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Abstract 36 

Background 37 

Cervical dystonia is the most frequent form of isolated focal dystonia. It is often associated with a 38 

dysfunction in brain networks, mostly affecting the basal ganglia, the cerebellum, and the 39 

somatosensory cortex. However, it is unclear if such a dysfunction is somato-specific to the brain areas 40 

containing the representation of the affected body part, and may thereby account for the focal 41 

expression of cervical dystonia.  42 

In this study, we investigated resting state functional connectivity in the areas within the motor cortex 43 

and the cerebellum containing affected and non-affected body representation in cervical dystonia 44 

patients. 45 

Methods 46 

Eighteen patients affected by cervical dystonia and 21 healthy controls had resting state fMRI. The 47 

functional connectivity between the motor cortex and the cerebellum, as well as their corresponding 48 

measures of gray matter volume and cortical thickness, were compared between groups. We performed 49 

seed-based analyses, selecting the different body representation areas in the precentral gyrus as seed 50 

regions, and all cerebellar areas as target regions. 51 

Results 52 

Compared to controls, patients exhibited increased functional connectivity between the bilateral trunk 53 

representation area of the motor cortex and the cerebellar vermis 6 and 7b, respectively. These 54 

functional abnormalities did not correlate with structural changes or symptom severity. 55 

Conclusions 56 

Our findings indicate that the abnormal function of the motor network is somato-specific to the areas 57 

encompassing the neck representation. Functional abnormalities in discrete relevant areas of the motor 58 

network could thus contribute to the focal expression of CD.  59 
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Introduction 60 

Cervical dystonia (CD) is the most common form of isolated focal dystonia, characterized by involuntary 61 

muscle contractions in the neck, which results in abnormal head posture and movements.1 It has been 62 

associated with various brain dysfunctions, such as maladaptive neuroplasticity, abnormal sensorimotor 63 

processing and integration,2 and its pathophysiological mechanisms are still unclear.3 64 

CD is considered a network disorder arising from abnormal communication among different brain 65 

areas.2 Neuroimaging studies have evidenced functional and structural abnormalities in the basal 66 

ganglia,2, 4 the sensorimotor and frontoparietal regions, the insula, the cerebellum, and the brainstem.5-67 

7 Animal and human research indicate that both the cerebello-thalamo-cortical network and basal 68 

ganglia–thalamo-cortical network project into the motor cortex, where the motor output is generated,8 69 

and may contribute to the abnormal movements.9 Other studies focusing on the cerebellum have 70 

reported loss of Purkinje cells, areas of focal gliosis,10 as well as increased gray matter (GM) volume of 71 

cerebellar flocculus, in CD patients compared to healthy controls (HC).11 Altogether, these findings point 72 

to the motor cortex and the cerebellum as critical structures for the pathogenesis of CD. 73 

It is mostly unknown whether these network abnormalities represent a general marker of the 74 

pathogenesis of dystonia, irrespectively of the affected body part, or if the pathogenesis of different 75 

types of dystonia affects relevant discrete areas within the motor areas and cerebellum. Distinct patterns 76 

of altered microstructures within regions of basal ganglia and cerebellar circuits have been associated 77 

with different phenotypes of focal dystonia,12 and regional patterns of functional connectivity within the 78 

striatum and a sensorimotor-parietal network, as opposed to global network dysfunction, may contribute 79 

to focal dystonia.13, 14 So far, there is no detailed study of the cerebellar somatotopy in CD, since a high-80 

definition functional cerebellar atlas has been developed only recently.15 Such an investigation is not 81 

trivial, as it has been shown that the representations of multiple body parts are organized in an orderly 82 

manner in the cerebellar lobes, mirroring the functional specialization of the motor cortex.15, 16  83 

In this study, we investigated the specificity of motor-cerebellar networks in CD using resting state 84 

functional connectivity (RS-FC). RS-FC is a widely used non-invasive technique, based on functional 85 

magnetic resonance imaging (fMRI), where the time courses of predefined regions of interest (ROIs) 86 

are extracted from the brain at rest, and correlated with each other, under the assumption that 87 

functionally connected areas show high correlation.17 We compared patterns of RS-FC in the different 88 

body representation areas of the motor cortex and the cerebellum between patients affected by CD and 89 
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HC, and performed a morphometric analysis on the same areas to study differences in GM volumes 90 

and cortical thickness (CT) between groups. We tested the hypothesis that network dysfunctions in CD 91 

are somato-specific, i.e., CD patients exhibit abnormal RS-FC and structural differences only in the 92 

head and neck representation areas, in both the motor cortex and the cerebellum. 93 

 94 

Materials and Methods  95 

Subjects and general procedure 96 

We recruited 18 CD patients (7 male, mean age=46.9±8.7 years) and 21 sex- and age-matched HC (9 97 

male, mean age=45.3±10.6 years). Patients were recruited at the Pitié-Salpêtrière Hospital, Paris, FR. 98 

Inclusion criteria for patients were: a diagnosis of CD, no botulin toxic injection within 3 months prior to 99 

the examination, and stable pharmacological treatment in the month preceding inclusion. Exclusion 100 

criteria common to both HC and CD patients were: i) any other neurological sign, and ii) incompatibility 101 

with MR acquisition. Severity of CD was assessed at the time of inclusion with the Toronto Western 102 

Spasmodic Torticollis Rating Scale (TWSTRS), subscale for severity.18 Between-group differences in 103 

age were assessed with independent-sample t-tests, whereas differences in the ratio between male 104 

and female participants were assessed with χ2 tests. 105 

The study was carried out in accordance with the latest version of the Declaration of Helsinki and 106 

approved by the local Ethics Committee (approval number: C17-04 - AU 1360, ClinicalTrial.gov ID: 107 

NCT03351218). All participants gave written informed consent prior to the study. 108 

 109 

Neuroimaging acquisition parameters and pre-processing 110 

During the MR session, participants lied in the scanner while fixating a cross displayed on a screen. 111 

Their gaze was monitored with eye-tracking. Neuroimaging data were acquired using a 3T Magnetom 112 

Prisma (Siemens, DE) with a 64-channel head coil. Resting state fMRI and structural images were 113 

acquired in one session. Structural images were acquired with a T1-weighted MP2RAGE sequence 114 

with Repetition Time (TR)=5 s, Inversion Time (TI)=700/2500 ms, field of view (FOV)=232×256 in plane 115 

×176 slices, 1 mm isotropic, Ipat acceleration factor=3. FMRI data were acquired with an echo-planar 116 

imaging (EPI) sequence performed with a multi-slice, multi-echo acquisition, TR=1.9 s, Echo Time 117 

(TE)=17.2/36.62/56.04 ms, Ipat acceleration factor=2, Multi-band=2, isotropic voxel size=3 mm, 118 
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dimensions=66×66 in plane ×46 slices, 350 volumes, duration=11 min. The first 10 time points were 119 

not recorded to ensure magnetization equilibrium.  120 

Image preprocessing was done as follows: structural images were background denoised19, 20 in order 121 

to improve the quality of the subsequent steps, segmented and normalized to the Montreal Neurological 122 

Institute (MNI) space using the Computational Anatomy Toolbox (CAT12)21  extension for SPM12.22 123 

Functional images were pre-processed according to standard pipelines (despiking, slice timing 124 

correction and realignment to the volume with the minimum outlier fraction driven by the first echo) 125 

using AFNI.23 A brain mask was computed on the realigned shortest echo temporal mean using FSL 126 

BET24 in order to increase the robustness against signal bias intensity. Afterwards, the TEDANA  127 

toolbox25 version 0.0.7 was used to optimally combine the realigned echoes, to apply principal 128 

component analysis and reduce the dimensionality of the data, and to perform an independent 129 

component analysis (ICA) decomposition to separate BOLD and non-BOLD components.26 This step 130 

ensured robust artefact removal of non-BOLD signals, such as movement, respiration or heartbeat, and 131 

has already shown to be superior over standard denoising techniques in regressing out motion.25 132 

Framewise displacement (FD) was further computed according to standard methods,27 and compared 133 

between CD patients and HC. The quality of the signal was verified as head movement amplitude was 134 

minimal, and the FD did not statistically differ between CD patients (0.018±0.016 mm) and HC 135 

(0.016±0.008 mm) [t(37)=0.49, p=0.629]. Finally, using SPM12, functional images were co-registered 136 

to the T1-weighted image, normalized to MNI space, and smoothed with a Gaussian kernel with full 137 

width at half maximum of 4x4x4 mm, as previously suggested.28 138 

After pre-processing, the CONN toolbox29 implemented in Matlab r2018a (The MathWorks Inc. USA) 139 

was used to parcellate the brain images into 274 functional regions, based on the Brainnetome Atlas,28 140 

and to extract the region-averaged time series. Motion parameters obtained during the realignment, as 141 

well as the average signal of white matter and cerebrospinal fluid obtained during the segmentation, 142 

were regressed out with aCompCor.30 This step reduced spatial correlations resulting from physiological 143 

noise. Time series were finally band-pass filtered at 0.01<f<0.1 Hz, according to previous research.28 144 

 145 

Analysis of resting state functional connectivity  146 

We entered all the time series extracted from the 274 functional regions into a first level general linear 147 

model (GLM), where we performed a ROI-based analysis, for each participant, to determine significant 148 
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resting state connections at individual level: In particular, we used bivariate correlation coefficients 149 

between all pairs of ROIs as indicators of their functional connectivity. Next, we converted the 150 

correlation coefficients to z-scores using Fisher-Z transformation, in order to normalize them to a 151 

Gaussian distribution. We then implemented a second level GLM testing seed-based ROI-to-ROI 152 

differences between CD and HC. For the latter, as we were only interested in the connectivity between 153 

the motor cortex and the cerebellum, we isolated the regions of the Brainnetome Atlas that were 154 

associated with the body representation areas within the precentral gyrus (PrG) and paracentral lobule 155 

(PCL), as well as all cerebellar regions without a priori, i.e. irrespective of body representation (Table 156 

1). We then selected the bilateral motor areas as seed ROIs and the cerebellar ROIs as target regions. 157 

False positive control for multiple comparisons was implemented using false discovery rate (FDR)-158 

corrected p-values with a threshold of pFDR<0.050. 159 

A correlation analysis was performed by computing Pearson correlation’s coefficients between the 160 

severity of dystonia (TWSTRS scores) and the connectivity values between the motor cortex and the 161 

cerebellum. A FDR-corrected threshold of pFDR<0.050 was applied. 162 

 163 

Table 1. List of seed and target ROIs used in the analysis of functional connectivity. The Brainnetome Atlas was 164 
used to isolate all regions associated with the body representation areas within the motor cortex, as well as all 165 

cerebellar regions. R = right, L = left, PrG = precentral gyrus. PCL = paracentral lobule. 166 

Seed regions (Motor cortex) 
MNI coordinates 

(x,y,z) 

Target regions 

(Cerebellum) 

MNI coordinates 

(x,y,z) 

R / L PrG, area 4 (head and 

face region) 

R: 55, -2, 33 

L: -49, -8, 39 
R / L Lobules 1, 2, 3, 4 

R: 10 -43 -18 

L: -7 -44 -17 

R / L PrG, caudal dorsolateral 

area 6 

R: 33, -7, 57 

L: -32, -9, 58 
R / L Lobule 5 

R: 14 -51 -19 

L: -13 -50 -19 

R / L PrG, area 4 (upper limb 

region) 

R: 34, -19, 59 

L: -26, -25, 63 
R / L Lobule 6 

R: 24 -58 -25 

L: -23 -59 -25 

R / L PrG, area 4 (trunk region, 

including neck) 

R: 15, -22, 71 

L : 15, -22, 71 
R / L Lobule 7b 

R: 28 -66 -51 

L: -26 -66 -51 

R / L PrG, area 4 (tongue and 

larynx region) 

R : 54, 4, 9 

L: -52, 0, 8 
R / L Lobule 8a 

R: 26 -58 -53 

L: -24 -57 -53 
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R / L PrG, caudal ventrolateral 

area 6 

R: 51, 7, 30 

L: -49, 5, 30 
R / L Lobule 8b 

R: 18 -51 -55 

L: -17 -50 -55 

R / L PCL, areas 1, 2, 3 (lower 

limb region) 

R: 10, -34, 54 

L: -8, -38, 58 
R / L Lobule 9 

R: 7 -53 -49 

L: -7 -53 -48 

R / L PCL, area 4 (lower limb 

region) 

R: 5, -21, 61 

L: -4, -23, 61 
R / L Lobule 10 

R: 22 -37 -46 

L: -21 -37 -45 

 

R / L Crus 1 
R: 38 -68 -32 

L: -36 -68 -32 

R / L Crus 2 
R: 26 -76 -41 

L: -26 -75 -42 

Vermis 6 1 -70 -21 

Vermis / Crus 1 -4 -78 -27 

Vermis / Crus 2 1 -75 -31 

Vermis 7b 0 -68 -31 

Vermis 8a 0 -67 -38 

Vermis 8b 0 -63 -42 

Vermis 9 0 -56 -37 

Vermis 10 1 -48 -35 

 167 

 168 

Analysis of structural data 169 

We performed a morphometric analysis to study differences in GM volume between CD patients and 170 

HC. After preprocessing, the normalized GM volumes obtained during the segmentation were smoothed 171 

using a 4 mm full breadth at half maximum kernel, in line with our functional analysis. Volumes from the 172 

ROIs in the motor cortex were extracted with CAT1221 using the “ROI tool” option, whereas volumes in 173 

the cerebellar ROIs were extracted with the Spatially Unbiased Infratentorial toolbox (SUIT).31 For the 174 

latter, we first isolated the infratentorial structures using suit_isolate_seg, we then performed an affine 175 

alignment to the specific SUIT template and applied a normalisation using suit_normalize_dartel, and 176 

finally we extracted the GM volumes using suit_reslice_dartel. 177 
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We also studied differences in CT between patients and controls, by extracting CT in the investigated 178 

ROIs with DL+DiReCT.32 This method already showed high accuracy compared to standard 179 

instruments.32 Due to the lack of available tools to reliably measure CT in the cerebellum, this analysis 180 

was performed only for the somatotopic regions of the motor cortex.  181 

The extracted GM volumes and CTs were compared between groups with independent-sample t-tests 182 

implemented in SPSS 25 (IBM Inc., USA). A threshold of p<0.050 was selected. 183 

 184 

Results 185 

No significant differences were found in age and sex ratio between male and female participants (Table 186 

2). CD patients showed symptom severity of 18.3 ± 4.4, as assessed with the TWSTRS. 187 

 188 

Table 2. Clinical and demographic information. Comparison of clinical and demographic scores between groups. 189 
TWSTRS = Toronto Western Spasmodic Torticollis Rating Scale, HC = healthy controls, CD = cervical dystonia,  190 

 
HC 

(N = 21) 

CD 

(N = 18) 
Statistics 

Sex [male / female] 9 / 12 7 / 11 χ(1) = 0.06, p = 0.802 

Age [years, mean ± SD] 45.3 ± 10.6 46.9 ± 8.7 t(37) = 0.53, p = 0.600 

TWSTRS - 18.3 ± 4.4 - 

Overall medication [N (% of CD)] - 18 (100%)  

- Botox [N (% of TD)]* - 17 (94.4%)  

- Others (Tramadol, Levothyroxine, 

Diazepam, Escitalopram – [N (% of 

CD)] ) 

- 3 (16.7%)  

* last Botox injection administered at least 3 months prior to the experiment. 191 

 192 

 193 

Resting state functional connectivity and structural analysis 194 

The analysis of RS-FC revealed increased functional connectivity, in CD patients compared to HC, of 195 

the bilateral trunk representation area 4 (PrG) with the cerebellar Vermis 6 [F(2,36)=10.78, pFDR=0.039] 196 
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and Vermis 7b [F(2,36)=10.33, pFDR=0.039], respectively (Figure 1). Detailed values of RS-FC in the 197 

two groups are displayed in Figure 2. No significant differences in the connectivity between the other 198 

seed ROIs and the cerebellum (Table 1) were found across groups (pFDR>0.050 – Supplementary 199 

Figure 1). 200 

 201 

Figure 1. Between-group differences in the connectivity of the bilateral trunk representation area 4 of the PrG 202 
(seed) with the cerebellar Vermis 6 and 7b (target). Color bar represents the F-values assessed with the general 203 

linear model. For visualization purposes, the significant connectivity values are displayed irrespectively of the 204 
cerebellar ROIs. 205 
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 206 

 207 

Figure 2. Mean values of resting state functional connectivity between ROIs. Error bars represent the standard 208 
error of the mean. * depicts significant differences (pFDR<0.050) between CD patients and HC. 209 

 210 

No correlation was found between any of the investigated connections and symptoms’ severity in CD 211 

(pFDR>0.050). Neither differences in GM volume, nor in CT, were found between the studied groups, in 212 

any of the investigated ROIs (p>0.050). 213 

 214 

Discussion 215 

Compared to HC, patients with CD showed increased RS-FC between the neck and trunk 216 

representation in area 4 of the precentral gyrus (PrG) and the cerebellar Vermis 6 and 7b. This pattern 217 

was neither associated with differences in GM volumes or CT between groups, nor with symptoms’ 218 

severity in CD. Our findings indicate that the abnormal function of the motor network is somato-specific 219 

to the areas encompassing the neck and trunk representation. Functional abnormalities in discrete 220 

relevant areas of the motor network could thus contribute to the focal expression of CD. 221 

The use of resting state fMRI was a strength of this study, as it allowed us to investigate task-free 222 

patterns of functional connectivity, hence, to avoid a potential bias due to adaptive/compensatory 223 

processes associated with task execution. This is relevant, as dystonic symptoms tend to worsen during 224 

voluntary motor activity, and compensatory mechanisms are more likely to occur during task execution 225 

than rest.33 However, neuroimaging analyses can hardly distinguish causes from effects, therefore the 226 

causal mechanisms here discussed are speculative. 227 

The cerebellum is of particular importance for the pathophysiology of CD, as the topographical 228 

expression of dystonia depends on the extent of cerebellar dysfunction in a dedicated mouse model.34 229 
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In this model, a dysfunction of the entire cerebellum induces a phenotype similar to generalized 230 

dystonia, whereas dysfunctions in limited cerebellar regions restrict abnormal movements to isolated 231 

body parts, like in focal dystonia. Hence, the extent, but not the location of the cerebellar dysfunction, 232 

seems to be linked to the severity of dystonia. Altered connectivity between the cerebellum and the 233 

sensorimotor areas has also been associated with the pathogenesis of CD.3, 35, 36 However, reported 234 

changes were not limited to the somatotopic representation of the affected body parts,3, 37, 38 and the 235 

potential link between critical areas within these regions and the location of dystonic manifestations is 236 

still poorly understood. Our results challenge this view, and provide evidence of well-defined regions in 237 

both the precentral gyrus (PrG) and the cerebellum specifically relevant to the clinical expression of CD, 238 

namely the trunk representation area 4 of the PrG and the cerebellar Vermis 6 and 7b. No other areas 239 

within the PrG and the cerebellum showed any group differences in RS-FC between patients and HC, 240 

thereby reinforcing the hypothesis of a selective area, with a critical role in motor control of head and 241 

neck, responsible for the pathogenesis of CD. More specifically, the trunk representation area 4 of the 242 

PrG contains neuronal populations responsible for the sternocleidomastoid muscle,39, 40 typically 243 

affected in CD. Likewise, the cerebellar Vermis 6 has been related to saccadic eye movements in 244 

healthy subjects,41, 42 and clinical studies have confirmed a link between abnormal cerebellar output 245 

and an impairment in saccadic adaptation,43 vestibule-ocular reflex,44 and eye-hand coordination45 in 246 

CD. This may reflect cerebellar-related maladaptive plasticity associated with an attempt to compensate 247 

the abnormal head posture with a modulation of eye movements.46, 47  248 

Abnormal connectivity of brain networks linking the cerebellum and the motor cortex has been largely 249 

investigated for its role in the pathogenesis of dystonia.4 In non-human primates48 and mice,34 dystonic 250 

movements can be provoked by manipulations of the cerebellum, abnormal firing of the Purkinje cells 251 

has been found in DYT1 torsin1-knock-in mice,49 and acute knock-down of Sgce in the cerebellum 252 

produces motor symptoms close to myoclonus dystonia in mice.50 In humans, abnormal anatomical 253 

cerebello-thalamo-cortical connectivity can play a role in the clinical expression of dystonia,51 as well 254 

as in the loss of cerebellar control over sensorimotor plasticity.52 CD patients with a sensory trick show 255 

a differential ability to modulate the connectivity of the sensorimotor network, likely through a cerebellar 256 

mediation,36 and modulation of the cerebello-cortical connectivity has been associated with the clinical 257 

improvement following botulinum toxin injections in these patients.53  258 
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We hypothesize that the abnormal connectivity between the motor cortex and the cerebellum found in 259 

our study reflects a cerebellar dysfunction mediating sensorimotor integration and maladaptive 260 

plasticity. This interpretation is consistent with the head neural integrator model,54, 55 by which changes 261 

in any of the inputs of the integrator affect the communication between the cerebellum and cortical 262 

areas, and potentially lead to the manifestation of CD.7, 56 In healthy subjects, proprioceptive input from 263 

the neck can substantially change the way cerebellar output influences plasticity at the level of the motor 264 

cortex,57 and in CD, an abnormal integration of the neck proprioceptive information could drive an 265 

atypical functioning of the integrator,57 which may generate head twists. The specific involvement of 266 

Vermis 6 and 7b found in our study provides further insights into the role of cerebellar areas associated 267 

with saccadic eye movements in the integrator dysfunction of CD.11, 46  268 

The investigated differences in functional connectivity were not associated with structural changes in 269 

CD, as evidenced by our analysis of GM volume and CT, and this supports the vision that CD mainly 270 

affects brain functions. Research on this topic has shown controversial results, and while the classic 271 

assumption is that CD is not associated with structural changes in the brain,58 some studies have 272 

reported altered GM concentration in CD patients in the cerebellar flocculus, as well as in the basal 273 

ganglia, the thalamus and the motor cortex.11, 59 Such differences from our findings may be explained 274 

by different methodological approaches: While the previously used whole-brain approaches have 275 

identified differences in various structures, regardless of their functional roles, we focused on areas 276 

associated with specific functions relevant for CD, such as neck movements, and therefore opted for a 277 

ROI approach, which grouped together voxels belonging to the same functional areas. Even though our 278 

choice may have been more conservative than other approaches, it suggests that CD-related brain 279 

dysfunctions are not linked to structural changes. Future research should further investigate this topic, 280 

for instance by applying multimodal imaging techniques or ultra-high field MR, which could reveal subtle 281 

structural changes undetectable with conventional MRI. 282 

In conclusion, our results point to an impairment in the communication of somato-specific cerebello-283 

cortical networks related to head position and saccadic eye movements.4 This impairment might be the 284 

consequence of abnormal processing of proprioceptive input from the neck, which affects the 285 

functioning of the head neural integrator, and in turn generates abnormal head posture, as well as 286 

related compensatory eye movements. 287 

 288 
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Figures’ captions 445 

Figure 1. Between-group differences in the connectivity of the bilateral trunk representation area 4 of 446 

the PrG (seed) with the cerebellar Vermis 6 and 7b (target). Color bar represents the F-values assessed 447 

with the general linear model. For visualization purposes, the significant connectivity values are 448 

displayed irrespectively of the cerebellar ROIs. 449 

 450 

Figure 2. Mean values of resting state functional connectivity between ROIs. Error bars represent the 451 

standard error of the mean. * depicts significant differences (pFDR<0.050) between CD patients and HC. 452 


