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Abstract  

Isolated REM sleep behaviour disorder (iRBD) is a synucleinopathy characterized by 

abnormal behaviours and vocalizations during REM sleep. Most iRBD patients develop 

dementia with Lewy bodies, Parkinson’s disease, or multiple system atrophy over time. 

Patients with iRBD exhibit brain atrophy patterns that are reminiscent of those observed in 

overt synucleinopathies. However, the mechanisms linking brain atrophy to the underlying 

alpha-synuclein pathophysiology are poorly understood. Our objective was to investigate 

how the prion-like and regional vulnerability hypotheses of alpha-synuclein might explain 

brain atrophy in iRBD. 

Using a multicentric cohort of 182 polysomnography-confirmed iRBD patients who 

underwent T1-weighted MRI, we performed vertex-based cortical surface and 

deformation-based morphometry analyses to quantify brain atrophy in patients (67.8 years, 

84% men) and 261 healthy controls (66.2 years, 75%) and investigated the morphological 

correlates of motor and cognitive functioning in iRBD. Next, we applied the agent-based 

Susceptible-Infected-Removed model (i.e., a computational model that simulates in silico 

the spread of pathologic alpha-synuclein based on structural connectivity and gene 

expression) and tested if it recreated atrophy in iRBD by statistically comparing simulated 

regional brain atrophy to the atrophy observed in patients. The impact of SNCA and GBA 
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gene expression and brain connectivity was then evaluated by comparing the model fit to 

the one obtained in null models where either gene expression or connectivity was 

randomized. 

The results showed that iRBD patients present with cortical thinning and tissue 

deformation, which correlated with motor and cognitive functioning. Next, we found that 

the atrophy simulated based on brain connectivity and gene expression recreated cortical 

thinning (r=0.51, p=0.0007) and tissue deformation (r=0.52, p=0.0005) in patients, and 

that the connectome’s architecture along with SNCA and GBA gene expression contributed 

to shaping atrophy in iRBD. We further demonstrated that the full agent-based model 

performed better than network measures or gene expression alone in recreating the atrophy 

pattern in iRBD. 

In summary, atrophy in iRBD is extensive, correlates with motor and cognitive functioning, 

and can be recreated using the dynamics of agent-based modelling, structural connectivity, 

and gene expression. These findings support the concepts that both prion-like spread and 

regional susceptibility account for the atrophy observed in prodromal synucleinopathies. 

Therefore, the agent-based Susceptible-Infected-Removed model may be a useful tool for 

testing hypotheses underlying neurodegenerative diseases and new therapies aimed at 

slowing or stopping the spread of alpha-synuclein pathology. 
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examination; MoCA = Montreal Cognitive Assessment; SIR = Susceptible-Infected-

Removed 

 

Introduction  

Isolated REM sleep behaviour disorder (iRBD) is characterized by abnormal motor 

behaviours and vocalizations during REM sleep.1,2 iRBD typically develops into dementia 

with Lewy bodies, Parkinson’s disease or multiple system atrophy,3 making it an early 

manifestation and phenotype of synucleinopathies. Specifically, iRBD is thought to result 

from the impairment of brainstem circuits involved in REM sleep muscle atonia that occurs 

as a result of early accumulation of pathologic alpha-synuclein in the pontine tegmentum.4,5 

However, MRI studies in patients with polysomnography-proven iRBD without cognitive 

or motor diagnoses have also shown patterns of diffuse brain atrophy reminiscent of 

dementia with Lewy bodies or Parkinson’s disease.6,7 Moreover, the severity of cortical 

atrophy is a predictor of subsequent dementia, hence more severe disease.8 

 

Dementia with Lewy bodies and Parkinson’s disease are thought to arise from the 

accumulation of misfolded alpha-synuclein in the brain.9 Previous pathological brain 

staging schemes have suggested that the toxic agent starts in the brainstem and then spreads 

upwards,10,11 giving rise to the clinical features that lead to a dementia- or a parkinsonism-

first phenoconversion in iRBD patients. Evidence from animal models shows that 

pathologic alpha-synuclein can propagate and promote protein misfolding, supporting the 

prion-like model of alpha-synuclein.4,12-17 In line with this, MRI studies performed in 

patients with Parkinson’s disease also show that atrophy patterns are shaped by 

connectivity.18-20 

 

We previously modelled alpha-synuclein propagation using a Susceptible-Infected-

Removed (SIR) model,21 a computational model based on an adaptation of epidemiological 

SIR models but applied to neurological diseases with the underlying hypothesis that alpha-
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synuclein propagation works like an infection in a population. In this model, every agent 

is an autonomous alpha-synuclein molecule that can exist in three states: Susceptible 

(normal), Infected (misfolded) or Removed (degraded). In its misfolded state, the agent 

becomes infective. Agents can also move between regions via neural connections. The 

model uses SNCA and GBA gene expression as measures of local alpha-synuclein 

concentration, and connectivity to determine to determine agent numbers and propagation. 

The model has predicted atrophy distribution in Parkinson’s disease patients and alpha-

synuclein distribution in a mouse model.21,22 Null models show that both connectivity and 

local alpha-synuclein concentration are important factors shaping the propagation of 

agents.21,22 However, it remains unknown if these mechanisms also explain the atrophy 

seen in early synucleinopathies. 

 

In this study, we compiled neuroimaging data from several centres to generate a map of 

brain atrophy in iRBD.  We then used the agent-based SIR model to test if brain 

connectivity and SNCA and GBA gene expression explain brain atrophy patterns in iRBD. 

Vertex-based cortical surface and deformation-based morphometry analyses were 

performed in 182 polysomnography-confirmed iRBD patients and 261 healthy controls 

who underwent T1-weighted brain MRI to characterize atrophy and investigate the 

correlates of motor and cognitive functioning. We then tested whether brain connectivity 

and gene expression recreated atrophy by simulating atrophy with the SIR model and by 

statistically comparing the simulated pattern to the actual atrophy pattern found in iRBD. 

We next used null modelling to test if connectivity and gene expression were decisive in 

shaping the brain atrophy seen in iRBD. We hypothesized that the SIR model would 

recreate brain atrophy in iRBD and that both connectivity and gene expression would be 

significant determinants of atrophy. 
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Materials and methods  

Participants 

A total of 443 participants (182 iRBD patients and 261 controls) were recruited from five 

sites: 116 (59 patients) from the Movement Disorders clinic at the Hôpital de la Pitié-

Salpêtrière (France), 83 (48 patients) from the Centre for Advanced Research on Sleep 

Medicine at the Hôpital du Sacré-Cœur de Montréal (Canada), 56 (30 patients) from the 

ForeFront Parkinson’s Disease Research Clinic at the University of Sydney (Australia), 38 

(18 patients) from Aarhus University Hospital (Denmark), and 150 (27 patients) from the 

Parkinson’s Progression Markers Initiative baseline cohort.23 All iRBD patients had a 

polysomnography-confirmed diagnosis of iRBD and were free of parkinsonism and 

dementia at the clinical examination closest in time to MRI.24,25 An overview of the study 

protocol along with a flowchart of the selected patients are presented in Figure 1 and the 

cohorts’ demographics are available in Supplementary Table 1. All participants were part 

of research protocols approved by local ethics committees and provided written informed 

consent. The current project was also approved by the Research Ethics Board of the McGill 

University Health Centre. 

 

MRI 

MRI acquisition 

The Montreal cohort underwent T1-weighted imaging with a 3T Siemens TIM Trio scanner 

with a 12-channel head coil, MPRAGE sequence: TR: 2,300 ms, TE: 2.91 ms, flip angle: 

9°, and voxel size: 1 mm³ isotropic. The Paris cohort underwent T1-weighted imaging with 

a 3T Siemens TIM Trio scanner with a 12-channel head coil, MPRAGE sequence: TR: 

2,300 ms, TE: 4.18 ms, TI: 900 ms, flip angle: 9°, and voxel size: 1 mm³ isotropic; or a 3T 

PRISMA Fit scanner with a 64-channel head coil, MP2RAGE sequence: TR: 5,000 ms, 

TE: 2.98 ms, TI: 700 and 2,500 ms, flip angle: 4° and 5°, GRAPPA: 3, and voxel size: 1 

mm³ isotropic. The Sydney cohort was imaged with a GE Discovery MR750 3T scanner 
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with an 8-channel head coil, BRAVO sequence: TR: 5,800 ms, TE: 2.6 ms, flip angle: 12°, 

and voxel size: 1 mm³ isotropic. The Aarhus cohort was imaged with a 3T Siemens 

MAGNETOM Skyra scanner with a 32-channel head coil, MPRAGE sequence: TR: 2,420 

ms, TE: 3.7 ms, TI: 960 ms, flip angle: 9°, and voxel size: 1 mm³ isotropic. The T1-

weighted images from the Parkinson’s Progression Markers Initiative cohort, an 

international multicentre cohort, were also included (see www.ppmi-info.org for the 

imaging protocols).23 

 

Quantification of atrophy 

Deformation-based morphometry was performed using CAT12 (version 12.7; 

www.neuro.uni-jena.de/cat) to quantify atrophy by measuring the non-linear change 

required in every voxel for registering the brain to the common template.26 The processing 

included bias correction, affine registration, unified segmentation,27 skull-stripping, 

parcellation, intensity transformation, partial volume estimation, and spatial normalization 

using DARTEL.26 This resulted in whole-brain maps of Jacobian determinants, which were 

smoothed with a 12-mm isotropic kernel and then used as the measure of local brain 

atrophy. Images with an automated quality rating below 80% were excluded from analyses 

involving deformation-based morphometry. 

 

Brain atrophy in iRBD also manifests as abnormal cortical thickness and surface area.28 To 

ensure that findings were not due to the atrophy metric, the scans passing deformation-

based morphometry quality control were also processed with FreeSurfer (version 6.0.0) to 

generate individual thickness and surface area maps of the whole cortex.29,30 Every map 

was inspected by a trained rater (S.R.) and a score from 1-4 was assigned to each scan 

based on published guidelines;31,32 scans with a score >2 (i.e., major reconstruction errors) 

were excluded from cortical surface analyses. 
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W-scoring and brain parcellation 

For deformation-based morphometry-derived atrophy, a W-score map was computed from 

each patient’s smoothed map by regressing out the effects of age, sex, and site found in the 

age- and sex-matched controls passing quality control.33 At each voxel, the following 

formula was applied: 

 

𝑊-score =  
(iRBD  raw value − control value expected for the patient′s age, sex, and site)

SD of the residuals in controls
 

(1) 

 

A voxel with a negative W-score represents greater atrophy (decreased volume) in the 

iRBD patient compared to controls, whereas a positive W-score indicates less atrophy 

(increased volume), while considering the confounds. 

 

Regional W-scores were then extracted by parcellating every map with a 42-region atlas 

for which corresponding structural connectivity and gene expression data were available.21 

This atlas comprised 34 cortical regions from the Desikan-Killiany atlas and 7 subcortical 

regions from FreeSurfer.34,35  Due to its importance in synucleinopathies,36,37 the substantia 

nigra was added from the 7-tesla “Atlas of the basal ganglia” (ATAG atlas).38 The 42 

regional W-scores extracted from each map were then averaged across iRBD patients to 

yield 42 W-scores representing regional tissue deformation. W-scores were also extracted 

using finer parcellations of 65 and 119 regions to ensure that findings were robust to 

parcellation resolution. Because gene expression data, used by the model for determining 

regional alpha-synuclein synthesis and clearance (see below), were only available in the 

right hemisphere for 2 of the 6 existing post-mortem brains,39 and because diffusion 

tractography-based reconstruction of the connectome often leads to inaccurate 

measurements of interhemispheric connections,40,41 the main analyses were performed in 

the left hemisphere. 
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For cortical surface analysis, thickness and surface area values were extracted from each 

surface from the same 34 cortical regions as used for deformation-based morphometry.34 

Since subcortical regions do not have a cortical surface from which to derive thickness and 

area values, the global volume measurement generated as part of FreeSurfer’s subcortical 

processing was used. The substantia nigra was excluded from cortical surface analyses as 

it is unavailable in FreeSurfer, resulting in a total of 41 regions. Since cortical surface area 

and subcortical volume scale with head size,42,43 the raw values were divided by the 

estimated total intracranial volume (derived from FreeSurfer). The same W-scoring 

procedure was then applied to these values to adjust for the effects of age, sex, and site 

from controls who passed quality control. To ascertain those findings were not due to the 

multicentric nature of the cohort, we also tested the model with harmonized regional W-

scores derived from the ComBat harmonization method,44-46 a batch-effect correction tool 

used in genomics and validated for neuroimaging that removes the unwanted scanning-

related inter-site variability while preserving biological variability. 

 

Importantly, to facilitate interpretation when testing the model, the W-scores were inverted 

such that a positive score indicated a region with greater atrophy and a negative score 

indicated lower atrophy in iRBD patients compared to controls. 

 

Agent-based SIR model 

Model overview 

The agent-based SIR model (https://github.com/yingqiuz/SIR_simulator) was used to 

simulate the spread of alpha-synuclein.21 This algorithm applies agent-based modelling 

inside an SIR framework to model the spread as an epidemic shaped by the simultaneous 

effect of brain connectivity along with SNCA and GBA expression.21 This model previously 

recreated the atrophy observed in Parkinson’s disease and frontotemporal dementia.21,47 In 

this model, every agent is an autonomous alpha-synuclein molecule that belongs to one of 

three mutually exclusive states: the “Susceptible” state when the agent is normal (normal 
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alpha-synuclein), the “Infected” state when the agent becomes infective (misfolded alpha-

synuclein isoform), and the “Removed” state when the agent is degraded. Agents can also 

move between regions via neural connections. The transitions between states are 

determined by rules guiding the interaction dynamics between agents and their regional 

environment. The model simulates atrophy in every brain region based on the following 

computational steps: 1) the production of normal alpha-synuclein, 2) the clearance of 

normal and misfolded alpha-synuclein, 3) the misfolding of normal alpha-synuclein, 4) the 

propagation of normal and misfolded alpha-synuclein, and 5) the emergence of atrophy. 

 

Connectivity and gene data 

The details of diffusion-weighted image processing, deterministic fibre tracking, and gene 

expression data have been described elsewhere.21 Briefly, the structural connectivity data 

were used to model the spread of agents from one region to another; they were derived 

from the pre-processed diffusion-weighted images of 1,027 participants from the Human 

Connectome Project.61 Deterministic tractography was used to construct consensus 

connectivity matrices between the 42 regions as described previously.48-50  The analysis 

was performed at connection densities of 25%, 30%, 35%, and 40% to ensure that results 

were robust to change in this parameter. A distance matrix of the mean Euclidean length 

of the corresponding streamlines for the 42 regions was also generated to modulate the rate 

of movement of agents between connected regions. For the gene expression data, the 

regional expression of SNCA and GBA were used to model the regional synthesis and 

clearance of alpha-synuclein; values were derived from the post-mortem mRNA 

transcription profiles of 6 subjects from the Allen Human Brain Atlas39 using abagen 

(https://abagen.readthedocs.io/en/stable/)51 and averaged for the 42 regions. 

 

Production of normal alpha-synuclein (module 1) 

In region i, the synthesis of susceptible agents per unit time occurs with probability αi: 
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αi = Φ0,1(SNCAexpressioni) (2) 

where Φ0,1(·) is the standard normal cumulative distribution function and SNCAexpressioni 

is the gene expression of SNCA of region i. At each timestep, the increment of susceptible 

agents in region i is αiSiΔt, where Si is the size of region i and Δt is the total time. 

 

Clearance of normal and misfolded alpha-synuclein (module 2) 

In region i, the clearance of susceptible and infected agents per unit time occurs with 

probability βi: 

 

βi = Φ0,1(GBAexpressioni) (3) 

where GBAexpressioni is the gene expression of GBA of region i. Considering that the 

probability that an agent is still active after Δt is given by lim𝛿𝜏→0(1 − 𝛽𝛿𝜏)∆𝑡/𝛿𝜏 = 𝑒−𝛽∆𝑡, 

the cleared proportion within Δt is 1 – 𝑒−𝛽∆𝑡. 

 

Misfolding of normal alpha-synuclein (module 3) 

The susceptible agents not cleared from region i may become infected per unit time with 

probability γi: 

 

γi = 1 – 𝑒𝑀𝑖𝑙𝑛(1−𝛾𝑖
0) (4) 

where Mi is the population of infected agents in region i and γ
i
0 is the baseline likelihood 

that a susceptible agent becomes an infected agent in region i, which was set as the 

reciprocal of region size. The probability that a susceptible agent did not get infected is 

given by (1 − 𝛾𝑖
0)𝑀𝑖; therefore, 𝛾𝑖 = 1 − (1 − 𝛾𝑖

0)𝑀𝑖 = 1 − 𝑒𝑀𝑖 ln (1−𝛾𝑖
0) represents the 

probability that a susceptible agent becomes infected in region i per unit time. Similarly, 

the probability that an agent is still susceptible after Δt is given by lim𝛿𝜏→0(1 −
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𝛾𝑖
0𝛿𝜏)𝑀𝑖∆𝑡/𝛿𝜏 = 𝑒−𝛾𝑖

0𝑀𝑖∆𝑡, with the proportion of agents becoming infected after Δt being 

1 − 𝑒−𝛾𝑖
0𝑀𝑖∆𝑡. 

 

To determine the baseline density of susceptible agents in every region, the population of 

susceptible agents Ni is incremented with: 

 

∆𝑁𝑖 = 𝛼𝑖𝑆𝑖∆𝑡 – (1 – 𝑒−𝛽𝑖∆𝑡)𝑁𝑖 (5) 

 

Once the system reaches its stable point (error tolerance ε<10-7), the pathogenic spread and 

update of Ni and Mi is given by: 

 

∆𝑁𝑖 = 𝛼𝑖𝑆𝑖∆𝑡 − (1 − 𝑒−𝛽𝑖∆𝑡)𝑁𝑖 − (𝑒−𝛽𝑖∆𝑡)(1 − 𝑒−𝛾𝑖
0𝑀𝑖∆𝑡)𝑁𝑖 (6) 

∆𝑀𝑖 = (𝑒−𝛽𝑖∆𝑡) (1 − 𝑒−𝛾𝑖
0𝑀𝑖∆𝑡) 𝑁𝑖 − (1 − 𝑒−𝛽𝑖∆𝑡)𝑀𝑖 

 

(7) 

Propagation of normal and misfolded alpha-synuclein (module 4) 

Susceptible and infected agents in region i either remain in region i or spread to other 

regions based on a multinomial distribution per unit time with probabilities: 

 

𝑃𝑟𝑒𝑔𝑖𝑜𝑛𝑖→𝑟𝑒𝑔𝑖𝑜𝑛𝑖
= 𝜌𝑖  (8) 

𝑃𝑟𝑒𝑔𝑖𝑜𝑛𝑖→𝑒𝑑𝑔𝑒𝑖𝑗
= (1 − 𝜌𝑖)

𝑤𝑖𝑗

 ∑   
𝑗 𝑤𝑖𝑗

 (9) 
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where wij is the connection strength between regions i and j and ρi is the probability that an 

agent remains in region i. The main analyses were performed using ρ=0.5 for all regions, 

but ρ values from 0.1 to 0.9 were also tested to ensure that findings did not depend solely 

on this parameter. 

 

The susceptible and infected agents located inside an edge could exit the edge per unit time 

based on binary probabilities: 

 

𝑃𝑒𝑑𝑔𝑒𝑖𝑗→𝑟𝑒𝑔𝑖𝑜𝑛𝑗
=

1

𝑙𝑖𝑗
 

(10) 

𝑃𝑒𝑑𝑔𝑒𝑖𝑗→𝑒𝑑𝑔𝑒𝑖𝑗
= 1 −

1

𝑙𝑖𝑗
 

(11) 

where lij is the length of the edge between regions i and j. The increment in Ni and Mi in 

region i after total time ∆t is given by: 

 

∆𝑁𝑖 = ∑  

 

𝑗

1

𝑙𝑗𝑖
𝑁𝑗𝑖∆𝑡 − (1 − 𝜌𝑖)𝑁𝑖∆𝑡 

(12) 

∆𝑀𝑖 = ∑  

 

𝑗

1

𝑙𝑗𝑖
𝑀𝑗𝑖∆𝑡 − (1 − 𝜌𝑖)𝑀𝑖∆𝑡 

(13) 

whereas the increment in the population of susceptible and infected agents inside the edge 

between regions i and j (Nij and Mij, respectively) after total time ∆t is: 

 

∆𝑁𝑖𝑗 = (1 − 𝜌𝑖)
𝑤𝑖𝑗

 ∑   
𝑗 𝑤𝑖𝑗

𝑁𝑖∆𝑡 −
1

𝑙𝑖𝑗
𝑁𝑖𝑗∆𝑡 

(14) 
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∆𝑀𝑖𝑗 = (1 − 𝜌𝑖)
𝑤𝑖𝑗

 ∑   
𝑗 𝑤𝑖𝑗

𝑀𝑖∆𝑡 −
1

𝑙𝑖𝑗
𝑀𝑖𝑗∆𝑡 

(15) 

 

Emergence of simulated atrophy (module 5) 

Regional atrophy was simulated as the sum of two processes: the direct toxicity resulting 

from the regional accumulation of infected agents and the deafferentation caused by cell 

death in connected regions. In region i, the atrophy accrual is given by: 

 

𝛥𝐿𝑖(𝑡) =  𝑘1(1 − 𝑒−𝑟𝑖(𝑡)𝛥𝑡) +  𝑘2 ∑
𝑤𝑗𝑖

∑ 𝑤𝑗𝑖𝑗
(1 − 𝑒−𝑟𝑗(𝑡−1)𝛥𝑡)

𝑗

 
(16) 

where ri(t) is the proportion of infected agents in region i at time t and 1 − 𝑒−𝑟𝑖(𝑡)𝛥𝑡 is the 

increment of atrophy at time t caused by the accumulation of alpha-synuclein pathology 

within Δt. The first term controls the direct impact of infected agents, whereas the second 

term weighs the increment of atrophy based on deafferentation from neighbouring regions. 

Each term was given a weight k1 and k2 of 0.5 for the main analyses, but weights varying 

from 0.1 to 0.9 were also tested to ensure that findings were not due to this parameter only. 

In other words, this module generated, at every timestep, a value of simulated atrophy for 

each of the 42 regions; it is this simulated atrophy that was correlated with the observed 

atrophy to test if the model accurately recreated the brain atrophy of iRBD. 

 

Statistical analysis 

Between group differences in atrophy 

For deformation-based morphometry-derived tissue deformation, two-tailed general linear 

models with age, sex, and site as covariates were performed to investigate the presence of 

significant differences between iRBD patients and controls. The Benjamini-Hochberg 
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procedure was used to correct for the rate of false discoveries at a statistical threshold of 

p<0.05.52 

 

For surface-based cortical measurements, general linear models were performed at each 

vertex to investigate the presence of significant differences in cortical thickness or surface 

area in iRBD patients compared to controls. Surface maps were smoothed using a 15-mm 

full-width, half-maximum kernel and age, sex, and site were entered as covariates, as well 

as estimated total intracranial volume for surface area. The surface correlates of motor and 

cognitive functioning in iRBD were also investigated in participants with available 

Movement Disorders Society–Unified Parkinson’s Disease Rating Scale, part III (MDS-

UPDRS-III; 90 patients, 130 controls) or Montreal Cognitive Assessment (MoCA; 134 

patients, 174 controls) scores. Using age, sex, and site (and total intracranial volume for 

cortical surface area) as covariates, vertex-based analyses were performed to investigate 

the vertices significantly correlated with clinical variables. Another contrast matrix was 

also created to identify the vertices where thickness and area correlations with the MDS-

UPDRS-III or MoCA scores differed significantly between iRBD patients and controls. 

Statistical significance was determined by Monte Carlo simulation at a corrected threshold 

of p<0.05. 

 

Replication of observed atrophy 

To assess if the model recreated atrophy, the spread of pathologic alpha-synuclein was 

simulated in silico by injecting pathology in one region, simulating the propagation over 

10,000 timesteps, and repeating the process for every region as seed. At each timestep, the 

model generated regional values representing the amount of simulated atrophy and the 

simulated number of infected and susceptible agents. To avoid interpreting any spurious 

overfit of the model when assessing the fit between atrophy patterns, since some regions 

may act as outliers due to agents being present in only a few brain regions when initiating 

the spread, we discarded all the timesteps where the number of infected agents in any region 

increased by more than 1% compared to the previous timestep. 
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At each timestep, Spearman’s rank correlations were used to assess the association between 

simulated atrophy and observed atrophy in patients. The highest correlation coefficient, if 

statistically significant at p<0.05, was considered as the peak fit. Since thickness W-scores 

correlated with region size (r=0.54, p=0.0013), the scores were divided by the region size 

before assessing the peak fit. For cortical surface measurements, the peak fit was also 

assessed over the 34 cortical regions only to ensure that the peak fit was not due to the 

presence of subcortical volume measurements. The ggseg package was used for 

visualization.53 

 

Comparison with other model-derived, topological, and gene metrics 

To determine that connectomics or regional vulnerability alone did not explain the atrophy 

patterns of iRBD, we tested whether simpler measures predicted brain atrophy as well as 

the complete agent-based model. These measures included (1) model-derived 

measurements representing the number of infected and susceptible agents at each timestep 

in each region; (2) network measures alone, namely node degree, node strength, node 

betweenness centrality and eigenvector centrality, derived from the Brain Connectivity 

Toolbox (www.sites.google.com/site/bctnet/);54 (3) SNCA and GBA regional expression 

alone. Node degree represented the number of edges (structural connections) connected to 

a node (region). Node strength represented the sum of the weights of the edges connected 

to the node. Node betweenness centrality represented the number of times a given node 

was found in the shortest paths linking every node pair in the network. Eigenvector 

centrality was a self-referential measure of centrality; nodes with high eigenvector 

centrality connected with other nodes that also had high eigenvector centrality. Node 

betweenness centrality and eigenvector centrality tested whether hub regions were more 

sensitive to disease. 
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Randomized null models 

To test if brain connectivity and gene expression shaped the atrophy in iRBD, all fits 

between atrophy patterns were tested against null models in which network topology and 

geometry or gene expression was randomized. For the connectome, rewired and 

repositioned null models were used to assess network topology and/or geometry. Rewired 

null models are models in which structural connectivity pairs of regions were randomized 

while preserving the network’s original degree sequence and density. Swapping of the 

connectivity and distance matrices was performed using the Maslov-Sneppen algorithm in 

the Brain Connectivity Toolbox.54,55 The randomized matrix was inserted into the model 

to derive a null peak fit between atrophy patterns; this process was repeated 10,000 times 

for generating a distribution of null peak fits, to the average of which the empirical peak 

fit between atrophy patterns was statistically compared. An unbiased Monte-Carlo estimate 

of the exact p-value was used to assess significance. The same steps were repeated using 

repositioned null models, i.e., models in which the spatial position of regions was 

randomized while preserving the network’s original degree sequence and connection 

profile. The same approach was also conducted for gene expression, where distinct null 

models were generated with either SNCA or GBA regional expression randomized between 

the 42 regions. 

Data availability  

The agent-based SIR model is available at https://github.com/yingqiuz/SIR_simulator. The 

regional values of the tissue deformation, cortical thickness, and cortical surface area maps 

are available at https://github.com/srahayel/SIR-RBD. 

Results  

Demographics 

Of the 443 participants, 34 did not pass deformation-based morphometry quality control, 

resulting in 409 participants (171 patients and 238 controls). There were no significant 

differences in age (iRBD: 67.7 ± 6.6 years; controls: 66.6 ± 7.9, p=0.11) and sex (iRBD: 
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83% men, controls: 77% men, p=0.13) between groups, but patients had higher MDS-

UPDRS-III scores (p<0.001) and lower MoCA scores (p<0.001) (Table 1). Of these 409 

participants, 64 did not pass FreeSurfer quality control, resulting in 345 participants (138 

iRBD patients and 207 controls) for quantifying cortical thickness and surface area 

differences. There were no significant differences in age (iRBD: 66.2 ± 7.6 years; controls: 

67.0 ± 6.3 years; p=0.28) and sex (iRBD: 81% men, controls: 77% men; p=0.34) for this 

sample. 

 

iRBD patients show brain atrophy. 

We investigated if this iRBD cohort showed brain atrophy compared to controls. In terms 

of deformation-based morphometry-derived tissue deformation, patients had decreased 

volume in the left middle temporal cortex, cuneus, lingual gyrus, fusiform gyrus, banks of 

the superior temporal sulcus and the pericalcarine area, and increased volume in the insula 

compared to controls; in the right hemisphere, decreased volume was found in the 

precentral, supramarginal, superior and middle temporal, lingual, and cuneus regions. 

However, only the left middle temporal region was significant after correction 

(pFDR=0.045) (Fig. 2A and Supplementary Table 2). 

 

For cortical thickness, patients showed significant thinning compared to controls in two 

clusters in the left hemisphere, namely one posterior cluster that included the posterior 

temporal and inferior parietal cortices and another cluster that extended from the 

dorsolateral prefrontal cortex to the orbitofrontal cortex, and in one cluster in the right 

hemisphere, which included the posterior temporal and lateral occipital cortices (Fig. 3A 

and Table 2). Compared to controls, patients also had significantly increased cortical 

surface area in the left inferior temporal cortex and sulcus that extended to the entorhinal 

cortex (Fig. 3B and Table 2). These findings demonstrate the presence of brain atrophy in 

iRBD. 
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Brain atrophy in iRBD is associated with motor and cognitive 

functioning. 

In iRBD patients, higher MDS-UPDRS-III scores were associated with cortical thinning in 

the bilateral frontal cortex and the right temporal cortex, and with increased thickness in 

the right sensorimotor cortex (Fig. 4B and Table 2). Higher MDS-UPDRS-III scores were 

also associated with increased cortical surface area in the bilateral occipital cortex, the left 

inferior parietal cortex, and the right posterior temporal cortex (Fig. 4B and Table 2). The 

associations with MDS-UPDRS-III scores were significantly different between iRBD 

patients and controls, with the correlation being stronger in patients in the bilateral 

sensorimotor cortex for thickness and in the frontopolar, sensorimotor, occipital, inferior 

parietal, and lingual and fusiform cortices for surface area (Fig. 4B and Table 2). For the 

MoCA, lower scores were associated with cortical thinning in the bilateral insula, the right 

temporal cortex, and the left posterior temporal cortex (Fig. 4C and Table 2). MoCA scores 

were not associated with cortical surface area in iRBD patients and there were no 

differences in correlation slopes between patients and controls. 

 

The SIR model recreates the atrophy of iRBD. 

The agent-based model was then applied to simulate alpha-synuclein spread and generate 

patterns of simulated atrophy in every region. We found that the model recreated the 

deformation-based morphometry-derived tissue deformation pattern, with the peak fit 

reaching r=0.52 (p<0.0005) when seeding from the banks of superior temporal sulcus at a 

connection density of 40% (Fig. 2B). The fit between atrophy patterns increased gradually 

with each timestep to reach a peak, followed by a decline (Fig. 2C). At the peak, the 

simulated atrophy was most prominent in the pericalcarine cortex, accumbens, cuneus, 

substantia nigra, amygdala, and the banks of the superior temporal sulcus (Fig. 2C). At 

later timesteps, the correlation declined but simulated atrophy was seen in putamen and 

lingual gyrus. The model also recreated atrophy at the lower connection densities (r=0.44 

at 35%, r=0.50 at 30%, r=0.36 at 25%) (Supplementary Fig. 1). 
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Similarly, the model recreated cortical atrophy, derived from FreeSurfer, with peak fits 

reaching r=0.51 (p=0.0007) for cortical thickness (Fig. 3C) and r=0.43 (p=0.006) for 

cortical surface area. However, when assessing the fit over the 34 cortical regions only 

(without the subcortical measurements), only thickness remained significant (rthickness=0.48, 

p=0.004; rarea=0.28, p=0.11). The fit for cortical thickness increased gradually and reached 

its peak once the system had attained the equilibrium state; at this timestep, the simulated 

atrophy was primarily found in the frontal pole, amygdala, accumbens, and entorhinal 

cortex (Fig. 3D). The fit was also significant at lower connection densities (r=0.50 at 35%, 

r=0.49 at 30%, r=0.48 at 25%). 

 

To confirm that our findings were not caused by site-specific variability, the tissue 

deformation and cortical thickness W-scores were harmonized using ComBat44,45; the 

model recreated the patterns just described in a similar way (r=0.515, p=5.69x10-4 for tissue 

deformation, r=0.523, p=5.50x10-4
 for cortical thickness). In addition, the model also 

recreated atrophy when using finer parcellations of 65 and 119 regions (Supplementary 

Fig. 2), with various spreading rates of agents (Supplementary Fig. 3), and with different 

weights given to misfolded alpha-synuclein accumulation versus deafferentation in the 

simulated atrophy ratio, with higher peak fits obtained when deafferentation was given the 

larger weight (Supplementary Fig. 4). Taken together, these results demonstrate that 

volume and cortical thickness atrophy in iRBD can be recreated based on agent-based 

modelling utilizing connectivity and gene expression for generation of the model. 

 

Simulated atrophy outperforms gene and network metrics. 

To ascertain whether brain connectivity or gene expression alone could recreate the atrophy 

pattern as well as the full model, we also tested several network-based and other model-

derived measures. For every connection density, we found that the simulated atrophy from 

the agent-based model measure always yielded the highest peak fits (r=0.52, p<0.0005 at 

40%), followed by the number of susceptible agents (r=0.32, p=0.039) (Fig. 5). None of 

the other measures, namely the number of infected agents or those describing the network’s 
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topology, associated significantly with measured atrophy (Fig. 5). As for gene expression, 

the deformation-based morphometry-derived tissue deformation was associated with 

neither SNCA (r=0.24, p=0.12) nor GBA (r=0.18, p=0.24) regional expression. This 

demonstrates that brain connectivity or gene expression alone cannot predict atrophy in 

iRBD, and that the full agent-based SIR model taking into account gene expression, 

connectivity, and deafferentation provides the best fit to the measured deformation. 

 

Connectivity and gene expression shape alpha-synuclein spread. 

We further investigated the importance of connectome architecture and gene expression by 

generating several null models. The peak fits of the SIR model were compared to the peak 

fits observed in null distributions derived from simulations where either gene expression 

or network architecture were randomly shuffled across regions. We observed that 

randomizing SNCA and GBA expression levels (i.e., alpha-synuclein synthesis and 

clearance) significantly disrupted the model fit at a 40% connection density; however, 

randomizing the SNCA expression did not disrupt the fit at lower connection densities (Fig. 

6). The randomization of connectivity was performed using two different types of null 

models to assess the impact of network topology and/or geometry on alpha-synuclein 

spread. In both cases, randomizing the connectome’s architecture disrupted the model fit 

(Fig. 6), indicating that both the brain’s structural connectivity pattern and the physical 

constraints imposed on the connectome contribute to shaping atrophy. Taken together, this 

demonstrates that connectivity and gene expression combine to shape brain atrophy of 

iRBD. 

Discussion  

Isolated RBD is associated with brain volume and cortical thickness atrophy.6-8,56-61 

Patients also present with high rates of positivity to pathologic alpha-synuclein in tissue 

biopsies.62-65 However, a mechanistic understanding of how alpha-synuclein pathology 

may relate to the patterns of brain atrophy in iRBD remains unknown. Here, we quantified 

atrophy in the largest multicentric cohort of polysomnography-confirmed iRBD patients 
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with T1-weighted MRI acquired to date and applied the agent-based SIR model to test 

whether prion-like and regional vulnerability factors recreated the atrophy in iRBD. We 

demonstrated that the computational simulation of atrophy based on the connectome’s 

architecture and gene expression of SNCA and GBA did recreate the atrophy seen in iRBD 

patients. Since most of the atrophy in iRBD associates with cognitive impairment,7 and 

given that atrophy predicts dementia with Lewy bodies in iRBD,8 this study sheds light on 

the specific mechanisms underlying the development of dementia with Lewy bodies in this 

population. 

 

The agent-based SIR model simulates the spread of alpha-synuclein based on brain 

connectivity and the expression of genes involved in alpha-synuclein synthesis and 

clearance.21 This model recreates the atrophy seen in Parkinson’s disease21 and 

frontotemporal dementia,47 and the spatiotemporal patterns of pathologic alpha-synuclein 

quantified in non-transgenic mice injected with preformed fibrils into either the striatum, 

nucleus accumbens or hippocampus.22 In the current work, we show that the atrophy in 

iRBD also follows the constraints imposed by the connectome’s architecture and the gene 

expression of SNCA and GBA. The impact of these factors was decisive, as demonstrated 

by the model’s inability to recreate atrophy if either connectivity or gene expression were 

randomized. The influence of connectivity is in line with several studies showing that 

cerebral connectivity forecasts the atrophy seen in neurodegenerative diseases,66-68 

including Parkinson’s disease.20,21 The influence of SNCA and GBA gene expression also 

agrees with mutations in these genes being significant risk factors for Parkinson’s disease 

and dementia with Lewy bodies.69-71 We observed that, whereas randomizing GBA 

expression always interfered with the model’s ability to recreate atrophy, the 

randomization of SNCA expression only led to a disruption at the 40% connection density, 

suggesting that GBA expression exerts an effect on the spread (and hence atrophy) that is 

more consistent than SNCA. The reason for this difference is unclear but does not seem 

related to different gene expression levels used by the model (SNCA: 0.17 ± 0.66 (range: 

2.91) versus GBA: 0.03 ± 0.51 (range: 2.95), p=0.28). Another possibility is that the 90 

additional connections appearing in the 40% density connectome were particularly 
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influential for SNCA to exert its effect on atrophy. Further studies should therefore 

investigate more closely the effect of gene expression on atrophy in iRBD. Nonetheless, 

this is consistent with our previous work showing that atrophy in Parkinson’s disease is 

shaped by local concentration of alpha-synuclein and connectivity, supporting the prion 

model.21 

 

However, although the model recreated atrophy, the visual inspection of observed and 

simulated atrophy measurements at the peak fit showed some inconsistencies. For instance, 

while the middle temporal gyrus was the region showing the greatest tissue deformation in 

iRBD, the amount of simulated atrophy was modest. This could suggest that proteins other 

than alpha-synuclein, disease-related changes in connectivity, regional vulnerability to 

alpha-synuclein accumulation unaccounted for in the model, and/or other mechanistic 

explanations may be involved in the observed changes in the middle temporal gyrus. 

However, in contrast, neighbouring regions such as the amygdala and the entorhinal cortex, 

which were reported to show high burden of Lewy pathology in brains of Lewy body 

patients,72 were also among the regions showing the highest amount of simulated atrophy 

in our patterns. 

 

Another novelty of this study is the comprehensive assessment of brain morphology in a 

large multicentric cohort of iRBD patients with polysomnography and T1-weighted MRI 

acquisition. We found that iRBD patients had volume atrophy in the middle temporal gyrus 

and cortical thinning in the frontal, posterior temporal, occipital, and inferior parietal 

cortices, which is in line with earlier findings in smaller iRBD cohorts.28 Morphological 

changes related to clinical changes, with the severity of parkinsonism being associated with 

extensive cortical thinning, thickening of the sensorimotor cortex, and increased area in 

posterior regions. Whereas the paracentral, sensorimotor, and superior parietal areas have 

been associated with motor deficits in iRBD,6,59 other regions such as the frontal and 

temporal cortices were not expected to be involved based on previous work. However, this 

frontotemporal pattern has already been documented in Parkinson’s disease73 and our 

findings here may represent premorbid neurodegenerative changes typical of overt 
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Parkinson’s disease. As for the MoCA correlates, the pattern was in line with what was 

previously observed for global cognitive performance in Parkinson’s disease73 and 

included the anterior insula, which was shown to be particularly vulnerable in 

synucleinopathies affecting cognition.74-77 

 

This study has some limitations. First, the brainstem nuclei involved in REM sleep motor 

atonia78 were not included in our analyses. This is due to the difficulty in imaging both 

brain atrophy and connectivity in these structures. Second, scans were acquired using 

different acquisition parameters at different sites. In the current work, site effects were 

regressed out from atrophy measurements during W-scoring and entered as covariate in 

neuroimaging analyses. The use of harmonized W-scores using a batch-correcting tool 

validated for neuroimaging data yielded the same results. Third, alpha-synuclein spread 

was simulated on a healthy structural connectome and transcriptome. White matter 

abnormalities and topological disorganization of grey matter have been reported in 

iRBD,8,58,79,80 as well as a genetic makeup more complex than the sole effects of SNCA and 

GBA.81 Once these changes are more thoroughly understood in iRBD, they can be 

implemented in the model. 

 

In summary, atrophy in iRBD patients can be recreated using a combination of agent-based 

modelling, structural connectomics, and gene expression. The agent-based SIR model may 

provide a way to test new research hypotheses for the purpose of slowing or stopping the 

spread of pathologic alpha-synuclein in the brain. 
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Tables 

Table 1 Demographics and clinical variables of iRBD patients and controls. 

Variables iRBD (n=171) Controls (n=238) p-value 

Age, years 67.7 ± 6.6 (49-87) 66.6 ± 7.9 (41-88) 0.112a 

Sex, n (% men) 142 (83%) 183 (77%) 0.129b 

MDS-UPDRS-IIIc 7.4 ± 6.9 (0-34) 2.3 ± 3.7 (0-19) <0.001d 

UPDRS-III (Fahn & Elton)e 4.3 ± 3.6 (0-19) - - 

MoCA 26.3 ± 3.1 (11-30) 27.9 ± 1.7 (20-30) <0.001d 

 
Continuous data are presented as mean ± SD (range). 
aStudent’s t test. 
bChi-squared test. 
cAvailable in 123 patients and 154 controls. 
dMann-Whitney U test. 
eThe Montreal cohort underwent the Fahn & Elton UPDRS-III version.82 

 
CI = confidence interval; iRBD = isolated REM sleep behaviour disorder; MDS = Movement Disorders Society; MoCA = Montreal 
Cognitive Assessment; UPDRS-III = Unified Parkinson’s Disease Rating Scale, motor examination. 
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Table 2 Results of vertex-based cortical analyses between iRBD patients and controls. 

Cortical 
measure 

Most affected regions 
Hemi-
sphere 

Cluster 
size, 

mm² 

Number 
of vertices 

Talairach coordinates -log10 
p- 

value x y z 

Between group comparisons    

Thicknessa Cluster: Inferior parietal and lateral occipital Right 5,740.0 9,280 41.8 -70.0 23.0 4.332 

 
Cluster: Rostral and caudal middle frontal, 
superior frontal, medial orbitofrontal, pars 

orbitalis 
Left 6,470.4 10,938 -33.6 35.6 23.9 2.652 

 
Cluster: Inferior parietal, inferior, middle, 

superior temporal cortex 
Left 4,766.7 8,943 -38.2 -52.8 22.5 2.306 

Surface areab Cluster: Inferior temporal and entorhinal Left 2,615.5 4,458 -50.1 -45.3 -14.0 -2.983 

MDS-UPDRS-III: Correlation analysis in iRBD      

Thickness 
Cluster: Inferior, middle, and superior 

temporalc 
Right 3751.0 6,712 54.9 -25.0 -18.1 -4.295 

 

Cluster: Superior frontal, pars opercularis, 

triangularis, orbitalis, rostral and caudal 

middle frontal, medial and lateral 
orbitofrontal, precentral and postcentralc 

Left 14557.5 26,102 -7.2 36.9 -20.6 -4.043 

 
Cluster: Medial and lateral orbitofrontal, 
pars opercularis, triangularis, orbitalisc Right 5389.5 8,843 6.7 51.5 -17.8 -3.987 

 
Cluster: Superior frontal, rostral and caudal 

middle frontalc 
Right 5061.7 9,439 9.0 38.2 28.3 -3.879 

 Cluster: Precentral and postcentrald Right 2205.7 5,010 8.3 -25.8 63.6 3.304 

Surface area Cluster: Lateral occipital, fusiformd Right 4636.9 6,614 41.9 -69.8 5.6 4.483 

 Cluster: Inferior parietal, lateral occipitald Left 3861.5 6,219 -40.6 -71 32.6 4.059 

MDS-UPDRS-III: Difference in correlation between groups       

Thickness 
Cluster: Precentral, postcentral, paracentral, 

caudal middle frontale 
Left 4595.2 10,528 -31.3 -19.4 54.3 -4.049 

 Cluster: Precentrale Right 2429.5 5,638 11.1 -23.6 62.0 -3.454 

Surface area Cluster: Postcentral, precentrale Left 2021.3 4,630 -47.0 -16.2 53.2 -5.280 

 Cluster: Lateral occipital and fusiforme Left 2116.1 2,832 -34.9 -86.3 -4.9 -2.984 

 Cluster: Inferior parietale Left 1810.9 2,952 -36.3 -74.5 31.1 -2.862 

 Cluster: Inferior temporal, fusiform, linguale Right 2367.9 4,074 40.8 -9.9 -24.8 -2.745 

 
Cluster: Lateral and medial orbitofrontal, 

superior frontale 
Right 2936.6 4,437 14.4 30.2 -17.4 -2.316 

MoCA: Correlation analysis in iRBD        

Thickness 
Cluster: Inferior, middle, superior temporal 

cortex, fusiform, lingual, entorhinald 
Right 7239.5 11,827 40.8 -41.8 -13.4 4.183 

 
Cluster: Insula, pars opercularis, rostral 

middle frontal, lateral orbitofrontald 
Left 5111.6 11,651 -41.0 -0.5 14.4 4.038 

 Cluster: Fusiform and linguald Left 2277.5 3,100 -40.6 -61.8 -7.9 3.519 

 
Cluster: Insula, banks of STS, lateral 

orbitofrontal, pars opercularisd Right 3774.7 9,208 43.1 -18.3 18.1 2.596 

         

Results were corrected with Monte-Carlo simulation at p<0.05 with age, sex, and site entered as covariates, as well as total intracranial 
volume for surface area analysis. Clusters are listed by the strongest -log10 p-value. 
aiRBD<Controls. 
biRBD>Controls. 
cNegative association. 
dPositive association. 
eStronger association in iRBD patients compared to controls. 
 
iRBD = isolated REM sleep behaviour disorder; MDS = Movement Disorders Society; MoCA = Montreal Cognitive Assessment; STS 

= superior temporal sulcus; UPDRS-III = Unified Parkinson’s Disease Rating Scale, motor examination. 
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Figure legends 

Figure 1 Demographics and clinical variables of iRBD and controls. 

 

(A) A flowchart of the different cohorts included in this study. (B) Overview of the study 

protocol for quantifying brain atrophy in iRBD. Deformation-based morphometry and 

vertex-based cortical surface analysis were performed to generate Jacobian and cortical 

thickness and surface maps. These were parcellated and W-scored to correct for the effects 

of age, sex, and site seen in controls. These regional values were the atrophy patterns to 

recreate. (C) The spread of alpha-synuclein in the brain was simulated in silico using the 

agent-based SIR model based on structural connectomics and SNCA and GBA gene 

expression. The simulation was iterated 10,000 times, with brain atrophy being simulated 

at each timestep. These patterns were correlated with the observed atrophy patterns to 

assess if the model recreated atrophy. HC = healthy controls; iRBD = isolated REM sleep 

behaviour disorder; QC = quality control; SD = standard deviation; SIR = Susceptible-

Infected-Removed. 
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Figure 2 The model recreates the pattern of tissue deformation of iRBD. 

 

(A) Patients with iRBD showed significant volume decreases compared to controls (left: 

spatial distribution of FDR-adjusted p-values, right: significant differences after FDR-

correction). (B) The pattern of volume loss in iRBD (left) was recreated by the model 

(right). For visualization purposes, atrophy W-scores were z-scored to ease comparability 

of scales; positive z scores represented greater atrophy. (C) The subplot shows the 

progression of the fit between atrophy patterns until the peak at timestep #1241 (arrow). 

The main scatterplot shows the z-scored values of observed and simulated atrophy at the 

peak fit for the 42 regions. Scales were adjusted such that higher scores represented greater 

atrophy. FDR = false discovery rate; iRBD = isolated REM sleep behaviour disorder. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 30, 2021. ; https://doi.org/10.1101/2021.12.27.21268442doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.27.21268442
http://creativecommons.org/licenses/by-nc-nd/4.0/


42 

 

Figure 3 The model recreates the pattern of cortical thinning of iRBD. 

 

Patients with iRBD showed cortical thinning (A) and increased surface area (B) compared 

to controls. The colour bar indicates the statistical significance on a logarithmic scale of p-

values (-log10), with red-yellow areas showing significant decreases in iRBD and blue 

areas showing increases in iRBD. (C) The pattern of cortical thinning in iRBD (left) was 

recreated by the model (right). For visualization purposes, atrophy W-scores were z-scored 

to ease comparability of scales; positive z scores represented greater atrophy; positive z 

scores represent greater atrophy. (D) The subplot shows the progression of the fit between 

atrophy patterns until the peak at timestep 9,639 (arrow). The main scatterplot shows the 

z-scored values of observed and simulated atrophy at the peak fit for the 41 regions. Scales 

were adjusted such that higher scores represented greater atrophy. iRBD = isolated REM 

sleep behaviour disorder. 
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Figure 4 Correlation analyses between cortical surface and motor and cognitive 

variables. 

 

Results of the general linear models showing the vertices where a significant correlation 

was found with the MDS-UPDRS-III (A) and MoCA (B) in iRBD patients and the vertices 

where the slopes between the structural metric and these scores significantly differed 

between patients and controls. The colour bar indicates the statistical significance on a 

logarithmic scale of p-values (-log10; ±1.3 corresponding to p<0.05 corrected for multiple 

comparisons by Monte Carlo cluster-wise simulation), with red-yellow areas showing 

positive associations in iRBD and blue areas showing negative associations in iRBD. For 

comparisons of correlation, blue clusters represent stronger correlations in iRBD compared 

to controls. iRBD = isolated REM sleep behaviour disorder; MDS = Movement Disorders 

Society; MoCA = Montreal Cognitive Assessment; UPDRS-III = Unified Parkinson’s 

Disease Rating Scale, part III. 
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Figure 5 Simulated atrophy outperforms network and other model-derived measures. 

 

The highest peak fits found when recreating the deformation-based morphometry-derived 

tissue deformation pattern were found when using the simulated atrophy measure generated 

by the full agent-based SIR model. Asterisks represent the significant correlations between 

the observed pattern of atrophy and the different network and model-derived measures. 

SIR = Susceptible-Infected-Removed. 
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Figure 6 Connectivity and gene expression shape the deformation-based 

morphometry-derived atrophy pattern. 

 

Violin plots comparing the original peak fits between atrophy patterns (red dots) to the 

average peak fits derived from null models in which network topology (“Rewired”), 

network geometry (“Repositioned”), SNCA expression (“SNCA”), and GBA expression 

(“GBA”) was randomly shuffled across regions. Unbiased Monte-Carlo estimates of the 

exact p-value were computed and reported above the plots. Comparisons with null models 

were performed for each connection density. 
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Supplementary material  

Supplementary Table 1 Demographics of the different cohorts. 

Cohort Group Total number Age (SD) Sex, n (% men) 
MDS-UPDRS-

III 
MoCA 

Paris iRBD 59 67.42 ± 6.16 52 (88) 8.47 ± 6.68 26.78 ± 2.79 

Paris Controls 57 65.94 ± 8.51 45 (79) 3.98 ± 4.77 27.51 ± 2.16 

Montreal iRBD 48 65.83 ± 6.43 37 (77) 4.31 ± 3.62a 25.93 ± 2.72 

Montreal Controls 35 64.97 ± 7.13 21 (60) - 28.17 ± 1.40 

Sydney iRBD 30 68.42 ± 7.24 27 (90) 11.58 ± 7.45 26.42 ± 3.34 

Sydney Controls 26 70.81 ± 6.22 17 (65) - - 

Aarhus iRBD 18 68.72 ± 8.22 15 (83) 1.11 ± 1.45 27.11 ± 1.97 

Aarhus Controls 20 67.90 ± 5.76 15 (75) - 27.05 ± 2.12 

PPMI cohort iRBD 27 70.86 ± 5.32 21 (78) 5.11 ± 5.64 25.18 ± 4.51 

PPMI cohort Controls 123 66.07 ± 8.18 97 (79) 1.43 ± 2.46 28.15 ± 1.14 

 

Data are presented as mean ± SD. 
aFahn & Elton UPDRS-III version.82 

 

iRBD = isolated REM sleep behaviour disorder; MDS = Movement Disorders Society; MoCA = Montreal Cognitive Assessment; PPMI 
= Parkinson’s Progression Markers Initiative; SD = standard deviation; UPDRS-III = Unified Parkinson’s Disease Rating Scale, motor 
examination. 
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Supplementary Table 2 Results of deformation-based morphometry between iRBD patients and controls. 

Region iRBD (mean ± SD) Controls (mean ± SD) Beta coefficient p-value 
Adjusted p-value 

for FDR 

Left hemisphere      

Middle temporal cortexa 1.008 (0.053) 1.019 (0.050) -0.016 0.001 0.045 

Cuneusb 1.007 (0.079) 1.014 (0.082) -0.018 0.030 0.274 

Lingual gyrusb 1.015 (0.063) 1.022 (0.066) -0.014 0.033 0.274 

Fusiform gyrusb 1.024 (0.085) 1.028 (0.079) -0.014 0.032 0.274 

Banks STSb 0.976 (0.081) 0.988 (0.073) -0.017 0.026 0.274 

Insulab 1.013 (0.053) 0.999 (0.044) 0.011 0.030 0.274 

Pericalcarineb 0.960 (0.082) 0.973 (0.090) -0.018 0.043 0.286 

Supramarginal 1.004 (0.052) 1.010 (0.050) -0.010 0.062 0.325 

Isthmus cingulate 0.991 (0.055) 0.979 (0.057) 0.011 0.066 0.326 

Frontal pole 1.046 (0.052) 1.033 (0.056) 0.009 0.112 0.428 

Precentral 1.029 (0.046) 1.031 (0.044) -0.007 0.110 0.428 

Paracentral 1.008 (0.081) 1.017 (0.079) -0.013 0.119 0.428 

Caudal anterior cingulate 0.979 (0.063) 0.970 (0.060) 0.010 0.127 0.428 

Lateral occipital 1.029 (0.039) 1.032 (0.047) -0.007 0.124 0.428 

Putamen 0.916 (0.062) 0.925 (0.058) -0.009 0.099 0.428 

Amygdala 0.993 (0.082) 0.996 (0.071) -0.011 0.106 0.428 

Caudal middle frontal 1.019 (0.058) 1.025 (0.064) -0.009 0.148 0.435 

Entorhinal 1.047 (0.121) 1.044 (0.106) -0.012 0.208 0.452 

Caudate 1.027 (0.120) 1.013 (0.109) 0.015 0.204 0.452 

Pallidum 0.913 (0.064) 0.923 (0.061) -0.007 0.221 0.453 

Inferior temporal 1.047 (0.090) 1.043 (0.078) -0.007 0.230 0.454 

Lateral orbitofrontal 1.001 (0.072) 0.999 (0.071) -0.006 0.252 0.480 

Temporal pole 1.015 (0.089) 1.014 (0.077) -0.008 0.262 0.488 

Transverse temporal 1.004 (0.083) 0.990 (0.081) 0.009 0.292 0.515 

Thalamus 0.959 (0.059) 0.960 (0.055) -0.005 0.384 0.614 

Accumbens area 1.012 (0.070) 1.008 (0.064) -0.005 0.387 0.614 

Superior temporal 1.005 (0.041) 1.005 (0.045) -0.004 0.399 0.621 

Pars opercularis 1.024 (0.062) 1.016 (0.060) 0.005 0.429 0.652 

Rostral middle frontal 1.024 (0.038) 1.026 (0.044) -0.003 0.436 0.652 

Superior frontal 1.014 (0.043) 1.017 (0.048) -0.003 0.511 0.715 

Medial orbitofrontal 1.012 (0.095) 1.005 (0.085) -0.004 0.520 0.717 

Precuneus 1.009 (0.060) 1.009 (0.056) -0.003 0.587 0.771 

Postcentral 1.025 (0.042) 1.023 (0.044) -0.002 0.636 0.808 

Parahippocampal 0.997 (0.067) 0.994 (0.068) -0.003 0.659 0.814 

Posterior cingulate 0.981 (0.050) 0.981 (0.048) -0.002 0.690 0.828 

Superior parietal 1.051 (0.057) 1.049 (0.051) -0.002 0.713 0.843 

Pars triangularis 1.024 (0.057) 1.017 (0.062) 0.002 0.749 0.850 

Pars orbitalis 1.016 (0.048) 1.012 (0.052) -0.001 0.766 0.858 

Rostral anterior cingulate 0.945 (0.056) 0.943 (0.066) 0.001 0.812 0.870 

Hippocampus 0.964 (0.050) 0.964 (0.051) -0.001 0.818 0.870 

Inferior parietal 1.032 (0.054) 1.032 (0.052) -0.001 0.832 0.873 

Substantia nigra 0.920 (0.056) 0.927 (0.054) -0.001 0.889 0.911 

Right hemisphere      

Precentralb 1.016 (0.045) 1.025 (0.048) -0.015 0.002 0.090 

Supramarginalb 1.000 (0.053) 1.009 (0.050) -0.014 0.007 0.146 

Superior temporalb 0.994 (0.051) 1.003 (0.047) -0.014 0.007 0.146 
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Cuneusb 1.028 (0.080) 1.032 (0.081) -0.017 0.036 0.274 

Middle temporalb 1.010 (0.062) 1.017 (0.060) -0.012 0.017 0.274 

Lingualb 1.036 (0.064) 1.039 (0.067) -0.013 0.044 0.286 

Postcentral 1.022 (0.051) 1.029 (0.051) -0.010 0.055 0.310 

Fusiform 1.029 (0.088) 1.030 (0.083) -0.012 0.055 0.310 

Caudate 1.083 (0.164) 1.053 (0.144) 0.025 0.107 0.428 

Parahippocampal 1.003 (0.063) 1.006 (0.057) -0.008 0.133 0.429 

Inferior temporal 1.056 (0.097) 1.052 (0.090) -0.009 0.150 0.435 

Amygdala 1.002 (0.074) 1.003 (0.068) -0.009 0.147 0.435 

Rostral middle frontal 1.015 (0.042) 1.019 (0.049) -0.006 0.211 0.452 

Superior frontal 1.024 (0.048) 1.028 (0.051) -0.007 0.202 0.452 

Caudal middle frontal 1.013 (0.066) 1.022 (0.071) -0.010 0.169 0.452 

Caudal anterior cingulate 0.990 (0.079) 0.978 (0.067) 0.010 0.215 0.452 

Transverse temporal 0.977 (0.069) 0.981 (0.065) -0.009 0.209 0.452 

Putamen 0.920 (0.064) 0.928 (0.059) -0.008 0.164 0.452 

Pallidum 0.914 (0.060) 0.924 (0.057) -0.007 0.204 0.452 

Hippocampus 0.972 (0.051) 0.976 (0.048) -0.007 0.174 0.452 

Substantia nigra 0.921 (0.055) 0.931 (0.052) -0.007 0.188 0.452 

Pericalcarine 1.023 (0.091) 1.024 (0.095) -0.011 0.232 0.454 

Precuneus 1.026 (0.064) 1.027 (0.064) -0.007 0.300 0.515 

Temporal pole 1.022 (0.086) 1.020 (0.077) -0.008 0.283 0.515 

Banks STS 0.989 (0.083) 0.998 (0.072) -0.008 0.297 0.515 

Lateral orbitofrontal 1.002 (0.079) 0.996 (0.075) -0.006 0.337 0.566 

Lateral occipital 1.035 (0.046) 1.032 (0.051) -0.004 0.385 0.614 

Medial orbitofrontal 1.004 (0.087) 0.999 (0.078) -0.005 0.458 0.652 

Pars triangularis 1.000 (0.066) 1.003 (0.068) -0.005 0.449 0.652 

Entorhinal 1.068 (0.107) 1.061 (0.100) -0.006 0.456 0.652 

Isthmus cingulate 0.989 (0.059) 0.984 (0.060) 0.004 0.542 0.734 

Inferior parietal 1.033 (0.049) 1.032 (0.049) -0.003 0.580 0.771 

Insula 0.973 (0.047) 0.974 (0.042) -0.002 0.602 0.778 

Pars orbitalis 1.006 (0.054) 1.001 (0.058) -0.002 0.645 0.808 

Superior parietal 1.049 (0.056) 1.049 (0.050) -0.002 0.674 0.821 

Pars opercularis 1.008 (0.073) 1.004 (0.066) 0.003 0.725 0.846 

Frontal pole 1.048 (0.056) 1.041 (0.055) 0.002 0.745 0.850 

Paracentral 1.045 (0.087) 1.040 (0.080) -0.002 0.785 0.859 

Accumbens area 1.008 (0.066) 1.001 (0.060) -0.001 0.787 0.859 

Posterior cingulate 0.986 (0.052) 0.981 (0.049) 0.001 0.888 0.911 

Rostral anterior cingulate 0.965 (0.080) 0.962 (0.072) 0.0004 0.957 0.969 

Thalamus 0.992 (0.065) 0.986 (0.062) 0.00005 0.993 0.993 

 
Regions are ordered separately for each hemisphere from the lowest FDR-adjusted p-values to the highest. 
aSignificant when using the FDR-adjusted p-values. 
bSignificant when using an uncorrected p-value of <0.05. 
 
FDR = false discovery rate; iRBD = isolated REM sleep behaviour disorder; SD = standard deviation; STS = superior temporal sulcus. 
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Supplementary Figure 1. The model recreated deformation-based morphometry-derived 

tissue deformation of iRBD at different network densities. 

 

 

The atrophy simulated by the model using connection densities varying from 25% to 40% 

always recreated the pattern of tissue deformation observed in iRBD. Red columns 

represent the seed regions that led to a significant recreation of tissue deformation. 

iRBD = isolated REM sleep behaviour disorder; STS = superior temporal sulcus. 
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Supplementary Figure 2. The model recreated the deformation-based morphometry-

derived tissue deformation pattern using finer brain parcellations. 

 

 

The model also recreated the deformation-based morphometry-derived tissue deformation 

pattern of iRBD when simulating the spread of agents using brain parcellations of 65 and 

119 regions. 

iRBD = isolated REM sleep behaviour disorder. 
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Supplementary Figure 3. The model recreated the deformation-based morphometry-

derived tissue deformation pattern at various spreading rates. 

 

 

The model recreated the deformation-based morphometry-derived tissue deformation 

pattern of iRBD when using different ρ values (i.e., the probability that an agent remained 

in a region instead of leaving the region) from 0.1 to 0.9. The main analyses performed in 

the article used ρ=0.5. 

iRBD = isolated REM sleep behaviour disorder. 
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Supplementary Figure 4. The model recreated the deformation-based morphometry-

derived tissue deformation pattern at various atrophy ratios. 

 

 

The model recreated the deformation-based morphometry-derived tissue deformation 

pattern of iRBD when using different weights for neuronal loss and deafferentation in the 

quantification of the model’s simulated atrophy measure. The main analyses performed in 

the paper used equal weights for neuronal loss and deafferentation (k=0.5). 

iRBD = isolated REM sleep behaviour disorder. 
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