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The airfoil integral equation over two disjoint intervals is considered. An analytic solution given in terms of polynomials satisfying a generalised three-term recurrence relation is obtained, when the input function is a Chebyshev polynomial of the first kind. A new class of polynomials is defined on two disjoint intervals and is shown to generalise a classical integral relationship previously satisfied by Chebyshev polynomials on a single interval. The solutions are calculated efficiently and comparisons with the original problem, defined on a continuous domain are presented. A spectral method for the generalised airfoil integral equation over two disjoint intervals is outlined.

Introduction

The airfoil equation is given by

- b a f (t) x -t dt = g(x), x ∈ (a, b), (1) 
where f is the unknown function, g is prescribed and the integral symbol must be understood in the sense of a

Cauchy principal value, due to the strong singularity of the integrand. The equation receives its name because it models the two-dimensional flow over an infinitely thin airfoil in an inviscid fluid. In this case, f represents the pressure difference between the upper and lower sides in the plate and g is the downwash velocity. This equation has been extensively studied from the physical, computational and numerical analysis points of view.

Several applications in acoustics, hydrodynamics and elastostatics are reduced to similar equation to (1) on a finite or infinity domain [START_REF] Mandal | Applied singular integral equations[END_REF][START_REF] Martin | Interaction of water waves with thin plates[END_REF]. In particular, the scattering of water waves by a thin vertical barrier can be modeled by an airfoil equation whose solution is unbounded at one end of the domain [START_REF] Mandal | Applied singular integral equations[END_REF]. The Cauchy-type singularity in (1) can be associated with stronger singularities in finite part integrals, as discussed in previous works [START_REF] Mukherjee | Cauchy principal values and finite parts of boundary integrals-revisited[END_REF][START_REF] Hui | Evaluations of hypersingular integrals using gaussian quadrature[END_REF]. Numerous algorithms have been proposed to address the numerical integration challenges posed by its full or nearly singular behavior, particularly in the context of boundary element methods [START_REF] Farina | Evaluation of single layer potentials over curved surfaces[END_REF][START_REF] Theotokoglou | A modified gauss quadrature formula with special integration points for evaluation of quasi-singular integrals[END_REF][START_REF] Klöckner | Quadrature by expansion: A new method for the evaluation of layer potentials[END_REF].

A particular extension of the airfoil equation is the so called generalised airfoil equation, where the kernel function has an additional, not strongly singular, term. This more general equation governs the pressure across an airfoil oscillating in a closed tunnel [START_REF] Berthold | A fast algorithm for solving the generalized airfoil equation[END_REF][START_REF] Bland | The two-dimensional oscillating airfoil in a wind tunnel in subsonic flow[END_REF]. The stability and convergence properties of Galerkin and Collocation methods for the solution of this equation have been studied in [START_REF] Golberg | Numerical solution of integral equations[END_REF]Chapter 5], [START_REF] Monegato | Numerical solution of the generalized airfoil equation for an airfoil with a flap[END_REF] and [START_REF] Golberg | On the l2 convergence of collocation for the generalized airfoil equation[END_REF][START_REF] Hartmann | Rates of convergence for collocation with jacobi polynomials for the airfoil equation[END_REF][START_REF] Scuderi | A collocation method for the generalized airfoil equation for an airfoil with a flap[END_REF][START_REF] Junghanns | A note on Kalandiya's method for a crack problem[END_REF], respectively.

Despite the amount of publications and interest in this topic, very little is known about the airfoil equation on a discontinuous domain. Tricomi [START_REF] Tricomi | The airfoil equation for a double interval[END_REF] was the first to present an analytic solution of the airfoil equation in two disjoint intervals. More recently, Dutta and Barnejea [START_REF] Dutta | Solution of a hypersingular integral equation in two disjoint intervals[END_REF] used Tricomi's solution to deduce a solution of a hypersingular integral equation on two disjoint intervals and Trogdon and Olver [START_REF] Trogdon | Riemann-Hilbert problems, their numerical solution, and the computation of nonlinear special functions[END_REF] analyse general Cauchy integral equations using their Riemann-Hilbert problem representations. Farina et al. [START_REF] Farina | The airfoil equation on near disjoint intervals: Approximate models and polynomial solutions[END_REF] obtained approximate polynomial solutions of the airfoil equation over disjoint intervals, when the distance between them is small.

In the present paper, we obtain particular polynomial solutions of the airfoil equation defined over the domain (-1, -κ) ∪ (κ, 1) for an arbitrary κ, when the input function, g is a Chebyshev polynomial of the first kind.

We outline the article as follows. We show how to analytically evaluate a Cauchy principal value over disjoint intervals when the integrand involves a polynomial, in section 2. When the input function is a Chebyshev polynomial, an explicit expression for the solution is given in section 3. In section 4, we show how to deduce simple recurrence relations for the solution. In section 5 we apply recurrence solutions to derive asymptotic solutions as κ → 0. We exhibit also the first terms of an expansion in power series of κ for particular analytical solutions and we specify a functional framework in weighted Sobolev spaces, Section 5.1. Numerical results comparing the recurrence calculations and asymptotic solutions and also with solution of the classical airfoil equation are presented in section 6. In section 7 we discuss the work, perspectives and outline a spectral method for solving the generalised airfoil equation in two disjoint intervals.

Analytical solutions

In the next subsection, we present known results on the solution of the classic airfoil equation (defined on a single interval) and in subsection 2.2, we describe our new results on airfoil equation analytical solutions on two disjoint intervals.

The airfoil equation on a continuous interval

The simplest airfoil equation defined over a finite interval is

1 π - 1 -1 f (t) x -t dt = g(x) , x ∈ (-1, 1). (2) 
Let g(x) be Hölder continuous for

x ∈ [-1, 1], g ∈ C 0,α ([-1, 1]
). We can write down the general solution of (2); it is (cf. [20, p. 173-180] or [START_REF] Martin | Exact solution of a simple hypersingular integral equation[END_REF])

f (x) = - 1 π - 1 -1 1 -t 2 1 -x 2 g(t) x -t dt + C √ 1 -x 2 , ( 3 
)
where C is an arbitrary constant. This means that (3) has infinite solutions according to C. This constant can be physically interpreted as the circulation Γ ∞ around of the airfoil [22, p. 70]. For simplicity, we choose C = 0. Thus, the solution (3) is reduced to

f (x) = - 1 π - 1 -1 1 -t 2 1 -x 2 g(t) x -t dt. (4) 
Now, taking g(t) = T n (t), where T n is the Chebyshev polynomial of the first kind, in (4), using [23, eq.

22.13.4] 1 π

1

-1 U n-1 (t) x -t 1 -t 2 dt = T n (x), (5) 
where U n-1 (t) is the Chebyshev polynomial of the second kind and degree n -1 and the relation [START_REF]Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables[END_REF] T

n (t) = 1 2 [U n (t) -U n-2 (t)] ,
we obtain

f (x) = -1 2 √ 1 -x 2 [T n+1 (x) -T n-1 (x)] . (6) 
We will use the solution [START_REF] Theotokoglou | A modified gauss quadrature formula with special integration points for evaluation of quasi-singular integrals[END_REF] for comparison with the solution of airfoil equation on two disjoint intervals, in section 6.2.

The airfoil equation in two disjoint intervals

We consider the airfoil over the discontinuous domain G κ = (-1, -κ) ∪ (κ, 1). Writing it explicitly, on the two disjoint intervals of G κ , we have

1 π - -κ -1 f κ (t) x -t dt + 1 π - 1 κ f κ (t) x -t dt = -ψ(x), x ∈ G κ . (7) 
Here, f κ is an unknown function and ψ is an input data of the problem. We assume the ψ is Hölder continuous (i.e., ψ ∈ C 0,α (G κ )) and κ > 0. Tricomi [START_REF] Tricomi | The airfoil equation for a double interval[END_REF] (see also [START_REF] Dutta | Solution of a hypersingular integral equation in two disjoint intervals[END_REF]) obtained an explicit solution of this equaion, as

f κ (x) =      1 πR κ (x) [C 1,κ + C 2,κ x + Ψ κ (x)] , x ∈ (-1, -κ), - 1 πR κ (x) [C 1,κ + C 2,κ x + Ψ κ (x)] , x ∈ (κ, 1), (8) 
where

Ψ κ (x) = -κ -1 ψ(t)R κ (t) x -t dt - 1 κ ψ(t)R κ (t) x -t dt , (9) 
C 1,κ and C 2,κ are two arbitrary constants and

R κ (x) = (1 -x 2 )(x 2 -κ 2 ) , x ∈ G κ . (10) 
We focus now on the case where C 1,κ = C 2,κ = 01 ; the solution (8) reduces to

f κ (x) = - sgn(x) πR κ (x) Ψ κ (x), x ∈ G κ , (11) 
where sgn(x) denotes the sign of x. Note in [START_REF] Monegato | Numerical solution of the generalized airfoil equation for an airfoil with a flap[END_REF] that the solution is given in terms of Ψ κ (x) which is in turn, written in terms of Cauchy principal values. Aiming at approximate solutions for [START_REF] Klöckner | Quadrature by expansion: A new method for the evaluation of layer potentials[END_REF] obtained by efficient algorithms, we want to make progress now assuming the input function ψ(x) is a polynomial of degree n. We will use also the notation f n,κ , when we want to emphasize the dependence on n.

The next proposition, due to Gakhov [START_REF] Gakhov | Boundary value problems[END_REF] (see also [START_REF] Khvedelidze | The method of cauchy-type integrals in the discontinuous boundary-value problems of the theory of holomorphic functions of a complex variable[END_REF]), is key in this work: it will allow us to to write Ψ κ as a polynomial, when ψ(x) itself is also a polynomial.

Proposition 1 ([24]

). Let L = m k=1 L k be a contour consisting of m simple open curves having no common ends. The coordinates of the ends, taken in certain order, are denoted by c 1 , c 2 , c 3 , . . . , c 2m . Let p be an integer, 0 ≤ p ≤ 2m, and P (z) a polynomial. Thus, the singular integral

I(t) = 1 πi L p k=1 (τ -c k ) 1/2 2m j=p+1 (τ -c j ) 1/2 P (τ ) τ -t dτ = -P * (t), (12) 
where P * (z) is a polynomial representing the principal part of the expansion of the Cauchy integral density, in the vicinity of infinity, i.e., obeys the condition

lim z→∞        p k=1 (z -c k ) 1/2 2m j=p+1 (z -c j ) 1/2 • P (z) -P * (z)        = 0. ( 13 
)
Remark 1. In the integral (12), 1 τ -t is the Cauchy kernel and

p k=1 (τ -c k ) 1/2 2m j=p+1 (τ -c j ) 1/2
P (τ ) is the so-called density of the Cauchy integral. Thus, evaluating the integral I is accomplished calculating the principal part of the density function which is defined by [START_REF] Hartmann | Rates of convergence for collocation with jacobi polynomials for the airfoil equation[END_REF]. We denote the principal part by PP.

To evaluate [START_REF] Monegato | Numerical solution of the generalized airfoil equation for an airfoil with a flap[END_REF] in terms of the principal part, we expand the density of the Cauchy integral in power series, in the vicinity of infinity; the details of such a procedure is shown in appendix Appendix A. But first, we need to put the integrals in Ψ κ (x) in the same the form as in [START_REF] Golberg | On the l2 convergence of collocation for the generalized airfoil equation[END_REF]. For this, note that

Ψ κ (x) = - 1 κ R κ (t) x(ψ(-t) -ψ(t)) -t(ψ(-t) + ψ(t)) x 2 -t 2 dt ( 14 
)
and separate two cases according with parity of ψ, as follows.

1. Even polynomial ψ(x). In this case,

Ψ κ (x) = - 1 κ R κ (t) -2tψ(t) x 2 -t 2 dt. ( 15 
)
Now, making the change of the variables x 2 = u, t 2 = v and applying the proposition 1 (cf. appendix Appendix A), we get

Ψ κ (x) = -π PP (x 2 -1) (x 2 -κ 2 )ψ(x) x→∞ . (16) 
Then, [START_REF] Monegato | Numerical solution of the generalized airfoil equation for an airfoil with a flap[END_REF] is written as

f κ (x) = sgn(x) R κ (x) PP (x 2 -1) (x 2 -κ 2 )ψ(x) x→∞ . (17) 
2. Odd polynomial ψ(x). This is analogous to the case 1. Thus,

Ψ κ (x) = -π x PP (x 2 -1) (x 2 -κ 2 ) ψ(x) x x→∞ (18) 
and the solution [START_REF] Monegato | Numerical solution of the generalized airfoil equation for an airfoil with a flap[END_REF] is written as

f κ (x) = sgn(x)x R κ (x) PP (x 2 -1) (x 2 -κ 2 ) ψ(x) x x→∞ . (19) 
To make progress in obtaining an explicit and simple expression and algorithm for f κ , let us next assume ψ is a Chebyshev polynomial.

Chebyshev polynomials as input functions

We now make a specific choice for the input function in [START_REF] Klöckner | Quadrature by expansion: A new method for the evaluation of layer potentials[END_REF], namely

ψ(x) = -T n (x),
where T n is the Chebyshev polynomials of the first kind and degree n.

Consider the representation [START_REF] Snyder | Chebyshev Methods in Numerical Approximation[END_REF] T

n (x) = [n/2] k=0 t k n-2k x n-2k , (20) 
where [n/2] is the integer part of n/2 and t k n-2k , the coefficients of the Chebyshev polynomial, which can be written as

t j i = 2 i-1 (-1) j i + 2j i + j i + j j . (21) 
Equation [START_REF] Tricomi | Integral equations[END_REF] shows that T n (x) has degree n and that it is odd or even according to whether n is odd or even, respectively.

Separating according with the parity, we get

T 2m (x) = m k=0 t m-k 2k x 2k (22) 
and

T 2m+1 (x) = m k=0 t m-k 2k+1 x 2k+1 , ( 23 
)
where m is the integer part of the n/2.

Substituting ( 22) and ( 23) in ( 17) and ( 19) respectively, we show in the appendix Appendix A that

f n,κ (x) = -sgn(x) R κ (x) E n (x), (24) 
where E n (x) is a polynomials of degree n, given by

E 2m (x) = m l=0 m k=m-l t m-k 2k s (k-(m-l)) κ (0) (k -(m -l))! x 2(m-(l-1)) + t m-l 2l s (l+1) κ (0) (l + 1)! (25) 
and

E 2m+1 (x) = m l=0 m k=m-l t m-k 2k+1 s (k-(m-l)) κ (0) (k -(m -l))! x 2(m-(l-1))+1 + t m-l 2l+1 s (l+1) κ (0) (l + 1)! x , (26) 
s κ (w) = (1 -w)(1 -κ 2 w), s (n) 
κ (w) is the n-th derivative of the s κ (w) and s (0)

κ (w) = s κ (w).
Remark 2. The square root term present in (24) could be regarded as a weight function in which the airfoil equation (7) would read

1 π - Gκ f κ (t) x -t w(t)dt = -ψ(x), x ∈ G κ , (27) 
where

w(t) = sgn(t) 1 R κ (t)
. We see clearly that E n is a purely polynomial solution of the weighed airfoil equation:

the following integral relationship is valid.

1 π - Gκ E n (t) x -t w(t)dt = T n (x). ( 28 
)
Equation (28) is possibly the main contribution of this work and generalises the classical relationship (5):

1 π 1 -1 U n-1 (t) x -t 1 -t 2 dt = T n (x).
In the next section, we show that E n (x), and consequently also f n,κ (x), can be easily and efficiently computed by means of a generalised three-term recurrence relation, meaning a three-term recurrence relation, when n is even, and a three-term recurrence relation with a residual term, when n is odd.

Recurrence Relations

In order to get recurrence relations, we analyse two cases according with the parity of the input function ψ, as previously.

1. Even ψ(x) = -T 2m (x).

We show in appendix Appendix A that

E 2m = PP T 2m (x) m+1 i=0 s (i) κ (0) i! x 2(1-i) x→∞ . ( 29 
)
Using the recurrence relation [START_REF]Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables[END_REF]Eq. 22.7.4]

T n (x) = 2xT n-1 (x) -T n-2 (x)
, in (29), we have

E 2m = PP (2x T 2m-1 (x) -T 2m-2 (x)) m+1 i=0 s (i) κ (0) i! x 2(1-i) x→∞ = PP 2x T 2m-1 (x) m+1 i=0 s (i) κ (0) i! x 2(1-i) -T 2m-2 (x) m+1 i=0 s (i) κ (0) i! x 2(1-i) x→∞ .
Incorporating T 2m-1 (x) and T 2m-2 (x) into the sums and discarding terms that tend to zero as x goes to infinity (see appendix Appendix B for the details), we get

E 2m = 2x(xE 2m-1 ) -E 2m-2 + 2 m-1 i=0 t m-1-i 2i+1 s (i+2) κ (0) (i + 2)! . ( 30 
)
Substituting (30) in ( 24) we obtain

f 2m,κ (x) = 2xf 2m-1,κ (x) -f 2m-2,κ (x)- sgn(x) R k (x) 2 m-1 i=0 t m-1-i 2i+1 s (i+2) κ (0) (i + 2)! . ( 31 
) 2. Odd ψ(x) = -T 2m+1 (x).
Following analogous steps for the odd case, we obtain the recurrence formula (see appendix Appendix B):

f 2m+1,κ (x) = 2xf 2m,κ (x) -f 2m-1,κ (x). ( 32 
)
The initial terms are given by

f 0,κ (x) = - sgn(x) R κ (x) x 2 - 1 + κ 2 2 ( 33 
)
and

f 1,κ (x) = - sgn(x) x R κ (x) x 2 - 1 + κ 2 2 . ( 34 
)
A straightforward implementation of (31) and (32) in Matlab showed the recurrence relations are numerically stables up to polynomials of order 45.

Asymptotic solutions when κ → 0

In this section we derive asymptotic solutions for the Airfoil equation as κ → 0 when the input function is a Chebyshev polynomial. Then we exhibit the first terms of an asymptotic expansion of f κ in power series of κ when the right hand side is a Chebyshev polynomial. Our general approach is based on the recurrence formula (31) and (32).

Firstly, note that using the initial term (33) we infer the formal limit: f 0,κ (x) -→ f 0,0 (x) as κ → 0. Here f 0,0 is defined by

f 0,0 (x) = - x 2 -1 2 x √ 1 -x 2 .
This result coincides with Eq. (3.17a) in [START_REF] Golberg | On the l2 convergence of collocation for the generalized airfoil equation[END_REF]. Secondly, note that using the initial term (34) we infer the formal limit:

f 1,κ (x) -→ f 1,0 (x) as κ → 0.
Here f 1,0 is defined by

f 1,0 (x) = - x 2 -1 2 √ 1 -x 2 .
This result coincides with Eq. (3.17b) in [START_REF] Golberg | On the l2 convergence of collocation for the generalized airfoil equation[END_REF]. Then when ψ = -T 2 , we find the formal limit:

f 2,κ (x) -→ f 2,0 (x)
as κ → 0. Here f 2,0 (x) is given by :

f 2,0 (x) = - 2x 4 -2x 2 + 1 4 x √ 1 -x 2 . ( 35 
)
The proof of this result is based on formula (31) when m = 1. Note that this result coincides with Eq. (3.17c) in [START_REF] Golberg | On the l2 convergence of collocation for the generalized airfoil equation[END_REF]. When ψ = -T 3 , we find the formal limit : f 3,κ (x) -→ f 3,0 (x) as κ → 0. Here f 3,0 (x) is given by :

f 3,0 (x) = - 4x 4 -5x 2 + 1 √ 1 -x 2 . ( 36 
)
The proof of this result is based on formula (32) when m = 1. This result coincides with Eq. (3.17d) in [START_REF] Golberg | On the l2 convergence of collocation for the generalized airfoil equation[END_REF].

Proposition 2. When ψ = -T 4 we find the formal limit : f 4,κ (x) -→ f 4,0 (x) as κ → 0. Here f 4,0 (x) is given by :

f 4,0 (x) = (8x 3 -4x) 1 -x 2 . ( 37 
)
Proof. Let us prove this convergence result f 4,κ (x) -→ f 4,0 (x) as κ → 0. The proof is based on formula (31) when m = 2 :

f 4,κ (x) = 2xf 3,κ (x) -f 2,κ (x) - sgn(x) R κ (x) 2 1 i=0 t 1-i 2i+1 s (i+2) κ (0) (i + 2)! i.e. f 4,κ (x) = 2xf 3,κ (x) -f 2,κ (x) -2 sgn(x) R κ (x) t 1 1 s (2) κ (0) 2! + t 0 3 s (3) κ (0) 3! . ( 38 
)
First, by definition of R κ , we have the following convergence result : R κ (x) -→ |x| √ 1 -x 2 as κ → 0. Second according to [START_REF] Martin | Exact solution of a simple hypersingular integral equation[END_REF] we have : t 1 1 = -3 and t 0 3 = 4. Third, by definition of s κ (ω), tedious calculi lead to the convergence results : s

(2) κ (0) -→ -1 4 as κ → 0 and s (3) κ (0) -→ -3 8 as κ → 0. We infer sgn(x) R κ (x) t 1 1 s (2) κ (0) 2! + t 0 3 s (3) κ (0) 3! -→ 1 x √ 1 -x 2 -3 -1 4 2! + 4 -3 8 3! = 1 8 x √ 1 -x 2 as κ → 0.
Finally, passing formally to the limit term by term in (38) as κ → 0, and using equations ( 35)-(36) we infer successively

f 4,κ (x) -→ -2x 4x 4 -5x 2 + 1 √ 1 -x 2 + 2x 4 -2x 2 + 1 4 x √ 1 -x 2 - 1 4 x √ 1 -x 2 as κ → 0, (39) 
and (37). ■ Proposition 3. When ψ = -T 5 we find the formal limit : f 5,κ (x) -→ f 5,0 (x) as κ → 0 where f 5,0 (x) is defined by :

f 5,0 (x) = (16x 4 -12x 2 + 1) 1 -x 2 . ( 40 
)
Proof. The proof is based on formula (32) when m = 2 :

f 5,κ (x) = 2xf 4,κ (x) -f 3,κ (x). ( 41 
)
Passing formally to the limit as κ → 0 and term by term in the previous equation, we infer

f 5,κ (x) -→ 2xf 4,0 (x) -f 3,0 (x) as κ → 0.
Substituting (36) and (37) into the above limit, then reducing the expression to the same denominator

√ 1 -x 2 ,
and factoring the numerator by 1 -x 2 , we deduce the result given by (40) by simplifying the fraction obtained. Then, in the framework above, the solution of the airfoil equation set in G κ admits the following asymptotic expansion

f m,κ ≈ f m,0 + κ 2 f m,2 as κ → 0 . ( 42 
)
Here, for all x > 0, f m,0 (x) is given by (37) and (40) when m = 4 and m = 5, respectively, and f m,2 (x) is given by :

f 4,2 (x) = -2 x √ 1 -x 2 when m = 4 (i.e. when ψ = -T 4 ) , (43a) 
f 5,2 (x) = -8x 2 + 1 2x 2 √ 1 -x 2 when m = 5 (i.e. when ψ = -T 5 ) . (43b) 
Proof.

The proof of this result is based on the derivation of the first two terms of an asymptotic expansion in power series of κ for the analytical solution f κ of the airfoil equation when ψ ∈ {-T m , m ∈ {4, 5}}. This derivation is based on the following expressions that can be derived from (31) and (32) when m = 2 after tedious calculi:

f 4,κ (x) = - sgn(x) R κ (x) 8x 6 -12x 4 + 4x 2 + κ 2 (-4x 4 + 6x 2 ) + κ 4 (-4x 2 + 3 2 ) - κ 6 2 (44) f 5,κ (x) = - xsgn(x) R κ (x) 16x 6 -28x 4 + 13x 2 -1 + κ 2 (-8x 4 + 14x 2 - 5 2 ) + κ 4 (-8x 2 + 7 2 ) -κ 6 (45) 
To derive (44), we employed (38) together with the following expressions for f 2,κ and f 3,κ (see Eq. (3.20) and Eq. (3.21) in [START_REF] Golberg | On the l2 convergence of collocation for the generalized airfoil equation[END_REF], respectively),

f 2,κ (x) = sgn(x) R κ (x) -2x 4 + (2 + κ 2 )x 2 - 1 4 (1 + 4κ 2 -κ 4 ) , (46) 
f 3,κ (x) = - xsgn(x) R κ (x) 4x 4 -(5 + κ 2 )x 2 + 1 2 (2 + 5κ 2 -κ 4 ) , (47) 
and we derived s

(2)

κ (0) = -1 4 (1 -κ 2 ) 2 and s (3) 
κ (0) = -3 8 (1 -κ 2 -κ 4 + κ 6
). To derive (45), we employed (41) together with the expressions for f 3,κ (x) and f 4,κ (x) given by ( 47) and (44), respectively.

Then observe that the function R -1 κ has the following asymptotic expansion when κ → 0 (see also Eq. (3.22) in [START_REF] Golberg | On the l2 convergence of collocation for the generalized airfoil equation[END_REF]) : for all x ∈ G κ ,

R -1 κ (x) = 1 |x| √ 1 -x 2 1 + 1 2 κ 2 x 2 + O(κ 4 ) . (48) 
Substituting the expansion (48) into (44) (and (45), respectively) and performing the identification of terms with the same power of κ we infer the expressions of f 4,0 and f 4,2 (and f 5,0 and f 5,2 , respectively) given by (43a) (and (43b), respectively). ■

This result completes an analogous result obtained during the previous study (see Prop 3.5 in [START_REF] Golberg | On the l2 convergence of collocation for the generalized airfoil equation[END_REF]) when the right hand side ψ of the airfoil equation is a Chebyshev polynomial such that ψ ∈ {T m , m ∈ {0, 1, 2, 3}}.

As a consequence of Prop. 4, it is possible to specify a functional framework for f m,2 . We define two weight functions w 1 and w 2 as 

w 1 (x) := |x| 7/2 √ 1 -x 2 and w 2 (x) := |x| 3/2 √ 1 -x 2
(f m,κ -f m,0 ) ≈ κ 2 f m,2 , as κ → 0 (49) with f m,2 ∈ L 2 w2 (G 0 ) when m = 4 (i.e. when ψ = -T 4 )
and f m,2 ∈ L 2 w1 (G 0 ) when m = 5 (i.e. when ψ = -T 5 ) .

Proof.

As a consequence of (43a), the function f 4,2 belongs to the space L 2 w2 (G 0 ). As a consequence of (43b), the function f 5,2 belongs to the space L 2 w1 (G 0 ). ■

Computational Experiments

In this section, we present numerical solutions of the airfoil equation on two disjoint intervals and also compare it with the solution on a single interval.

General behaviour

The solution f n,κ obtained above is valid not only for small κ. The aim of this subsection is twofold: testing the accuracy of the numerical solutions and exhibiting the overall behaviour of f n,κ , for several values of κ.

In figures 1-5, we see the graphs of f n,κ for input functions T 0 to T 5 , respectively. We have computed the solutions using the recurrence relations (31) and (32) for all κ ∈ {0.05, 0.1, 0.2, 0.3, 0.4}. We have also included the graph of f (x), the solution of the airfoil equation on a continuous domain, the single interval (-1, 1), by evaluating formula [START_REF] Theotokoglou | A modified gauss quadrature formula with special integration points for evaluation of quasi-singular integrals[END_REF]. We clearly see that f n,κ diverges from f (x) at the points

x = -1, x = -κ, x = κ, x = 1.
This behaviour is expected because of the choice C 1 = C 2 = 0. The solutions f n,κ could be computed also by the series in [START_REF] Khvedelidze | The method of cauchy-type integrals in the discontinuous boundary-value problems of the theory of holomorphic functions of a complex variable[END_REF] and [START_REF] Snyder | Chebyshev Methods in Numerical Approximation[END_REF]. We did this and compared the with the numerical results obtained by recurrence relations. In table 1, we present the differences in these two forms of calculations, expressed by the error in the L 2 norm. The fact that the error is very small shows that one can use the recurrence relations for computing the solutions, having as benefit, a fast and accurate result.

ψ ||series -recurrence|| 2 T 0 0.00000000e+00 T 1 0.00000000e+00 T 2 9.80632415e-15 T 3 1.71891178e-14
T 4 2.83788189e-14

T 5 5.01361495e-14
Table 1: Error in the L2 norm of fn,κ, computed by the series ( 25) and ( 26) and by the recurrence relations (31) and (32).

We have seen that f n,κ diverges from f (x) at the endpoints of the the two disjoint intervals. In the the next subsection, we will look closer into this edge behaviour and conditions at which this divergence is attenuated.

Endpoints behaviour

We now examine in more detail the behaviour of f n,κ at the endpoints of G κ , for small κ. We show in the figures 6-10 the solutions for n ∈ {0, 1, 2, 4} and the solution, f , for airfoil equation on the continuous domain (-1, 1). In these results, κ = 0.01 and the solutions on the disjoint intervals have been computed both with the expansions ( 25) and ( 26), and with the recurrence relations (31) and (32). In order to make the differences between the f and f n,κ explicit, we present in tables 2-6 the numerical data present in the graphs 6-10. We see that for n ∈ {0, 1, 2, 3} the divergence between the continuous and disjoint domain cases are very evident, particular near x = 0. As the degree n increases, for n > 3 and we experimented with values up to n = 48, the solutions almost coincide, as shown in figure 10, for n = 4. In table 6, we can see, however, how f 4,0.01 starts to diverge from f near x = 0. The behaviours above expected due to the singularities present in the solutions for the disjoint intervals, with C 1,κ = C 2,κ = 0, because of the denominator term in [START_REF] Monegato | Numerical solution of the generalized airfoil equation for an airfoil with a flap[END_REF]. We can make use of the constants in ( 8) in order to modify the endpoints behaviour at x = ±κ. In fact, for g(x) = T 0 (x) we have from (4) that

f (x) = - 1 π √ 1 -x 2 - 1 -1 √ 1 -t 2 x -t dt, ( 50 
)
which is

f (x) = -x √ 1 -x 2 . ( 51 
)
On the other hand, from ( 8), we have

f 0,κ (x) =              1 πR κ (x) [C 1,κ + C 2,κ x] + 1 R κ (x) x 2 - (1 + κ 2 ) 2 , x ∈ (-1, -κ) - 1 πR κ (x) [C 1,κ + C 2,κ x] - 1 R κ (x) x 2 - (1 + κ 2 ) 2 , x ∈ (κ, 1) (52) 
Taking C 1,0 = π 2 e C 2,0 = 0, we get

f 0,0 (x) =              x 2 |x| √ 1 -x 2 , x ∈ (-1, 0) - x 2 |x| √ 1 -x 2 , x ∈ (0, 1), (53) 
and using sgn(x) = x |x| , it follows that

f 0,0 (x) =              sgn(x) x √ 1 -x 2 , x ∈ (-1, 0] - sgn(x) x √ 1 -x 2 , x ∈ [0, 1). ( 54 
)
Then,

f 0,0 = -x √ 1 -x 2 , x ∈ (-1, 1). ( 55 
)
Thus, in general, we could choose C 1,κ and C 2,κ by comparing the solutions of the continuous and disjoint problems for small κ. In other words, this is done by assuming

lim κ→0 f n,κ (x) = f (x).
This procedure yields the values C 1,κ = 0, C 2,κ = -π 2 and C 1,κ = -π 4 , C 2,κ = 0 for n = 1 and n = 2, respectively. Figures 11,12 and 13 show the results on the solutions with these nonzero constants and we see, in particular, that the solutions for the disjoint intervals get closer to the continuous interval solution at the endpoints x = ±1. Comparisons between tables 2 and 7, for instance, make this even more evident. Table 9: Comparisons of the solutions for ψ(x) = T2(x), C1,κ = -1 4 , C2,κ = 0 and κ = 0.01

Asymptotic solutions

In Table 10 we make quantitative comparisons between the asymptotic solution f 4,0 and the solutions for ψ(x) = T 4 (x) and κ = 0, 01. Table 10 shows that the asymptotic solution f 4,0 provides a good approximation of the solutions for ψ(x) = T 4 (x) and κ = 0, 01. In figures 14-19, we see the graphs of f n,κ and f n,0 for input functions T 0 to T 5 , respectively. We have computed the solutions using the recurrence relations (31) and (32) for all κ ∈ {0.05, 0.1, 0.2}. The convergence of f n,κ to f n,0 is depicted in figures 14-19 for input functions T 0 to T 5 . 

Discussion and conclusion

We have found analytical closed-form solutions of the airfoil integral equation on the two disjoint intervals (-1, -κ) ∪ (κ, 1) for a arbitrary κ, for input functions defined as Chebyshev polynomials of the first kind.

We have also generalised a classical relationship, given in [START_REF] Farina | Evaluation of single layer potentials over curved surfaces[END_REF], between Chebyshev polynomials of the first and second kind for the discontinuous domain G κ , as

1 π - Gκ E n (t) x -t w(t)dt = T n (x),
where E n is a polynomials of degree n. We have derived recurrence formulas for E n (x).

Numerical results showing the behaviour of the solutions, computed by both an expansion and by recurrence formulas are shown and compared with the solution of the classical airfoil equation, for several values of κ. The singular endpoint behaviour of the solutions are analysed and it is shown are alternative choices of the constants in the solutions could modify this singular behaviour.

Further studies based on this work could provide solutions of the airfoil equation on discontinuous domain which are bounded at the endpoints; this could be done by appropriate choices of the adding constants to the solutions.

With the results obtained in this work, we can propose a spectral method for the solution of the integral equation

1 π - Gκ 1 x -t + K(x, t) f κ (t) ω(t) dt = h(x), x ∈ G κ , ( 56 
)
where K is a regular (not strongly singular) kernel, h(x) is prescribed and w(t) = sgn(t)1/R κ (t). This equation is referred to as the generalised airfoil equation and its version defined on a continuous domain is a well studied integral equation from the physical and numerical points of view [START_REF] Berthold | A fast algorithm for solving the generalized airfoil equation[END_REF][START_REF] Monegato | Numerical solution of the generalized airfoil equation for an airfoil with a flap[END_REF][START_REF] Vainikko | Modeling of aerodynamic and wave diffraction problems and extensions of cauchy type integral operators on closed and open curves[END_REF][START_REF] Junghanns | A note on Kalandiya's method for a crack problem[END_REF].

Expanding the solution as

f κ (t) ≈ N n=0 a n E n (t), (57) 
substituting ( 57) in (56), and exchanging the orders of integration with sum we get

1 π N n=0 a n - Gκ 1 x -t E n (t) dt + Gκ K(x, t)E n (t) dt = T n (x), x ∈ G (58) 
Using (28), it follows that

N n=0 a n [T n (x) + K(E n )(x)] = h(x), ( 59 
)
where K is the integral operator given by

K(g) = 1 π Gκ K(x, t)g(t) ω(t)dt. (60) 
Equation ( 59) can be solved by a Galerkin or a collocation method. The method for the solution of (56) consists of (57) and (59).

The implementation and the convergence aspects of this solution method, as well as its physical applications are topics of research opened by the current work.

Appendix A. Appendix

Here we derive with details the analytical solution of the equation ( 7) for the case when ψ(x) = T n (x). For this aim, we evaluate the principal part of the density function in the Cauchy integral, from equations [START_REF] Tricomi | The airfoil equation for a double interval[END_REF] (even case) and ( 18) (odd case).

Case 1. ψ(x) = T 2m (x) (m = 0, 1, 2, . . .).

Applying the variable change x 2 = 1 w in ( 16), we get

Ψ κ 1 w = -π PP s κ (w) w T 2m 1 w w→0 , (A.1) were s κ (w) = (1 -w)(1 -κ 2 w). Defining E 2m := -Ψ/π (A.2)
and expanding s κ (w) in Taylor series, we have

E 2m = PP T 2m (x) m+1 i=0 s (i) κ (0) i! x 2(1-i) x→∞ . (A.3) Using T 2m (x) = m k=0 t m-k 2k x 2k (A.4)
where

t j i = 2 i-1 (-1) j i + 2j i + j i + j j (A.5)
are the coefficients from the Chebyshev polynomial (cf.[26, p. 14]), we express (A.3) as

E 2m = PP m k=0 t m-k 2k x 2k m+1 i=0 s (i) κ (0) i! x 2(1-i) x→∞ . (A.6)
Note that in the equation (A.6), we have expanded s κ (ω) only to degree m, because the higher order terms are canceled out as x → ∞ (ω → 0). The remaining, non-zero terms correspond to the principal part. Reorganizing the terms in (A.6), we can determine the coefficients for each power of x as

E 2m = t 0 2m s κ (0)x 2m+2 + (t 0 2m s ′ κ (0) + t 1 2m-2 s κ (0))x 2m + t 0 2m s ′′ κ (0) 2! + t 1 2m-2 s ′ κ (0) + t 2 2m-4 s κ (0) x 2m-2 + t 0 2m s (3) κ (0) 3! + t 1 2m-2 s ′′ κ (0) 2! + t 2 2m-4 s ′ κ (0) + t 3 2m-6 s κ (0) x 2m-4 + • • • + t 0 2m s (m-1) κ (0) (m -1)! + • • • + t m-2 4 s ′ κ (0) + t m-1 2 s κ (0) x 4 + t 0 2m s (m) κ (0) m! + t 1 2m-2 s (m-1) κ (0) (m -1)! + t 2 2m-4 s (m-2) κ (0) (m -2)! + • • • + t m-2 4 s ′′ κ (0) 2! + t m-1 2 s ′ κ (0) + t m 0 s κ (0) x 2 + t 0 2m s (m+1) κ (0) (m + 1)! + t 1 2m-2 s (m) κ (0) m! + t 2 2m-4 s (m-1) κ (0) (m -1)! + • • • + t m-2 4 s (3) κ (0) 3! + t m-1 2 s ′′ κ (0) 2! + t m 0 s ′ κ (0).
Rearranging terms, we get E 2m as

E 2m = m k=m t m-k 2k s (k-m) κ (0) (k -m)! x 2m+2 + m k=m-1 t m-k 2k s (k-(m-1) κ (0) (k -(m -1))! x 2m + m k=m-2 t m-k 2k s (k-(m-2)) κ (0) (k -(m -2))! x 2m-2 + m k=m-3 t m-k 2k s (k-(m-3)) κ (0) (k -(m -3))! x 2m-4 + • • • + m k=1 t m-k 2k s (k-1) κ (0) (k -1)! x 4 + m k=0 t m-k 2k s (k) κ (0) k! x 2 + m k=0 t m-k 2k s (k+1) κ (0) (k + 1)! .
In a more concise form, we have

E 2m = m l=0 m k=m-l t m-k 2k s (k-(m-l)) κ (0) (k -(m -l))! x 2(m-(l-1)) + m k=0 t m-k 2k s (k+1) κ (0) (k + 1)! , or E 2m = m l=0 m k=m-l t m-k 2k s (k-(m-l)) κ (0) (k -(m -l))! x 2(m-(l-1)) + t m-l 2l s (l+1) κ (0) (l + 1)! . (A.7)
Therefore, the solution, from [START_REF] Monegato | Numerical solution of the generalized airfoil equation for an airfoil with a flap[END_REF], when ψ(x) = T 2m (x), is

f 2m,κ (x) = sgn(x) R κ (x) m l=0 m k=m-l t m-k 2k s (k-(m-l)) κ (0) (k -(m -l))! x 2(m-(l-1)) + t m-l 2l s (l+1) κ (0) (l + 1)! ■ (A.8) Case 2. ψ(x) = T 2m+1 (x) (m = 0, 1, 2, . . .).
Applying the change of the variable x 2 = 1 w in ( 18), we get

Ψ κ 1 √ w = -π 1 √ w PP s κ (w) w T 2m+1 1 √ w √ w w→0 , (A.9) 
were s κ (w) = (1 -w)(1 -κ 2 w). Analogously to the case 1, using

T 2m+1 (x) = m k=0 t m-k 2k+1 x 2k+1 . (A.10)
we expanding s κ (w) in Taylor series centered in 0, we get

E 2m+1 = PP m k=0 t m-k 2k+1 x 2k m+1 i=0 s (i) κ (0) i! x 2(1-i) x→∞ (A.11)
Reorganizing the terms with the same exponents, we have

E 2m+1 = m k=m t m-k 2k+1 s (k-m) κ (0) (k -m)! x 2m+2 + m k=m-1 t m-k 2k+1 s (k-(m-1) κ (0) (k -(m -1))! x 2m + m k=m-2 t m-k 2k+1 s (k-(m-2)) κ (0) (k -(m -2))! x 2m-2 + m k=m-3 t m-k 2k+1 s (k-(m-3)) κ (0) (k -(m -3))! x 2m-4 + • • • + m k=1 t m-k 2k+1 s (k-1) κ (0) (k -1)! x 4 + m k=0 t m-k 2k+1 s (k) κ (0) k! x 2 + m k=0 t m-k 2k+1 s (k+1) κ (0) (k + 1)! .
We can rewrite E 2m+1 as 

E 2m+1 = m l=0 m k=m-l t m-k 2k+1 s (k-(m-l)) κ (0) (k -(m -l))! x 2(m-(l-1)) + t m-l 2l+1 s ( 

■ 5 . 1 .Proposition 4 .

 514 First two terms of an asymptotic expansion for particular analytical solutions f κ In this section, we derive the first two terms of an asymptotic expansion for the solution f κ of the airfoil equation set in G κ when the right hand side ψ is a Chebyshev polynomial, Prop. 4. As a consequence, we infer weighted Sobolev spaces for the first terms of this expansion, Prop. 5. Let ψ ∈ {-T m , m ∈ {4, 5}} (where T n are the Chebyshev polynomials of the first types).

  , and we denote by L 2 w1 (G 0 ) and L 2 w2 (G 0 ) the associated L 2 -weighted Sobolev spaces. Proposition 5. In the framework of Prop. 4, the solution of the airfoil equation satisfies at least formally the following expansion
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 12345 Figure 1: Solutions for ψ(x) = T0(x), C1,κ = C2,κ = 0 and κ = 0.4, κ = 0.3, κ = 0.2, κ = 0.1 and κ = 0.05
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 6 Figure 6: Solutions for ψ(x) = T0(x) and κ = 0, 01
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 9 Figure 9: Solutions for ψ(x) = T3(x) and κ = 0, 01
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 11 Figure 11: Solutions for ψ(x) = T0(x), C1,κ = 1 2 , C2,κ = 0 and κ = 0, 01
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 12 Figure 12: Solutions for ψ(x) = T1(x), C1,κ = 0, C2,κ = -1 2 and κ = 0, 01
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 13 Figure 13: Solutions for ψ(x) = T2(x), C1,κ = -1 4 , C2,κ = 0 and κ = 0, 01
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 1415161718 Figure 14: Solutions for ψ(x) = T0(x), C1,κ = C2,κ = 0, κ = 0.2, κ = 0.1 and κ = 0.05

Figure 19 :

 19 Figure 19: Solutions for ψ(x) = T5(x), C1,κ = C2,κ = 0, κ = 0.2, κ = 0.1 and κ = 0.05
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 1112335224412243622343411 l+1) κ (0) (l + 1)! . (A.12)Therefore, the solution when ψ(x) = T 2m+1 (x) isf 2m+1,κ (x) = sgn(x) x R κ (x) (m-l)) κ (0) (k -(m -l))! x 2(m-(l-1)) + t m-l 2l+1 sHere we show in more detail how we get the recurrence formulae presented in the section 4. Let us take first the even input function case, as in the appendix Appendix A.Case 1. ψ(x) = T 2m (x) (m = 0, 1, 2, . . .).Using the recurrence formula T n (x) = 2xT n-1 (x) -T n-2 (x) for Chebyshev polynomials of the first kind, in (A.3), we haveE 2m = PP (2xT 2m-1 (x) -T 2m-2 (x))Using formulae (A.4) and (A.10) for T 2m-2 (x) and T 2m-1 (x), respectively, we getE 2m = PP 2x t m-1 • • • + t 1 2m-3 x 2m-3 + t 0 2m-1 x 2m-1 × × s κ (0)x 2 + s ′ κ (t m-3 • • • + t 1 2m-4 x 2m-4 + t 0 2m-2 x 2m-2 × × s κ (0)x 2 + s ′ κ (• • • + 2t 1 2m-3 x 2m-2 + 2t 0 2m-1 x 2m × × s κ (0)x 2 + s ′ κ (• • • + t 1 2m-4 x 2m-4 + t 0 2m-2 x 2m-2 × × s κ (0)x 2 + s ′ κ (Performing the multiplications, applying the limit as x → ∞ and collecting terms with the same power, (k-(m -2))! x 2m-2m-1-k 2k s (k-(m-4)) κ (0) (k -(m -4))! x 2m-6 -• • • -2m = 2x(xE 2m-1 ) -E 2m-2 + 2Substituting the above equation in (A.2) and (17), we conclude thatf 2m,κ (x) = 2x f 2m-1,κ (x) -f 2m-2,κ (x) + sgn(x) R κCase 2. ψ(x) = T 2m+1 (x) (m = 0, 1, 2, . . .). From (A.10) and (A.11) we can writeE 2m+1 = PP T 2m+1 (x)Substituting the recurrence formula T n (x) = 2xT n-1 (x) -T n-2 (x) above, we haveE 2m+1 = PP 2x T 2m (x) -T 2m-1 (x) x m+1 i=0 s (i) κ (0)x 2(1-i) x→∞ (B.12) = PP 2 T 2m (x) m+1 i=0 s (i) κ (0)x 2(1-i) -T 2m-1 (x) x m+1 i=0 s (i) κ (0)x2(1-i) x→∞ . (B.13) From (A.3) and (B.11), follows that E 2m+1 = 2E 2m -E 2m-1 (B.14) Substituting (B.14) in (A.2) and (19), we get f 2m+1,κ (x) = 2xf 2m,κ (x) -f 2m-1,κ (x) ■

Table 2 :

 2 Comparisons

	x	(-1, 1)	Series Gκ	Recurrence Gκ
	-0.9948 9.7471668651	4.8220376332	4.8220376332
	-0.9894 6.8258551221	3.3394986108	3.3394986108
	-0.9840 5.5183033368	2.6683969374	2.6683969374
	-0.9784 4.7307051583	2.2595310141	2.2595310141
	-0.9726 4.1874612722	1.9742095759	1.9742095759
	-0.9668 3.7820271604	1.7587011107	1.7587011107
	-0.0442 0.0442336490 -11.5831024463 -11.5831024463
	-0.0381 0.0381642652 -13.5578922160 -13.5578922160
	-0.0322 0.0322509004 -16.2927283117 -16.2927283117
	-0.0265 0.0264852341 -20.3764226611 -20.3764226611
	-0.0209 0.0208595897 -27.3055463091 -27.3055463091
	-0.0154 0.0153668699 -42.8503703562 -42.8503703562

of the solutions for ψ(x) = T0(x) and κ = 0.01

Table 3 :

 3 Comparisons of the solutions for ψ(x) = T1(x)

	and κ = 0.01

Table 4 :

 4 Comparisons of the solutions for ψ(x) = T2(x)

	and κ = 0.01

Table 5 :

 5 Comparisons

													x	(-1, 1)	Series Gκ	Recurrence Gκ
													-0.9948 -0.3976414309 -0.3976413811	-0.3976413811
		1	Continuous										-0.9894 -0.5495854017 -0.5495853661	-0.5495853661
		0.8	Series Recurrence										-0.9840 -0.6571856078 -0.6571855784	-0.6571855784
		0.6													
													-0.9784 -0.7401364258 -0.7401364000	-0.7401364000
		0.4													
	f 4,	0.2											-0.9726 -0.8061823310 -0.8061823076	-0.8061823076
		0											-0.9668 -0.8593369390 -0.8593369174	-0.8593369174
		-0.2											-0.0442	0.1758993947	0.1759605027	0.1759605027
		-0.4											-0.0381	0.1519916367	0.1520884638	0.1520884638
		-0.6											-0.0322	0.1286017604	0.1287669002	0.1287669002
		-0.8											-0.0265	0.1057182544	0.1060320916	0.1060320916
		-1													
		-1	-0.8	-0.6	-0.4	-0.2	0 x	0.2	0.4	0.6	0.8	1	-0.0209	0.0833295202	0.0840423342	0.0840423342
													-0.0154	0.0614239517	0.0637703149	0.0637703149
		Figure 10: Solutions for ψ(x) = T4(x) and κ = 0, 01				

of the solutions for ψ(x) = T3(x) and κ = 0.01

Table 6 :

 6 Comparisons of the solutions for ψ(x) = T4(x)

	and κ = 0, 01

Table 7 :

 7 Comparisons of the solutions for ψ(x) = T0(x),

	x	(-1, 1)	Series Gκ	Recurrence Gκ
	-0.9948 9.7471668651 9.7471668775	9.7471668775
	-0.9894 6.8258551221 6.8258551310	6.8258551310
	-0.9840 5.5183033368 5.5183033441	5.5183033441
	-0.9784 4.7307051583 4.7307051648	4.7307051648
	-0.9726 4.1874612722 4.1874612781	4.1874612781
	-0.9668 3.7820271604 3.7820271658	3.7820271658
	-0.0442 0.0442336490 0.0442489283	0.0442489283
	-0.0381 0.0381642652 0.0381884757	0.0381884757
	-0.0322 0.0322509004 0.0322921916	0.0322921916
	-0.0265 0.0264852341 0.0265637054	0.0265637054
	-0.0209 0.0208595897 0.0210378208	0.0210378208
	-0.0154 0.0153668699 0.0159535547	0.0159535547
	C1,κ = 1 2 , C2,κ = 0 and κ = 0.01	

Table 8 :

 8 Comparisons of the solutions for ψ(x) = T1(x),

	C1,κ = 0, C2,κ = -1 2 and κ = 0.01

Table 10 :

 10 Comparisons of f4,0 with the solutions for ψ(x) = T4(x) and κ = 0.01 .

		1									
			Continuous								
		0.8	Series								
			Recurrence								
	f 2,	0.6									
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In subsection 6.2 we present cases for other values of these constants.
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