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Understanding competing instabilities in systems with correlated fermions remains one of the
holy grails of modern condensed matter physics. Among the fermionic lattice models used to this
effect, the extended Hubbard model occupies a prime place due to the potential relevance of its
repulsive and attractive versions for both electronic materials and artificial systems. Using the
recently introduced multi-channel fluctuating field approach, we address the interplay of charge
density wave, s-wave superconductivity, and phase separation fluctuations in the attractive extended
Hubbard model. Despite of the fact that this model has been intensively studied for decades, our
novel approach has allowed us to identify a novel phase that is characterised by the coexistence of
s-wave superconductivity and phase separation. Our findings resonate with previous observations of
interplaying phase separation and superconducting phases in electronic systems, most importantly
in high-temperature superconductors.

Materials with strong electronic correlations exhibit so-
phisticated phase diagrams incorporating a complex se-
lection of collective ordering phenomena. The latter are
associated with a variety of interplaying instabilities, e.g.
charge, spin, or pairing fluctuations. They may appear
either in a mutually exclusive form [1, 2], or with a stabili-
sation of additional intermediate phases [2–5], e.g., when
different fluctuations coexist [6]. An interplay between
collective charge, spin and pairing fluctuations occur al-
ready in the single-band extended Hubbard model [6–
11]. Their competition is determined by two parameters:
the local U and non-local V interactions between elec-
trons. Thus, the model is a suitable framework for a
well-controlled investigation of competing instabilities in
correlated electronic systems. The local interaction sta-
bilizes collective spin and pseudo-spin fluctuations in the
repulsive [12–15] and attractive [6, 16, 17] regimes, re-
spectively. Here pseudo-spin fluctuations are associated
with η-pairing, combining the charge density and s-wave
pairing degrees of freedom [18, 19]. The spin and pseudo-
spin fluctuations may compete with charge fluctuations
that are driven by the non-local interaction [11, 20, 21].
Strong charge fluctuations may result in the development
of the charge density wave (CDW) and phase separation
(PS) phases in the repulsive and attractive V cases, re-
spectively.

Significant insights into the collective electronic behav-
ior in the repulsive U, V regime of the extended Hub-
bard model exist due to extensive research conducted
since the 1970’s [1–6, 11, 21–47]. In contrast, much
less attention has been paid to the regime of attrac-
tive U , dominated by charge fluctuations and s-wave
superconductivity (s-SC) [6, 14, 17, 21, 36, 45, 48–65].
Although the Coulomb interaction is repulsive, it is

known that coupling electrons to external degrees of
freedom, e.g. phonons, may lead to an effective elec-
tronic system with attractive interactions. Specific exam-
ples are doped fullerenes [66] and one-dimensional cop-
per oxide chains [67], Ba1−xKxBiO3 materials [68, 69],
LaAlO3/SrTiO3 interfaces [70–73], and select d- and f -
transition metals [74, 75]. In addition, fermionic systems
with attractive local interactions are realizable in cold
atom experiments [76].

In this Letter, we focus on the leading collective elec-
tronic fluctuations in the half-filled extended Hubbard
model with an attractive local interaction U . We consider
both, the repulsive and attractive cases for the non-local
interaction V between neighboring sites on a square lat-
tice. This allows us to investigate the interplay between
the CDW, PS, and s-SC instabilities that appear in the
system. To this aim, we employ the multi-channel fluc-
tuating field (MCFF) approach [46], based on the earlier
introduced fluctuating local field method [77–80]. Within
this approach, a trial system incorporating the main lead-
ing collective fluctuations is constructed based on a vari-
ational optimisation with respect to a reference system.
The construction allows us to treat competing fluctua-
tions without any explicit symmetry breaking, thus re-
specting the Mermin-Wagner theorem [81–83]. Note, a
“phase” will in the current work refer to a broader def-
inition including short-range ordering, i.e. transforming
into a true phase within a quasi-two-dimensional system.
We find that the emergence of a phase combining CDW
and s-SC fluctuations is correctly captured at vanishing
non-local V , signaling the emergent pseudo-spin SU(2)
symmetry of the model. In addition, we discover a novel
coexistence phase composed of PS and s-SC fluctuations
spanning a relatively broad region of the attractive U -
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V phase diagram. Our results obtained within a simple
quantum lattice system call for further investigations of
novel collective phenomena due to interplaying fluctua-
tions in realistic materials.

We consider the single-band extended Hubbard model
at half-filling on a square lattice, defined by the Hamil-
tonian:

Ĥ = −t
∑

〈i,j〉,σ
ĉ†iσ ĉjσ + U

∑

i

n̂i↑n̂i↓ +
V

2

∑

〈i,j〉,σσ′

n̂iσn̂jσ′ ,

(1)

where the ĉ
(†)
iσ operators correspond to annihilation (cre-

ation) of electrons and n̂iσ = ĉ†iσ ĉiσ are the electronic
densities, with the subscripts denoting the position i and
spin projection σ ∈ {↑, ↓}. The kinetics is modeled by a
nearest-neighbor hopping amplitude t and the interaction
is modeled by the on-site U and the nearest-neighbor V
interactions. Our considerations are limited to attractive
U , while V may be both repulsive and attractive.

The attractive U regime is dominated by charge
and s-wave pairing fluctuations. A natural de-
scription combining the two channels is the pseudo-
spin, conveniently written using the Nambu basis:
ψ̂k,ω,↑ = ĉkω↑, ψ̂k,ω,↓ = ĉ†−k+Q,ω↓, ψ̂†k,ω,↑ = ĉ†kω↑, and

ψ̂†k,ω,↓ = ĉ−k+Q,ω↓. Within this basis, the pseudo-spin
density operator is defined as:

n̂ςQ ≡
1

βN

∑

k,ν,σσ′

ψ̂†k+Q,νσσ
ς
σσ′ ψ̂kνσ′ , (2)

with the inverse temperature β and number of sites N ,
and where the subscripts denote the momentum k and
the fermionic Matsubara frequency ν. Here the mode is
specified by the channel ς ∈ {x, y, z}, where Q the order-
ing vector, and σς are the Pauli spin matrices. Hence,
n̂ςQ refers to the s-wave pairing (ς ∈ {x, y}) and the
charge fluctuations (ς ∈ {z}). The Nambu basis al-
lows for a clear exhibition of the emergence of the SU(2)
pseudo-spin symmetry at half-filling in the absence of the
non-local interaction V [18, 19]. In fact, the staggered
particle-hole symmetry of the Hubbard model (V = 0) re-
lates the spin and pseudo-spin degrees of freedom [18, 19].
Within the charge and s-wave pairing channels, our work
focuses on the leading instabilities: the CDW, PS and
s-SC orderings. All three orderings are determined by
their respective order parameters, given by the expecta-
tion value of the (static) operator n̂ςQ. Here, s-SC and
CDW are associated with momenta Q = (π, π), and PS
are associated with momenta Q = (0, 0)+.

To study the competing instabilities, we employ the
multi-channel fluctuating field (MCFF) method [46].
The decisive advantage of this numerical method is the
ability to account for the leading fluctuations and their
interplay exactly. This approach is based on the con-
struction of an effective action S∗, where the fluctuations
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FIG. 1. Phase diagram of the half-filled extended Hubbard
model for attractive U . It is obtained from the MCFF method
for a 128× 128 square lattice with periodic boundary condi-
tions at inverse temperature β = 10/t. This shows the exis-
tence of a novel phase “PS + s-SC” where PS and s-SC coex-
ist, in addition to the conventional CDW (red), s-SC (purple),
and PS (blue) phases. The yellow line specifies the CDW and
s-SC coexistence in the attractive Hubbard model (V = 0).

in the charge (CDW, PS) and superconducting channels
(s-SC) are incorporated via the associate classical fields
φςQ coupled to the respective components of n̂ςQ (see Sup-
plemental Material (SM) [84] for details). This construc-
tion is determined by the Peierls-Feynman-Bogoliubov
variational principle [85–87], with the extended Hubbard
model as a reference system. Within the MCFF ap-
proach, the interplay between different fluctuations may
be determined by a single-channel free energy F(φςQ).
The functional F(φςQ) is constructed with respect to a
classical field φςQ, after integrating out analytically the
fermionic degrees of freedom and numerically the remain-
ing classical fields. Phase transitions are then identi-
fied by the development of global minima of the single-
channel free energy at φςQ 6= 0, akin to a Mexican hat
potential. In contrast, a local minimum at φςQ 6= 0 sig-
nals metastable collective fluctuations. To obtain further
insight into the interplay between collective fluctuations,
it is also useful to calculate the corresponding order pa-
rameters 〈n̂ςQ〉. This can be done by substituting the
F(φςQ) saddle-point value of the classical field φςQ in the
effective action S∗ (see SM [84] for details).

We perform calculations at β = 10/t for the half-filled
extended Hubbard model close to the thermodynamic
limit for a square lattice of N = 128× 128 sites with pe-
riodic boundary conditions. Fig. 1 shows the resulting
U -V phase diagram. It consists of six phases: normal
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metal (white), CDW (red), s-SC (purple), PS (blue),
and two phases, where s-SC coexists with either CDW
(yellow line), or with PS (labelled “PS + s-SC”) or-
derings. At weak coupling (|U | . 1.5), the CDW and
PS phase boundaries follow the V = 0.185 + U/8 and
V = −0.475− U/8 lines, respectively. These asymptotics
are identical to the perturbative estimates for the phase
boundaries obtained using the random phase approxi-
mation (RPA) in the U → 0 limit. We note, that the
MCFF approach correctly captures the exact U → 0 limit
for the CDW phase boundary, as observed previously in
Ref. [46]. In contrast, the PS boundary is slightly over-
estimated, as an extrapolated U → 0 dual boson result
for the PS transition point gives V PS

U=0 ' −0.54 [36]. In
agreement with the fluctuating exchange (FLEX) result
obtained for V = 0, the MCFF s-SC phase boundary in
the weak coupling regime follows the U s−SC

V=0 = −1.478
line. FLEX is known to overestimate the strength of an-
tiferromagnetic (AFM) fluctuations at V = 0. Therefore,
by the staggered particle-hole symmetry of the Hubbard
model relating the spin and pseudo-spin degrees of free-
dom [18, 19], FLEX is also expected to overestimate the
strength of the coexisting CDW and s-SC fluctuations
at V = 0. Exploiting this symmetry, in the thermody-
namic limit the exact diagrammatic Monte Carlo solution
gives UDiagMC

V=0 ' −2.5 value at β = 10/t for this transi-
tion point [88].

Turning to the intermediate coupling regime, the CDW
and s-SC fluctuations develop a coexisting phase along
the V = 0 line displayed in yellow color in Fig. 1. This
coexistence is associated with the emergent pseudo-spin
symmetry between CDW and s-SC order parameters.
Beyond this line the finite non-local interaction V favors
the formation of either the CDW (V > 0) or s-SC (V < 0)
phase. Remarkably, we find that at V 6= 0 the CDW and
s-SC phases are mutually exclusive only in the thermo-
dynamic limit. For small-size plaquettes of 4× 4, 6× 6,
and 8× 8 lattice sites we find that the CDW and s-SC
orderings can coexist also in the vicinity of V = 0, and
the coexistence region decreases with increasing the size
of the system (Fig. 2 a). This convergence check allows
us to identify that the coexistence region in the vicinity
of V = 0 converges towards a single transition line occur-
ring along V = 0 for U ≤ −1.447 in the thermodynamic
limit. Thus, the transition between the CDW and s-SC
phases appearing as a direct first-order phase transition
is composed of two first-order phase transitions passing
through the intermediate coexistence phase constrained
by the pseudo-spin SU(2) symmetry [6].

Another interesting effect can be found in the region
of the phase diagram depicted in Fig. 2 b by green color.
It displays a region where CDW or s-SC orderings are
separately stable without interplay between the modes.
The dark green area denotes the overlap region of the
non-competing CDW and s-SC orderings. In the MCFF
method, the CDW phase transition in the presence of the
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FIG. 2. CDW (red) and s-SC (purple) ordering boundaries
predicted by the MCFF approach for the half-filled extended
Hubbard model obtained for β = 10/t: (a) for 4× 4, 6× 6,
8× 8, and 128× 128 plaquettes. (b) for a 4× 4 plaquette with
the green region enclosed by the thin black dashed lines that
depict asymptotics for the non-interplaying CDW and s-SC
instabilities, displaying the region, where the CDW and s-SC
orderings stabilize without interplay. Dark green denotes the
region where stabilization of either the CDW or s-SC phase
destroys the other ordering.

s-SC fluctuations is studied by integrating out the s-SC
modes and investigating the behavior of the free energy
F(φςQ) for the remaining CDW mode, and vice versa. In
the region where the integrated s-SC mode is ordered,
the MCFF analysis of the CDW transition corresponds
to the investigation of the stability of the CDW order-
ing in the presence of the s-SC phase. In this regard,
the integration of an ordered mode can be seen as an
observation/measurement of this ordering in the system.
We note that green regions in Fig. 2 b lie outside the
CDW and s-SC phases that are obtained considering the
interplay between the two fluctuations. Therefore, our
results suggest that stabilising one of the two orderings
in the dark green region immediately destroys the other
one, which can be seen as a destruction of a quantum
superposition of the two orderings by an observer. Re-
markably, we find that no such non-trivial “green” phases
exist in the thermodynamic limit, where quantum effects
are suppressed.

Further, we observe the emergence of a novel phase
that comprises coexisting PS and s-SC orderings. This
PS+s-SC phase can be found in the regime of interme-
diate couplings of the attractive U, V extended Hubbard
model (Fig. 1). In contrast to the previously considered
coexisting CDW and s-SC orderings, the novel coexis-
tence phase does not collapse to a single transition line
in the thermodynamic limit, thus acquiring a finite width
in V for a given U . We observe the width to be a non-
monotonic function of U , with a maximal width occur-
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ring near U = −3. To obtain insight into the interplay
between PS and s-SC ordering, in Fig. 3 a we show the
normalized CDW, s-SC, and PS order parameters 〈nςQ〉
that are computed for U = {−2,−3,−4} over a range of
V . We observe a suppression of PS fluctuations in the
weak coupling regime V & −0.3 due to s-SC fluctuations,
and vice versa at strong V . The competition between
these two modes originates from the fact that the PS or-
dering on a lattice corresponds to the formation of broad
puddles with uniform filling larger or smaller than the av-
erage filling of the system. Instead, the pairing process of
s-SC fluctuations is energetically most favorable at half-
filling. Due to the stability of the s-SC fluctuations for a
relatively large range of fillings [49, 63], the s-SC order-
ing can be formed inside the PS puddles, which results
in a novel coexistence phase. As U increases, the region
of s-SC fluctuations becomes more stable with respect to
stronger PS fluctuations, leading to an increasing width
of the coexistence region. However, the opposite trend
occurs above a critical U as strong PS fluctuations leaves
the system effectively in an empty or fully-filled sites con-
figuration with 〈nPS〉 = 1, completely suppressing any
s-SC fluctuations. Note, that the CDW ordering on a
square lattice corresponds to a checkerboard pattern of
alternating lattice sites with higher and lower electronic
densities. This does not allow for the formation of the
s-SC ordering inside the CDW phase due to the strong
inhomogeneity of the filling, except along the degenerate
V = 0 line due to symmetry constraints.

In preparation of the current work, we noticed a recent
determinant quantum Monte Carlo (DQMC) study of the
zero-temperature U -V phase diagram of the half-filled ex-
tended Hubbard model [45]. In this work, few points of
coexisting PS and s-SC orderings were identified evidenc-
ing our observations. However, due to the sparsity of the
grid in the U -V space, the DQMC results do not allow
one to make a definite statement on the presence of the
coexistence phase in the system. In fact, the authors of
this work interpret this coexistence as a signature of a
first-order transition between the s-SC and PS phases.
Indeed, first-order transitions are usually accompanied
by regions of metastable collective fluctuations appear-
ing as coexistence regions [46]. However, in the current
work we do not observe metastable collective fluctuations
associated with any first-order transition, although the
MCFF method allows for their detection in other con-
texts [46]. This fact allows us to argue for a true coexis-
tence phase stable in the thermodynamic limit enclosed
by two apparent second-order transition lines. An or-
der parameter for this novel phase may be defined as the
product of the s-SC and PS order parameters. To further
connect our finite-temperature calculations to the zero-
temperature DQMC results, we compute the s-SC and
PS order parameters 〈nςQ〉 for U = −2 over a range of
V at different inverse temperatures βt = {5, 10, 20, 40}.
Fig. 3 b shows that the stability of the s-SC fluctuations
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0.5

1.0

n Q

U=-2.0
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FIG. 3. Normalized order parameters 〈nςQ〉 computed for the
half-filled 128× 128 system using the MCFF approach. (a)
CDW (red), s-SC (purple), and PS (blue) order parameters
are calculated at β = 10/t for U = {−2,−3,−4} for a range
of V . (b) s-SC (purple) and PS (blue) order parameters cal-
culated at βt = {5, 10, 20, 40} at U = −2 for a range of V .

increases with decreasing temperature, as PS fluctuations
remain nearly temperature-independent. Thus, we ex-
pect the novel phase of coexisting PS and s-SC ordering
to remain stable at zero temperature and to connect to
the results observed in Ref. 45.

Exploring the predicted phase diagram experimentally
and switching between the different phases in realistic
materials can be performed, e.g., by applying an ex-
ternal laser field. In the high-frequency regime of the
driving, the applied laser field effectively decreases the
hopping amplitude t of electrons [89–95], which effec-
tively enhances the interactions U/t and V/t. In the low-
frequency regime of the field, driving phonon degrees of
freedom may lead to enhancement of the electron-phonon
coupling [96], which would increase the strength of effec-
tive attractive electronic interactions [97–99]. This can
potentially allow one to propagate within the U -V phase
diagram and access the novel coexistence phase.

Interplay between SC and PS fluctuations has been ob-
served in high-temperature superconducting materials,
such as copper oxides [100–109] and iron-based super-
conductors [110–115], but the microscopic mechanisms
of the observed phenomena remain elusive. In doped
copper oxides, it has been argued early on [102, 103]
that dilute holes in an antiferromagnet have a strong
tendency to phase-separate. Experimentally, interfaces
of La2−xSrxCuO4-La2CuO4 [108] display an intriguing
insensitivity of the critical temperature of the SC phase
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over an extended range of doping. These findings
have been rationalised by invoking interlayer phase
separation [109]. Our findings of coexisting SC and
PS at half-filling give yet another indication hinting at
the possibly very fundamental role of phase separation
in the physics of superconducting correlated fermionic
systems.
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puter support team and the support from IDRIS/GENCI
Orsay under project number A0130901393. C.D. also
acknowledges the supports from Quantum Matter Bor-
deaux and the SMR department under the projects TED
and CDS-QM.
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MODEL

In order to apply the multi-channel fluctuating field (MCFF) method [1] in the following sections, it is convenient to work
within the action formalism. The action for a single-band extended Hubbard model is the following:

S = − 1
βN

∑

k,ν,σ

c∗kνσG−1
kν ckνσ +

U
βN

∑

q,ω
ρqω↑ρ−q,−ω↓ +

1
2βN

∑

q,ω,σσ′
Vqρqωσρ−q,−ωσ′ , (S1)

with the inverse temperature β = 1/T and number of lattice sites N. Grassmann variables c(∗) correspond to the annihilation (cre-
ation) of electrons, where the subscripts denote the momentum k and fermionic Matsubara frequency ν. The inverse of the bare
(non-interacting) Green’s function is defined asG−1

kν = iν + µ − εk, where µ is the chemical potential and εk = −2t(cos kx + cos ky)
is the bare dispersion due to nearest-neighbor hopping amplitudes t on a two-dimensional square lattice. The interaction is mod-
eled by the on-site U and the nearest-neighbor Vq = 2V(cos qx + cos qy) interactions. For convenience, the interaction terms in
Eq. (S1) are written for the shifted electronic densities ρqωσ = nqωσ − 〈nqωσ〉δq,0δω,0 with nqωσ =

∑
k,ν c∗k+q,ν+ωσckνσ, where q

and ω are the momentum and bosonic Matsubara frequency indices, respectively. The reason for this shift is discussed in detail
in Ref. [1]. Our considerations are limited to attractive U, while V may be both, repulsive and attractive. However, we also note,
that the extended Hubbard model with attractive local interaction is analogues, by the staggered particle-hole transformation as-
sociate with η-pairing [2, 3], to the repulsive Hubbard model with an additional Vqmz

qωmz
−q,−ω term describing a nearest-neighbor

ferromagnetic (FM) or AFM exchange coupling in the spin z-direction, with mz
qω = ρqω↑ − ρqω↓.

MULTI-CHANNEL FLUCTUATING FIELD APPROACH

Our aim of the current section is to give a detailed account of the MCFF approach applied to the half-filled two-dimensional
extended Hubbard model in the attractive U regime.

Trial action

We now employ the MCFF approach by constructing a trial action:

S∗ = − 1
βN

∑

k,ν,σ

c∗kνσG−1
kν ckνσ +

∑

Q,ς

φςQρ
ς
−Q −

1
2
βN
JςQ

φςQφ
ς
−Q

 (S2)

that explicitly takes into account fluctuations in the charge and superconducting channels by a set of classical vector pseudo-spin
(ς ∈ {x, y, z}) fields φςQ coupled to the composite variables ρςQ = nςQ − 〈nςQ〉δQ,0. These variables are associated with the classical
(ω = 0) order parameters and defined as:

nςQ ≡
1
βN

∑

k,ν,σσ′
ψ∗k+Q,νσσ

ς
σσ′ψkνσ′ . (S3)

In this expression, Q is the ordering vector, σς is the Pauli spin matrix, and the Grassman variables ψ(∗) are the Nambu spinors:
ψk,ω,↑ = ckω↑, ψk,ω,↓ = c∗−k+Q,−ω↓, ψ

∗
k,ω,↑ = c∗kω↑, and ψ∗k,ω,↓ = c−k+Q,−ω↓. Nambu spinors are introduced for a clear exhibition of the

pseudo-spin structure arising at half-filling in the effective action (S2) in the absence of the non-local interaction V [2, 3]. Hence,
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nςQ combines s-wave pairing (ς ∈ {x, y}), and charge (ς ∈ {z}) fluctuations. Note, that the notations for the electronic ρqωσ and the
pseudo-spin ρςQ densities differ by the superscript. The amplitude of the fluctuations of the classical fields φςQ is governed by a
set of stiffness constants JςQ that are determined by the Peierls-Feynman-Bogoliubov variational principle described below [4–6].

Free energy and order parameters

Due to the Gaussian form with respect to the Grassmann variables c(∗) of the action (S2), one may construct an effective action
for the classical degrees of freedom by analytically integrating out the fermionic degrees of freedom. The effective action for the
classical fields is of the following form:

Sφ = − Tr ln

G−1
kνδQ,0δσ,σ′ −

∑

ς

φςQσ
ς
σσ′

 −
1
2

∑

Q,ς

βN
JςQ

φςQφ
ς
−Q. (S4)

Here, the trace is taken over the momenta k,Q, frequency ν, and spin σ,σ′ indices. The effective action Sφ allows for a
simplified description of the interplay between the collective electronic fluctuations. In order to study the interplay between
different fluctuations, one may construct a single-channel free energy

F (φa) ≡ − 1
βN

ln
[∫

dφb exp
{ − Sφ}

]
, (S5)

where all classical fields φb, except for a single field of interest φa, are integrated out numerically exactly. For a few collective
modes, as holds in the current work, the numerical integration over the fields φb may be performed by the trapezoidal rule over
a sufficiently dense grid. Phase transitions are then identified by the development of a global minima of the free energy (S5) at
φa , 0. In contrast, metastable fluctuations can be recognized by a local minima of the free energy (S5) at φa , 0. To retrieve
further insight into the interplay between collective ordering, we find it useful to calculate the corresponding order parameters
〈nςQ〉. This can be done by substituting all the F (φa) saddle-point values of the classical fields φa in the effective fermionic action
appearing within the trace of the logarithm in the action Sφ in Eq. (S4). The quantity 〈nςQ〉 is thus associated with the global
minima which the system fluctuates around.

Determination of the stiffness parameters via a variational principle

In order to calculate the quantities introduced in the previous section, one is required to apply the Peierls-Feynman-Bogoliubov
variational principle [4–6] to map the initial problem (S1) on the trial action (S7). This mapping is associated with the determi-
nation of the stiffness parameters JςQ by the variational principle following the work in Ref. 1 and 7. This variational principle
corresponds to the minimization of the functional

F (JςQ) = Fc(JςQ) +
1
βN
〈S − Sc〉Sc

(S6)

by varying JςQ, allowing to construct a unique and unambiguous set of JςQ. Here, 〈. . .〉Sc denotes the expectation value with
respect to the effective fermionic action Sc:

Sc = − 1
βN

∑

k,ν,σ

c∗kνσG−1
kν ckνσ +

1
2

∑

Q,ς

JςQ
βN

ρςQρ
ς
−Q, (S7)

in which the classical field degrees of freedom are integrated out in the action S∗ in Eq. (S2). In addition, the free energy
Fc(JςQ) = − ln (Zc)/βN is introduced, whereZc is the partition function of the action Sc. A useful explicit relation, allowing to
evaluate 〈. . .〉Sc , is the following [1, 7]:

〈...〉Sc = 〈〈...〉Se〉Sφ , (S8)

where the inner expectation value is taken with respect to the fermionic part of the trial action (S2):

Se = − 1
βN

∑

k,ν,σ

c∗kνσG−1
kν ckνσ +

∑

Q,ς

φςQρ
ς
−Q, (S9)

which depends on the classical fields φςQ. Due to inner expectation value being determined by the Se, which is Gaussian with
respect to the fermions, Wick’s theorem applies.
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Our aim is now to identify the stiffness parameters JςQ in the charge and s-wave pairing channels. Following Ref. 1, the free
energy can be explicitly rewritten as:

F (JςQ) = Fc(JςQ) +
1
βN

〈
U
βN

∑

q,ω
ρqω↑ρ−q,−ω↓ +

1
2

∑

q,ω

Vq

βN
ρqωρ−q,−ω −

∑

ς

1
2

JςQ
βN

ρςQρ
ς
Q

〉

Sc

(S10)

Now exploiting Eq. (S8), we may rewrite the local interaction term explicitly using Wick’s theorem as:

U
〈
n jτ↑n jτ↓

〉
Sc

= U
〈〈

c†jτ↑c jτ↑c
†
jτ↓c jτ↓

〉
Se

〉

Sφ
= U

〈〈
c†jτ↑c jτ↑

〉
Se

〈
c†jτ↓c jτ↓

〉
Se

+
〈
c†jτ↑c

†
jτ↓

〉
Se

〈
c jτ↓c jτ↑

〉
Se

〉

Sφ
=

U
4

〈〈
~nςjτ

〉2

Se

〉

Sφ
,

(S11)

where the construction of the pseudo-spin density nςjτ employs the Nambu spinor formalism, i.e. ψ jτ↑ = c jτ↑, ψ jτ↓ = (−1) jc†jτ↓,

ψ†jτ↑ = c†jτ↑, and ψ†jτ↓ = (−1) jc jτ↓, and with the real-space representation being employed. Now employing the Fourier transform,
we obtain the following:

∑

j,τ

U
〈
ρ jτ↑ρ jτ↓

〉
Sc

=
1
βN

∑

q,ω

U
4

〈〈
~ρςqω

〉
Se
·
〈
~ρς−q,−ω

〉
Se

〉

Sφ
. (S12)

Equivalently to Ref. 1, the non-local interaction term may be rewritten approximately using Wick’s theorem as:

1
2

Vi j

〈
niτn jτ

〉
Sc

=
1
2

Vi j

∑

σσ′

〈〈
c†iτσciτσc†jτσ′c jτσ′

〉
Se

〉

Sφ
=

1
2

Vi j

∑

σσ′

〈〈
c†iτσciτσ

〉
Se

〈
c†jτσ′c jτσ′

〉
Se

+
〈
c†iτσc†jτσ′

〉
Se

〈
c jτσ′ciτσ

〉
Se

〉

Sφ

≈ 1
2

Vi j

〈〈
nz

iτ

〉
Se

〈
nz

jτ

〉
Se

〉

Sφ
, (S13)

where i , j and with sub-leading non-local expectation values scaling as 1/N being dropped, see Ref. 7. Now employing the
Fourier transform, we obtain the following:

1
2

∑

i j,τ

Vi j

〈
ρiτρ jτ

〉
Sc
≈ 1

2βN

∑

q,ω
Vq

〈〈
ρz

qω

〉
Se

〈
ρz
−q,−ω

〉
Se

〉

Sφ
. (S14)

Finally, the expectation value of the interaction term in the MCFF action is approximately:

1
2

JςQ
βN

〈
ρςQ

2〉
Sc
≈ 1

2

JςQ
βN

〈〈
ρςQ

〉2

Se

〉

Sφ
, (S15)

where again the sub-leading non-local expectation values scaling as 1/N have been dropped [7]. The form of the MCFF action
Se (S9) only allows for certain quasi-momentum modes of the local and non-local interaction terms to contribute to the free
energy, i.e. the components with ω = 0 and q = Q contribute to the average of the shifted density: 〈ρςqω〉Sc = 〈ρςQ〉Sc . This allows
to rewrite the free energy (S10) in the following form:

F (JςQ) ≈ Fc(JςQ) +
1

(βN)2


U
4

+
VQ

2
−

Jz
Q

2


〈〈
ρz

Q

〉2

Se

〉

Sφ
+

1
(βN)2

∑

i=x,y


U
4
−

Ji
Q

2


〈〈
ρi

Q

〉2

Se

〉

Sφ
. (S16)

For the leading instabilities that dominate the collective electronic behavior in the attractive U case we thus retrieve:
Jz

(π,π) = U/2 − 4V for CDW fluctuations in agreement with Ref. 1, Jx/y
(π,π) = U/2 for s-SC fluctuations, and Jz

(0,0)+ = U/2 + 4V

for PS fluctuations. Note the equivalence Jx/y
(π,π) = Jz

(π,π) for V = 0 associated with the emergence of the pseudo-spin symmetry in
the MCFF action (S2). The choice to keep only the main Q classical ω = 0 mode for each fluctuation is argued to be sufficient
for predicting the phase boundaries [1].
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