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Isolated REM sleep behaviour disorder (iRBD) is a synucleinopathy characterized by abnormal behaviours and voca-
lizations during REM sleep. Most iRBD patients develop dementia with Lewy bodies, Parkinson’s disease or multiple
systematrophy over time. Patientswith iRBD exhibit brain atrophy patterns that are reminiscent of those observed in
overt synucleinopathies. However, the mechanisms linking brain atrophy to the underlying alpha-synuclein patho-
physiology are poorly understood. Our objective was to investigate how the prion-like and regional vulnerability hy-
potheses of alpha-synuclein might explain brain atrophy in iRBD.
Using a multicentric cohort of 182 polysomnography-confirmed iRBD patients who underwent T1-weighted MRI, we per-
formed vertex-based cortical surface and deformation-basedmorphometry analyses to quantify brain atrophy in patients
(67.8 years, 84%male) and261healthy controls (66.2 years, 75%) and investigated themorphological correlates ofmotor and
cognitive functioning in iRBD.Next,weapplied theagent-basedSusceptible–Infected–Removedmodel (i.e. a computational
model that simulates in silico the spread of pathologic alpha-synuclein based on structural connectivity and gene expres-
sion) and tested if it recreated atrophy in iRBD by statistically comparing simulated regional brain atrophy to the atrophy
observed in patients. The impact of SNCA andGBA gene expression and brain connectivitywas then evaluated by compar-
ing the model fit to the one obtained in null models where either gene expression or connectivity was randomized.
The results showed that iRBD patients presentwith cortical thinning and tissue deformation, which correlatedwithmotor
andcognitive functioning.Next,we found that the computationalmodel recreated cortical thinning (r=0.51, P=0.0007) and
tissue deformation (r=0.52, P=0.0005) in patients, and that the connectome’s architecture along with SNCA and GBA gene
expression contributed to shaping atrophy in iRBD. We further demonstrated that the full agent-based model performed
better than network measures or gene expression alone in recreating the atrophy pattern in iRBD.
In summary, atrophy in iRBD is extensive, correlateswithmotor and cognitive function and can be recreated using the dy-
namics of agent-based modelling, structural connectivity and gene expression. These findings support the concepts that
both prion-like spread and regional susceptibility account for the atrophy observed in prodromal synucleinopathies.
Therefore, the agent-based Susceptible–Infected–Removed model may be a useful tool for testing hypotheses underlying
neurodegenerative diseases and new therapies aimed at slowing or stopping the spread of alpha-synuclein pathology.
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Introduction
Isolated REMsleep behaviour disorder (iRBD) is characterized by ab-
normal motor behaviours and vocalizations during REM sleep.1,2

iRBD typically develops into dementia with Lewy bodies,
Parkinson’s disease or multiple system atrophy,3,4 making it an
early manifestation and phenotype of synucleinopathies.
Specifically, iRBD is thought to result from the impairment of brain-
stem circuits involved in REM sleep muscle atonia that occurs as a
result of early accumulation of pathologic alpha-synuclein in the
pontine tegmentum.5,6 However, MRI studies in patients with
polysomnography-proven iRBDwithout cognitive ormotor diagno-
ses have also shown patterns of diffuse brain atrophy reminiscent
of dementia with Lewy bodies or Parkinson’s disease.7,8 Moreover,
the severity of cortical atrophy is a predictor of subsequent demen-
tia, hence more severe disease.9

Dementia with Lewy bodies and Parkinson’s disease are
thought to arise from the propagation and accumulation of mis-
folded alpha-synuclein in the brain.10 There may be different
routes of propagation, accounting for different syndromes.11

Braak et al.12,13 hypothesized that one of the most
common pathways would start in the lower brainstem and spread
upward to the midbrain and cerebral hemispheres, giving rise to
iRBD followed by phenoconversion to Parkinson’s disease or de-
mentia with Lewy bodies. Evidence from animal models shows
that pathological alpha-synuclein can propagate and promote
protein misfolding, supporting the prion-like model of alpha-
synuclein.5,14–19 In line with this, MRI studies performed in pa-
tients with Parkinson’s disease also show that brain atrophy pat-
terns are shaped by brain connectivity.20–22

We previously modelled alpha-synuclein propagation using a
Susceptible–Infected–Removed (SIR) agent-based model,23 a com-
putational model based on an adaptation of epidemiological SIR
models but applied to neurological diseases with the underlying

hypothesis that alpha-synuclein propagation works like an infec-
tion in a population. In this model, the agents are autonomous

alpha-synuclein molecules that can exist in three states:

Susceptible (normal), Infected (misfolded) or Removed (degraded).

In its misfolded state, the agent becomes pathological. Agents can

also move between regions via neural connections. The model

uses SNCA and GBA gene expression as measures of local alpha-

synuclein concentration and connectivity to determine agent

numbers and propagation. In this model, SNCA expression deter-

mines alpha-synuclein production and GBA expression influences

degradation of both normal and misfolded alpha-synuclein. The

model has predicted atrophy distribution in Parkinson’s disease

patients and pathological alpha-synuclein distribution in amouse

model.23,24 Null models show that both connectivity and local

alpha-synuclein concentration are important factors shaping

the propagation of agents.23,24 However, it remains unknown if

these mechanisms also explain the atrophy seen in prodromal

synucleinopathies.
In this study, we compiled neuroimaging data from several

centres to generate a map of brain atrophy in iRBD. We then

used the agent-based SIR model to test if brain connectivity and

SNCA and GBA gene expression explain brain atrophy patterns

in iRBD. Vertex-based cortical surface and deformation-based

morphometry (DBM) analyses were performed in 182

polysomnography-confirmed iRBD patients and 261 healthy con-

trols who underwent T1-weighted brain MRI to characterize atro-

phy and investigate the correlates of motor and cognitive

functioning. We then tested whether the SIR model using brain

connectivity and gene expression could recreate the actual atro-

phy pattern found in iRBD.We used nullmodelling to testwhether

connectivity and gene expression were decisive in shaping the

brain atrophy seen in iRBD. We hypothesized that the SIR model

would recreate brain atrophy in iRBD and that both connectivity

Agent-based modelling of atrophy in iRBD BRAIN 2022: 145; 3162–3178 | 3163

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/article/145/9/3162/6589819 by M

ax W
eber Stiftung user on 11 O

ctober 2023

mailto:shady.rahayel@mcgill.ca


and SNCA and GBA gene expression would be significant determi-
nants of atrophy.

Materials and methods
Participants

A total of 443 participants (182 iRBD patients and 261 controls) were
recruited from five sites: 116 (59 patients) from the Movement
Disorders clinic at the Hôpital de la Pitié-Salpêtrière (France,
Appendix 1), 83 (48 patients) from the Centre for Advanced
Research on Sleep Medicine at the Hôpital du Sacré-Cœur de
Montréal (Canada), 56 (30 patients) from the ForeFront Parkinson’s
Disease Research Clinic at the University of Sydney (Australia), 38
(18 patients) from Aarhus University Hospital (Denmark) and 150
(27 patients) from the Parkinson’s Progression Markers Initiative
baseline cohort.25 All iRBD patients had a polysomnography-
confirmed diagnosis of iRBD and were free of parkinsonism and de-
mentia at the clinical examination closest in time to MRI.26,27

Patients underwent the Unified Parkinson’s Disease Rating Scale,
part III (UPDRS-III) and the Montreal Cognitive Assessment (MoCA)
to assess motor and cognitive functions, respectively. An overview
of the study protocol along with a flowchart of the selected patients
is presented in Fig. 1 and the cohorts’ demographics are available
in Supplementary Table 1. All participantswere part of research pro-
tocols approved by local ethics committees and provided written in-
formed consent according to theDeclaration ofHelsinki. The current
project was also approved by the Research Ethics Board of theMcGill
University Health Centre.

MRI

MRI acquisition

The Montreal cohort underwent T1-weighted imaging with a 3 T
Siemens TIM Trio scanner with a 12-channel head coil, MPRAGE se-
quence: repetition time (TR): 2300ms, echo time (TE): 2.91ms,flip an-
gle: 9° and voxel size: 1 mm³ isotropic. The Paris cohort underwent
T1-weighted imaging with a 3 T Siemens TIM Trio scanner with a
12-channel head coil, MPRAGE sequence: TR: 2300 ms, TE: 4.18ms,
inversion time (TI): 900 ms, flip angle: 9° and voxel size: 1 mm³ iso-
tropic; or a 3 T PRISMA Fit scanner with a 64-channel head coil,
MP2RAGE sequence: TR: 5000ms, TE: 2.98ms, TI: 700 and 2500ms,
flip angle: 4° and 5°, GRAPPA: 3 and voxel size: 1 mm³ isotropic. The
Sydney cohort was imaged with a GE Discovery MR750 3 T scanner
with an 8-channel head coil, BRAVO sequence: TR: 5800ms, TE:
2.6 ms,flip angle: 12° and voxel size: 1 mm³ isotropic. The Aarhus co-
hortwas imagedwith a 3 T SiemensMAGNETOMSkyra scannerwith
a 32-channel head coil, MPRAGE sequence: TR: 2420ms, TE: 3.7 ms,
TI: 960 ms, flip angle: 9° and voxel size: 1 mm³ isotropic. The
T1-weighted images from the Parkinson’s Progression Markers
Initiative cohort, an international multicentre cohort, were also in-
cluded (see www.ppmi-info.org for the imaging protocols).25

Quantification of atrophy

DBM was performed using CAT12 (version 12.7; www.neuro.uni-
jena.de/cat) to quantify atrophy by measuring the non-linear
change required in every voxel to register the brain to the common
template (IXI555 MNI152 template).28 The processing included bias
correction, affine registration, unified segmentation,29 skull-
stripping, parcellation, intensity transformation, partial volume es-
timation and spatial normalization using DARTEL.30 This resulted

in whole-brain maps of Jacobian determinants, which were
smoothed with a 12 mm isotropic kernel and then used as the
measure of local brain atrophy. Images with an automated quality
rating below 80% were excluded from analyses involving DBM.

Brain atrophy in iRBD alsomanifests as abnormal cortical thick-
ness and surface area.31 To ensure that findingswere not due to the
atrophy metric, the scans passing DBM quality control were also
processed with FreeSurfer (version 6.0.0) to generate individual
thickness and surface area maps of the whole cortex.32,33 Every
map was inspected by a trained rater (S.R.) and a score from 1 to 4
was assigned to each scan based on published guidelines34,35; scans
with a score >2 (i.e. major reconstruction errors) were excluded
from cortical surface analyses.

W-scoring and brain parcellation

To test the computational model, observed atrophy was corrected
for the effects of age, sex and site using aW-scoring procedure.36,37

For DBM-derived atrophy, aW-scoremapwas computed from each
patient’s smoothed map by regressing out the effects of age, sex
and site found in the age- and sex-matched controls passing quality
control.36 At each voxel, the following formula was applied:

Wscore =
iRBD raw value− control value expected

for the patient
′
s age, sex, and site

( )

SD of the residuals in controls
(1)

A voxelwith a negativeW-score represents decreased volume in the
iRBD patient compared to controls,whereas a positiveW-score indi-
cates increased volume, while considering the confounds.

Regional W-scores were then extracted by parcellating every
mapwith a 42-region atlas for which corresponding structural con-
nectivity and gene expression data were available.23 This atlas
comprised 34 cortical regions from the Desikan–Killiany atlas and
seven subcortical regions from FreeSurfer.38,39 Due to its import-
ance in synucleinopathies,40,41 the substantia nigra was added
from the 7-T ‘Atlas of the basal ganglia’ (ATAG atlas).42 The 42 re-
gional W-scores extracted from each map were then averaged
across iRBD patients to yield 42W-scores representing regional tis-
sue deformation.W-scoreswere also extracted using finer parcella-
tions of 65 and 119 regions to ensure that findings were robust to
parcellation resolution. The main analyses were performed in the
left hemisphere because gene expression data, used by the model
for determining regional alpha-synuclein synthesis and clearance
(see below), were available for all six left hemispheres but only
two of the right hemispheres from the post-mortem brains,43 and
because diffusion tractography-based reconstruction of the con-
nectome is inaccurate for interhemispheric connections.44,45

For cortical surface analysis, thickness and surface area values
were extracted from each of the 34 atlas regions used for the DBM
analysis above.38 As subcortical regions do not have a cortical sur-
face fromwhich to derive thickness and area values, the global vol-
ume measurement generated as part of FreeSurfer’s subcortical
processing was used. The substantia nigra was excluded from cor-
tical surface analyses as it is unavailable in FreeSurfer, resulting in
a total of 41 regions. As cortical surface area and subcortical volume
scale with head size,46,47 the raw values were divided by the esti-
mated total intracranial volume (derived from FreeSurfer). The
same W-scoring procedure was then applied to these values to ad-
just for the effects of age, sex and site from controls who passed
quality control. To ascertain those findings were not due to the
multicentric nature of the cohort, we also tested the model with
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harmonized regional W-scores derived from the ComBat harmon-
izationmethod,48–50 a batch-effect correction tool used in genomics
and validated for neuroimaging that removes the unwanted
scanning-related intersite variability while preserving biological
variability.

Importantly, to facilitate interpretationwhen testing themodel,
the W-scores were inverted such that a positive score indicated a
region with decreased volume and a negative score indicated in-
creased volume in iRBD patients compared to controls.

Agent-based SIR model

Model overview

The agent-based SIR model (https://github.com/yingqiuz/SIR_
simulator) was used to simulate the spread of alpha-synuclein.23

Thisalgorithmapplies agent-basedmodellingwithinaSIR framework
tomodel the distribution of pathologic alpha-synuclein as anepidem-
ic shaped by the simultaneous effect of brain connectivity and SNCA
and GBA expression.23 This model previously recreated the atrophy
observed in Parkinson’s disease and, using MAPT, GRN, C9orf72 and
TARDBP instead of SNCA andGBA, the atrophy observed in the behav-
ioural variant of frontotemporal dementia.23,51 In this model, every
agent is an autonomous alpha-synuclein molecule that belongs to
one of three mutually exclusive states: the ‘Susceptible’ state when
the agent is normal (normal alpha-synuclein), the ‘Infected’ state
when the agent becomes pathologic (misfolded alpha-synuclein iso-
form) and the ‘Removed’ state when the agent is degraded. Agents
can also move between regions via neural connections. The transi-
tions between states are determined by rules guiding the interaction
dynamics betweenagents and their regional environment. Themodel
simulates atrophy in every brain region based on the following com-
putational steps: (i) the production of normal alpha-synuclein; (ii) the

clearance of normal and misfolded alpha-synuclein; (iii) the misfold-
ing of normal alpha-synuclein; (iv) the propagation of normal and
misfolded alpha-synuclein; and (v) the emergence of atrophy.

Connectivity and gene data

The connectome used tomodel the spread of agents from one region to
anotherwas derived froma separate groupof younghealthy individuals.
The details of diffusion-weighted image processing, deterministic fibre
tracking and gene expression data have been described elsewhere.23

Briefly, the structural connectivity data were derived from the pre-
processed diffusion-weighted images of 1027 participants from the
Human Connectome Project.52 Deterministic tractography was used to
construct consensus connectivitymatrices between the 42 regions asde-
scribed previously.53–55 The analysis was performed at connection dens-
ities of 25%, 30%, 35% and 40% to ensure that results were robust to
change inthisparameter.Adistancematrixof themeanEuclideanlength
of the corresponding streamlines for the42 regionswas alsogenerated to
modulate the rate of movement of agents between connected regions.

For the gene expression data, the regional expression of SNCA
and GBA were used to model the regional synthesis and clearance
of alpha-synuclein; values were derived from the post-mortem
mRNA transcription profiles of six subjects from the Allen Human
Brain Atlas43 using abagen (https://abagen.readthedocs.io/en/
stable/).56 The Allen Human Brain Atlas is a comprehensive gene
expression atlas of the adult human brain based on 3702 cortical
and subcortical tissue samples in which the transcription profiles
of more than 20000 genes were measured. Due to its whole-brain
spatial coverage, it can be used to extract regional gene expression
values in user-defined parcellations.57 Here, the SNCA and GBA
transcription profiles of the six brains were averaged for the 42
left-hemisphere regions of the parcellation to yield SNCA and GBA
expression vectors that were used for the model.
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Figure 1 Demographics and clinical variables of iRBD and controls. (A) A flow chart of the different cohorts included in this study. (B) Overview of the
study protocol for quantifying brain atrophy in iRBD. DBM and surface-based cortical processing were performed to generate Jacobian and cortical
thickness and surfacemaps. These were parcellated andW-scored to correct for the effects of age, sex and site seen in controls. These regional values
were the atrophy patterns to recreate. (C) The spread of alpha-synuclein in the brain was simulated in silico using the agent-based SIRmodel based on
structural connectomics and SNCA and GBA gene expression. The simulation was iterated 10 000 times, with brain atrophy being simulated at each
time step. These patterns were correlated with the observed atrophy patterns to assess if the model recreated atrophy. HC=healthy controls; QC=
quality control.
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Production of normal alpha-synuclein: module 1

In region i, the synthesis of susceptible agents per unit time occurs
with probability αi:

ai = F0,1(SNCAexpressioni) (2)

where Φ0,1(·) is the standard normal cumulative distribution
function and SNCAexpressioni is the gene expression of SNCA
of region i. At each time step, the increment of susceptible agents
in region i is αiSiΔt, where Si is the size of region i and Δt is the
total time.

Clearance of normal and misfolded alpha-synuclein: module 2

In region i, the clearance of susceptible and infected agents per unit
time occurs with probability βi:

bi = F0,1(GBAexpressioni) (3)

where GBAexpressioni is the gene expression of GBA of region i.
Considering that the probability that an agent is still active after
Δt is given by limδτ→0(1− βδτ)Δt/δτ= e−βΔt, the cleared proportion with-
in Δt is 1− e−βΔt.

Misfolding of normal alpha-synuclein: module 3

The susceptible agents not cleared from region i may become in-
fected per unit time with probability γi:

gi = 1–eMiln(1−g0
i
) (4)

whereMi is the population of infected agents in region i and g0i is the

baseline likelihood that a susceptible agent becomes an infected
agent in region i, which was set as the reciprocal of region size.
The probability that a susceptible agent did not get infected is given

by (1− g0i )
Mi ; therefore, gi = 1− (1− g0i )

Mi = 1− eMi ln(1−g0i ) represents

the probability that a susceptible agent becomes infected in region i
per unit time. Similarly, the probability that an agent is still suscep-

tible after Δt is given by limdt�0(1− g0i dt)
MiDt/dt = e−g0

i
MiDt, with the

proportion of agents becoming infected after Δt being 1− e−g0
i
MiDt.

To determine the baseline density of susceptible agents in every
region, the population of susceptible agentsNi is incrementedwith:

DNi = aiSiDt− (1− e−biDt)Ni (5)

Once the system reaches its stable point (error tolerance e<10−7),
the pathogenic spread and update of Ni and Mi is given by:

DNi = aiSiDt− (1− e−biDt)Ni − (e−biDt)(1− e−g0
i
MiDt)Ni (6)

DMi = (e−biDt)(1− e−g0
i
MiDt)Ni − (1− e−biDt)Mi (7)

Propagation of normal and misfolded alpha-synuclein: module 4

Susceptible and infected agents in region i either remain in region i
or spread to other regions based on a multinomial distribution per
unit time with probabilities:

Pregioni�regioni
= ri (8)

Pregioni�edgeij = (1− ri)
wij∑
j wij

(9)

wherewij is the connection strength between regions i and j and ρi is
the probability that an agent remains in region i. Themain analyses
were performed using ρ = 0.5 for all regions, but ρ values from 0.1 to
0.9were also tested to ensure that findings did not depend solely on
this parameter.

The susceptible and infected agents located inside an
edge could exit the edge per unit time based on binary
probabilities:

Pedgeij�regionj
= 1

lij
(10)

Pedgeij�edgeij = 1− 1
lij

(11)

where lij is the length of the edge between regions i and j. The in-
crement in Ni and Mi in region i after total time Δt is given by:

DNi =
∑
j

1
l ji

N jiDt− (1− ri)NiDt (12)

DMi =
∑
j

1
l ji

M jiDt− (1− ri)MiDt (13)

whereas the increment in the population of susceptible and in-
fected agents inside the edge between regions i and j (Nij and
Mij, respectively) after total time Δt is:

DNij = (1− ri)
wij∑
j wij

NiDt−
1
lij
NijDt (14)

DMij = (1− ri)
wij∑
j wij

MiDt−
1
lij
MijDt (15)

Emergence of simulated atrophy: module 5

Regional atrophy was simulated as the sum of two processes: the
direct toxicity resulting from the regional accumulation of infected
agents and the deafferentation caused by cell death in connected
regions. In region i, the atrophy accrual is given by:

DLi(t) = k1(1− e−ri(t)Dt)+ k2
∑
j

w ji∑
j w ji

(1− e−rj(t−1)Dt) (16)

where ri(t) is the proportion of infected agents in region i at time t

and 1− e−ri(t)Dt is the increment of atrophy at time t caused by the
accumulation of alpha-synuclein pathology within Δt. The first
term controls the direct impact of infected agents, whereas the
second term weighs the increment of atrophy based on deaffer-
entation from neighbouring regions. Each term was given a
weight k1 and k2 of 0.5 for the main analyses, but weights varying
from 0.1 to 0.9 were also tested to ensure that findings were not
due to this parameter only. In other words, this module gener-
ated, at every time step, a value of simulated atrophy for each
of the 42 regions; it is this simulated atrophy that was correlated
with the observed atrophy to test if the model accurately recre-
ated the brain atrophy of iRBD.

Statistical analysis

Between group differences in atrophy

To investigate the presence of structural differences between
groups, we performed brain-wide comparisons between iRBD
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patients and controls, with age, sex and site entered as covariates in
the models. For DBM-derived tissue deformation, two-tailed gen-
eral linear models with age, sex and site as covariates were per-
formed to investigate the presence of significant differences
between iRBD patients and controls. The Benjamini–Hochberg pro-
cedure was used to correct for the rate of false discoveries at a stat-
istical threshold of P<0.05.58

For surface-based cortical measurements, general linear models
were performedat each vertex to investigate the presence of significant
differences in cortical thickness or surface area in iRBD patients com-
pared to controls. Surface maps were smoothed using a 15mm full-
width, half-maximumkernel and age, sex and sitewere entered as cov-
ariates, as well as estimated total intracranial volume for surface area.
The surface correlates of motor and cognitive functioning in iRBD
were also investigated in participants with available Movement
Disorders Society (MDS)-UPDRS-III (90 patients, 130 controls) or MoCA
(134 patients, 174 controls) scores. Using age, sex and site (and total
intracranial volume for cortical surfacearea) as covariates, vertex-based
analyses were performed to investigate the vertices significantly corre-
latedwithclinicalvariables.Another contrastmatrixwasalsocreated to
identify the verticeswhere thickness and surface area correlationswith
theMDS-UPDRS-III or MoCA scores differed significantly between iRBD
patients and controls. Statistical significancewas determined byMonte
Carlo simulation at a corrected threshold of P<0.05.

Replication of observed atrophy

To assess if the SIR model recreated atrophy, the spread of patho-
logical alpha-synuclein was simulated in silico by injecting path-
ology in one region, simulating the propagation over 10 000 time
steps and repeating the process for every region as seed. At each
time step, the model generated regional values representing the
amount of simulated atrophy and the simulatednumber of infected
and susceptible agents. To avoid interpreting any spurious overfit
of the model when assessing the fit between atrophy patterns, be-
cause some regions may act as outliers due to agents being present
in only a fewbrain regionswhen initiating the spread,we discarded
all the time stepswhere thenumber of infected agents in any region
increased by more than 1% compared to the previous time step.

At each time step, Spearman’s rank correlations were used to
assess the positive association between simulated atrophy and ob-
served atrophy in patients. The highest correlation coefficient, if
statistically significant at P<0.0012 (Bonferroni-corrected thresh-
old for the 42 regions), was considered as the peak fit. As thickness
W-scores correlated with region size (r=0.54, P=0.0013), the scores
were divided by the region size before assessing the peak fit. For
cortical surface measurements, the peak fit was also assessed
over the 34 cortical regions only to ensure that the peak fit was
not drivenmostly by subcortical regions. In addition, to investigate
if the atrophy simulated by the SIRmodel was associated with clin-
ical features, wemeasured the peak fits obtained between the atro-
phy pattern simulated by the model and the atrophy pattern
observed in each patient separately. These individual peak fits
were then entered into partial correlations with age and sex as cov-
ariates to investigate if the association between a patient’s atrophy
pattern and the one simulated by themodel correlated significantly
withMoCA andMDS-UPDRS-III scores. The ggseg package was used
for visualization.59

Assessment of other clearance genes

To explore whether genes other than GBA may influence
alpha-synuclein metabolism in the model, we assessed the
peak fits obtained when using the expression of genes involved in

the autophagy lysosomal pathway. We used the Molecular
Signatures Database (version 7.5.1, http://www.gsea-msigdb.org/
gsea/msigdb/index.jsp) to identify genes related to this pathway
and tested separately the 310 genes belonging to the Gene
Ontology Consortium macroautophagy biological process gene set
(accession ID: GO:0016236),60 which includes several genes known
for their involvement in the development of Parkinson’s disease
and dementia with Lewy bodies such as LRRK2, ATP13A2, VPS35,
PINK1 and PRKN.61 Brain expression values for each of the genes
were extracted from the Allen Human Brain Atlas for the 42-region
atlas using abagen and the SIRmodel was re-run at each connection
density with each gene expression value entered separately as the
clearance term, replacing GBA in the original model.

For visualization purposes, the average gene expression
across brain regions and cell types in the genes that led to the
highest peak fits between simulated and observed atrophy patterns
was extracted using Cytosplore Viewer (https://viewer.cytosplore.
org/)62–64 based on the Human Multiple Cortical Areas
SMART-Seq database from the Allen Brain Atlas (https://portal.
brain-map.org/atlases-and-data/rnaseq/human-multiple-cortical-
areas-smart-seq). This brain cell database comprises single-nucleus
transcriptomes of 49495nuclei frompost-mortemandneurosurgical
human brain tissues dissected from the middle temporal gyrus, an-
terior cingulate gyrus, primary visual cortex, primary motor cortex,
primary somatosensory cortex and primary auditory cortex. Nuclei
were previously grouped into transcriptomic cell types based on an
iterative clustering procedure65 that resulted in gene expression
beingmeasured, for GABAergic cells, in theADARB2-expressing (cau-
dal ganglionic eminence) branch (subdivided into VIP and LAMPS5
PAX6 cellular subclasses) and the LHX6-expressing (medial ganglion-
ic eminence) branch (subdivided into PVALB and the SST subclasses);
for glutamatergic cells, in the cells from the superficial and deep
layers, the latter divided into FEZF2- and RORB-/THEMIS-expressing
subclasses; and for non-neuronal cells, in astrocytes and oligoden-
drocytes/oligodendrocyte precursor cells.

Comparison with other model-derived, topological and gene
metrics

To determine the influence of connectomics or regional vulnerability
on the atrophy patterns of iRBD, we tested whether simpler mea-
sures predicted brain atrophy as well as the complete agent-based
model. These measures included (i) model-derived measurements
representing the number of infected and susceptible agents at each
time step in each region; (ii) network measures alone, namely node
degree, node strength, node betweenness centrality and eigenvector
centrality, derived from the Brain Connectivity Toolbox (www.sites.
google.com/site/bctnet/)66; (iii) SNCA and GBA regional expression
alone. Node degree represents the number of edges (structural con-
nections) connected to a node (region). Node strength represents
the sum of the weights of the edges connected to the node. Node be-
tweenness centrality represents the number of times a given node is
found in the shortest paths linking every node pair in the network.
Eigenvector centrality is a self-referential measure of centrality;
nodes with high eigenvector centrality are connected with other
nodes that also have high eigenvector centrality. Node betweenness
centrality and eigenvector centrality identify hub regions.

Randomized null models

To test if brain connectivity and gene expression shaped the atro-
phy in iRBD, all fits between simulated and measured atrophy pat-
terns were tested against null models in which network topology
and geometry or gene expression was randomized. For the
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connectome, rewired and repositioned null models were used to
assess network topology and geometry. Rewired null models are
models in which structural connectivity pairs of regions are rando-
mizedwhile preserving the network’s original degree sequence and
density. Swapping of the connectivity and distance matrices was
performed using the Maslov–Sneppen algorithm in the Brain
Connectivity Toolbox.66,67 The randomized matrix was inserted
into the model to derive a null peak fit between atrophy patterns;
this process was repeated 10000 times to generate a distribution
of null peak fits, whose average was statistically compared to the
peak fit of the original model. An unbiased Monte Carlo estimate
of the exact P-valuewas used to assess significance. The same steps
were repeated using repositioned null models, i.e. models in which
the spatial position of regions was randomized while preserving
the network’s original degree sequence and connection profile. A
similar approach was also conducted for gene expression, where
distinct null models were generated with either SNCA or GBA re-
gional expression randomized between the 42 regions.

Data availability

The agent-based SIR model is available at https://github.com/
yingqiuz/SIR_simulator. The regional values of the tissue deform-
ation, cortical thickness and cortical surface area maps are avail-
able at https://github.com/srahayel/SIR-RBD.

Results
Demographics

Of the 443 participants, 34 did not pass DBM quality control, result-
ing in 409 participants (171 patients and 238 controls). There were
no significant differences in age (iRBD: 67.7 ±6.6 years; controls:
66.6 ±7.9, P=0.11) and sex (iRBD: 83% male, controls: 77% male, P=
0.13) between groups, but patients had higher MDS-UPDRS-III
scores (P<0.001) and lowerMoCA scores (P<0.001; Table 1). Of these
409 participants, 64 did not pass FreeSurfer quality control, result-
ing in 345 participants (138 iRBD patients and 207 controls) for
quantifying cortical thickness and surface area differences. There
were no significant differences in age (iRBD: 66.2 ±7.6 years; con-
trols: 67.0 ±6.3 years; P=0.28) and sex (iRBD: 81% male, controls:
77% male; P=0.34) for this sample.

Patients with iRBD show brain atrophy

We investigated if this iRBD cohort showed brain atrophy compared
to controls, accounting for age, sex and site. In termsofDBM,patients
had decreased volume in the left middle temporal cortex, cuneus,
lingual gyrus, fusiform gyrus, banks of the superior temporal sulcus
and the pericalcarine area and increased volume in the insula com-
pared to controls; in the right hemisphere, decreased volume was
found in the precentral, supramarginal, superior and middle tem-
poral, lingual and cuneus regions. However, only the leftmiddle tem-
poral region was significant after correction (PFDR=0.045; Fig. 2A and
Supplementary Table 2).

For cortical thickness, patients showed significant thinning
compared to controls in two clusters in the left hemisphere,
namely one posterior cluster that included the posterior tem-
poral and inferior parietal cortices and another cluster that ex-
tended from the dorsolateral prefrontal cortex to the
orbitofrontal cortex, and in one cluster in the right hemisphere,
which included the posterior temporal and lateral occipital corti-
ces (Fig. 3A and Table 2). Compared to controls, patients also had

significantly increased cortical surface area in the left inferior
temporal cortex and sulcus that extended to the entorhinal cor-
tex (Fig. 3B and Table 2). These findings demonstrate the pres-
ence of brain atrophy in iRBD.

Brain atrophy in iRBD is associated with motor and
cognitive functioning

In iRBD patients, higher MDS-UPDRS-III scores were associated with
cortical thinning in the bilateral frontal cortex and the right temporal
cortex and with increased thickness in the right sensorimotor cortex
(Fig. 4B andTable 2). HigherMDS-UPDRS-III scoreswere also associated
with increased cortical surface area in the bilateral occipital cortex, the
left inferior parietal cortex and the right posterior temporal cortex
(Fig. 4B and Table 2). The associations with MDS-UPDRS-III scores
were significantly different between iRBD patients and controls, with
the correlation being stronger in patients in the bilateral sensorimotor
cortex for thickness and in the frontopolar, sensorimotor, occipital, in-
ferior parietal and lingual and fusiform cortices for surface area (Fig. 4B
and Table 2). For the MoCA, lower scores were associated with cortical
thinning in the bilateral insula, the right temporal cortex and the left
posterior temporal cortex (Fig. 4C and Table 2). MoCA scores were not
associated with cortical surface area in iRBD patients and there were
no differences in correlation slopes between patients and controls.

The SIR model recreates the atrophy of iRBD

The agent-based model was then applied to simulate pathological
alpha-synuclein spread and generate patterns of simulated atrophy
in every region. We found that the model recreated the DBM-derived
W-scored tissue deformation pattern, with the peak fit reaching r=
0.52 (P<0.0005)when seeding from the banks of superior temporal sul-
cus at a connection density of 40% (Fig. 2B). The fit between atrophy
patterns increased gradually with each time step to reach a peak, fol-
lowed by a decline that led to the equilibrium state (Fig. 2C). At the
peak, the simulated atrophy wasmost prominent in the pericalcarine
cortex, accumbens, cuneus, substantia nigra, amygdala and the banks
of the superior temporal sulcus (Fig. 2C). At later time steps, the correl-
ationdeclinedbut simulatedatrophywas seen inputamenand lingual
gyrus. Themodel also recreatedatrophyat the lower connectiondens-
ities (r=0.44 at 35%, r=0.50 at 30%, r=0.36 at 25%; Supplementary
Fig. 1). The other seed regions that recreated atrophy in iRBD, although
with significance over the Bonferroni-corrected threshold, were re-
gions surrounding the banks of the superior temporal sulcus, namely
the supramarginal gyrus (r=0.38, P=0.014), inferior parietal cortex
(r=0.36, P=0.018), middle temporal cortex (r=0.330, P=0.034) and in-
ferior temporal cortex (r=0.329, P=0.034).

Similarly, themodel recreated theW-scored cortical atrophy pat-
tern, derived from FreeSurfer, with the peak fit reaching r=0.51
(P = 0.0007) for cortical thickness (Fig. 3C). However, for cortical sur-
face area, the coefficient was slightly over the Bonferroni-corrected
threshold, at r=0.43 (P=0.006).Whenassessing thefit over the34cor-
tical regions only (without the subcortical measurements), only
thickness was significant (rthickness=0.48, P=0.004; rarea =0.28, P=
0.11). When seeding from the postcentral gyrus, the fit for cortical
thickness increased gradually and reached its peak once the system
had attained the equilibrium state; at this time step, the simulated
atrophy was primarily found in the frontal pole, amygdala, accum-
bens and entorhinal cortex (Fig. 3D). However, given the behaviour
of the agent-basedmodel to converge to an equilibrium state regard-
less of the seed regionused, every brain region yielded a peak fit rela-
tively close to the one generated when seeding from the postcentral
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gyrus (lowest peak fit: r=0.502, P=0.00094). The fit was also signifi-
cant at lower connection densities of the connectome (r=0.50 at
35%, r=0.49 at 30%, r=0.48 at 25%).

To confirm that our findings were not caused by site-specific ef-
fects, the tissue deformation and cortical thickness W-scores were
harmonized using ComBat46,47; the model recreated the patterns
just described in a similar way (r=0.515, P=5.69×10−4 for tissue de-
formation, r=0.523, P=5.50×10−4 for cortical thickness). In addition,
themodel also recreatedatrophywhenusingfinerparcellationsof 65
and 119 regions (Supplementary Fig. 2), with various spreading rates
of agents (Supplementary Fig. 3), and with different weights given to
misfolded alpha-synuclein accumulation versus deafferentation in
the simulated atrophy ratio, with higher peak fits obtainedwhen de-
afferentation was given the larger weight (Supplementary Fig. 4).
Taken together, these results demonstrate that volume and cortical
thickness atrophy in iRBDcanbe recreated by theagent-basedmodel
utilizing connectivity and gene expression.

Several genes involved in macroautophagy improve
model fit

To investigate whether genes other than GBA may act as a clearance
term that recreates atrophy in iRBD, we assessed in the model the
310 genes belonging to the Gene Ontology macroautophagy biological
process gene set. Of these, 30 (10%) genes recreated atrophy at a 40%
connection density when entered as the model’s clearance term
(Fig. 5A). UBA5was the gene that yielded the highest peak fit (r=0.572,
P=0.0001), followed by GBA (r=0.517, P=0.0005), RUBCNL (r=0.497, P=
0.0009), EXOC7 (r=0.496, P=0.0010), CHMP4A (r=0.465, P=0.0021),
MAP1LC3B2 (r=0.461, P=0.0024), ADRB2 (r=0.454, P=0.0028), QSOX1
(r=0.430, P=0.0049), TBC1D14 (r=0.427, P=0.0052) and SNX7 (r=0.426,
P=0.0053) (see SupplementaryTable 3 for the list of genes). The average
expression of these genes varied across brain regions and cell types but
was generally lower than SNCA (Fig. 5B). This demonstrates that the
agent-basedSIRmodel canbeused togeneratenewhypotheses regard-
ing atrophy in the prodromal phases of synucleinopathies.

Simulated atrophy is associatedwith lower cognitive
performance

Next, we investigated if the similarity between an individual pa-
tient’s atrophy pattern and the one generated by the SIRmodel asso-
ciated with clinical features in patients. We assessed the peak fit
between the atrophy patterns for each patient and then investigated
if these values correlated with the MoCA and MDS-UPDRS-III scores.
This revealed that a higher similarity between the simulated atrophy
and the individual patterns of atrophy was significantly associated

with theMoCA (r=−0.18, P=0.046) but not the MDS-UPDRS-III scores
(r=−0.034, P=0.76) independently from the effects of age and sex
(Fig. 5C). This supports that the model recreates the atrophy asso-
ciated with the development of cognitive impairment in iRBD.

Simulated atrophy outperforms gene and network
metrics

To ascertain whether brain connectivity or gene expression alone
could recreate the atrophy pattern as well as the full model, we
also tested several network-based and other model-derived mea-
sures. For every connection density, we found that the simulated
atrophy from the agent-based model always yielded the highest
peak fits (r=0.52, P<0.0005 at 40%), followed by the number of
susceptible agents (r=0.32, P=0.039; Fig. 5D). None of the other
measures, namely the number of infected agents or those
describing the network’s topology, associated significantly with
the observed atrophy (Fig. 5). As for gene expression, the DBM-
derived tissue deformation was associated with neither SNCA
(r=0.24, P=0.12) nor GBA (r=0.18, P=0.24) regional expression.
This demonstrates that brain connectivity or gene expression alone
cannot predict atrophy in iRBD, and that the full agent-based SIR
model taking into account gene expression, connectivity and de-
afferentation provides the best fit to the measured deformation.

Connectivity and gene expression shape atrophy

We further investigated the importance of connectome architec-
ture and gene expression by generating several null models. The
peak fits of the SIR model were compared to the peak fits observed
in null distributions derived from simulations where either gene
expression or network architecture were randomly shuffled across
regions. We observed that randomizing SNCA and GBA expression
levels (i.e. alpha-synuclein synthesis and clearance) significantly
disrupted the model fit at a 40% connection density; however, at
lower connection densities, model fit was still significantly reduced
by randomizing GBA but not SNCA expression (Fig. 6). The random-
ization of connectivity was performed using two different types of
null models to assess the impact of network topology and/or geom-
etry on alpha-synuclein spread. In both cases, randomizing the
connectome’s architecture disrupted the model fit (Fig. 6), indicat-
ing that both the brain’s structural connectivity pattern and the
physical constraints imposed on the connectome contribute to
shaping atrophy. Taken together, this demonstrates that connect-
ivity and gene expression combine to shape brain atrophy of iRBD.

Table 1 Demographics and clinical variables of iRBD patients and controls

Variables iRBD (n=171) Controls (n=238) P-value

Age, years 67.7 ± 6.6 (49–87) 66.6 ± 7.9 (41–88) 0.112a

Sex, n (% male) 142 (83%) 183 (77%) 0.129b

MDS-UPDRS-IIIc 7.4 ± 6.9 (0–34) 2.3 ± 3.7 (0–19) <0.001d

UPDRS-III (Fahn and Elton)e 4.3 ± 3.6 (0–19) — —

MoCA 26.3 ± 3.1 (11–30) 27.9 ± 1.7 (20–30) <0.001d

Continuous data are presented as mean±SD (range).
aStudent’s t-test.
bChi-squared test.
cAvailable in 123 patients and 154 controls.
dMann–Whitney U-test.
eThe Montreal cohort underwent the Fahn and Elton UPDRS-III version.
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Figure 2 Themodel recreates the pattern of tissue deformation of iRBD. (A) Volumewas significantly decreased in iRBD patients compared to controls.
The asterisk indicates the regions thatwere significant when correcting for FDR. (B) The pattern of volume loss in iRBD (left) was recreated by themodel
(right). For visualization purposes, atrophy W-scores were z-scored to ease comparability of scales; positive z scores represented greater atrophy.
(C) The subplot shows the progression of the fit between atrophy patterns until the peak at time step #1241 (arrow). The main scatterplot shows the
z-scored values of observed and simulated atrophy at the peak fit for the 42 regions. Scales were adjusted such that higher scores represented greater
atrophy. FDR= false discovery rate; L = left; R = right.
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Discussion

Isolated RBD has been associated with reductions in brain volume
and cortical thickness.7–9,68–73 Patients also present with high rates
of positivity to pathologic alpha-synuclein in tissue biopsies74–77

and CSF assays.78 However, a mechanistic understanding of how

alpha-synuclein pathologymay relate to the patterns of brain atro-
phy in iRBD remains unknown. Here, we quantified atrophy in the
largest multicentric cohort of polysomnography-confirmed iRBD
patients with T1-weighted MRI acquired to date and applied the
agent-based SIR model to test whether prion-like and regional vul-
nerability factors recreated the atrophy in iRBD. We demonstrated
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Figure 3 The model recreates the pattern of cortical thinning of iRBD. Patients with iRBD showed cortical thinning (A) and increased surface area
(B) compared to controls. The colour bar indicates the statistical significance on a logarithmic scale of P-values (−log10), with positive values showing
significant decreases in iRBD andnegative values showing increases in iRBD. (C) The pattern of cortical thinning in iRBD (left) was recreated by themod-
el (right). For visualization purposes, atrophy W-scores were z-scored to ease comparability of scales; positive z scores represented greater atrophy.
(D) The subplot shows the progression of the fit between atrophy patterns for thickness until the peak at time step 9639 (arrow). The main scatterplot
shows the z-scored values of observed and simulated atrophy at the peak fit for 41 regions (substantia nigra not included). Scales were adjusted such
that higher scores represented greater atrophy. L = left; R= right.
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that the computational simulation of atrophy based on connec-
tome architecture and gene expression of SNCA and GBA did recre-
ate the atrophy seen in iRBD patients and that a stronger
resemblance between a patient’s atrophy pattern and the atrophy
simulated by the model was associated with lower cognitive per-
formance in patients. This is consistent with reports that brain at-
rophy in iRBD associates with cognitive impairment8 and predicts
subsequent development of dementia with Lewy bodies.9 The cur-
rent study sheds light on the specific mechanisms linking patho-
logic alpha-synuclein, brain atrophy and cognitive impairment in
iRBD.

The agent-based SIR model simulates brain atrophy due to the
spread of alpha-synuclein based on brain connectivity and the ex-
pression of genes involved in alpha-synuclein synthesis and clear-
ance.23 This model recreates the atrophy seen in Parkinson’s

disease23 and the spatiotemporal patterns of pathologic alpha-
synuclein quantified in non-transgenic mice injected with pre-
formed fibrils into either the striatum, nucleus accumbens or hippo-
campus.24 In the currentwork,we show that the atrophy in iRBDalso
follows the constraints imposed by connectome architecture and the
gene expression of SNCA and GBA. The impact of these factors was
decisive, as demonstrated by the model’s inability to recreate atro-
phy if either connectivity or gene expression were randomized.
The influence of connectivity is in line with several studies showing
that cerebral connectivity forecasts the atrophy seen in neurodegen-
erative diseases,79–81 including Parkinson’s disease.22,23 The influ-
ence of SNCA and GBA gene expression also agrees with mutations
in these genes being significant risk factors for Parkinson’s disease
anddementiawith Lewy bodies.82–84We observed that, whereas ran-
domizing GBA expression always interfered with the model’s ability

Table 2 Results of vertex-based cortical analyses between iRBD patients and controls

Cortical
measure

Most affected regions Hemisphere Cluster
size, mm2

Number of
vertices

Talairach
coordinates

−log10
P-value

x y z

Between group comparisons
Thicknessa Inferior parietal and lateral occipital Right 5740.0 9280 41.8 −70.0 23.0 4.332

Rostral and caudalmiddle frontal, superior frontal,
medial orbitofrontal, pars orbitalis

Left 6470.4 10 938 −33.6 35.6 23.9 2.652

Inferior parietal, inferior, middle, superior
temporal cortex

Left 4766.7 8943 −38.2 −52.8 22.5 2.306

Surface areab Inferior temporal and entorhinal Left 2615.5 4458 −50.1 −45.3 −14.0 −2.983
MDS-UPDRS-III: Correlation analysis in iRBD
Thickness Inferior, middle, and superior temporalc Right 3751.0 6712 54.9 −25.0 −18.1 −4.295

Superior frontal, pars opercularis, triangularis,
orbitalis, rostral and caudal middle frontal,
medial and lateral orbitofrontal, precentral and
postcentralc

Left 14557.5 26 102 −7.2 36.9 −20.6 −4.043

Medial and lateral orbitofrontal, pars opercularis,
triangularis, orbitalisc

Right 5389.5 8843 6.7 51.5 −17.8 −3.987

Superior frontal, rostral and caudalmiddle frontalc Right 5061.7 9439 9.0 38.2 28.3 −3.879
Precentral and postcentrald Right 2205.7 5010 8.3 −25.8 63.6 3.304

Surface area Lateral occipital, fusiformd Right 4636.9 6614 41.9 −69.8 5.6 4.483
Inferior parietal, lateral occipitald Left 3861.5 6219 −40.6 −71 32.6 4.059

MDS-UPDRS-III: Difference in correlation between groups
Thickness Precentral, postcentral, paracentral, caudal middle

frontale
Left 4595.2 10 528 −31.3 −19.4 54.3 −4.049

Precentrale Right 2429.5 5638 11.1 −23.6 62.0 −3.454
Surface area Postcentral, precentrale Left 2021.3 4630 −47.0 −16.2 53.2 −5.280

Lateral occipital and fusiforme Left 2116.1 2832 −34.9 −86.3 −4.9 −2.984
Inferior parietale Left 1810.9 2952 −36.3 −74.5 31.1 −2.862
Inferior temporal, fusiform, linguale Right 2367.9 4074 40.8 −9.9 −24.8 −2.745
Lateral and medial orbitofrontal, superior frontale Right 2936.6 4437 14.4 30.2 −17.4 −2.316

MoCA: Correlation analysis in iRBD
Thickness Inferior, middle, superior temporal cortex,

fusiform, lingual, entorhinald
Right 7239.5 11 827 40.8 −41.8 −13.4 4.183

Insula, pars opercularis, rostral middle frontal,
lateral orbitofrontald

Left 5111.6 11 651 −41.0 −0.5 14.4 4.038

Fusiform and linguald Left 2277.5 3100 −40.6 −61.8 −7.9 3.519
Insula, banks of STS, lateral orbitofrontal, pars

opercularisd
Right 3774.7 9208 43.1 −18.3 18.1 2.596

STS= superior temporal sulcus. Results were corrected with Monte-Carlo simulation at P<0.05 with age, sex and site entered as covariates, as well as total intracranial volume
for surface area analysis. Clusters are listed by the strongest −log10 P-value.
aiRBD<Controls.
biRBD>Controls.
cNegative association.
dPositive association.
eStronger association in iRBD patients compared to controls.
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to recreate atrophy, the randomization of SNCA expression only led
to a disruption at the 40% connection density. GBA is involved in
clearance of both normal and misfolded alpha-synuclein while
SNCA only indexes synthesis of normal alpha-synuclein, possibly ac-
counting for the former’s greater influence in the model. Another
possibility is that the 90 additional connections appearing in the
40%density connectomewereparticularly influential for SNCA to ex-
ert its effect on atrophy.

When testing several other genes involved in macroautophagy,
GBA ranked second as the clearance gene that yielded the highest
peak fit of the atrophy pattern in iRBD, supporting its role in the
generation of brain atrophy in iRBD. It was only preceded by
UBA5, which codes for an enzyme (ubiquitin-like modifier-
activating enzyme 5, UBA5) that activates UFMylation,85 an enzym-
atic cascade of protein degradation analogous to ubiquitination.86

Instead of tagging polyubiquitin chains to worn-out proteins,
UFMylation tags ubiquitin-fold modifier 1 (UFM1) to proteins to be
degraded.86 Mutations in UBA5 have been shown to disrupt
UFMylation and to cause an autosomal recessive syndrome that
may include cerebellar ataxia, severe intellectual disability,
microcephaly, movement disorders and early-onset epilepsy,
while its knockdown in Drosophila and zebrafish models was
shown to relate to locomotor weakness.87,88 To date, a specific re-
lationship between UBA5 and dementia with Lewy bodies and
Parkinson’s disease has not yet been reported, but our findings
showhow the SIRmodel can generate hypotheses to be tested ex-
perimentally about new potential actors that may be involved in
abnormal protein degradation.

Also, although the model recreated atrophy, the visual inspec-
tion of observed and simulated atrophy measurements at the
peak fit showed some inconsistencies. For instance, while themid-
dle temporal gyrus was the region showing the greatest tissue de-
formation in iRBD, the amount of simulated atrophy was modest.
This could suggest that proteins other than alpha-synuclein,
disease-related changes in connectivity, regional vulnerability to
alpha-synuclein accumulation unaccounted for in the model and
other mechanistic explanations may be involved in the observed
changes in the middle temporal gyrus. Nonetheless, neighbouring
regions such as the amygdala and the entorhinal cortex, which
have been reported to show a high burden of Lewy pathology
in various post-mortem studies,13,89–91 were correctly found
among the regions showing the highest amount of simulated
atrophy.

Another novelty of this study is the comprehensive assessment
of brain morphology in a large multicentric cohort of iRBD patients
with polysomnography andT1-weightedMRI acquisition.We found
that iRBD patients had volume atrophy in the middle temporal
gyrus and cortical thinning in the frontal, posterior temporal, oc-
cipital and inferior parietal cortices, which is in line with earlier
findings in smaller iRBD cohorts.31 In the current study, we found
that the severity of parkinsonism as measured using the MDS-
UPDRS-III was associated with extensive cortical thinning
and with increased thickness of the sensorimotor cortex.
Whereas the paracentral, sensorimotor and superior parietal areas
have been associated with motor deficits in iRBD,7,71 other regions
such as the frontal and temporal cortices were not expected to be

A MDS-UPDRS-III
Cortical Thickness

iRBD: Correlation iRBD versus Controls
Cortical Surface Area

iRBD: Correlation iRBD versus Controls

B MoCA
Cortical Thickness

iRBD: Correlation iRBD versus Controls
Cortical Surface Area

iRBD: Correlation iRBD versus Controls

P(-log10)

-2.5-5.0 2.5 5.0

P(-log10)

-2.5-5.0 2.5 5.0

L R L R L R L R

L R L R L R L R

Figure 4 Correlation analyses between cortical surface and motor and cognitive variables. Results of the general linear models showing the vertices
where a significant correlation was found with the MDS-UPDRS-III (A) and MoCA (B) in iRBD patients and the vertices where the slopes between the
structural metric and these scores significantly differed between patients and controls. The colour bar indicates the statistical significance on a loga-
rithmic scale of P-values (−log10; ±1.3 corresponding to P<0.05 corrected formultiple comparisons byMonte Carlo cluster-wise simulation), with posi-
tive values showing positive associations in iRBD and negative values showing negative associations in iRBD. For comparisons of correlation,
negative clusters represent stronger correlations in iRBD compared to controls. L = left; R = right.
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involved based on previous work. However, this frontotemporal
pattern has already been documented in Parkinson’s disease92

and our findings heremay represent premorbid neurodegenerative
changes typical of overt Parkinson’s disease uncovered thanks to
our larger sample size. As for theMoCAcorrelates of atrophy shown
here, the pattern was in line with previous observations of global
cognitive performance in Parkinson’s disease.92 Notably, there
was a correlation betweenMoCAand atrophy in the anterior insula,
an area that has been shown to be particularly vulnerable in synu-
cleinopathies affecting cognition.93–96 Lower MoCA scores were
found in iRBD patients who had a stronger resemblance of their at-
rophy pattern to themodel simulation, supporting the idea that the
constraints that shape the atrophy in themodelmay correspond to
the ones underlying the development of atrophy in prodromal phe-
notypes of dementia with Lewy bodies.

This study has some limitations. First, according to the brain-first
and body-first subtype hypothesis,11 isolated RBD is thought to arise
from a body-first propagation whereby pathology in the autonomic
and enteric nervous system spreads to the brain, affects brainstem
nuclei involved in REM sleep motor atonia6 and then reaches other
brain structures that generate parkinsonism and dementia features.
However, in this study, the brainstem was not included in our ana-
lysesdue to thedifficulty in imaging both brainatrophyand connect-
ivity in these structures. As soon as comprehensive atlaseswith gene
expression and connectomic data of brainstem nuclei become avail-
able, these should be usedwithin the SIRmodel to test the brain-first
and body-first hypothesis. Second, the best propagator region in the
SIRmodel isnotnecessarily theoriginof the epidemic. TheSIRmodel
is made such that every seed region leads themodel to converge to a
similar equilibrium state, unless the peak fit between atrophy pat-
terns is found during the early spreading time frame when agents

are still propagating through the system; the peak fit for
DBM-derived tissuedeformationwas found early during propagation
when seeding from only a few regions, whereas the peak fit for cor-
tical thickness was found regardless of the seed chosen. This makes
the seed region analysis less relevant for understanding brain atro-
phy than the constraints imposed on the model, here connectomics
and gene expression. Third, scans were acquired using different ac-
quisition parameters at different sites. In the current work, site ef-
fects were regressed out from atrophy measurements during
W-scoring and entered as covariates in neuroimaging analyses.
The use of harmonized W-scores using a batch-correcting tool vali-
dated for neuroimaging data yielded the same results. Fourth, alpha-
synuclein spreadwas simulated on a healthy structural connectome
and transcriptome. White matter abnormalities and topological dis-
organization of grey matter have been reported in iRBD,9,70,97,98 as
well as a genetic makeup more complex than the sole effects of
SNCA and GBA.99 Once these changes are more thoroughly under-
stood in iRBD, they can be implemented in the model. Fifth, the
model simulates the spread based on regional gene expression
and connectivity. Given that specific cell types may be vulnerable
to alpha-synuclein100 and that many transcriptomically distinct
cell types have been reported in human brain tissue,62 future stud-
ies should aim at integrating this information with whole-brain
transcriptomics atlases with comprehensive cell type data once
they become available.

In summary, atrophy in iRBD patients can be recreated using a
combination of agent-based modelling, structural connectomics and
gene expression. This further supports the theory that iRBD is a pro-
dromal synucleinopathy. The agent-based SIR model may provide a
way to test new research hypotheses for the purpose of slowing or
stopping the spread of pathologic alpha-synuclein in the brain.
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Appendix 1
The ICEBERG Study Group

Full details are provided in the Supplementary material. Marie
Vidailhet, Jean-Christophe Corvol, Isabelle Arnulf, Stéphane
Lehéricy, Graziella Mangone, Sara Sambin, Jonas Ihle, Caroline
Weill, David Grabli, Florence Cormier-Dequaire, Louise Laure
Mariani, Bertrand Degos, Richard Levy, Fanny Pineau, Julie Socha,
Eve Benchetrit, Virginie Czernecki, Marie-Alexandrine Glachant,
Sophie Rivaud-Pechoux, Elodie Hainque, Smaranda Leu
Semenescu, Pauline Dodet, Samir Bekadar, Alexis Brice, Suzanne
Lesage, Fanny Mochel, Farid Ichou, Vincent Perlbarg, Benoit
Colsch, Arthur Tenenhaus, Rahul Gaurav, Nadya Pyatigorskaya,
Lydia Yahia-Cherif, Romain Valabrègue, Cécile Galléa,
Marie-Odile Habert, Dijana Petrovska, Laetitia Jeancolas, Vanessa
Brochard, Alizé Chalançon, Carole Dongmo-Kenfack, Christelle
Laganot, Valentine Maheo.
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