr, d) = ∪θ∈ΘM̃g,n(Pr, d)θ, with
M̃g,n(Pr, d)θ irreducible components of M̃g,n(Pr, d). Then the following statements
hold:

(1) The stack M̃g,n(Pr, d) admits a virtual class.

(2) The morphism p̄k is proper, and we have (p̄k)∗[M̃g,n(Pr, d)]vir = [Mg,n(Pr, d)]vir.
(3) For any θ ∈ Θ, M̃g,n(Pr, d)θ is smooth over its image in P̃ic; in particular,

M̃◦
g,n(Pr, d) is smooth over P̃ic.

(4) Let π̃θ : C̃θ → M̃g,n(Pr, d)θ denote the universal curve. Then π̃θ∗ev
∗O(k)

is a locally free sheaf on M̃g,n(Pr, d)θ; in particular π̃◦
∗ev

∗O(k) is a locally

free sheaf on M̃◦
g,n(Pr, d).

The above theorem implies the Main result 1.0.1. See Section 7.3 for details.

History and related works. Reduced genus 1 invariants are the output of a
long and impressive project. Reduced invariants were defined, using symplectic
methods, and compared to Gromov–Witten invariants by Zinger [Zin08, Zin07,
Zin09b, Zin09a]. Li–Zinger showed [LZ07, LZ09] that reduced Gromov–Witten
invariants are the integral of the top Chern class of a sheaf over the main component
of Mg,n(Pr, d); this is an analog, for reduced genus 1 invariants, of the quantum
Lefschetz hyperplane property [LZ07, LZ09]. In view of [Zin09b] this also gives a
proof of the formula (1). The algebraic definition requires a blow-up construction
for the moduli space of stable maps to projective space due to Vakil and Zinger
[VZ08, VZ07]. See [Zin20] for a survey from the symplectic perspective.

Explicit local equations for the Vakil–Zinger blow-up in genus one are given in
[Zin09c, HL10] and in genus two in [HLN12]. It is expected that the methods used
in low genus could provide local equations for general moduli spaces of stable maps
to projective spaces; the combinatorics is likely to be tedious.

In [HL10, HLN12, HN19, HN20] the authors give a modular interpretation of
reduced invariants in terms of graphs of degenerate maps. A modular interpretation
via log maps has been given by Ranganathan, Santos-Parker and Wise [RSPW19a,
RSPW19b].

Hu and Li introduce the diagonalization construction in [HL11]. They use this
construction to define an Euler class on the moduli space of stable maps to projec-
tive spaces. This gives a non-intrinsic definition of reduced invariants of complete
intersections. Conjecture 1.0.3 is hard to approach with this definition. In this
paper we rework their construction.

In a different direction, instead of replacing the moduli space of maps with a space

which dominates M̃◦
g,n(X, d), one can construct a space dominated by M̃◦

g,n(X, d).
This has been done by moduli spaces of maps from more singular curves, such as
in [BCM20, BC23]. A modular interpretation comes for free with this approach,
which makes these constructions particularly beautiful. A relationship between
reduced invariants and invariants from maps with cusps was established in [BCM20].
Battistella and Carocci introduce a compactification of genus two maps to projective
spaces [BC23]. An example of this compactification is given in [BC22].
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More recently, reduced invariants for the quintic threefold have been compared
to Gromov–Witten invariants using algebro-geometric methods by Chang and Li
[CL15]. Chang–Li define reduced invariants as the integral against the top Chern
class class of a sheaf but, as discussed above, this gives the same reduced invariants
as [Zin09b]. The algebraic comparison relies on the construction of maps with
fields due to Chang and Li [CL12], and on Kiem–Li’s cosection localised virtual
class [KL13]. This method has been employed in [LO22, LO21] to extend the genus
one relation between absolute and reduced Gromov–Witten invariants of complete
intersections. In genus two a similar work is done in [LLO22].

Zinger has computed reduced genus one invariants of projective hypersurfaces via
localisation [Zin09a]. The computations in [Zin09c] and [Zin08] have been extended
to complete intersections by Popa [Pop13].

Outline of the paper. In the following we give an outline of the paper and we
highlight the main results.

In Section 2 we fix notation and briefly recall the background notions used, such
as Fitting ideals and abelian cones.

In Section 3 we introduce the desingularization of a sheaf on a stack (Section 3.1)
and we review the minimal desingularization, due to Rossi (Section 3.2). In Sec-
tion 3.3 we give an algebraic desingularization in terms of Fitting ideals in the affine
case, due to Villamayor. We show in Section 3.4 that the Rossi and Villamayor
constructions agree. We show that the minimal desingularization of a sheaf has a
universal property (see Theorem 3.3.4).

In Section 4 we introduce the notions of diagonal sheaf and of diagonalization
of a sheaf on a scheme (see Definition 4.1.3). Construction 4.1.10, due to Hu and
Li, gives the minimal diagonalization of a sheaf (see Theorem 4.1.15). In Theo-
rem 4.1.14 we construct a filtration of a diagonal sheaf under certain conditions.
The filtration will then be used in Section 5 to describe the irreducible components
of the abelian cone of a diagonal sheaf. In Section 4.2, we collect properties of the
Hu–Li blow-up, such as the existence of a morphism from the Hu–Li blow-up to
the Rossi blow-up in Proposition 4.2.6. The two blow-ups are not isomorphic in
general as shown in Example 4.3.1.

In Section 5 we study the irreducible components of the abelian cone C(F) of
a diagonal sheaf. First, we show that C(F) is the pushout of its main component
C(Ftf) and a sheaf of generic rank 0. Then we deal with the remaining components,
concluding with Theorem 5.2.1.

In Section 6 we generalize the Hu–Li and Rossi blow-ups to Artin stacks. These
are constructed in Section 6.1, by first applying the Rossi and Hu–Li construc-
tions for schemes to an atlas and then gluing. This works because the Hu–Li and
Rossi constructions are local, they have a universal property and they commute
with flat base-change by Propositions 3.5.3 and 4.2.1. We extend to stacks the
results on the schematic version of these blowups, such as the universal properties
of desingularization in Theorem 6.2.4 and of diagonalization in Theorem 6.2.7.

In Section 7 we use the notion of desingularization of a sheaf on a stack to define
reduced Gromov Witten invariants in all genera: see Definition 7.3.10. In Sec-
tion 7.1 we recall howMg,n(Pr, d) can be naturally embedded as an open substack
in an abelian cone over Pic. In Section 7.2 we recall maps with fields and their
moduli space Mg,n(Pr, d)p; this is an abelian cone over Pic. In Theorem 7.3.4
we show a refinement of Theorem 1.0.4 for maps with fields: after base changing
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the moduli space of maps with fields, we obtain M̃g,n(Pr, d)p whose irreducible

components are vector bundles over their support in P̃ic. In Proposition 7.3.9 we

show that reduced invariants are independent of the birational model P̃ic. In view

of Proposition 7.3.9 many choices of P̃ic are possible. We choose the one which

produces the simplest geometry of M̃g,n(Pr, d)p and thus Theorem 7.3.4 explains
the choices in Definition 7.3.10. We also use maps with fields to give an alternative
definition of reduced Gromov–Witten invariants: see Proposition 7.3.13

In Section 8 we compare the moduli spaces obtained from the Rossi desingular-
ization and the Vakil–Zinger blow-up. While reduced invariants are independent of
the birational model of Pic, the induced moduli spaces can be different. We study

charts of M̃g,n(Pr, d) and we show that Rossi construction in genus one is different
from the Vakil–Zinger blow-up.

How to read this paper. Sections 2–6 are self-contained and of independent
interest. The schematic version of the results in Section 6 are explained in Sections
2–5. The reader interested in reduced Gromov–Witten invariants can take the
results in Section 6 for granted and read Section 7 and Section 8 directly.

Further work. Our desingularizations do not come with a modular interpretation.

It would be nice to have a modular interpretation of the resulting stack M̃g,n(Pr, d),
either in the spirit of [HL10, HLN12, HN19, HN20], or a log interpretation as in
[RSPW19a]. It would be perhaps better to have a space of maps with more singular
domains as in [BCM20, BC23].

While a modular interpretation would be very interesting from a theoretical
point of view, higher genus computations as done by Zinger in [Zin09a] are likely

to be hard. The genus two blow-up M̃g,n(Pr, d) already involves several rounds of
blowups and a localisation computation would inherit the complexity of the blow-
up. We hope that our construction sheds new light on this beautiful problem and
will encourage more mathematicians to work on it.

On the positive side, we expect this construction to be enough for proving Con-
jecture 1.0.3. The main difference with [HL11] is that we blow up Pic, instead of
blowing upMg,n(Pr, d). The advantage of blowing up Pic is that now we have the
ingredients used by Chang–Li, Lee–Oh and Lee–Li–Oh to prove Conjecture 1.0.3
(and therefore Conjecture 1.0.2) in genus one and two. More precisely, we have fairly

simple moduli spaces of maps with fields over P̃ic, and these can be used to split

the virtual class on M̃g,n(Pr, d). We hope to be able to prove Conjecture 1.0.3

without having explicit equations of Mg,n(Pr, d), or a modular interpretation of

P̃ic. We will address this problem in future work.

Acknowledgements. We are very grateful to Evgeny Shinder for useful discus-
sions. The project started after Evgeny Shinder and Ananyo Dan pointed out to us
the paper of Rossi [Ros68]. We thank Francesca Carocci for very useful discussions
and Aleksey Zinger for very useful correspondence and for detailed explanations on
[Zin11].
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2. Background

In this section we recall several basic constructions and fix the notation used
throughout the paper.

2.1. The relative Grassmannian. LetX be a scheme with a fixed quasi-coherent
sheaf E . The Grassmannian functor GrX(E , r) : ((Sch)/X)op → (Set) is given on
objects by

(2) T 7→ {ET ↠ Q |Q is locally free of rank r }

with ET := E ⊗OX
OT .

This functor is represented by a scheme GrX(E , r) over X, which is projective
if E is finitely generated. Moreover, the Grassmannian functor is compatible with
base-change. In particular

GrX(O⊕n
X , r) ∼= Gr(n, r)×X

where Gr(n, r) is the usual Grassmannian of r-dimensional subspaces of Cn relative
to a point. Since it represents a functor, the relative Grassmannian GrX(E , r) comes
with a universal sheaf and a universal quotient sheaf, which is locally free of rank
r:

EGrX(E,r) ↠ QGrX(E,r).

As in the classical case, the relative Grassmannian admits a The Plücker embed-
ding:

λn,r : GrX(O⊕n, r)→ GrX

(
r∧
O⊕n, 1

)
∼= Pm−1

X ,

with m =
(
n
r

)
. For the last isomorphism, consider an X-scheme T . A point of

GrX(O⊕m, 1)(T ) is a surjection

O⊕m
T ↠ L

with L a line bundle on T . This is a pair of a line bundle and an m-tuple of
generating sections, which is an object of Pm−1

X (T ).
When E is not trivial, we have

λn,r : GrX(E , r)→ GrX

(
r∧
E , r

)
∼= PX

(
r∧
E∨
)
.

2.2. Fitting ideals.

Definition 2.2.1. LetM be a finitely presented R-module. Let F
φ−→ G→M → 0

be a presentation with F and G free modules and rk(G) = r. Given −1 ≤ i < ∞,
the i-th Fitting ideal Fi(M) ofM is the ideal generated by all (r−i)×(r−i)-minors
of the matrix associated to φ after fixing basis of F and G. We use the convention
that Fi(M) = R if r − i ≤ 0 and F−1(M) = 0.
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Intrinsically, Fi(M) is the image of the map
∧r−i

F ⊗
∧r−i

G∗ → R induced

by
∧r−i

φ :
∧r−i

F →
∧r−i

G. The i-th Fitting ideal is well-defined in that it
does not depend on the chosen presentation. Since determinants can be computed
expanding by rows and columns, it follows that there are inclusions

0 = F−1(M) ⊂ F0(M) ⊂ F1(M) ⊂ . . . ⊂ Fk(M) ⊂ Fk+1(M) ⊂ . . .

It follows from the definition and right-exactness of tensor product that Fitting
ideals commute with base change. That is, given R → S ring homomorphism and
M a finitely presented R-module, then

Fi(M ⊗R S) = Fi(M) · S.

Similarly, for a scheme X and F a quasi-coherent OX -module of finite presentation,
we have ideal sheaves

0 = F−1(F) ⊂ F0(F) ⊂ · · · ⊂ Fn(F) ⊂ · · · ⊂ OX

which can be defined locally as described above. For f : Y → X a morphism of
schemes, we have

f−1Fi(F) · OY = (f∗(F))tf = Fi(f
∗F).

Fitting ideals describe the locus on X where the sheaf F is locally free of some rank.
More precisely, we recall the following standard result (see for example [Sta22, Tag
05P8]).

Proposition 2.2.2. For any n, the sheaf F is locally free of rank n on the locally
closed subscheme V (Fn−1(F)) \ V (Fn(F)) of X.

2.3. Abelian cones. Let X be a Noetherian scheme.

Definition 2.3.1. A cone over X is a scheme π : A → X with a Gm-action such
that π∗OA =

⊕
d≥0Ad with

(1) OX → A0 isomorphism,
(2) A1 coherent and
(3) SymA1 → A surjective.

If, moreover, SymA1 → A is an isomorphism then we say that π : A → X is an
abelian cone.

Therefore, every cone over X is of the form SpecX(A) for some graded sheaf of
OX -algebras A =

⊕
d≥0Ad with A1 a coherent OX -module and A0 ≃ OX . Here

SpecX denotes the relative spectrum over X. The cone SpecX(A) is abelian if and
only if A ≃ SymA1. We denote by CX(F) = SpecX(Sym (F)) the abelian cone
associated to any coherent sheaf F . We will omit the subscript X in the formation
of relative spectra and cones whenever it is possible to do so without introducing
ambiguity.

Lemma 2.3.2. For a cone π : C = Spec (A)→ X, the following are equivalent:

(1) C is a vector bundle over X,
(2) C is abelian and A1 is locally free over X,
(3) π is flat,
(4) π is smooth.

https://stacks.math.columbia.edu/tag/05P8
https://stacks.math.columbia.edu/tag/05P8
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3. Desingularizations of coherent sheaves

In this section we introduce several constructions which “desingularize” a coher-
ent sheaf F on a base scheme X.

3.1. Definition of desingularizations. We define our notion of desingularization
and prove that it behaves well with composition. This part can be formulated
directly for algebraic stacks instead of schemes, which will be useful later.

Definition 3.1.1. Let F be a coherent sheaf on an algebraic stack X with finitely
many irreducible components. A desingularization of F is a morphism p : X̃ → X
such that

(1) p is birational and proper
(2) (p∗F)tf is a locally free sheaf.

Remark 3.1.2. If X is a scheme and F is an ideal sheaf, the usual blow-up of X
at the closed subscheme defined by F is a desingularization of F.

Lemma 3.1.3. Let X be an integral algebraic stack and F a coherent sheaf on X.

Let p : X̃→ X be a desingularization of F and let q : Y→ X̃ be a proper birational
morphism. Then, the composition p ◦ q : Y→ X is a desingularization of F.

Proof. The composition r := p ◦ q is birational and proper, so all we need to prove
is that (r∗F)tf s locally free. In the following wee show that

(r∗F)tf ≃ q∗((p∗F)tf).

We have a commutative diagram of sheaves on Y

0 // K1
//

��

q∗p∗F //

��

q∗((p∗F)tf) //

��

0

0 // K2
// q∗p∗F // (q∗p∗F)tf // 0

where the map q∗p∗F→ q∗((p∗F)tf) is the pull-back of the surjective map

p∗F→ (p∗F)tf ,

K1 and K2 are the corresponding kernels and the solid vertical map is the identity.
Since the image of the composition K1 → (q∗p∗F)tf is generically zero and X is
irreducible, we have that the morphism K1 → (q∗p∗F)tf is zero. By the universal
property of cokernels this map factors through q∗((p∗F)tf), which gives the right
vertical map in the diagram. The universal property of kernels gives the left vertical
map in the diagram. We have that K1 and K2 are torsion sheaves. Let K3 be the
cokernel of K1 → K2. By the Snake Lemma, we have an exact sequence

0→ K3 → q∗((p∗F)tf)→ (r∗F)tf → 0.

By assumption (p∗F)tf is locally free, so q∗((p∗F)tf) is locally free. Since X is
irreducible and K3 is a torsion sheaf, we get that K3 = 0. This proves the claim. □
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3.2. Rossi’s construction for affine schemes. In the following we describe the
desingularization construction proposed by Rossi in [Ros68], which is very geometric
in nature. It gives a way of desingularizing coherent sheaves on integral Noetherian
schemes by blowing up a certain Fitting ideal. In the following we present Rossi’s
construction in the particular case of affine schemes; a much more general gluing
will be presented in Section 6. Our gluing recovers Rossi’s original construction for
schemes.

We have seen in Lemma 3.1.3 that desingularizations are not unique. The fol-
lowing construction is the minimal one.

Let X = Spec (R) be an integral affine Noetherian scheme and F = M̃ be the
coherent sheaf associated to a coherent R-module M . This is a finitely generated
module such that the kernel of any morphism R⊕n →M is finitely generated. Over
the unique generic point U ⊂ X, F|U is locally-free of rank r. We can define the
generic rank of F :

rk(F) := rk(F|U ) = r.

Since R is affine, we can find for some n a surjective morphism of sheaves

(3) f : O⊕n
X ↠ F .

Restricted to U , f gives a U -point of GrU (O⊕n
U , r), which is a morphism

Γf : U → GrU (O⊕n
U , r)

such that the composition of Γf with the structure map Gr(O⊕n
U , r) → U is idU .

Moreover, under this isomorphism, the locally-free sheaf F|U is identified with the
restriction to Γf (U) of the universal quotient sheaf QGrU (O⊕n

U ,r). This is automatic

from the description of the relative Grassmannian as the fine moduli scheme of the
functor in (2).

By compatibility of the relative Grassmannian with base-change we have an open
embedding GrU (O⊕n

U , r) ⊂ GrX(O⊕n
X , r). We give the following definition.

Definition 3.2.1. The blow-up of X at the coherent sheaf F is

BlF (X) = Γf (U)

the closure of Γf (U) in GrX(O⊕n
X , r) with the reduced induced structure.

Proposition 3.2.2. [cf. [Ros68, Theorem 3.5]] The blow-up BlF (X) above is well-
defined. Moreover,

p : BlF (X)→ X

is a projective birational morphism such that the torsion-free part of p∗F ,

(p∗F)tf = p∗F/Tors(p∗F)

is locally-free of rank r. That is, p is a desingularization of F .

Proof. Observe that p : BlF (X)→ X is a projective morphism, since GrX(O⊕n
X , r)

is a projective variety. It is also clear by construction that

Γf (U) BlF (X)

U X

∼= p
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is Cartesian, in particular p is birational. The claim that (p∗F)tf is locally-free of
rank r follows from the fact that it is just the restriction of the universal quotient
bundle on the Grassmannian:

(p∗F)tf = QGrX(O⊕n
X ,r)|BlF (X).

To check that the above is well-defined, we need to check that it is independent
of the choice of f, n in equation (3). Indeed, suppose we have another surjection

f ′ : O⊕n′

X ↠ F .

We obtain

Γf ′ : U → Gr(O⊕n′

U , r) ⊂ Gr(O⊕n′

X , r).

We can form

g = (f, f ′) : O⊕(n+n′)
X ↠ F .

Projecting onto the first n coordinates by h gives a commutative diagram

O⊕(n+n′)
X F

O⊕n
X .

g

h f

The morphism h induces a morphism h̃ of Grassmannians such that the following
diagram commutes

U GrX(O⊕n
X , r)

GrX(O⊕(n+n′)
X , r).

Γf

Γg h̃

Moreover, h̃ is an isomorphism onto its image. Then h̃ induces an isomorphism on
the closures of Γf (U) and Γg(U). Similarly, we have an isomorphism between the

closures of Γf ′(U) and Γg(U). So we obtain an isomorphism Γf (U) ∼= Γf ′(U) as
required. □

Proposition 3.2.3. Let L be a line bundle on X. Then we have a unique isomor-
phism

BlF (X)
∃!ϕ̃

//

p
##

BlF⊗L(X)

q
zz

X

which makes the diagram commute.

Proof. Let f : O⊕n
X → F be a surjective morphism, let S denote the kernel of f

and let U an open subset of X such that S is a vector bundle. We thus obtain a
short exact sequence

0→ S ⊗ L|U → O⊕n
U ⊗ L|U

f⊗id→ F ⊗L|U → 0.
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By possibly shrinking U we may assume we have an isomorphism g : L|U ≃ OU .
We thus obtain a commutative diagram

Γf //

��

GrX(O⊕n
X , r)

��

Γf⊗id // GrX(O⊕n
X , r)

where the right vertical arrow is induced by g. This guves a morphism ϕ̃ : Γf →
Γf⊗id and proves the claim. □

Example 3.2.4. The following example is simple, but it captures much of the essence
of Rossi’s construction. We present it with full details.

Let R = k[x, y] and let I = (x, y) be the ideal of the origin. The sheaf F = Ĩ
on A2 = Spec (R) is torsion-free but not locally free. Since F is an ideal sheaf,
BlFA2 = Bl0A2 is just the usual blow up of A2 along the origin. Let p : Bl0A2 → A2

be the natural projection. Then p∗F is not torsion-free, but (p∗F)tf is a line bundle.
To see that, we start with the following resolution of F .

0 R R⊕R I 0.

−y

x

 (
x y

)

Pulling back along p, we obtain a presentation of p∗F :

OBl0A2 OBl0A2 ⊕OBl0A2 p∗F 0.

−ey′

ex′

 (
ex′ ey′

)

Here e is a local coordinate for the exceptional divisor E ⊆ Bl0A2 and x′ and y′

correspond to the strict transforms of x and y. This induces a commutative diagram

0 Coker(e)

0 OBl0A2 OBl0A2(E) Coker(e) 0

0 OBl0A2 ⊕OBl0A2 OBl0A2 ⊕OBl0A2 0 0

p∗F Coker(y′,−x′)t 0

id

·e−ey′

ex′

  y′

−x′


id

(
x′e y′e

)

Applying the snake lemma and using that Coker(e) ≃ OE(E) and that Coker(y′,−x′)
is the ideal sheaf generated by x′ and y′, we get a short exact sequence

0→ OE(E)→ p∗F → (x′, y′)→ 0.

It follows that tor(p∗F) ≃ OE(E) and (p∗F)tf ≃ (x′, y′). In particular, p∗F is not
torsion-free.

We can also describe the geometry of the abelian cones Spec SymF and Spec Sym (p∗F).
We have

πF : Spec SymF = Spec (R[X,Y ]/(xY − yX))→ A2,
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which is irreducible and singular.
Next we describe Spec Sym (p∗F). Let S = k[x, y, x′, y′]/(xy′ − yx′) where the

variables x′, y′ are have degree 1 and x, y have degree 0. Then

Bl0A2 = Proj(k[x, y, x′, y′]/(xy′ − yx′)).
A local equation for E is given by e = x/x′ or e = y/y′, depending on the chosen
chart. Then

πp∗F : Spec Sym (p∗F) = SpecS[X,Y ]/(e(x′Y − y′X))→ Bl0A2

is reducible. It has two components:

πp∗F,main : Cmain = V (x′Y − y′X)→ Bl0A2,

πp∗F,tor : Ctor = V (e)→ Bl0A2.

The main component Cmain equals Spec Sym (p∗F)tf and it is a vector bundle of
rank 1. Meanwhile, Ctor corresponds to tor(F), it is supported over E and it is a
vector bundle of rank 2 over its support.

3.3. Villamayor’s construction. We now review an algebraic construction of
Villamayor. In Section 3.4 we show that this is equivalent to Rossi’s construction.

Fitting ideals (see Section 2.2) are related to ranks of modules and flatness.
Indeed, the local rank of M at a prime ideal P of R is k if and only if F−1(M) ⊆
F0(M) ⊆ . . . ⊆ Fk−1(M) ⊆ P but Fk(M) ̸⊂ P . As a corollary, if R is a domain
then the generic rank of M is k if and only if Fk(M) is the first non-zero Fitting
ideal, and moreover M is flat if and only if it is free, if and only if Fk(M) = R.

The relationship between Fitting ideals and local freeness of the torsion-free part
comes from Lipman’s theorem.

Theorem 3.3.1 (cf. [Lip69, Lemma 1]). Let R be a local ring. Given a finitely
presented module M and a non-negative integer r, the following are equivalent:

(1) F0(M) = . . . = Fr−1(M) = 0 and Fr(M) is invertible.
(2) M has projective dimension at most one and M/tor(M) is free of rank r.

It follows from theorem 3.3.1 that blowing up the first non-trivial Fitting ideal
of M will make (p∗M)tf locally free (with p the blow-up morphism). However,
it is possible that M tf is already locally free on SpecR even though its first non-
trivial Fitting ideal is not principal, see remark 3.3.5. In order to find a minimal
transformation of Spec (R) on which M tf is locally free, Villamayor proposes in
[Vil06] the following construction.

Construction 3.3.2 ([Vil06, Remark 2.1]). Let R be a domain and let M be a
finitely presented R-module or rank r. Choose generators m1, . . . ,mN forM . Then
there is a short exact sequence

0→ P → RN →M → 0.

SinceM has rank r, there are elements p1, . . . , pN−r in P which induce a morphism
RN−r → RN of rank N − r. Let P1 ≃ RN−r be the free module generated by
p1, . . . , pN−r and let M1 = RN/P1, that is, the following is exact

0→ P1 → RN →M1 → 0.

Then M1 has projective dimension at most 1, rk(M1) = rk(M), there is a natural
surjection M1 →M and M1/tor(M) =M/tor(M).
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Given a finitely presented module M of generic rank r over a domain R with
fraction field K, define its norm to be the fractional ideal

(4) JMK = Im(

r∧
M → K ≃

r∧
M ⊗R K).

Then Fr(M1) and JMK are isomorphic fractional ideals overR by [Vil06, Proposition
2.5], in particular the isomorphism class of Fr(M1) as a fractional ideal does not
depend on the choices made in construction 3.3.2. Note that any fractional ideal of
R is isomorphic to an ideal of R and that given two ideals I, J which are isomorphic
as fractional ideals, the blow-ups of Spec (R) along I and J are naturally isomorphic.

The same ideas apply to any (Noetherian) ring R if we restrict to finitely pre-
sented R-modules M such that M ⊗R Q(R) is a free Q(R)-module, where Q(R) is
the total quotient ring of R.

Definition 3.3.3. Let R be Noetherian. An R-module M is generically flat of
generic rank r if M ⊗R Q(R) ≃ Q(R)r.

Theorem 3.3.4. [Universal property of blow-up, affine case, [Vil06, Theorem 3.3]]
Let R be a Noetherian ring, let M be a finitely presented R-module generically flat
of generic rank r (in the sense of definition 3.3.3) and let X = Spec (R). There is
a blow-up p : BlMX → X satisfying the following universal property:

(1) The sheaf p∗M/tor(p∗M) is locally free of rank r on BlMX and
(2) for any morphism q : Y → X from an affine scheme Y for which q∗M/tor(q∗M)

is locally free of rank r on Y , there is a unique morphism q′ : Y → BlMX
such that p ◦ q′ = q.

Proof. The fractional ideal JMK is isomorphic to some ideal I of R. Let BlMX =
BlIX be the blowup of X along I, which is independent of the choice of I. Since
q∗M/tor(q∗M) = q∗M1/tor(q

∗M1) for any morphism q : Y → X, we can replace
M by M1, which has projective dimension at most one. Conclude by theorem 3.3.1
and the universal property of (the usual) blow-up. □

Remark 3.3.5. In general, BlMX is not obtained by blowing up the first non-zero
Fitting ideal of M . Indeed, let I ⊂ R be an ideal and M = R/I. On the one hand,
M tf = 0 is locally free of rank 0, which is the rank of M , so BlMX = X. On the
other hand, the first non-zero Fitting ideal of M is F0(M) = I, so BlF0(M)X =
BlMX if and only if I is principal.

However, if M has generic rank r and projective dimension ≤ 1, then BlMX =
BlFr(M)X.

3.4. Equivalence of the two constructions. We find it useful here to give a
constructive comparison of the two approaches, which we find clarifies both.

Proposition 3.4.1. Equivalence of Rossi–Villamayor constructions Let X = Spec(R)

be an affine, integral Noetherian scheme and F = M̃ be a coherent sheaf:

BlFX = BlMX.

The first is defined in definition 3.2.1 and the second in theorem 3.3.4.

Remark 3.4.2. Note that both constructions involve some choice, so they only
define a blow-up up to isomorphism. The choice made in both constructions is
that of an ordered finite generating set for M . We will show that different choices
produce canonically isomorphic constructions.
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The first observation, is that both constructions only depend on
∧r

M , where r
is the generic rank. We suppose here that r ̸= 0. Otherwise, the sheaf is already
locally free up to torsion, so no blow-ups are necessary.

Lemma 3.4.3. Let X, M as above and r = rkM > 0, we have canonical isomor-
phisms

(5) BlFX = Bl∧r FX

and

(6) BlMX = Bl∧r MX.

Proof. For (5), fix a surjection f : O⊕n
X ↠ F . Then ∧rf :

∧rO⊕n
X ↠

∧r F defines
an embedding

Γ∧rf : U → Pm−1
U ⊂ Pm−1

X

of the generic open, where m =
(
n
r

)
. With the definition of the Plücker embedding

from section 2.1, we have the following commutative diagram

U GrX(O⊕n, r)

Pm−1
X .

Γf

Γ∧rf
λn,r

Since λn,r is a closed embedding, it commutes with taking closures. Hence, it gives
the required isomorphism.

For (6), recall the definition of the norm (4):

JMK = Im(

r∧
M →

r∧
M ⊗R K ∼= K).

From this, it is clear that the Villamayor blow-up only depends on the top exterior
power of M . Given a generating set f1, . . . fn of M , the choice of the isomorphism∧r

M ⊗R K ∼= K is given by picking a non-zero element of
∧r

M ⊗R K, which
we can set as f1 ∧ · · · ∧ fr. To obtain an ideal of R isomorphic to the fractional
ideal JMK, we clear denominators of the image in K of the other r-wedges of the
generators by b ∈ R. This gives

BlMX = BlbJMKX ⊂ Pm−1
X .

Other choices of b will give a canonically isomorphic blow-up. □

So we reduced to F of rank 1. We can further reduce to the case of ideal sheaves.

Lemma 3.4.4. Let M be a rank 1 module over R, then we can always choose an
ideal I such that

BlMX = BlIX

Proof. Choose I ∼= JMK. Or, to spell this out, we can see that the image of M
in M ⊗R K(R) is a torsion-free rank 1 R-submodule of K(R). Since it is finitely
generated, we can clear denominators and obtain an ideal I ⊂ R isomorphic to this
image. □

For the Rossi construction, we reduce from rank 1 sheaves to ideal sheaves using
the following lemma.
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Lemma 3.4.5. Let F and X as in proposition 3.4.1. If F has rank 1, then there
is an ideal sheaf I on X such that

BlFX = BlIX.

Proof. Let K = K̃(R). Since BlFX only depends on F |U and since F and F tf are
isomorphic over U , we can assume that F is torsion-free. In that case, arguing as
in the proof of lemma 3.4.4, we can replace F by its image in F ⊗OX

K ≃ K and
we can find a section g of K such that g · F ≃ I is an ideal sheaf.

Remember that BlFX = Γg(U) where Γg : U → Pn−1
U is induced by a surjection

f : O⊕n
X ↠ F . Since g determines a section of OX over U , we have another

surjection

g |U ·f |U : O⊕n
U ↠ I.

By construction, Γg·f = Γf , therefore BlFX = BlIX follows. □

Lemma 3.4.6. Let X an affine integral and noetherian scheme and let F = Ĩ be
an ideal sheaf. Then

BlFX = BlIX.

Proof. The right-hand side is the Villamayor blow-up of JIK. As fractional ideals
JIK = I, so BlIX is the usual blow-up of X along the ideal I. The left-hand side
is the closure of the graph Γf : U → Pn−1

U inside Pn−1
X where f : O⊕n

X → F → 0 is
a choice of generators of the ideal sheaf F and U is the generic point of X. The
lemma follows from the standard fact that the usual blow-up can be obtained as
closure of a graph in projective space, see [EH99, Proposition IV-22]. □

3.5. Properties. We collect some properties of the blow-up BlFX constructed in
proposition 3.2.2. Next result is reformulation of theorem 3.3.4 in geometric terms.

Theorem 3.5.1 (Universal property of blowing up: affine version). Let X be an
affine Noetherian integral scheme and F be a coherent sheaf of generic rank r. The
blow-up p : BlFX → X from definition 3.2.1 satisfies

(1) (p∗F)tf = p∗F/tor(p∗F) is locally free of rank r on BlFX and
(2) for any morphism f : Y → X from an affine scheme Y for which f∗M/tor(f∗M)

is locally free of rank r on Y , there is a unique morphism f ′ : Y → BlFX
such that p ◦ f ′ = f .

Y BlF (X)

X

f

∃!f ′

p

The construction of section 3.2 glues to a definition of BlF (X) on a reduced,
irreducible, locally Noetherian scheme X. Moreover, BlFX inherits the universal
property in theorem 3.5.1, since in view of the uniqueness the question is local on
X.

Corollary 3.5.2 (Universal property of blowing up). Let X be a Noetherian in-
tegral scheme and F be a coherent sheaf of generic rank r. There exists a blow-up
p : BlFX → X which satisfies

(1) The sheaf (p∗F)tf = p∗F/tor(p∗F) is locally free of rank r on BlFX and
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(2) for any morphism f : Y → X from an scheme Y for which f∗M/tor(f∗M)
is locally free of rank r on Y , there is a unique morphism f ′ : Y → BlFX
such that p ◦ f ′ = f .

Y BlF (X)

X

f

∃!f ′

p

Proposition 3.5.3. Let f : Y → X be a morphism of Noetherian integral schemes
and let F be a coherent sheaf on X of generic rank r. If f∗F has generic rank r
then there is a unique morphism

Blf∗F (Y ) BlF (X)

Y X

∃!f̃

f

making the diagram commute. If, moreover, f is flat, then the square is Cartesian.

Proof. A unique morphism f̃ making the diagram commute exists by the universal
property of BlF (X), which is corollary 3.5.2. To show that the diagram is Cartesian,
we use [Sta22, Lemma 0805], which is the analogous result for blow-ups along ideal
sheaves. This requires checking that f−1JFK · OY = Jf∗FK, which holds since F
and f∗F have the same rank and the norm J·K is a determinantal ideal.

Indeed, we can work locally. Then we have X = Spec (A), Y = Spec (B), a ring

homomorphism f# : A→ B and F = M̃ for some finitely presented A-module M .
To compute JFK, we take a presentation

Am An M 0,Γ

we choose a submatrix Γ′ of Γ consisting of n − r columns of Γ and then JFK is
represented by the ideal generated by all the minors ∆i(Γ

′) of size (n− r)× (n− r)
of Γ′. The choice of Γ′ must be so that this ideal is non-zero and such a choice exists
because rk(F) = r. Then f−1JFK ·B is the ideal in B generated by f#(∆i(Γ

′)) for
all i. On the other hand, tensoring by ⊗AB we get a presentation

Bm Bn M ⊗A B 0.
f∗Γ

Since f∗F = M̃ ⊗A B and since rk(f∗F) = r, we can compute Jf∗FK in the
same manner, i.e., taking all the minors of size (n − r) × (n − r) of a submatrix
(f∗Γ)′′ consisting of n− r columns of f∗Γ. This means that Jf∗FK is generated by
∆i((f

#Γ)′′). We can actually choose Γ′ and (f∗Γ)′′ so that they consist of the same
columns, and in that case we are done because f# is a ring homomorphism. □

Proposition 3.5.4. Let X be a noetherian integral scheme and E, F ,G be coherent
OX-modules. Assume that we have an exact sequence 0→ E → F → G → 0.

(1) If the sequence is locally split and E is locally free, then there is an isomor-
phism BlFX ≃ BlGX.

(2) If G is locally free, then there is an isomorphism BlFX ≃ BlEX.
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Proof. It is enough to prove the statement locally, so we may assume that we have
F ≃ E ⊕ G. With this, we have that

(7) ∧topF = ∧topE ⊗ ∧topG.

By Lemma 3.4.3 we have that BlGX ≃ Bl∧topGX and BlFX ≃ Bl∧topFX ≃
Bl∧topE⊗∧topGX using eq. (7). Suppose now that E is locally free, then ∧topE is a
line bundle and we conclude that BlFX ≃ BlGX by proposition 3.2.3.

If G is locally free, the sequence is locally split and a similar argument to the
one above shows that BlFX ≃ BlEX. □

Remark 3.5.5. In general, BlFX is not isomorphic to BlF∨X. For example let
X be a normal scheme and F an ideal sheaf. Then F∨ is reflexive and it has rank
one, so it is an invertible sheaf. This shows that BlF∨X ≃ X. If F is not locally
free (see e.g. example 3.2.4), then we have BlFX ̸= X.

4. Diagonalization

The diagonalization process of a morphism φ : E → F of locally free sheaves on
a scheme X is introduced by Hu and Li in [HL11]. The process requires to blow up
the Fitting ideals of the morphism φ, and doing so desingularizes the kernel and
cokernel of φ. Applied to the moduli space of maps, this construction can be used
to desingularize all the components ofMg,n(Pr, d). We summarize the construction
and its universal property and explore the possibility of finding a minimal blowup
which also desingularizes all the components of Mg,n(Pr, d). In this section all
schemes are assumed to be Noetherian.

4.1. Construction of the Hu–Li blow up.

Definition 4.1.1 (Diagonalizable morphism [HL11, Definition 3.2]). Let X be a

scheme. A morphism φ : O⊕p
X → O⊕q

X is diagonalizable if there are direct sum
decompositions by trivial sheaves

(8) O⊕p
X = G0 ⊕

ℓ⊕
i=1

Gi and O⊕q
X = H0 ⊕

ℓ⊕
i=1

Hi

with φ(Gi) ⊆ Hi for 0 ≤ i ≤ ℓ such that

(1) φ |G0
= 0;

(2) for every 1 ≤ i ≤ ℓ, there is an isomorphism Ii : Gi → Hi;
(3) the morphism φ |Gi : Gi → Hi is given by fiIi for some 0 ̸= fi ∈ Γ(OX);
(4) (fi+1) ⫋ (fi).

More generally, a morphism φ : E1 → E2 of locally free sheaves on X is locally
diagonalizable ifX admits an open cover which trivializes E1 and E2 simultaneously
and on which φ is diagonalizable.

We will be interested in the coherent sheaves arising as kernels and cokernels of
such diagonalizable morphisms.

Proposition 4.1.2. Let X be a Noetherian integral scheme and let φ : E1 → E2 be
a locally diagonalizable morphism between locally free sheaves on X. Then ker(φ)
is locally free.
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Proof. The question is local, so we can assume that E1 = O⊕p
X and E2 = O⊕q

X , and
that they admit decompositions as in eq. (8). Then ker(φ) = G0 is free.

□

Definition 4.1.3. (1) We say that a coherent sheaf F on a scheme X is diag-
onal if all of the Fitting ideal sheaves Fi(F) are locally principal.

(2) Given a scheme X and a coherent sheaf F , a diagonalization of F is a

morphism f : X̃ → X such that f∗F is diagonal.
(3) Given a scheme X and a morphism of locally-free sheaves φ : E1 → E2,

a diagonalization of φ is a morphism f : X̃ → X such that f∗φ is locally
diagonalizable and rk(Coker(φ)) = rk(f∗Coker(φ)).

The two definitions are closely related, which justifies the choice of terminology.

Proposition 4.1.4. A morphism φ : E1 → E2 of locally free sheaves is locally
diagonalizable if and only if the coherent sheaf Coker(φ) is diagonal.

Proof. This result is contained in the proof of [HL11, Proposition 3.13]. Observe
that the Fitting ideals Fi(F) are just the determinantal ideals ∆(q−i)×(q−i)(φ),
where q = rk(E2). If φ is locally diagonalizable, take an open where it is of the
form (8). Then the Fitting ideals of F are generated by products of the fi’s, so are
principal in this open.

On the other hand, if F is diagonal, we can cover X by affine opens where all
Fi(F) are principal and where the Ei’s are simultaneously trivialized. We quickly
sketch how [HL11, Proposition 3.13] produces a decomposition as in (8), by possibly
further restricting. The morphism φ is given by

Γ = (ai,j)

i ∈ {1, . . . , p}, j ∈ {1, . . . , q}. The Fitting ideal Fq−1(F) = ∆1×1(Γ) is principal if
and only if, after further localization, there is an entry ai0,j0 which divides every
other entry ai,j . In that case, one can perform row and column operations to put
Γ in the following form 

ai0,j0 0 . . . 0
0
... Γ′

0


with Γ′ a matrix of smaller size. The same argument works recursively since the
remaining Fitting ideals of F and those of Γ′ differ by the principal ideal (ai0,j0). □

Remark 4.1.5. From proposition 4.1.4, we see that diagonalizing a coherent sheaf
F is equivalent to diagonalizing any presentation E1 → E2 ↠ F by locally free
sheaves.

Remark 4.1.6. If φ : E1 → E2 is a locally diagonalizable morphism on a scheme
X, and f : Y → X is any morphism of Noetherian schemes, f∗φ is locally diago-
nalizable.

Similarly, if F is diagonal, f∗F is diagonal.
Note that the generic ranks of F and f∗F will be different in general for non-

dominant morphisms.
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We give below a procedure which associates to X and F a diagonalization π :
BlHLF X → X. We will show in theorem 4.1.16 that this is the minimal morphism
which diagonalizes F .

Definition 4.1.7 (Maximal rank). Let X be an integral Noetherian scheme and
F a coherent sheaf of generic rank r. The maximal rank mrk(F) is

mrk(F) = max
p∈X
{rk(F|p)} ≥ r

which is the maximum rank of F when restricted to a closed point of p ∈ X. Equiva-
lently, mrk(F) is such that the Fitting ideals Fmrk(F)(F) is OX and Fmrk(F)−1(F) ̸=
OX , with the convention that F−1(F) = 0.

Remark 4.1.8. The above mrk(F) is finite. Indeed, the ascending chain condition
on the Fitting ideals

F−1(F) ⊂ F0(F) ⊂ · · · ⊂ Fn(F)
guarantees that there is some mrk(F) such that Fmrk(F)(F) = Fmrk(F)+1(F) = . . . .

Moreover, for any affine open U ⊂ X, the ascending chain of Fitting ideals

stabilizes at OU , since F|U = M̃ for a finitely generated module M . So the chain
above must stabilize at OX .

Remark 4.1.9. There is a closed point q ∈ X such that rk(F|q) = mrk(F), and
such that we have a resolution

O⊕p
q → O⊕mrk(F)

q → F|q → 0.

However, F may not be generated globally by mrk(F) sections. Indeed, it may not
be globally generated at all!

Construction 4.1.10 (Hu–Li blow-up). Let X be an integral Noetherian scheme
and F a coherent sheaf of general rank r and maximal rank r2. Recall from sec-
tion 3.3 that the Fitting ideals of F satisfy a chain of inclusions F−1(F) ⊆ F0(F) ⊆
. . ., that Fr2(F) = OX and that F0(F) = . . . = Fr−1(F) = 0 because F has rank
r.

Let
BlHLF X = BlFr(F)·...·Fr2−1(F)X.

By [Sta22, Lemma 080A], BlHLF X can also be constructed by successively blowing
up X along (the total transforms of) the Fitting ideals of F , that is

BlHLF X = Xr . . . Xr2−2 Xr2−1 X
pr pr2−2 pr2−1

where

• Xr2−1 = BlFr2−1(F)X,
• Xr2−2 = BlFr2−2(p∗r2−1F)Xr2−1 = Blp−1

r2−1Fr2−2(F)OXr2−1
Xr2−1 and

• Xi = BlFi(p∗i p
∗
i+1...p

∗
r2−1F)Xi+1 for all i with r ≤ i ≤ r2 − 2.

Each pi is the natural morphism coming from the blow-up construction and we
denote by p the composition pr2−1 ◦ . . . ◦ pr.

The following two lemmas explain how, after applying the diagonalization con-
struction, a diagonal coherent sheaf F has an increasing filtration F• with all the
quotients Fi/Fi−1 being vector bundles over some locally principal closed sub-
scheme (i.e. a Cartier divisor).
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Lemma 4.1.11 (c.f.[Sta22, Tag 0EST]). Let F be a diagonal coherent sheaf of
generic rank r and tor-dimension ≤ 1 on a Noetherian integral scheme X. Then
there is a short exact sequence

0→ K → F → F tf → 0

where F tf is locally free of rank r on X and K is a coherent sheaf of generic rank
0 and tor-dimension ≤ 1.

Proof. Locally, we have a moduleM over a ring R with Fr(M) = (f), Fr−1(M) = 0.

Then the statement follows with K corresponding to the module ker{M f−→M} by
[Sta22, Tag 0F7M]. □

Lemma 4.1.12 (c.f. [Sta22, Tag 0ESU]). Let F be a diagonal coherent sheaf of
generic rank zero, mrk(F) = n, and tor dimension ≤ 1 on an integral scheme X.
Then there is an increasing filtration, denote by F•,

F = Fn ⊃ Fn−1 ⊃ · · · ⊃ F0 = 0

and effective Cartier divisors Di such that for each i,

Fi/Fi−1

is locally free of rank i on the closed locally principal subscheme defined by Di. The
associated graded to this filtration is

E =
⊕
i

Ei

where Ei = Fi/Fi−1 is a vector bundle supported on a subscheme.

Proof. Our formulation differs from the one in the reference, so we present the
construction of the filtration in our context. We can work locally and assume that
F has a presentation which is diagonalizable in the sense of Definition 4.1.1 that is
φ : O⊕n

X → O⊕n
X where φ is the diagonal matrix

φ = Diag

 n1︷ ︸︸ ︷
f1, . . . , f1,

n2︷ ︸︸ ︷
f2, . . . , f2, . . . ,

nk︷ ︸︸ ︷
fk, . . . , fk


with n1 + · · ·+ nk = n and non-zero fi’s satisfying (fi+1) ⫋ (fi). Note that locally
F may not attain its maximal rank n, but we can always choose f1 to be a unit to
obtain a presentation of the correct rank.

Note that we have to assume that the tor dimension of F is ≤ 1 to ensure we
can obtain a presentation by a square matrix φ.

Since we are working over a domain, (fi+1) ⫋ (fi) is equivalent to fi|fi+1. We
can define effective Cartier divisors D1, . . . , Dn by taking ratios of successive entries
of φ:

Dn = Fn−1 = (f1)

Di =

(
φn−i+1,n−i+1

φn−i,n−i

)
.

In other words, Di is the ideal generated by the ratio of the entries in position
n − i + 1 and n − i in φ. Note that, while the generators of the ideals are only
well-defined up to a unit, the ideals themselves are well-defined and do not depend
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on the chosen presentation of φ. In fact, they can be expressed as differences of the
Fitting ideals of F , which are independent of the chosen presentation.

The divisors Di give closed locally principal subschemes of X, which are defined

by (fk+1/fk) if i = n−
∑k
j=1 nk and are empty otherwise.

We define the increasing filtration of F• as follows. We set Fn := F , and define
Fn−1 as the cokernel of the morphism φ′ := φ/f1. That is,

(9)

0 0 (OX/(f1))⊕n Fn/Fn−1 0

0 O⊕n
X O⊕n

X Fn 0

0 O⊕n
X O⊕n

X Fn−1 0.

∼

φ

φ′

id f1·id

As OD1 = OX/(f1), the graded piece Fn/Fn−1 is locally free of rank n on Dn.
Now, φ′ can be given by the diagonal matrix

φ′ = Diag

 n1︷ ︸︸ ︷
1, . . . , 1,

n2︷ ︸︸ ︷
f2/f1, . . . , f2/f1, . . . ,

nk︷ ︸︸ ︷
fk/f1, . . . , fk/f1

 .

We can pass to φ′′ : O⊕n−1
X → O⊕n−1

X by removing the first entry. Clearly, Fn−1 =
Cokerφ′′. Then we can iterate the construction in (9), factoring our multiplication
by the first entry φ′′

1 of φ′′

0 0 (OX/(φ′′
1))

⊕n−1 Fn−1/Fn−2 0

0 O⊕n−1
X O⊕n−1

X Fn−1 0

0 O⊕n−1
X O⊕n−1

X Fn−2 0.

∼

φ′′

φ′′′

id φ′′
1 ·id

This defines the next subsheaf Fn−2 in the filtration and the new morphism φ′′′.
If n1 > 1, (φ′′

1) = (1), so we will have Fn−2 = Fn−1 and Dn−1 defining the empty
subscheme. Note that the sub-schemes defined byDn−1, . . . , Dn−n1+1 are all empty,
and the filtration is constant until Fn−n1−1, which is the cokernel of

O⊕n−n1

X

ψ−−→ O⊕n−n1

X

with

ψ = Diag

 n2︷ ︸︸ ︷
1, . . . , 1,

n3︷ ︸︸ ︷
f3/f2, . . . , f3/f2, . . . ,

nk︷ ︸︸ ︷
fk/f2, . . . , fk/f2


and Dn−n1

= (f1/f2). Iterating this construction clearly provides a filtration and
a collection of effective divisors which satisfy the claims in the lemma.

The divisors Di are defined globally in terms of Fitting ideals, and do not depend
on the local expression of the matrix. In fact, unpacking the argument above we
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can check that

 F0

...
Fn−1

 =



1 2 · · · n− 1 n
1 2 · · · n− 1

. . .
. . .

...

1 2
1


D1

...
Dn

 .

Then,

(10)

D1

...
Dn

 =


1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

1


 F0

...
Fn−1

 .

□

Example 4.1.13. Take R = C[x, y, z], X = SpecR. Let F = M̃ be the diagonal
sheaf defined by

0→ R⊕4

φ=


x 0 0 0
0 x 0 0
0 0 xy 0
0 0 0 xyz


−−−−−−−−−−−−−−−−−→ R⊕4 →M → 0.

The divisors from the statement of lemma 4.1.12 are given by the ideals

D4 = (x)

D3 = (1)

D2 = (y)

D1 = (z).

Now, all the elements of φ are divisible by D4, which is the ideal generated by
the first entry. We set F4 = F . To obtain the next step in the filtration, F3, we
consider the decomposition φ = x · φ′ below

0 R⊕4 R⊕4 M 0

0 R⊕4 R⊕4 M3 0

φ

φ′

id x·id

we set F3 = M̃3, the module defined by

φ′ =


1 0 0 0
0 1 0 0
0 0 y 0
0 0 0 yz


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or equivalently as the cokernel of

R⊕3

φ′=


1 0 0
0 y 0
0 0 yz


−−−−−−−−−−−−→ R⊕3.

Similarly, F2 = M̃2 will be defined by

0→ R⊕2

y 0
0 yz


−−−−−−−→ R⊕2 →M2 → 0

and F1 = M̃1 by

0→ R
(z)−−→ R→M1 → 0.

Finally, M0 = 0. In conclusion, we obtain the filtration

M =M4 = (R/(x))⊕2 ⊕R/(xy)⊕R/(xyz)


0 0
0 0
x 0
0 x


←−−−−−−↩ M3 = R/(y)⊕R/(yz) ∼=

∼=M2 = R/(y)⊕R/(yz)

(
0 y

)
←−−−−−↩ M1 = R/(z)← 0 =M0.

The graded pieces are

E4 = F4/F3 = ˜(R/(x))
⊕4

E3 = F3/F2 = 0

E2 = F2/F1 = ˜(R/(y))
⊕2

E1 = R̃/(z)

and each of the Ei is locally free of rank i on the subscheme defined by Di. Note
that for i = 3, such subscheme is empty.

Theorem 4.1.14. Let F be a diagonal coherent sheaf of generic rank r, maximal
rank r2 and tor-dimension ≤ 1 on a Noetherian integral scheme X. Then we have
a filtration

F ⊃ K = Kr2−r ⊃ Kr2−r−1 ⊃ · · · ⊃ K0 = 0

such that

F tf = F/K
is locally free of rank r and

Ei = Ki/Ki−1

is locally free of rank i on the effective Cartier divisor Di.

Proof. Immediate by lemma 4.1.11 and lemma 4.1.12.
□

We are now ready to state the minimality properties for the construction 4.1.10.
We can can formulate a universal property for the morphism φ, or in light of
remark 4.1.5 we can formulate it to only depend on the cokernel sheaf F .
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Theorem 4.1.15 (Universal property of diagonalization [HL11]). Let φ : E1 → E2

be a morphism of locally-free sheaves on a Noetherian integral scheme X. Let
F = Coker(φ). Define BlHLF X as in construction 4.1.10.

The natural projection q : BlHLF X → X is a diagonalization of φ. Moreover q
satisfies the following universal property: for any morphism f : Y → X such that
f∗φ is locally diagonalizable and rk(f∗F) = rk(F), there is a unique morphism

f ′ : Y → BlHLF X factoring f .

Y BlHLF X

X

f

∃!f ′

p

Theorem 4.1.16 (Universal property of BlHLF X [HL11]). Let X be a noether-
ian integral scheme and F a coherent sheaf on X of generic rank r. The natural
projection p : BlHLF X → X satisfies that

(1) the sheaf p∗F has generic rank r and
(2) the Fitting ideal Fi(p

∗F) is locally principal for all i.

Moreover, p : BlHLF X → X satisfies the following universal property: for any mor-
phism f : Y → X of Noetherian integral schemes such that

(1) the sheaf f∗F has generic rank r and
(2) the Fitting ideal Fi(f

∗F) is locally principal for all i,

there is a unique morphism f ′ : Y → BlHLF X factoring f .

Y BlHLF X

X

f

∃!f ′

p

4.2. Properties of the Hu–Li blow up. We collect properties of BlHLF X.

Proposition 4.2.1. Let f : Y → X be a morphism of Noetherian integral schemes
and let F be a coherent sheaf on X of generic rank r. If f∗F has generic rank r
then there is a unique morphism

BlHLf∗FY BlHLF X

Y X

∃!f̃

f

making the diagram commute.
If, moreover, f is flat, then the square is Cartesian.

Proof. A unique morphism f̃ making the diagram commute exists by the universal
property theorem 4.1.15. To see that diagram is Cartesian we apply [Sta22, Lemma

0805] to each of the blow-ups defining BlHLF X, using that the formation of Fitting
ideals is compatible with pullbacks. □
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Proposition 4.2.2. Let X be a noetherian integral scheme, let F a coherent sheaf
on X and let L be a line bundle on X. Then there is a unique isomorphism

BlHLF (X)
∃!ϕ̃

//

p
##

BlHLF⊗L(X)

q
zz

X

which makes the diagram commute.

Proof. By theorem 4.1.16, a unique factorization ϕ̃ of p through q exists if and
only if Fi(p

∗(F ⊗ L)) is locally principal for all i, and this holds because Fi(p
∗F)

is locally free for all i. Indeed, choose an open cover of X trivializing L. The
preimage by p of this cover induces a cover of BlF (X) where p∗(F ⊗ L) ≃ p∗F .
This shows that Fi(p

∗(F ⊗L)) ≃ Fi(p∗F) locally, so ϕ̃ exists. The same argument
shows there is a unique factorization of q through p, which must be the inverse of
ϕ̃ by uniqueness. □

Proposition 4.2.3. Let X be a noetherian integral scheme and E, F ,G be coherent
OX-modules. Assume that we have an exact sequence 0→ E → F → G → 0.

(1) If the sequence is locally split and E is locally free, then there is an isomor-

phism BlHLF X ≃ BlHLG X.

(2) If G is locally free, then there is an isomorphism BlHLF X ≃ BlHLE X.

Proof. It is enough to prove the statement locally, so we may assume that we have
F ≃ E ⊕ G. With this, we have that

(11) Fℓ(E ⊕ G) =
∑

k+k′=ℓ

Fk(E)Fk′(G)

by [Sta22, Lemma 07ZA]. If G is locally free, the sequence is locally split, therefore
by symmetry it is enough to show one of the statements. Without loss of generality,
suppose that G is locally free, therefore Fk′(G) = 0 for all k′ < rk(G) and Fk′(G) =
OX for all k′ ≥ rk(G) by [Sta22, Lemma 07ZD]. Combining this fact with the chain
of inclusions F0(E) ⊆ F1(E) ⊆ . . ., it follows that

Fℓ(F) = Fℓ(E ⊕ G) =

{
0 if ℓ < rk(G)
Fℓ−rk(G)(E) if ℓ ≥ rk(G)

This means that the collection of Fitting ideals of F and E agree, so BlHLF X ≃
BlHLE X. □

Proposition 4.2.4. Let X be a noetherian integral scheme and F a coherent OX-
module. Then for every positive integer n

BlHLF X = BlHLF⊕nX.

Proof. There is a natural morphism BlHLF X → BlHLF⊕nX over X. To see this, let

p : BlHLF X → X be the natural projection. Then p∗F is diagonal and it follows
from definition 4.1.1 that p∗(F⊕n) = (p∗F)⊕n is diagonalizable too. Then apply
theorem 4.1.15 to get the desired morphism.
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Conversely, we show that there is a natural morphism BlHLF⊕nX → BlHLF X over
X, which is enough to conclude the proof by the universal properties of both blow-
ups. Remember that

BlHLF X = Bl∏
ℓ Fℓ(F)X

where the product is over all non-trivial Fitting ideals of F , and similarly BlHLF⊕nX is
the blowup of X along

∏
ℓ Fℓ(F⊕n). By [Moo01], it suffices to show that

∏
ℓ Fℓ(F)

divides a power of
∏
ℓ Fℓ(F⊕n) as fractional ideals. Actually, we show that every

Fitting ideal Fℓ(F⊕n) is a product of certain Fitting ideals Fk(F), with each k
appearing at least once as ℓ varies, and this is clearly enough.

By [BV88, Lemma 10.10], if A is any Q-algebra, ifM = (ai,j) is any matrix with
coefficients in A and if ∆i denotes the ideal generated by all minors of M of size
i× i, then

∆i∆j ⊆ ∆i+1∆j−1

whenever i ≤ j − 2. From this, we can conclude that if ℓ = ds + r with r ∈
{0, . . . , s− 1}

(12)
∑

j1+...+js=ℓ

∏
i

∆ji = ∆s−r
d ∆r

d+1.

To conclude, remember that locally F is the cokernel of a morphism φ : E1 → E2,
that Fi(F) is the ideal ∆r2−i(φ) of minors in φ of size r2 − i, where r2 = rk(E2),
and the expression for Fitting ideals of direct sums eq. (11). □

Example 4.2.5. Take n = 2 in Proposition 4.2.4. Then eq. (12) is equivalent to

Fℓ(F ⊕ F) =
∑

k+k′=ℓ

Fk(F)Fk′(F) =

{
F 2
r2−k if ℓ = 2k

Fr2−kFr2−k−1 if ℓ = 2k + 1

where r2 the maximal rank of F as in construction 4.1.10.

Proposition 4.2.6. Let X be a Noetherian integral scheme and F a coherent sheaf
on X. Then there is a natural morphism BlHLF X → BlFX.

Proof. Let π : BlHLF X → X be the natural projection and let r = rk(F). By
theorem 3.3.4, it suffices to check that (π∗F)tf is locally free of rank r. This can
be checked locally. If X = Spec (R) for a local ring R, the result follows from
theorem 3.3.1. □

4.3. Remarks on minimality. We saw in Remark 3.3.5 that blowing up the first
non-zero Fitting ideal of F is, in general, not the minimal way to make F tf locally
free. Similarly, blowing up all the Fitting ideals of F is not the minimal way to
turn (F |Di)

tf into locally free sheaves for all i. This is illustrated in the following
examples.

Example 4.3.1. Take X = Spec (R) and F = M̃ for M = R/I with I ⊂ R a non-
principal ideal. The only non-trivial Fitting ideal of F is F0(F) = I. Note that
M tf = 0 is locally free and M |V (I) is locally free of rank 1. This means that F
already has the desired property on X. However, blowing up all the Fitting ideals
of F results in BlI(X), which is isomorphic to X if and only if I is invertible.

This example also shows that given a coherent sheaf F on an integral scheme
X, the blow up BlF (X) from definition 3.2.1 and BlHLF X are different in general.
Indeed, on the one hand, BlF (X) = BlM (X) = X because M tf = 0 is locally
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free. On the other hand, the only non-trivial Fitting ideal of M is F1(M) = I, so

BlHLF X = BlIX. Therefore both blow ups agree if and only if I is invertible.

Example 4.3.2. Let P be the origin in A2
x,y and consider the embedding i : A2

x,y →
A3
x,y,z : (x, y) 7→ (x, y, 0). The image of i is the plane Π = {z = 0}. Let I = (x, y)

be the ideal of P in A2 and consider the module M = i∗I in A3.
Note that M has generic rank 0, M tf = 0 and that M |Π is the ideal I, which

is torsion-free. This means that M tf = 0 is already locally free, but (M |Π)tf =
M |Π= I is not locally free over Π.

To compute BlHLM A3, we start with the following resolution of M

(13) R3 R2 M 0Γ

where R = C[x, y, z] and

Γ =

(
y z 0
−x 0 z

)
.

The Fitting ideals of M are

• F0(M) = z(x, y, z),
• F1(M) = (x, y, z),
• Fn(M) = R, for all n ≥ 3

This reflects the fact that M has rank 0 on A3 \Π, rank 1 on Π \ P and rank 2 on
P , as per proposition 2.2.2. Then

BlHLM A3 = BlF0(M)·F1(M)A3 = Blz(x,y,z)2A3 = Bl(x,y,z)A3 = BlPA3

is simply the blowup of the origin in A3. Note that BlHLM A3 is distinct from
BlMA3 = A3 in this example as the latter does not flatten (M |Π)tf .

Remark 4.3.3. If the sheaf F has projective dimension ≤ 1, then the Rossi con-
struction is equal to the blow-up of the first non-zero Fitting ideal. In this case,
blowing up all of the proper non-zero ideals as in the Hu–Li construction gives a
minimal resolution with the property that (F |Di

)tf is locally free for all of the Di’s
defined in terms of Fitting ideals by (10). For an ideal having projective dimension
1 is equivalent to being principal.

Remark 4.3.4 (Extension of sheaves). Let X be a scheme, let Y be a closed
subscheme an let FY be a coherent sheaf of rank r on Y . In order to find a minimal
resolution of this torsion sheaf, one may try to extend FY to X as a sheaf which
not a torsion sheaf and perform a repeated Rossi construction. One can find an
open cover of X and blow-ups of the charts such that on the blow-up the torsion
free part of the pull-back of F is locally free on the support. However, the blown
up charts may not glue to a global construction. Below we explain that it is always
possible to find local blow-ups.

LetX be an affine scheme and let Y be a closed subscheme. Let FY be a coherent
sheaf of rank r on Y and assume that we have an exact sequence

O⊕n−r
U∩Y

M̂−→ O⊕n
U∩Y → FU∩Y → 0,

where M̂ ∈ Mn,r−n(Γ(OY )). We may assume that U = SpecR and Y ∩ U =

SpecR/I, where R is a ring and I is an ideal. Let M̂ = (f̂ij), with f̂ij ∈ R/I. We
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now choose fij ∈ R a lift of f̂ij and we denote by M the matrix (fij). Then we

have a morphism O⊕n−r
U

M−→ O⊕n
U and an exact sequence

O⊕n−r
U

M−→ O⊕n
U → FU → 0,

where FU denotes the cokernel of the map induced by M . Then, we have that
FU |Y = FY and the resolution above induces a morphism

U 99K U ×Gr(r, n).

Since there is no canonical choice for the lift M , the above morphisms do not glue
in general.

5. Components of abelian cones

Let F be a diagonal sheaf on an integral Noetherian scheme, we study the ir-
reducible components of C(F). We show that C(F) has finitely many irreducible
components, which we consider with their natural reduced structure. Each irre-
ducible component is a vector bundle supported on a close integral subscheme. All
of the cones in this section are taken over X, unless otherwise specified by the
notation Cbase(sheaf).

We start the study of the components of C(F) by proving proposition 5.0.5,
where we write the cone as a pushout, where one of the factors is its main component
C(F tf). This decomposition is motivated by [AM98, Proposition 2.5], where it is
shown (in the analytic category) that if π : C = Spec (A) → X is a cone with X
integral and with A torsion-free outside of a closed Z ⊆ X, then the closure of
C \π−1(Z) inside C is equal to Spec (Atf). In that case, Spec (Atf) is an irreducible
component of C, that we call the main component of C.

For technical reasons, we would like to ask Atf to be locally free, rather than
asking that A is torsion-free outside of Z. Also, since we are interested in the
case of an abelian cone C(F) = Spec (SymF), we would like to have a similar
decomposition with assumptions depending on F , rather than on SymF . The
strategy to do so is as follows.

Let F be a diagonal sheaf on an integral Noetherian scheme X. Remember
that F tf is locally free by proposition 4.2.6. Firstly, we show in lemma 5.0.1 that
(Sym (F))tf = Sym (F tf). As pointed out in remark 5.0.2, symmetric algebra and
torsion-free-part do not commute for a general coherent sheaf. The pushout we
are looking for depends on a closed Z ⊆ X (see proposition 5.0.5). One should
not expect such a decomposition to exist unless Z ⊆ supp (tor(SymF)). We re-
late supp (tor(SymF)) and supp (tor(F)) in lemma 5.0.3. The remaining piece
is lemma 5.0.4. All the intermediate results are proven in more generality than
needed.

Lemma 5.0.1. Let X be a Noetherian scheme and let F be a coherent sheaf on
X. If F tf is locally free then

(SymF)tf = Sym (F tf).
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Proof. We have the following commutative diagram.

0 0 0

0 tor(SymF) ker(p) ker(p′′) 0

0 tor(SymF) SymF (SymF)tf 0

0 tor(Sym (F tf)) Sym (F tf) (Sym (F tf))tf 0

0 0 0

i′

e

i

e′

i′′

p′

f

p

f ′

p′′

g g′

The last two rows are clearly exact. Moreover, since F tf is locally free, tor(Sym (F tf)) =
0 and g′ is an isomorphism. The morphism i′ is the identity on tor(SymF). The
surjective morphism p comes from applying Sym to the surjection F → F tf , be-
cause Sym preserves surjections. The morphism p′′ is induced by p using that
tor(Sym (F tf)) = 0, The first row is exact by the snake lemma. We want to show
that ker(p′′) = 0 or, equivalently, that e is an isomorphism.

It follows from the above that we have

0 tor(SymF) SymF Sym (F tf) 0,
f◦i′ p

which is exact except possibly at SymF . We conclude if we show exactness there.
The inclusion Im(f ◦ i′) ⊆ ker(p) is clear because p ◦ f = g ◦ p′ = 0.

To show that ker(p) ⊆ Im(f ◦ i′), we know that

tor(F)⊗ Sym n−1(F)→ Sym n(F)→ Sym n(F tf)→ 0

is exact for all n ≥ 1 by [Sta22, Lemma 01CJ]. Note that p is a morphism of graded
algebras, therefore

ker(p) =
⊕
n

ker(Sym n(F)→ Sym n(F tf)).

It suffices to show that for each n, the morphism tor(F)⊗Sym n−1(F)→ Sym n(F)
factors through tor(Sym (F)). Locally, X = Spec (R) and F = M̃ for some R-

module M . Given λ =
∑
jm

j
1 ⊗ . . .⊗mj

n ∈ tor(M)⊗ Sym n−1(M), we can choose

for each j a non-zero divisor rj ∈ R such that rjm
j
1 = 0. Then r = r1 · · · rj is a

non-zero divisor and rλ = 0, so λ ∈ tor(Sym (M)). □

Remark 5.0.2. Note that lemma 5.0.1 does not holds in general if we do not
assume that F tf is locally free. For example, let F = I be the ideal sheaf of a
closed point P on X. Then (Sym I)tf = Sym I =

⊕
n≥0 In if and only if P is

regular.

Lemma 5.0.3. Let R be a ring, I be an ideal in R and M be an R-module.
If M tf is locally free and I · tor(M) = 0 then I · tor(SymM) = 0.
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Proof. Note that tor(SymM) =
⊕

n≥0 tor(Sym
nM). In the proof of lemma 5.0.1

we show that Sym n(M tf) ≃ (Sym nM)tf . The following commutative diagram is
exact by [Sta22, Lemma 01CJ].

tor(M)⊗ Sym n−1(M) Sym nM Sym n(M tf) 0

0 tor(Sym nM) Sym nM Sym n(M)tf 0

The first row is exact by by [Sta22, Lemma 01CJ], and the second row is also
exact. By the snake lemma, tor(M)⊗Sym n−1(M) surjects onto tor(Sym nM) and
the claim follows. □

Lemma 5.0.4. Let R be a commutative ring, A be an R-algebra and I be an ideal
of R. If I · tor(A) = 0 and Atf is locally free, then the following square is Cartesian
in the category of R-algebras

A Atf

A⊗R/I Atf ⊗R/I.

Proof. Firstly, we prove that the square is Cartesian in the category of R-modules.
We have the following commutative diagram

0 0 0

0 IA IAtf

0 tor(A) A Atf 0

tor(A)⊗R/I A⊗R/I Atf ⊗R/I 0

0 0 0

i

e′

i′′

p′

f

p

f ′

p′′

g g′

The three columns are exact because N ⊗ R/I ≃ N/IN for any R-module N and
because I · tor(A) = 0.

Firstly, observe that g is injective. This is equivalent to Tor1(R/I,A
tf) = 0,

which holds because Atf is locally free. By the snake lemma, the natural morphism
e′ : IA→ IAtf induced by f ′ is an isomorphism.

In order to prove the lemma, we first need to show that the square in question is
a Cartesian square of R-modules. Then we check that it is also a Cartesian diagram
of R-algebras. Both can be achieved by routine diagram chasing.

□

Proposition 5.0.5. Let X be a Noetherian scheme, F a coherent sheaf on X and
let π : C(F) = Spec (SymF)→ X be the corresponding abelian cone. Let i : Z ↪→ X
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be a closed subscheme in X with ideal sheaf IZ such that IZ ⊆ Ann(tor(F)). If
F tf is locally free, then the following is a push-out of schemes

Spec SymF = Spec (SymF tf)
⊔

Spec i∗(Sym (Ftf )|Z)

Spec i∗(Sym (F) |Z)

Proof. Locally, X = SpecR is affine, F = M̃ for some finitely presented module M
over R such that M tf is locally free and IZ = I is an ideal with I ⊆ Ann(tor(M)).
Let A = SymM . Then I · tor(A) = 0 by lemma 5.0.3 and lemma 5.0.1 ensures that
Atf = Sym (M tf) is locally free. The result follows from lemma 5.0.4. □

Remark 5.0.6. Remember that the support supp (F) of a coherent sheaf F can
be defined set-theoretically by locally looking at the prime ideals where the stalk
of F is non-zero. A scheme structure on supp (F) is given by the sheaf Ann(F).
Therefore the condition IZ ⊆ Ann(tor(A)) in proposition 5.0.5 implies that the
closed Z must contain supp (tor(F)).

Another natural scheme structure in supp (F) is given by F0(F), the 0-th Fitting
ideal of F . There is an inclusion F0(F) ⊆ Ann(F) by [Sta22, Lemma 07ZA], thus
in proposition 5.0.5 we can also take the particular case where IZ = F0(tor(F)).

5.1. The main component. First, we reduce to the generic rank 0 case. Let F
be of generic rank r. Since it is diagonal, F tf is locally free of rank r. Then

C(F) = C(F tf)
⊔

C(ι∗Ftf |Supp(tor(F)))

C(i∗F|Supp(tor(F)))

by proposition 5.0.5. Here both cones are taken over X. We call C(F tf) the main
component of C(F). This is a rank r vector bundle on X. After replacing F by
i∗F|Supp(tor(F)), we may assume from now that rk(F) = 0.

5.2. Decomposing the torsion. Let F be a rank 0 diagonal sheaf. Recall that, by
lemma 4.1.12, F has a filtration with quotients supported on some effective Cartier
divisors Di, i = 1, . . . , n. We can think, locally, of F as a direct sum of locally free
sheaves on the Di’s, each of rank i. Consider the finite collection of closed integral
subschemes {Zji }j , which are the irreducible components of Di taken with reduced
structure. These are in the support of F and F|Zj

i
is locally free. Note that these

collections are not necessarily disjoint for different i’s. We denote the inclusion of
Zji in X simply by ι, without keeping track of the indices when it is not necessary.

Theorem 5.2.1. The cone of F is topologically a union of finitely many irreducible
components

C(F) =
⋃
i,j

C
(
(F |Zj

i
)tf
)
∪X

where each C
(
(F |Zj

i
)tf
)
a vector bundle supported on the integral subscheme Zji .

Lemma 5.2.2. The cone CZj
i

(
(F |Zj

i
)tf
)
→ Zji is a vector bundle of rank rji ,

where

rji = max
k
{Zji ⊂ Dk}.
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Proof. Since tor(F|U ) = tor(F)|U for U ⊂ X open, it is enough to prove it locally.
We assume that F is the cokernel of a diagonal matrix

Diag(f1, . . . , f1, f2, . . . , f2, . . . , fs),

where fk divides fk+1. Observe that, if fk |Zj
i
= 0, then fℓ |Zj

i
also vanishes for all

ℓ > k. Take rji as in the statement of the theorem: Zji is a component of Drji
and

the latter divides the last rji entries.

So that the matrix presentation of F on Zji looks like Diag(f1 |Zj
i
, . . . , ft |Zj

i

, 0, . . . , 0) where ft |Zj
i
̸= 0. Since Zji is not, by assumption, a component of Z(ft)

we see that the cokernel of Diag(f1 |Zj
i
, . . . , ft |Zj

i
) is a tosion sheaf and the torsion-

free part of F |Zj
i
is locally free of rank rji . □

Proof of theorem 5.2.1. To check the claim set-theoretically, it suffices to argue that
any closed point of C(F) is contained in at least one of the cones. Let v ∈ C(F),
the projection to X is x ∈ X. Then v is specified by some section x → F|x. If

x /∈
⋃
i,j Z

j
i , F|x = 0, so we are done. Otherwise, we need to argue that F|x ∼=

((F|Zj
i
)tf)|x for some i, j.

Let i be such that x ∈ Zji for some j but x /∈ Zℓk for all k > i and all ℓ. Then
x ∈ Di but x /∈ Dk for any k > i.

By the construction of the Di’s, we know that supp (tor(F|Zj
i
)) ⊂

⋃
k>i,ℓ Z

ℓ
k.

Then (F tf
Zj

i

)|x = F|x, and we are done.

The morphism
⋃
i,j C((F|Zj

i
)tf) → C(F) of topological spaces, given by the

universal property of push-outs, is continuous and closed for the Zariski topology.
Since we have just checked that it is also bijective, it is a homeomorphism. □

6. Desingularization of coherent sheaves on stacks

In this section, we show that the constructions introduced so far in Section 3
and Section 4 make sense for algebraic stacks, since they are both local and they
commute with flat base-change (see respectively Proposition 3.5.3 and Proposi-
tion 4.2.1). Thus we define the desingularization and the diagonalization of a co-
herent sheaf on a Noetherian integral Artin stack and we establish properties of
both constructions.

6.1. Construction of BlFP and BlHLF P. Denote by P a Noetherian, integral
Artin stack. Consider a smooth presentation of P, i.e. a groupoid in algebraic
spaces (U0, U1, s, t,m) whose associated quotient stack [U1 ⇒ U0] is P. Here [U1 ⇒
U0] denotes the stackyfication of a category fibered in groupoids [U1 ⇒ U0]

pre.
Recall that U0, U1 are algebraic spaces m : U1 ×s t U1 → U1 is the composition of
arrows, s, t : U1 → U0 are respectively source and target morphism and they are
smooth morphisms. They satisfy some compatibility conditions that we will not
use explicitly here (See [LMB00, §(4.3)] or [Sta22, Definition 0441].

The reader can think of P being the Picard stack Picg,n. Recall, that a S-point
of Picg,n is a couple (C,L) where C is a nodal curve of genus g with n distinct
smooth marked points and L is a line bundle over it. It is well known that Picg,n
is a smooth Noetherian Artin stack which is not of finite type as we do not fix the
degree of the line bundle.

https://stacks.math.columbia.edu/tag/0441
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Let F be a coherent sheaf on P, i.e. we have a coherent sheaf F0 on U0 and also
a coherent sheaf F1 on U1 with two fixed isomorphisms

s∗F0 ≃ F1 ≃ t∗F0(14)

that satisfy the cocycle condition on U1 ×s t U1. We refer to the article of Olsson
[Ols07, Proposition 6.12] for the equivalent definitions of coherent sheaves on an
Artin stack.

We now proceed to use the smooth presentation of P to define a stack BlFP
desingularizing the coherent sheaf F. All of the following discussion holds formally
identical when we consider the procedure that diagonalises F instead. The stack
we obtain with the second procedure is denoted BlHLF P.

Later, we prove that the blow-up stacks obtained in both cases are algebraic and
come equipped with a representable (by a scheme), proper and birational morphism
to P.

With the theory developed in §3, we can construct BlF1U1 and BlF0U0. Note
that to apply the results in that section we require U0, U1 to be integral Noetherian
schemes and not merely algebraic spaces. However, it is routine to extend the
construction to algebraic spaces and we omit that passage here.

Since the morphisms s, t : U1 → U0 are smooth (hence flat), we apply flat

base change for blowup of sheaves (see Proposition 3.5.3) to s, t and we get s̃, t̃ :
BlF1

U1 → BlF0
U0. Using the fix isomorphisms (14), we obtain the following Carte-

sian diagrams

(15)

BlF1U1 BlF0U0 BlF1U1 BlF0U0

U1 U0 U1 U0.

s̃

q
⌜

p

t̃

q
⌜

p

s t

In addition, using Cartesian diagram on a cube, we construct a map

m̃ : BlF1U1 ×s̃ t̃
BlF1U1 → BlF1U1.

More precisely, we have

BlF1U1 ×s̃ t̃
BlF1U1 ≃

(
BlF0U0 ×p s U1

)
×
s̃ t̃

(
BlF0U0 ×p t U1

)
≃ BlF0

U0 ×p s U1 ×s t U1

→ BlF0
U0 ×p s U1 by applying m : U1 ×s t U1 → U1

≃ BlF1
U1 by the Cartesian diagram (15).

We obtain a smooth groupoid in algebraic spaces

(BlF0
U0,BlF1

U1, s̃, t̃, m̃)

with a morphism of groupoids to (U0, U1, s, t,m). This defines a 1-morphism

p : [BlF0U0 ⇒ BlF1U1]
pre → [U0 ⇒ U1]

pre.

Let BlFP denote the stackyfication of [BlF0
U0 ⇒ BlF1

U1]
pre. By universal property,

the morphism discussed above lifts to a morphisms of stacks

π : BlFP→ P.
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6.2. Properties of BlFP and BlHLF P.

Theorem 6.2.1. Let [U1 ⇒ U0]→ P be an integral Noetherian Artin stack and F
be a coherent sheaf on it.

(1) The stacks BlFP = [BlF1
U1 ⇒ BlF0

U0] and BlHLF P = [BlHLF1
U1 ⇒ BlHLF0

U0]
are integral Noetherian Artin stacks.

(2) The morphisms BlFP→ P and BlHLF P→ P are representable proper and
birational.

Remark 6.2.2. Let S be a scheme and f : S → P be a flat morphism. Then we
have

(16)

Blf∗FS BlFP BlHLf∗FS BlHLF P

S P S P

⌜ ⌜

f f

In this section, we choose to use an atlas of P to define the blowups on Artin stacks
but it is also possible to use the diagram above and fppf descent to define them.

Proof of Theorem 6.2.1. Once again, we will only discuss BlFP, as the argument

for BlHLF P is identical, mutatis mutandis.
Part (2), together with the properties of the respective constructions on schemes,

implies part (1) of the theorem. To establish part (2), it suffices to compute the fiber
U0×PBlFP and show that it is BlF0U0. A priori, BlF0U0 → U0 is representable by
an algebraic space, so the morphism BlFP→ P will be representable by an algebraic
space [Sta22, Tag 045G]. However, running the argument below for a covering of
an algebraic space by schemes, one can show in two steps that the morphism is in
fact representable by a scheme. Now consider the 2-Cartesian diagram of categories
fibered in groupoids

(17)

X U0

[BlF1
U1 ⇒ BlF0

U0]
pre [U1 ⇒ U0]

pre

⌜

p

where by abuse of notation, U0 is the category fibered in sets associated to this
algebraic space. One computes (see the discussion around [Sta22, Tag 04Y4]) that
the groupoid X is given by (U ′

0, U
′
1, s

′, t′,m′) where

U ′
0 = U1 ×t,U0,p BlF0U0

U ′
1 = U1 ×t,U0,p·s BlF1

U1

s′ : (x, y) 7→ (x, s̃(y))

t′ : (x, y) 7→ (m(x, p(y)), t̃(y))

https://stacks.math.columbia.edu/tag/045G
https://stacks.math.columbia.edu/tag/045G
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By (15),

U ′
1 = U1 ×t,U0,p·s (U1 ×s,U0,p BlF0

U0)

= (U1 ×t,U0,s U1)×t·pr2,U0,p BlF0
U0

s′ : ((x, y), z) 7→ (x, z)

t′ : ((x, y), z) 7→ (y, z)

From this expression, X is a banal groupoid whose stackyfication is equivalent to
the scheme BlF0

U0, as the relations s′, t′ identify all the points of the U1 factor.
Then the stackyfication of (17)gives us a 2-Cartesian diagram:

(18)

BlF0
U0 U0

BlFP P

π̃

⌜

π

This discussion proves that π is representable. Recall that a morphism of stacks
is birational if there exists an isomorphism on dense open substacks on source
and target (see [CMW12]). By proposition 3.2.2 we deduce that π is proper and
birational. □

Proposition 6.2.3. Let F be a coherent sheaf on P.

(1) For any line bundle L on P, we have BlF⊗LP = BlFP and also BlHLF⊗LP =

BlHLF P.
(2) Let E, F,G be coherent OP-modules. Assume that we have an exact se-

quence 0→ E→ F→ G→ 0.
(a) If the sequence is locally split and E is locally free, then there are

isomorphisms BlFX ≃ BlGX and BlHLF X ≃ BlHLG X.
(b) If G is locally free, then there are isomorphisms BlFX ≃ BlEX and

BlHLF X ≃ BlHLE X.

Proof. All the statements are local so they follow from the same statements on
schemes with the two different blow-ups. For the Villamayor-Rossi blowup BlFP,
the schematic statements are Propositions 3.2.3 and 3.5.4 and for the Hu–Li blowup
BlHLF P, it follows from Propositions 4.2.2 and 4.2.3. □

In Definition 4.1.1, we define the notion of diagonalizable morphism of sheaves
on a scheme, we can extend it directly to algebraic stacks.

Theorem 6.2.4 (Universal property of the Rossi desingularization). Let π : BlFP→
P be as above. Then

(1) The sheaf (π∗F)tf is locally free of the same generic rank as F.
(2) The morphism π : BlFP→ P satisfies the following universal property: For

any morphism of stacks f : Y→ P such that (f∗F)tf is torsion-free of the
same generic rank as F, there is a unique1 morphism f ′, which makes the

1To be precise, there exists a morphism f ′, unique up to a unique 2-morphism.



38 A.COBOS RABANO, E. MANN, C. MANOLACHE, R. PICCIOTTO

following diagram 2-commutative

Y BlFP

P

∃!f ′

f
π

Proof. The statement follows from corollary 3.5.2. □

From the beginning of §4 (Definitions 4.1.1 4.1.3 4.1.3 and Proposition 4.1.4),
we can define the notion of diagonalizable sheaves or diagonalizable morphism of
sheaves on Artin stacks as follows.

Definition 6.2.5. • A coherent sheaf F on P is diagonalizable if for any
scheme S and morphism f : S → P, the sheaf f∗F is diagonalizable that is
its Fitting ideals Fi(f

∗F) are principal.

• A diagonalization of a coherent sheaf F is a morphism π : P̃→ P such that
π∗F is locally diagonalizable.

Remark 6.2.6. Using the presentation of P, we could also define that F is diago-
nilazable if F0 is.

Theorem 6.2.7 (Universal property of the diagonalization). Let π : BlHLF P→ P
be as above. Then

(1) The sheaf π∗F is locally diagonalizable of the same generic rank as F.

(2) The blow-up BlHLF P satisfies the universal property: For any morphism
of stacks f : Y → P such that f∗F is locally diagonalizable of the same
generic rank as F, there is a unique morphism f ′, which makes the following
diagram 2-commutative:

Y BlHLF P

P

∃!f ′

f
π

Proof. The statement follows by Theorem 4.1.15. □

Remark 6.2.8. If P has the resolution property in the sense of [Tot04], then we
have that π : BlFP → P is projective. Indeed, if P has the resolution property,
then we have a global locally free sheaf E with a surjective morphism

E→ F→ 0.

This allows us to define BlFP via the graph construction and thus the resulting
stack is projective over P. Note that projectivity is not local on the target, and
thus, even though the local construction is projective, π may not be projective.
By [Tot04] stacks which are not global quotient stacks do not have the resolution
property. Many of the stacks that we work with are not global quotients. For more
details on stacks which are not a global quotients see [Kre13].
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7. Application to stable maps

In this section we apply the results in Section 6 to construct reduced Gromov–
Witten invariants.

Given X a smooth subvariety in a projective space Pr, there is an embedding of
the moduli space of stable maps to X in the moduli space of stable maps to Pr.
The moduli space of genus zero stable maps to a projective space Pr is a smooth
irreducible DM stack. If X is a hypersurface of degree k (or more generally a
complete intersection) in Pr, there is a locally free sheaf Ek on the moduli space of
stable maps to Pr, such that the moduli space of maps to X is cut out by the zero
locus of a section of this sheaf. These statements are not true in higher genus. In
general, the moduli space of stable maps to Pr has several irreducible components
of different dimensions. We still have a natural sheaf Ek equipped with a section,
but Ek is not locally free: its rank is different on different irreducible components.

There are several ways to use Section 6 to fix the above problem. We blow up
the Picard stack along certain sheaves and we define reduced invariants via an ob-

struction theory of the main component of M̃g,n(X, d) relative to this blow-up of
the Picard stack. We also recall maps with fields [CL12] and then we construct a
blow-up of it which makes the resulting stack as simple as possible. The resulting
stack gives an alternative definition of reduced invariants, which is not intrinsic; the
relation between these two invariants is similar in spirit to a Quantum Lefschetz
theorem. The definition we give is more intrinsic, but working with maps with
fields instead of maps is more suited to approaching Conjecture 1.0.2 and Conjec-
ture 1.0.3. See [CL15, LO22, LO21] for the proof of Conjecture 1.0.3 in genus one
and two.

7.1. Moduli spaces of stable maps. Let Mg,n denote the stack of genus g pre-
stable curves with n marked points and let Cg,n denote its universal curve. Let
Picg,n,d denote the Artin stack which parameterises genus g pre-stable curves, with

n marked points, together with a line bundle of degree d. Let Picstg,n,d denote
the open subset of Picg,n,d consisting of (C, p1 . . . pn, L) which satisfy the stability
condition

L⊗3 ⊗ ωC

(
n∑
i=1

pi

)
is ample. Notice that Mg,n and Picg,n,d are not separated, but they are smooth

and irreducible. The stack Picg,n,d is locally Noetherian and the stack Picstg,n,d is
Noetherian. From now on we fix g, n, d and the stability condition and we drop all
the indices.

We define C the universal curve over Pic by the Cartesian diagram. Notice that
we also have a universal line bundle L over C.

L

C C

Pic M.

π
⌜
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We form the cone of sections of L as in Chang-Li ([CL15], Section 2)

(19) S(π∗L) := Spec Sym (R1π∗(L
∨ ⊗ ωC/Pic))→ Pic.

The definition requires further explanations as follows.

(1) We use the notation S(π∗L) for the cone of sections of L, which in [CL15]
is denoted by C(π∗L); for us C(π∗L) denotes Spec Symπ∗L. In [CL15] the
authors prove that S(π∗L) is a stack which parameterises (C,L, s), where
(C,L) ∈ Pic and s ∈ H0(C,L).

(2) Usually, the total space of a locally free sheaf E is Spec Sym (E∨). Here we
would like to take E := R0π∗L. By Serre duality, we have E∨ = R1π∗(L

∨⊗
ωC/Pic).

For the rest of the section, let

F := R1π∗(L
∨ ⊗ ωC/Pic).(20)

Note that since π is proper, we have that F is a coherent sheaf on Pic. As defined
in Section 2.3, we consider the stack Spec SymF, which is an abelian cone stack
over Pic.

Let Mg,n(Pr, d) be the moduli space of genus g, degree d stable maps, with n

marked points. As in [CFK10], we have that Mg,n(Pr, d) is an open sub-stack of
the stack

S(π∗L
⊕r+1) = Spec Sym (⊕ri=0F)→ Pic.(21)

As before, a point of this cone over (C,L) ∈ Pic is (C,L, s) with s ∈ H0(C,L)⊕r+1.
Note that

S(π∗L
⊕r+1) =

r+1 times︷ ︸︸ ︷
S(π∗L)×Pic · · · ×Pic S(π∗L)→ Pic.

We define L, C by the following Cartesian diagram

L L

C C

S(π∗L
⊕r+1) Pic.

⌜

π
⌜

π

The complex ⊕ri=0R
•π∗L is a dual obstruction theory for the natural projection

S(π∗L
⊕r+1) = Spec Sym (⊕ri=0F)→ Pic (see [CL15]).

Lemma 7.1.1. In notation as above we have an isomorphism of sheaves

(F)∨ ≃ π∗L
over Pic.

Proof. The claim can be obtained by Verdier duality we have

RHom(Rπ∗L
∨ ⊗ ωC/Pic,O) ≃ Rπ∗RHom(L∨ ⊗ ωC/Pic, ωC/Pic[1]).

We can obtain an explicit resolution of F as follows. Let A be a sufficiently high
power of a very ample section of the morphism C→ Pic that is we have R1π∗L(A) =
0. Then, we have a morphism

(22) 0→ L→ L(A)→ L(A)|A → 0.
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This induces a long exact sequence

(23) 0→ R0π∗L→ R0π∗L(A)→ R0π∗L(A)|A → R1π∗L→ 0.

Similarly, we can resolve F = R1π∗L
∨⊗ωC/Pic considering the dual exact sequence

0→ L∨(−A)⊗ ωC/Pic → L∨ ⊗ ωC/Pic → L∨ ⊗ ωC/Pic|A → 0.

Pushing forward to Pic we get

(24) R0π∗L
∨ ⊗ ωC/Pic|A → R1π∗L

∨(−A)⊗ ωC/Pic → R1π∗L
∨ ⊗ ωC/Pic → 0.

By Serre duality we have isomorphisms R0π∗L(A) ≃ (R1π∗L
∨(−A)⊗ωC/Pic)

∨ and

R0π∗L ≃ (R1π∗L
∨ ⊗ ωC/Pic)

∨. Applying the functor Hom(−,O) to 24 and using
that it is left-exact, we get

(25) 0→ (F)∨ → R0π∗L(A)→ R0π∗L(A)|A
Comparing (23) with (25) we get that (F)∨ ≃ π∗L.

The last claim follows from the fact that taking the dual of vector bundle com-
mutes with base change. □

Remark 7.1.2. The proof of Lemma 7.1.1 shows that we have a resolution to the
left given by (24). The isomorphisms after Equation (23) show that the morphism

R0π∗L
∨ ⊗ ωC/Pic|A → R1π∗L

∨(−A)⊗ ωC/Pic

is dual to

R0π∗L(A)→ R0π∗L(A)|A.
We will use this duality in Section 8. Hu and Li work with the resolution to the
right we have in 23. In the previous sections we used the resolution to the left
Equation (23). Since dual morphisms have the same fitting ideals, both morphisms
give the same Hu–Li blow-up.

Definition 7.1.3. Consider the Zariski closure inMg,n(Pr, d) of the locus where
the curve is smooth of genus g. We call this component the main component and

we denote it byM◦
g,n(Pr, d).

Note that onM◦
g,n(Pr, d), the universal curve is generically smooth and π∗L is

generically a vector bundle.

Proposition 7.1.4. We have thatM◦
g,n(Pr, d) is an open substack of

Spec (Sym ⊕ri=0 F)
tf =

r+1∏
Pic

Spec (SymF)tf .

Proof. We have a surjective morphism µ : SymF → (SymF)tf . The torsion of
SymF is in the kernel of µ.

This gives a closed embedding

Spec (Symπ∗F)
tf ↪→ Spec Symπ∗F.

M◦
g,n(Pr, d) is the open substack of Spec (Symπ∗F

⊕r+1)tf given by imposing the
stability condition for stable maps. Moreover, for a module over an integral domain
R, we have that taking torsion commutes with direct sums. This gives the equality
in the statement. □
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Remark 7.1.5. For g ≥ 1 the moduli space Mg,n(Pr, d) has several irreducible
components (see for example [HL10]). While for g = 1 these components are under-
stood, in general we do not have a complete picture. However, after desingularizing
Mg,n(Pr, d), theorem 5.2.1 describes its components.

7.2. Maps with fields. We recall the construction of maps with fields in [CL12]
and its properties.

In the following we fix k ∈ Z, k > 1 and we consider the sheaf

π∗(L
⊕r+1 ⊕ (L⊗−k ⊗ ωC/Pic))

on Pic with corresponding abelian cone

S
(
π∗(L

⊕r+1 ⊕ (L
⊗−k

⊗ ωC/Pic)
)
= Spec SymR1π∗

((
L∨ ⊗ ωC/Pic

)⊕r+1 ⊕ L⊗k
)
µp

→ Pic.

Imposing stable map stability we obtain the moduli space of maps with fields
Mg,n(Pr, d)p. So an element ofMg,n(Pr, d)p over (C,L, s) ∈ Mg,n(Pr, d) is given
by a choice of a section p ∈ H0(C,L⊗−k ⊗ ωC). Consider the Cartesian diagram

(26)

Cp C

Mg,n(Pr, d)p Mg,n(Pr, d).

πp

νp

⌜
π

The complex
E• := R•πp∗(⊕ri=0L ⊕ L⊗−k ⊗ ωπp)

is a dual obstruction theory for the morphism µp.
The stackMg,n(Pr, d)p is not proper, but the perfect obstruction theory admits

a cosection σ. This data gives a cosection localised virtual class [Mg,n(Pr, d)p]virσ .
For X a smooth subvariety cut out by any regular section of OPr (k) the authors

of [CL12] prove that
(27)

[Mg,n(Pr, d)p]virσ = (−1)(r+1)d+1−g[Mg,n(X, d)]
vir ∈ Advir(Mg,n(X,d))

(Mg,n(X, d))

7.3. Reduced Gromov–Witten invariants. We start with a technical lemma
below, which allows us to apply the results in Section 4.

Lemma 7.3.1 ([Sta22, Tag 0ESR]). Let E be any vector bundle on CP, the univer-
sal curve on some locally Noetherian integral stack P over M. Let F = R1πP∗E.
There exists a blow-up b : P′ → P such that b∗F is a perfect OP′ module of tor
dimension ≤ 1.

Proof. Consider b : P′ = BlHLF (P) → P. Locally on P′, Fr(b
∗F), is a principal

ideal defined by a non-zero divisor and Fr−1(b
∗F) = 0. Then b∗F has tor dimension

≤ 1 by [Sta22, Tag 0F7M]. Note that b∗F = R1πP′∗(b
∗
E), for b = CP′ → CP. □

Remark 7.3.2. This allows us to apply theorem 4.1.14 to BlHLR1π∗EPic, since now

R1π∗E is locally diagonalizable of tor dimension ≤ 1.

In the following we fix k ≥ 1. Let

Ek := R1π∗L
⊗k

denote the sheaf on Pic whose restriction to a point (C,L) ∈ Pic is

H1(C,L⊗k) ≃ (H0(C,L⊗−k ⊗ ωC))∨.



DESINGULARIZATIONS OF SHEAVES AND REDUCED INVARIANTS 43

We define
P̃ick := BlHLEk

BlHLF Pic.

Let pk : P̃ick → Pic be the natural projection. Consider the Cartesian diagram

C̃
qk //

π̃
��

C

π

��

P̃ick
pk // Pic

where C is the universal curve over Pic.

We define M̃g,n(Pr, d) as the following Cartesian diagram:

(28)

M̃g,n(Pr, d) Mg,n(Pr, d)

P̃ick Pic.

µ̃

pk

⌜
µ

pk

One can see that we have an open embedding

M̃g,n(Pr, d) ↪→ Spec Sym ⊕ri=0 p
∗
kF.

We define the main component of M̃g,n(Pr, d) as the fiber product

(29)

M̃◦
g,n(Pr, d) M◦

g,n(Pr, d)

P̃ick Pic.

µ̃◦

pk

⌜
µ◦

pk

Again, we have an open embedding

M̃◦
g,n(Pr, d) ⊂ Spec Sym ⊕ri=0 (p

∗
kF)tf .

By [CL12] the morphism µ has a perfect obstruction theory equal to ⊕ri=0R
•π∗L.

Let π̂ : C̃ → M̃g,n(Pr, d) be the universal curve and let q̂k : C̃ → C the morphism
induced by qk. The morphism µ̃ has a dual perfect obstruction theory equal to

⊕ri=0R
•π̂∗q̂k

∗L.
These perfect obstruction theories induce virtual classes

[Mg,n(Pr, d)]vir := µ![Pic] ∈ A∗(Mg,n(Pr, d))
and

[M̃g,n(Pr, d)]vir := µ̃![P̃ic] ∈ A∗(M̃g,n(Pr, d)),
where µ! and µ̃! are defined as in [Man11]. Similarly, we define M̃g,n(Pr, d)p as the
following Cartesian diagram:

(30)

M̃g,n(Pr, d)p Mg,n(Pr, d)p

P̃ick Pic.

µ̃p ⌜
µp

pk

This gives a localised virtual class [M̃g,n(Pr, d)p]vir. See [CL12, Section 3] for
details.
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Remark 7.3.3. While Pic is smooth, P̃ick does not need to be smooth. This

is not a problem, all we need for a well-defined virtual class is that P̃ic has pure
dimension. This is true, since Pic has pure dimension and pk is birational.

Theorem 7.3.4. In notation as above, let

M̃g,n(Pr, d)p = ∪λ∈Λ M̃g,n(Pr, d)p,λ

M̃g,n(Pr, d) = ∪θ∈Θ M̃g,n(Pr, d)θ,

with M̃g,n(Pr, d)p,λ irreducible components of M̃g,n(Pr, d)p and M̃g,n(Pr, d)θ irre-

ducible components of M̃g,n(Pr, d). Let

π̂p,λ : C̃λ → M̃g,n(Pr, d)p,λ

π̃θ : C̃θ → M̃g,n(Pr, d)θ.

The following statements hold.

(1) The morphism p̄k is birational and proper.

(2) The irreducible components M̃g,n(Pr, d)p,λ and M̃g,n(Pr, d)θ are smooth

over their image in P̃ick. In particular, M̃◦
g,n(Pr, d) is smooth over P̃ic.

(3) The sheaf π̂p,λ∗ ev∗O(k) is a locally free sheaf on M̃g,n(Pr, d)p,λ, the sheaf

π̃θ∗ev
∗O(k) is a locally free sheaf on M̃g,n(Pr, d)θ. In particular π̃◦

∗ev
∗O(k)

is a locally free sheaf on M̃◦
g,n(Pr, d).

Proof. 1. We have that pk is proper, as pk is proper.
2. Consider the following diagram

(31)

Spec Sym p∗k(F⊕ Ek) Spec SymF⊕ Ek

P̃ick Pic.

⌜

pk

We have that M̃g,n(Pr, d)p is an open sub-stack of Spec Sym p∗k(Ek ⊕ ⊕ri=0F) and
by Theorem 5.2.1 we have that the irreducible components of the stacks

Spec Sym ⊕ri=0 F ⊕ Ek and Spec Sym ⊕ri=0 F

are smooth over their image in P̃ick.

This shows that M̃g,n(Pr, d)p,λ and M̃g,n(Pr, d)θ are smooth over their image

in P̃ick. In particular

M̃◦
g,n(Pr, d) = Spec Sym (⊕ri=0p

∗
kF)

tf is smooth.

3. Let µλ :Mg,n(Pr, d)p,λ → Pic be the restriction of µp. Let Zλ be the image

of µλ. Let πλ : Cλ → Zλ be the restriction of π. Let Z̃λ be the fibre product

(32)

Z̃λ Zλ

P̃ick Pic.

pλk

⌜

pk
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Let π̃λ : C̃λ → Zλ be the restriction of π̃ and let qλk : C̃λ → Cλ be the restriction of
qk. By commutativity of proper push-forwards with base-change we have that

(pλk)
∗R•πλ∗L ≃ R•π̃λ∗ (q

λ
k )

∗L

Again, cohomology and base change in the Cartesian diagram

(33)

C̃λ C̃λ

M̃g,n(Pr, d)λ Z̃λ.

π̂λ

νλ

⌜
π̃λ

µλ

gives

(34) R•π̂λ∗ ev
∗O(k) = (µλ)∗R•π̃λ∗L

k.

We have a short exact sequence

0→ R0π̃λ∗L
k → E0 ϕ→ E1 → R1π̃λ∗L

k → 0.

By construction we have that ϕ is locally diagonal. By eq. (34) we have that

R•π̂λ∗ ev
∗O(k) ≃ [(µλ)∗E0 (µλ)∗ϕ−→ (µλ)∗E1].

Since (µλ)∗ϕ is locally diagonal, proposition 4.1.2 implies that R0π̂λ∗ ev
∗O(k) is

locally free.

A similar argument shows that π̃θ∗ev
∗O(k) is a locally free sheaf on M̃g,n(Pr, d)θ

and in particular π̃◦
∗ev

∗O(k) is a locally free sheaf on M̃◦
g,n(Pr, d). □

Remark 7.3.5. In [VZ08, HL10] the authors desingularize π∗L for genus one and,

as a consequence, the sheaf p∗k(π∗L
⊗k)tf becomes locally free on P̃ic1 for any k ≥ 1.

In the following we give a proof of this fact.
In a neighbourhood of (C̃, L̃) ∈ Blπ∗LPic we can choose Z a section of L⊗k−1.

This gives an exact sequence

(35) 0→ R0π̃∗L→ R0π̃∗(L
⊗k)→ R0π̃∗(L

⊗k|Z)→ R1π̃∗L→ R1π̃∗(L
⊗k)→ 0.

Notice that for C̃ a curve of genus one, and for any k ≥ 1, we have an isomorphism

(36) H1(C̃, L̃) ≃ H1(C̃, L̃⊗k).

This implies that the last arrow in sequence (35) is an isomorphism and thus we
get a short exact sequence

0→ R0π̃∗L→ R0π̃∗(L
⊗k)→ R0π̃∗(L

⊗k|Z)→ 0.

Since R0π̃∗(L
⊗k|Z) and R0π̃∗L are locally free sheaves on Blπ∗LPic, we get that

R0π̃∗(L
⊗k) is locally free.

Proposition 7.3.6. We have the following equality

(pk)∗[M̃g,n(Pr, d)]vir = [Mg,n(Pr, d)]vir

Proof. Note that by cohomology and base change we have thatR•π̃∗p
∗
kL = p∗kR

•π∗L.
As pk is birational and projective we have (pk)∗[P̃ick] = [Pic]. We now apply
Costello’s Pushforward theorem ([HW22]) to (28) and we get

(pk)∗[M̃g,n(Pr, d)]vir = [Mg,n(Pr, d)]vir. □

In the following we define reduced Gromov–Witten invariants.
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Assumption 7.3.7. In the following we fix d > 2g − 2. For C a smooth genus g
curve, L a line bundle of degree d, and d > 2g − 2, we have that H1(C,L) = 0.
This shows that for d > 2g − 2, the locus of stable maps with smooth domain is
smooth and irreducible, so its closure is an irreducible component ofMg,n(Pr, d).

Construction 7.3.8. Let X ⊂ Pr be a smooth complete intersection, given by a
section

s : OP(1)
⊕r+1 → OP(k).

We define

(37)

M◦
g,n(X, d) M◦

g,n(Pr, d)

Mg,n(X, d) Mg,n(Pr, d).

⌜

The main component M◦
g,n(X, d) does not have a perfect obstruction theory. In

order to define a perfect obstruction theory on it, we define

(38)

M̃◦
g,n(X, d) M̃◦

g,n(Pr, d)

M̃g,n(X, d) M̃g,n(Pr, d).

⌜

i

By theorem 7.3.4 we get that (π∗L⊗k)tf is locally free on M̃g,n(Pr, d). We define

(39) [M̃◦
g,n(X, d)]

vir = i![M̃◦
g,n(Pr, d)].

Note that for any 1 ≤ i ≤ n we have morphisms

M̃g,n(Pr, d)→Mg,n(Pr, d)
evi−→ Pr

and

M̃g,n(X, d)→Mg,n(X, d)
evi−→ X.

By abuse of notation we denote these compositions by evi.

Proposition 7.3.9. Let assume d > 2g − 2. Let p′ : P̃ic
′
→ Pic and p′′ : P̃ic

′′
→

Pic be birational projective maps such that (p∗i π∗F)tf and p∗i (π∗L
⊗k)tf are locally

free. Consider M̃◦
g,n(X, d)

′ and M̃◦
g,n(X, d)

′′ defined analogously to M̃◦
g,n(X, d)

above. Then we have∫
[M̃◦

g,n(X,d)
′]vir

∏
ev∗γi =

∫
[M̃◦

g,n(X,d)
′′]vir

∏
ev∗γi

This proposition permits us to define the reduced Gromov–Witten invariants as
they are independent of the blowing-up of Pic.

Definition 7.3.10. For d > 2g − 2, we call reduced Gromov–Witten invariants of
X, the following numbers ∫

[M̃◦
g,n(X,d)]

vir

∏
ev∗γi.
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Proof of Proposition 7.3.9. Consider the fiber product

P̂ic //

��

P̃ic
′

p′

��

P̃ic
′′ p′′

// Pic

This gives

M̂(X)◦ M̃◦
g,n(X, d)

′ P̃ic
′

M◦
g,n(X, d)

′′ M◦
g,n(X, d) Pic

P̃ic
′′

Pic

q′′

q′ p′

p′′

and thus q′ and q′′ are birational and projective.

Let µ′ : M̃◦
g,n(Pr, d)′ → P̃ic

′
, µ′′ : M̃◦

g,n(Pr, d)′′ → P̃ic
′′
and µ̂ : M̂(Pr) → P̂ic

denote the maps which forget sections. Then we have Cartesian diagrams

M̂(X)◦ //

q′′

��

M̂(Pr)◦
µ̂

//

r′

��

P̂ic

��

M̃◦
g,n(X, d)

′ i′ // M̃◦
g,n(Pr, d)′

µ′
// P̃ic

′

and

M̂(X)◦ //

q′

��

M̂(Pr)◦
µ̂

//

r′′

��

P̂ic

��

M̃◦
g,n(X, d)

′′ i′′ // M̃◦
g,n(Pr, d)′′

µ′′
// P̃ic

′′

This implies that we have a virtual class

(40) [M̂(X)◦]vir := (i′)![M̂(Pr)◦].

Diagram 38 implies that [M̂(X)◦]vir = i![M̂(Pr)◦]. Similarly we also get that

(i′′)![M̂(Pr)◦] = i![M̂(Pr)◦] and so

(41) [M̂(X)◦]vir = (i′′)![M̂(Pr)◦].
Since r′ and r′′ are birational and proper we have

r′∗[M̂(Pr)◦] = [M̃◦
g,n(Pr, d)′] and(42)

r′′∗ [M̂(Pr)◦] = [M̃◦
g,n(Pr, d)′′].(43)

Using 40,41, 42, 43 and commutativity of pull-backs with push-forwards, we get

q′′∗ [M̂(X)◦]vir = [M̃◦
g,n(X, d)

′]vir and

q′∗[M̂(X)◦]vir = [M̃◦
g,n(X, d)

′′]vir.
(44)

Intersection both equations above with
∏
ev∗γi we get the conclusion. □
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We also have the following.

Proposition 7.3.11. The localised invariants do not depend on the blow-up of Pic,
more precisely,

deg[M̃g,n(Pr, d)p]vir = deg[Mg,n(Pr, d)p]vir.

Proof. It follows from eq. (27) and proposition 7.3.9. □

Remark 7.3.12. The results of proposition 7.3.9 and proposition 7.3.11 can be
stated at level of virtual classes. The statement of proposition 7.3.9 with virtual
classes is given by eq. (44).

Let CM̃g,n(Pr,d)p/P̃ic
= ∪iCi where Ci denotes an irreducible component and let

C0 denote the component supported on the main component of M̃g,n(Pr, d)p. Let

[M̃g,n(Pr, d)p]viri denote the class corresponding to the component Ci.

Proposition 7.3.13. We have

deg[M̃◦
g,n(X, d)]

vir = (−1)kd−g+1 deg[Mg,n(Pr, d)p]vir0 .

Proof. This follows the lines of proof of Corollary 4.4 in [CL15]. Let

E•
1 := R•π̂p∗(⊕ri=0L), E•

2 := R•π̂p∗(L⊗−k ⊗ ωπ̂p)

and let Ei = h1/h0(E•
i ) and E = h1/h0(E•). We have that Ei is a vector bundle stack

on M̃g,n(Pr, d)p and E ≃ E1⊕E2. Let U be the open subset of the main component

of M̃g,n(Pr, d)p, with consists of maps with fields with irreducible source. On U
we have R1π̂∗f

∗O(k) = 0, and thus U is also an open subset of M̃◦
g,n(Pr, d). Using

that U is smooth and unobstructed, we see that CU/P̃ic
is isomorphic to the vector

bundle stack E1|U . Since the embedding CU/P̃ic
↪→ h1/h0(E|U ) is

(E1 ⊕ 0)|U ↪→ (E1 ⊕ E2)|U
and CM̃g,n(Pr,d)p/P̃ic

↪→ E is a closed embedding, we get that C0 ≃ E1. By the

definition of the localised cosection virtual class, we get

[M̃g,n(Pr, d)p]vir0 = 0!σ,loc[C0] = 0![0E2 ],

where 0E2
is the zero section of E2|M̃◦

g,n(Pr,d)
. By Lemma 4.3 in [CL15] with the

complex R := R•π̂p,◦∗ L⊗k and Theorem 7.3.4, part 3 we get

[M̃g,n(Pr, d)p]vir0 = ctop(R
1π̂p,◦∗ (L⊗−k ⊗ ωπ̂p,◦)) · [M̃◦

g,n(Pr, d)].

By Serre duality we have that

c1−g+kd(R
1π̂p,◦∗ (L⊗−k ⊗ ωπ̂p)) = (−1)1−g+kdc1−g+kd(R0π̂p∗L⊗k)

and thus

[M̃g,n(Pr, d)p]vir0 = (−1)1−g+kdc1−g+kd(R0π̂p∗L⊗k) · [M̃◦
g,n(Pr, d)].

This proves the claim. □

Conjecture 7.3.14. Let X be a threefold. Then

deg[M̃g,n(X, d)
p]viri = ci deg[M̃◦

gi,n(X, d)]
vir,

for some ci ∈ Q and gi < g.
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Remark 7.3.15. The conjecture has been proved for genus one [Zin09a, Zin09b,
Zin08], [CL15], [LO21, LO22] and genus two [LLO22].

In genus g = 1 and X a Calabi–Yau three-fold, the conjecture translates into

deg[Mg,n(X, d)] = deg[M̃◦
g,n(X, d)]

vir +
1

12
deg[M0,n(X, d)]

vir.

8. Desingularizations in genus one

In genus one, reduced Gromov–Witten invariants were originally defined using
the desingularization constructed in [VZ08]. It consists of a sequence of blow-
ups determined by the geometry of the moduli spaceM1,n(Pr, d). In [HL10], local
equations for the blowup are determined. We aim to compare this desingularization
with the one obtained using the Rossi–Villamayor blow-up BlFPic, with F as in
eq. (20). In particular, we describe BlFPic in locally in the spirit of [HL10].

8.0.1. Charts. In genus one, the original definition of refined Gromov–Witten in-
variants comes from [VZ08]. The main is idea is to apply a sequence of blow ups
to Mg,n(Pr, d) in order to desingularize the main component. Strictly speaking,
the sequence of blow ups takes place in the stack Mwt

1 of genus-1 prestable curves
endowed with a weight. Let Θk denote the closure of the loci in Mwt

1 of curves
with k trees of rational curves attached to the core. Then one should blow up Mwt

1

along the loci Θ1, Θ2, Θ3 and so on in order to produce a stack M̃wt
1 . This process

induces a blowup M̃g,n(Pr, d) ofMg,n(Pr, d) via fibre product.

Given a stratum M̃g,n(Pr, d)γ corresponding to a weighted graph γ, local equa-

tions of M̃g,n(Pr, d) and the local description of Θk in that stratum are described
explicitly in [HL10]. The purpose of this section is to summarize such local descrip-
tion, give coordinates for the new approach locally and compare both.

It may be helpful to keep in mind the following diagram, described below.

EV Eγ

(F = 0) (Φγ = 0) Vγ

U V Ṽ

U D1 D̃1

Mwt
1 M̃wt

1

ϕ̃

ϕ

□

□

Fix a weighted graph γ with root o. Let Ver(γ), Ver(γ)t and Ver(γ)∗ denote the
vertices, the terminal vertices (or leaves) and the non-rooted vertices of γ, respec-
tively. We take the natural ordering in Ver(γ) making the root o the minimal
element. We assume that the weight in γ is non-negative on every vertex and that
γ is terminally weighted, meaning that the vertices with non-zero weights are ex-
actly those in Ver(γ)t. Let Mwt

1 is the stack of genus-1 prestable curves endowed
with a weight. Remember that every element C parametrized by Mwt

1 has a dual
(weighted) graph γ, which can be made terminally weighted and rooted by first
declaring the root to be the (contraction of) the core of C and then pruning along
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all non-terminal positively weighted nodes. We will denote by o the root of any
terminally weighted rooted tree, and by a, b, . . . the remaining vertices.

In the diagram, M̃wt
1 denotes the blow up of Mwt

1 described above and D1 is
the stack of stable pairs (C,D) with D an effective Cartier divisors supported in
the smooth locus of C. Fix a point (C,D) in D1 and a map in Mg,n(Pr, d) with

underlying curve C. Then U is a small open around the fixed map inMg,n(Pr, d),
V is a smooth chart around the point (C,D) in D1 containing the image of U and
EV is the total space of the sheaf ρ∗L(A)⊕n on V.

Let Vγ =
∏
v∈Ver(γ)∗ A1 be an affine space that serves as model for local equa-

tions. We denote by za, zb, . . . the natural coordinates in Vγ . Similarly, Eγ =
Vγ ×

∏
v∈Ver(γ)t(A1)r and the coordinates on the affine space (A1)r corresponding

to a ∈ Ver(γ)t will be denoted by wa,1, . . . , wa,r. The ideal Φγ = (Φγ,1, . . . ,Φγ,r)
will be described explicitly in eq. (45). The smooth morphism ϕ comes from the
natural coordinates on V, associated to the smoothing of each of the disconnecting
nodes in C (which are in natural bijection with Ver(γ)∗). The map U → (F = 0)

is an open embedding. Finally, ϕ̃ is induced by ϕ and F = ϕ̃∗Φγ . It is in this sense

that we can think of Φγ as the equations ofMg,n(Pr, d)γ .
Following [HL10], given a terminally weighted rooted graph γ, the ideal Φγ =

(Φγ,1, . . . ,Φγ,r) inside Vγ can be described as

(45) Φγ,i =
∑

v∈Ver(γ)t

z[v,o]wv,i 1 ≤ i ≤ r,

where

z[v,o] =
∏

o≺a⪯v

za.

Note that, for fixed i, the variables wa,i only appear in the i-th equation Φγ,i.
Due to the symmetry of the equations and the fact that all blow ups take place in
Vγ , which has coordinates {za}a∈Ver(γ)∗ (but not the wa,i), in the examples below
we will not write down the index i in the equations Φγ,i nor in the variables wa,i.
For example, in the study of the equations Φγ,i after blowing up, it will be clear that
the index i is irrelevant, in the sense that the way that Φγ,i changes is independent
of i.

8.1. Local equations of desingularizations. The local equations of the loci that
must be blown up are described, following [HL10].

Firstly, we describe how to assign an ideal Iγ to any semistable terminally
weighted rooted tree γ. Here, semistability of γ means that every non-root ver-
tex with weight zero has at least two edges.

The trunk of γ is the maximal chain o = v0 ≺ v1 ≺ . . . ≺ vr of vertices in γ such
that each vertex vi with 1 ≤ i < r has exactly one immediate descendant and vr is
called a branch vertex if is it not terminal. Note that γ is a path tree if and only if
it has no branch vertex.

Definition 8.1.1. Let γ be a semistable terminally weighted rooted tree with
branch vertex v and let a1, . . . , ak be the immediate descendants of v. To γ we
associate the ideal

Iγ = (za1 , . . . , zak)

in Vγ .
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First, we must blow up Vγ along the ideal Iγ . To describe the remaining steps
we need to introduce the following operations.

Definition 8.1.2. Let γ be a terminally weighted semistable rooted tree.

• The pruning of γ along a vertex v is the new tree obtained by removing
all the descendants of v (and the corresponding edges) and declaring the
weight of v to be the sum of the original weight of v plus the weights of all
removed vertices.
• The advancing of a vertex v with immediate ascendant v in γ is a new
tree obtained by replacing every edge (v, v′) with v′ ̸= v by an edge (v, v)
and pruning along all positively weighted non-terminal vertices as long as
possible. In section 8.1.4 we will denote by γv the advancing of v in γ and
by γ′v the same tree before pruning.
• Suppose γ has a branch vertex v. A monoidal transform of γ is a tree
obtained by advancing one of the immediate descendants of v. The set of
monoidal transforms of γ is Mon(γ).

It turns out that the ideal Φγ behaves nicely under monoidal transforms. Indeed,
let γ be a semistable terminally weighted rooted tree with branch vertex v and let
a = a1, a2, . . . , ak be the immediate descendants of v. Let γa be the tree advancing

of a in γ. Let π : Ṽγ → Vγ be the blow-up of Vγ along the ideal Iγ = (za1 , . . . , zak).

We view Ṽγ embedded inside Vγ×Pk−1. There is a natural way to associate to each

generator zai of Iγ one chart of Pk−1, and thus also of Ṽγ . We denote such chart by

Ṽγ,ai . Let πa : Ṽγ,a → Vγ be the restriction of the natural projection, where a = a1.
Then, by the proof of [HL10, Lemma 5.14], one of the following must hold

• either γa is a path tree, and then the zero locus of π∗
a(Φγ) has smooth

components;
• or γa is not a path tree and then

(46) π∗
a(Φγ) = Φγa .

The whole blow-up process is summarized as follows. Fix γ. First blow up Vγ
along Iγ . The pullback of Φγ is controlled by Mon(γ). If Mon(γ) consists only
of path trees, we are done. Otherwise, for every element γ′ in Mon(γ) which is

not a path tree, blow up the chart of Ṽγ corresponding to γ′ along Iγ′ . Continue
recursively. The process concludes by [HL10, Lemma 3.12].

Now we want to describe BlFPic locally. Namely, we want to describe which loci
inside Pic we are blowing up locally. We have a short exact sequence

0→ ρ∗L → ρ∗L(A)→ ρ∗L(A) |A
by eq. (23). The change of notation is due to the fact that eq. (23) was global in
Pic, but we now work locally. After a careful study of the second morphism, [HL10,
Theorem 4.16] concludes that ρ∗L is the direct sum of a trivial bundle with the
kernel of the morphism

(47)
⊕

v∈Ver(γ)t

φv : O⊕ℓ
V → OV ,

where ℓ is the cardinality of Ver(γ)t and φv =
∏
o≺v′⪯v ζv, with ζv the smoothing

parameter of the disconnecting node corresponding to the vertex v.
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By lemma 7.1.1, the sheaf F can be described locally as the dual of eq. (47). In
particular, by Remark 8.1.6 we have that BlFPic agrees, locally, with the blowup
along the ideal generated by the entries (φv)v∈Ver(γ)t . In local coordinates, this
ideal can be described as follows.

Definition 8.1.3. Let γ be a semistable terminally weighted rooted tree with
Ver(γ)t = {v1, . . . , vt}. To γ we associate the ideal

Jγ = (z[v1,o], . . . , z[vt,o]).

Similarly to eq. (46), in the same setup we have that

π∗
a(Jγ) = Jγa ,

independently of whether γa is has a branch vertex. This follows again from the
proof of [HL10, Lemma 5.14].

8.1.4. Examples. For two concrete trees γ, we compute the equations Φγ as well
as the ideals Iγ and Jγ . We describe the blow up process of Hu and Li and show

that the result indeed desingularizes the main component of Mg,n(Pr, d) locally.
Furthermore, we check that the ideal Jγ becomes locally principal in Hu–Li’s blow-
up.

Example 8.1.5. Consider the following labelled graph:
γ = o

a b

c d

Φγ = zawa + zb(zcwc + zdwd),

Iγ = (za, zb),

Jγ = (za, zbzc, zbzd).

Let Ṽγ be the blow up along Iγ , that is the zero locus of zaz
′
b − zbz

′
a inside

A4
za,zb,zc,zd

×P1
z′a,z

′
b
. The chart associated to a is that where z′a ̸= 0. Dehomogenizing

amounts to the change of variables zb = z′bza. By doing so, we get that

π∗
a(Φγ) = za(wa + z′b(zcwc + zdwd))

and that

π∗
a(Jγ) = (za, zaz

′
bzc, zaz

′
bzd) = (za).

This means that the zero locus of π∗
a(Φγ) already has smooth components, so no

further blowups are needed on this chart, and that π∗
a(Jγ) is principal on this chart

too.
Below are the trees γ′a obtained by advancing a without pruning, and γa obtained

by advancing a. We know that π∗
aJγ = Jγa , but we check it in this example.

γ′a = o

a

b

c d

γa = o

a
Jγa = (za).

Similarly, we now look at the chart associated to b, where z′b ̸= 0. The change
of variables is now za = zbz

′
a. It follows that

π∗
b (Φγ) = zb(z

′
awa + zcwc + zdwd)
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and that

π∗
b (Jγ) = (zbz

′
a, zbzc, zbzd) = zb(z

′
a, zc, zd).

This means that we still need to blow up. This time the tree γb obtained by
advancing b in γ (no pruning is needed) is not a path tree. We also check the
identities Jγa = π∗

aJγ and π∗
b (Φγ) = Φγb .

o

b

a c d

Φγb = zb(zawa + zcwc + zdwd),

Iγb = (za, zc, zd),

Jγb = zb(za, zc, zd).

To conclude the example, we need to blow up along the ideal (za, zc, zd). We
collect the result below.

Advancing a, or equivalently looking at the chart z′a ̸= 0, we have
γ′b,a = o

b

a

c d

γ′b,a = o

b

a

π∗
aπ

∗
b (Φγ) = π∗

a(Φγb) = zazb(wa + zcwc + zdwd),

Jγb,a = (zazb).

Advancing c, or equivalently looking at the chart z′c ̸= 0, we have
γ′b,c = o

b

c

a d

γ′b,c = o

b

c

π∗
cπ

∗
b (Φγ) = π∗

c (Φγb) = zbzc(zawa + wc + zdwd),

Jγb,c = (zbzc).

And finally, advancing d, or equivalently looking at the chart z′d ̸= 0, we have
γ′b,d = o

b

d

a c

γ′b,d = o

b

d

π∗
dπ

∗
b (Φγ) = π∗

d(Φγb) = zbzd(zawa + zcwc + wd),

Jγb,d = (zbzd).

Remark 8.1.6. Example 8.1.5 shows that the Rossi–Villamayor blow-up process
of Mg,n(Pr, d) is not equal to the Vakil–Zinger blow-up. This is compatible with
Remark 4.4. in [HN19]. Indeed, the Rossi–Villamayor blowup around γ is given
by BlJγVγ and the Vakil–Zinger one is the iterated blow-up BlIγbBlIγVγ . We know
there is a natural morphism

BlIγbBlIγVγ → BlJγVγ

over Vγ , either by proposition 4.2.6 or because we checked that Jγ pulls back to a
principal ideal in BlIγbBlIγVγ . By contradiction, if there is a morphism

f : BlJγVγ → BlIγbBlIγVγ
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over Vγ , then we get a morphism

f̃ : BlJγVγ → BlIγVγ

over Vγ . By [Moo01], there is a fractional ideal K in Vγ and a positive integer α
such that

Iγ ·K = Jαγ .

This is not true for Iγ = (za, zb) and Jγ = (za, zbzc, zbzd) in Vγ = A4
za,zb,zc,zd

.

Example 8.1.7. We do a similar study for the following labelled graph γ:
o

a

c d

b

e f

Φγ = za(zcwc + zdwd) + zb(zewe + zfwf ),

Iγ = (za, zb),

Jγ = (zazc, zazd, zbze, zbzf ).

After blowing up, there are two charts, corresponding to the advacings of a and
b respectively.

γa = o

a

c d b

e f

Φγa = za(zcwc + zdwd + zb(zewe + zfwf )),

Iγa = (zb, zc, zd),

Jγa = za(zc, zd, zbze, zbzf ).

γb = o

b

a

c d

e f

Φγb = zb(za(zcwc + zdwd) + zewe + zfwf ),

Iγb = (za, ze, zf ),

Jγb = zb(zazc, zazd, ze, zf ).

By symmetry, it is enough to understand how to proceed in one of the charts.
We choose the one corresponding to a. We get three new charts corresponding to
the vertices c, d and b.

γ′a,c = o

a

c

d b

e f

γa,c = o

a

c

π∗
cΦγa = zazc(wc + zdwd + zb(zewe + zfwf )),

Jγa,c = (zazc).
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γ′a,d = o

a

d

c b

e f

γa,d = o

a

d

π∗
dΦγa = zazd(zcwc + wd + zb(zewe + zfwf )),

Jγa,d
= (zazd).

γa,b = o

a

b

c d e f

Φγa,b
= zazb(zcwc + zdwd + zewe + zfwf ),

Iγa,b
= (zc, zd, ze, zf ),

Jγa,b
= zazb(zc, zd, ze, zf ).

To conclude, we need to blow up the last chart along Iγa,b
. This produces four

new charts corresponding to c, d, e and f . We will only write down one of them
since the rest are very similar.
γ′a,b,c = o

a

b

c

d e f

γa,b,c = o

a

b

c

π∗
cΦγa,b

= zazbzc(wc + zdwd + zewe + zfwf ),

Jγa,b,c
= (zazbzc).

8.1.8. Smoothness. In genus one,M1,n(Pr, d)×PicBlFPic has simple normal cross-
ings following the same argument as in [HL10, Theorem 5.24]. It is enough to show
that the zero locus of the ideal Φγ becomes a simple normal crossing in the blow-up

Ṽγ of Vγ along the ideal Jγ .
Remember that Φγ = (Φγ,1, . . . ,Φγ,r) with

Φγ,i =
∑

v∈Ver(γ)t

z[v,o]wb,i 1 ≤ i ≤ r,

where

z[v,o] =
∏

o≺a⪯v

za,

and that

Jγ = (z[v,o])v∈Ver(γ)t .

For given v′ ∈ Ver(γ)t, the pullback of the equation Φγ,i on the chart corresponding
to v′ is equal to

z[v′,o]

wv′,i + ∑
v′ ̸=v∈Ver(γ)t

z[v,o]wb,i


by [HL10, Lemma 5.14]. This proves the claim.
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8.1.9. Maps between blowups. By proposition 4.2.6 there is a morphism from Vakil–
Zinger’s blowup to Rossi-Villamayor’s blowup. In genus one, we can check it locally:

it is equivalent to the fact that the pullback of the ideal Jγ to each chart Ṽγ of
the Hu–Li blowup of Vγ is principal. We have checked this in example 8.1.5 and
example 8.1.7, More generally, we can give a proof for every γ as follows.

By eq. (46) if za is any of the generators of Iγ , then π
∗
a(Jγ) = Jγa where γa is

the advancing of a in γ. In particular, it is enough to show that all the (natural)

charts of Ṽγ correspond to path trees, which is proven in [HL10, Lemma 3.14].
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