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Abstract

This study provides a new formulation of gradient damage model which allows an efficient
explicit numerical solution of dynamics problems. The proposed methodology is based on an
”extended Lagrangian approach” developed by one of the authors for the nondissipative and
dispersive shallow water equation. By using this strategy, the global minimization problem
commonly derived for gradient damage models is recast as a purely local hyperbolic one
with source terms that can be easily solved using finite volumes. The numerical solution
of the governing system is then based on a fractional-step method consisting of a classical
Godunov-type scheme and an implicit Ordinary Differential Equation solver for the local
source terms. Numerical results are presented on the one-dimensional multi-fragmentation
and spalling tests for illustration purpose.

Keywords: Brittle fracture; Dynamic fracture; Gradient damage; Hyperbolic models;
Finite volumes.

1. Introduction

In continuum mechanics, damage theory introduced by Kachanov aims at modeling the
progressive degradation and failure of materials such as metals, concrete, rocks or glass. This
framework is built upon the description of materials physical deterioration phenomena using
a macroscopic damage variable (denoted as D hereinafter) that is interpreted as microvoids
and microcracks density parameter (see for instance [1]). Kachanov, through the concept
of actual stress, thus related the evolution of damage with the softening of materials. The
notion of actual stress has later been abandoned in favor of thermodynamically consistent
frameworks in which D is an internal variable (see for instance [2, 3] in the context of Gen-
eralized Standard Materials framework [4]). This mainly led to interesting local constitutive
damage models with isotropic or anisotropic damage variables [3, 5] or [6, 7] to cite a few.

When used to solve boundary value problems, the aforementioned models however lead
to problems of existence and uniqueness of solutions and damage localization. As a conse-
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quence, strong mesh dependencies are observed in numerical computations involving such
local damage models. In that context, nonlocal models emerged in order to avoid the spu-
rious localization problems. First, the equations related to the damage part of the problem
have been reformulated by means of weighted volume averaged quantities such as the damage
energy release rate in [8], or an equivalent strain measure in [9, 10] for instance. On the other
hand, Frémond and Nedjar introduced the influence of damage at some material point
to the constitutive response of its neighbors through the gradient of damage by considering
the principle of virtual power [11, 12]. This type of gradient damage models falls within the
framework of Generalized Standard Materials and has been later developed through several
studies among which [13, 14]. Furthermore, variational formulations of gradient damage
models [15] allowed to numerically solve brittle fracture problems by means of optimization
techniques. In this perspective, an important step has been the seminal study of [16] followed
by [17] which put emphasize on the convergence between regularized damage models and
Griffith’s fracture theory in the asymptotic limit (see also [18]).

It is worth noticing that, in addition to the works mentioned above, the Thick Level Set
[19] and the very recent Lip-field [20] approaches provide a regularization of local damage
models based on geometrical constraints applied to the damage field.

Regularized damage mechanics models allow numerical simulations able to capture ob-
served responses in quasi-static such as, for instance, a number of fragments. Nevertheless,
difficulties arise in the context of dynamics. Indeed, in order to accurately follow the waves
involved by dynamic loadings, numerical solutions based on explicit time discretization are
preferable. This ability to track the waves however implies small time steps dictated by the
CFL stability condition, enforcing that the fastest wave of the problem crosses at most the
smallest mesh element, which is not the case with implicit approaches. In nonlinear solid
mechanics, explicit Finite Element simulations are usually based on a staggered algorithm
that requires at each time step: (1) the solution of the elastic problem on the mesh; (2)
the implicit constitutive update at integration points. Gradient models as those used for
regularized damage mechanics involve the solution of a nonlocal optimization problem in the
second step of the staggered scheme [21–24]. Note that this is also true when using the TLS
[25] and the Lip-Field [26]. Explicit dynamics obviously yields huge computational times
for multi-dimensional calculations in nonlocal solids. In addition, the global optimization
problem related to damage evolution makes it difficult to apply finite volume type schemes,
which are known for their efficiency in following waves. This is in particular true in history
dependent materials, for which finite element solutions suffer from spurious oscillations that
lead to an overestimation of residual states [27].

In this paper, a new formulation allowing the efficient explicit numerical solution of
dynamic problems in gradient damage solids is proposed. The derivation is based on the
”extended Lagrangian approach” originally developed by one of the author in [28] for the
Serre–Green–Naghdi equation (shallow water equation with microinertia terms), in [29] for
the defocusing Schrödinger equation (shallow water types equations with second gradient
terms) or for bistable Ericksen bars [30]. Using this strategy, the original system with global
minimization is recast as a purely local hyperbolic problem with source terms that can easily
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be solved using finite volumes.
The approach proposed here being nonclassical, attention is paid to one-dimensional

problems in the linearized geometrical limit only for simplicity. The extension to more
general multi-dimensional finite deformations is straightforward after, however, many pages
of calculation. In what follows, the thermodynamical formulation of the classical gradient
damage model is recalled in section 2. Section 3 is then devoted to the derivation of the
new model using Hamilton’s variational principle in the conservative context. Two terms
bringing very small contributions to the Lagrangian functional will be introduced successively
for clarity, one of them being already present in [12]. Dissipation is taken into account
consistently with thermodynamics in section 4. The governing system thus obtained is
hyperbolic with source terms, which is shown in section 5. The fractional-step method used
to solve that system, consisting of a classical Godunov-type scheme using an approximate-
state Riemann solver and an implicit Ordinary Differential Equation solver for the local
source term, is also presented in section 5. Section 6 is dedicated to numerical results of
one-dimensional multi-fragmentation and spalling tests. A conclusion is provided in section
7.

2. Constitutive model – Thermodynamics

The purpose of this section is the derivation of the damage evolution law used in section 3,
within the associated Generalized Standard Materials framework. For the sake of generality,
no explicit forms are yet assumed for the thermodynamics potentials. This point will be
addressed in section 3.

Helmholtz free energy density

According to the classical approach for modeling gradient damage [12, 15] by means of in-
ternal variables [31], we consider, for one-dimensional problems in the linearized geometrical
limit, the global Helmholtz free energy of a solid domain Ω of the form:

F =

∫

Ω

Ψ(ε(u),D,∇D)dΩ (1)

where the free energy density Ψ depends on the infinitesimal strain ε, the damage field
variable D and its gradient ∇• = ∂•

∂x
, the dependence of Ψ on temperature being omitted

here since we do not account for thermal aspects. The reader should note that, for the
one-dimensional problems considered in this paper, the x subscript is also used for space
derivatives with no ambiguity.

The authors insists on the fact that in the present context, D and∇D are not independent
variables since the damage variable D is considered as a field.

As emphasized in [14], the geometrical relation between damage and its gradient leads,
in the Generalized Standard Materials framework, to an over-constraining evolution law for
internal variables. Lorentz and Andrieux [15] therefore proposed the definition of global
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potentials. In particular, in the case of a nondissipative strain variable, the total dissipation
results from the integration over the solid domain Ω of Clausius-Duhem inequality:

D = −
∫

Ω

(
∂Ψ

∂DDt +
∂Ψ

∂∇D ·∇Dt
)
dΩ ≥ 0, (2)

(•)t denoting the time derivative in the remainder of the paper. After integration by parts
and using the divergence theorem, the dissipation can be rewritten as:

D =

∫

Ω

(
div

∂Ψ

∂∇D −
∂Ψ

∂D

)
Dt dΩ−

∫

∂Ω

(
∂Ψ

∂∇D · n
)
Dt ds ≥ 0, (3)

∂Ω being the boundary of the solid domain. Note that, the boundary term vanishes according
to natural boundary conditions so that the term involved in the volume integral thus defines
the field of the thermodynamic force conjugated to the damage field D:

YD = −δΨ
δD = div

∂Ψ

∂∇D −
∂Ψ

∂D (4)

where δΨ
δD is the variational derivative of Ψ with respect to D. Accordingly, the thermody-

namic force YD is nonlocal1.

Dual dissipation pseudo-potential:

Restricting ourselves to the Generalized Standard Materials framework [4, 33, 34], we
assume the existence of a dual dissipation pseudo-potential ϕ∗(YD), positive and convex
with respect to the nonlocal thermodynamic force YD. This potential allows the derivation
of the damage evolution law which reads:

Dt =
∂ϕ∗

∂YD
(5)

3. Derivation of the reversible model

In the following, we will first derive the nondissipative equations in a dynamic context
as it can be made in fluid dynamics [35]. The dissipation related to irreversibility of damage
will be addressed in the next section.

3.1. Hamilton’s variational principle

In this section, the governing equations of the proposed model will be derived using
Hamilton’s principle in the context of conservative processes. A brief overview of this varia-
tional approach is first presented for readers who are not familiar with this formalism.

1Such concept of nonlocal irreversible thermodynamic forces can be found in [32] where it has been called
”space” Euler-Lagrange derivative with respect to D

4



Consider a solid domain Ω with boundary ∂Ω of outward normal n, submitted to volume
and surface forces b and t within the time interval T = [t1, t2]. Those actions will result in the
displacement u of the material points constituting the body with the velocity v = ut. In the
domain, the action integral is for isothermal evolutions the time integral of the Lagrangian
L defined below:

A =

∫

T
Ldt

with L = K +We − F
(6)

in which thermal terms have been omitted. In addition to the Helmholtz free energy F , the
potentials involved in the above functional are:

− the work of external forces We =

∫

Ω

b · udΩ +

∫

∂Ω

Td · uds (7)

− the kinetic energy K =

∫

Ω

1

2
ρv · vdΩ (8)

The Lagrangian is taken as a function of displacement and damage (u, D), of the damage
gradient ∇D, and of velocity. The functional also depends on the infinitesimal strain tensor
ε = 1

2

(
∇u+ ∇Tu

)
, for which the following nonclassical form will be used:

ε =
1

2
div (u⊗ I + I � u)

with (a⊗ I)ijk = aiδjk,

and (I � a)ijk = δikaj ∀a ∈ R3,

(9)

δij being Kronecker delta symbol. This form allows the straightforward derivation of a
geometrical conservation law [36] by simply taking the time partial derivative:

εt − div

(
v ⊗ I + I � v

2

)
= 0, (10)

Hamilton’s variational principle states that the evolution followed by the system satisfies
the stationnarity of the action for any variation of the fields δu and δD that vanish on the
boundary ∂T . Namely:

δA =

∫

T
[δK + δWe − δF ] dt = 0 (11)

After integrations by parts over space an time, and taking into account the vanishing varia-
tions on ∂T as well as equation (10), one gets:

δA =

∫

T

∫

Ω

{[
−ρvt + div

(
∂Ψ

∂ε

)
+ b

]
· δu+

[
div

(
∂Ψ

∂∇D

)
− ∂Ψ

∂D

]
δD
}
dΩdt

+

∫

T

∫

∂Ω

{[
−∂Ψ

∂ε
· n+ Td

]
· δu+

[
∂Ψ

∂∇D · n
]
δD
}
dsdt = 0 ∀δu, δD

(12)
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Notice that the thermodynamic force associated with damage YD = div
(
∂Ψ
∂∇D

)
− ∂Ψ
∂D naturally

arises in the volume integral.
Considering first variations δu and δD that are both zero on ∂Ω, we are left with the

following condition in the volume Ω:
[
−ρvt + div

(
∂Ψ

∂ε

)
+ b

]
· δu+ YD δD = 0 ∀δu, δD (13)

Taking δD = 0 implies that the first term must be zero regardless of the value of δu, which
yields the balance equation of linear momentum:

ρvt − div σ = b, with σ =
∂Ψ

∂ε
(14)

The above equation leads in (13) to the conclusion YD δD = 0 ∀δD. Since YD depends
on the displacement and the damage variable, as we shall see later, one can imagine elastic
evolutions (u 6= 0, Dt = 0) for which YD 6= 0. The equality YD = 0 can then only be
satisfied if damage varies (Dt 6= 0) to accommodate the displacement contribution. From
the previous reasoning, the last equation is derived:

[
div

(
∂Ψ

∂∇D

)
− ∂Ψ

∂D

]
Dt = 0 (15)

which involves that the total dissipation (3) is zero according to the nondissipative frame-
work. The derived volume equations are recalled below for convenience:

∣∣∣∣∣∣∣∣∣∣∣

εt − div

(
v ⊗ I + I � v

2

)
= 0

ρvt − div σ = b[
div

(
∂Ψ

∂∇D

)
− ∂Ψ

∂D

]
Dt = 0

∀x ∈ Ω (16)

For variations δu = 0 and δD = 0 in Ω, and assuming that ∂Ψ
∂∇D does not depend on the

displacement, the following boundary conditions are derived:
∣∣∣∣∣∣

σ · n = Td

∂Ψ

∂∇D · n = 0
∀x ∈ ∂Ω (17)

The first equation corresponds to classical Neumann boundary conditions, and the second
one leads to a vanishing boundary integral in the dissipation (3).

Denoting the internal energy density by e(ε,D,∇D), the rate of change of the total
energy density E can be written as:

Et =
d

dt

(
1

2
ρ ‖v‖2

)
+ et (18)
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Since the partial derivatives of e with respect to ε, D and ∇D are the same as those of
Ψ for isothermal processes, the total energy balance law reads after taking into account the
linear momentum balance:

Et − div

(
∂Ψ

∂ε
· v +

∂Ψ

∂∇DDt
)

= −
[
div

(
∂Ψ

∂∇D

)
− ∂Ψ

∂D

]
Dt + b · v (19)

where the term ∂Ψ
∂∇DDt is called interstitial working [37].

Combination of equations (19) and (15) shows that energy is conserved in absence of
external volume forces (as will be considered hereinafter). This is consistent with our first
goal of deriving the nondissipative model.

In what follows, the same approach is used for different choices of the Lagrangian func-
tional.

3.2. Master Lagrangian

We start the derivation with the classical form of the kinetic energy density, and a free
energy density widely used for the quasi-static modeling of gradient damage (see for instance
[14]):

Ψ(ε,D,∇D) =
1

2
ε : C(D) : ε+ w(D) +

1

2
wlcl

2
c ‖∇D‖2 (20)

In (20), the first term is the elastic energy in which C(D) is the damage-dependent fourth-
order stiffness tensor, w(D) is the local damage energy and the last term is the nonlocal
damage energy involving a characteristic length lc and a material constant wlc > 0.

It is worth noticing that both local and nonlocal damage energies are in this definition
stored energies. Once again, we focus for now on the nondissipative modeling and postpone
to section 4 the possibility of tuning the stored and dissipated parts.

Specialization of system (16) and of the energy balance equation (19) to the above free
energy density yields respectively:

∣∣∣∣∣∣∣∣∣∣∣

εt − div

(
v ⊗ I + I � v

2

)
= 0

ρvt − div σ = 0 with σ = C(D) : ε(
1

2
ε : C′(D) : ε+ w′(D)− wlcl

2
c∆D

)
Dt = −YDDt = 0,

∀x ∈ Ω (21)

and:

Et − div
(
σ · v + wlcl

2
c(∇D)Dt

)
=

(
1

2
ε : C′(D) : ε+ w′(D)− wlcl

2
c∆D

)
Dt = −YDDt = 0

(22)
In addition, the natural boundary conditions are:

∣∣∣∣∣
σ · n = Td

wlcl
2
c∇D · n = 0

∀x ∈ ∂Ω (23)
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The derived set of equations (21) is very difficult to solve in the explicit dynamics context.
Indeed, solving a Laplace equation in zones where damage increases such as dictated by (21)3

is prohibitive numerically speaking, especially for multi-dimensional problems.

3.3. Extended Lagrangian

To get rid of the resolution of Laplace equation, we introduce a microinertia term in the
Lagrangian as proposed by [12]. In this case, the kinetic energy reads:

K =

∫

Ω

(
1

2
ρ ‖v‖2 +

1

2
βD2

t

)
dΩ (24)

The microinertia parameter β is assumed small and is introduced here as an extension of the
inertia of microvoids observed in ductile fracture [38] to brittle fracture. To be complete, the
introduction of microinertia should be done by taking β as a function of damage. Nevertheless
the microinertia parameter is constant in this work for simplicity, which is not a limitation
of the model but only a choice.

The governing system is in that case:

∣∣∣∣∣∣∣∣∣∣∣

εt − div

(
v ⊗ I + I � v

2

)
= 0

ρvt − div σ = 0 with σ = C(D) : ε(
1

2
ε : C′(D) : ε+ w′(D)− wlcl

2
c∆D + βDtt

)
Dt = 0

∀x ∈ Ω (25)

The energy conservation law can also be rewritten as a consequence:

Et − div
(
σ · v + wlcl

2
c(∇D)Dt

)
=

(
1

2
ε : C′(D) : ε+ w′(D)− wlcl

2
c∆D + βDttD

)
Dt = 0,

(26)
along with the boundary conditions:

∣∣∣∣∣
σ · n = Td

wlcl
2
c∇D · n = 0

∀x ∈ ∂Ω (27)

When Dt 6= 0, the terms in the parenthesis in equation (25)3 becomes an hyperbolic
equation with source terms. However, this equation being only valid when damage evolves,
it is not convenient for numerical resolution. In addition, anticipating on damage evolution,
the yield surface depends on the thermodynamic force YD which, as seen in the third equation
of system (25), is a function of the Laplacian of D. This is something we want to avoid.

In order to circumvent this issue we propose a two-field modeling analogous to the micro-
morphic approach [39–41], based on the introduction of an additional nondissipative variable
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D̃. The Lagrangian then becomes a function of ε, D, D̃, D̃t and ∇D̃, and the kinetic and
free energies now read:

K =

∫

Ω

(
1

2
ρ ‖v‖2 +

1

2
βD̃2

t

)
dΩ (28)

F =

∫

Ω

[
1

2
ε : C(D) : ε+ w(D) +

1

2
wlcl

2
c

∥∥∥∇D̃
∥∥∥

2

+
κ

2
(D̃ − D)2

]
dΩ (29)

Notice that in the classical micromorphic approach, the term (D̃−D) is a relative generalized
damage variable which, in this work, is constrained to vanish by ascribing a large value to
the parameter κ, thus providing the latter the role of a penalty parameter. This constraint
allows recovering the gradient damage formulation commonly used. The same approach has
been used in [28–30] for various classes of dispersive equations such as Serre–Green–Naghdi,
Schrödinger equation and bistable Ericksen bar.

The application of Hamilton’s principle on that extended Lagrangian yields an additional
equation corresponding to the variation of D̃. The governing system is then:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

εt − div

(
v ⊗ I + I � v

2

)
= 0

ρvt − div σ = 0 with σ = C(D) : ε(
1

2
ε : C′(D) : ε+ w′(D)− κ(D̃ − D)

)
Dt = 0

βD̃tt − wlcl
2
c∆D̃ = −κ(D̃ − D)

∀x ∈ Ω (30)

The energy conservation law reads:

Et − div
(
σ · v + wlcl

2
c(∇D̃)D̃t

)
=

(
1

2
ε : C′(D) : ε+ w′(D)− κ(D̃ − D)

)
Dt = 0, (31)

and the boundary conditions are now:
{
σ · n = Td

wlcl
2
c∇D̃ · n = 0

∀x ∈ ∂Ω (32)

Notice that since equation (30)4 does not depend on u, there is no need to consider the

special cases D̃t = 0 or D̃t 6= 0 as has been done for equation (30)3.
Combination of equations (30)3 and (30)4 leads to the following expression of the ther-

modynamic force associated with damage:

YD = −1

2
ε : C′(D) : ε− w′(D)− βD̃tt + wlcl

2
c∆D̃ (33)

Hence, for sufficiently large values of the penalty parameter (i.e. D̃ → D) and in the
microinertia-vanishing limit β → 0, the extended Lagrangian allows recovering the classical
definition of YD (4).
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4. Introduction of the dissipation and formulation of the gradient damage model

4.1. Damage evolution equation

We will now complete the reversible model presented in section 3 by adding the evolution
law of damage. Let’s consider a convex dual potential ϕ∗(YD). The damage evolution law is
defined as:

Dt =
∂ϕ∗

∂YD
(34)

For instance, without loss of generality one possible choice is:

ϕ∗ =
〈fD(YD)〉2

2η
(35)

where 〈f〉 is the positive part of f and η is the viscosity. With such a choice, the evolution
equation on the damage variable is:

Dt =
〈fD(YD)〉

η

∂fD(YD)

∂YD
(36)

Notice that as η → 0, the model retrieves the rate-independent limit (i.e. the consistency
condition fDDt = 0 is satisfied).

Depending on the form given to the yield function, both nondissipative YDDt = 0 and
dissipative YDDt > 0 cases can be considered. This is shown in section 4.2.

Replacing the zero dissipation equation (30)3 by the damage evolution law, the governing
equations in presence of dissipation are:

∣∣∣∣∣∣∣∣∣∣∣∣∣

εt − div

(
v ⊗ I + I � v

2

)
= 0

ρvt − div σ = 0 with σ = C(D) : ε

Dt =
∂ϕ∗

∂YD

βD̃tt − wlcl
2
c∆D̃ = −κ(D̃ − D),

∀x ∈ Ω (37)

and the energy conservation law reads:

Et−div
(
σ · v + wlcl

2
c(∇D̃)D̃t

)
=

(
1

2
ε : C′(D) : ε+ w′(D)− κ(D̃ − D)

)
Dt = −YD

∂ϕ∗

∂YD
≤ 0

(38)

4.2. Examples

In this subsection, two damage model formulations used in one of the numerical sim-
ulations discussed in section 6 are presented. From now on, attention is on only paid to
one-dimensional problems for simplicity and clarity. The partial derivatives with respect to
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the space coordinate x are then denoted as ∂•
∂x

= (•)x and stress and strain are respectively
written σ and ε.

For both examples, the free energy density reads:

Ψ =
A(D)

2
ε2 + w(D) +

1

2
wlcl

2
cD̃2

x +
κ

2
(D̃ − D)2 (39)

where A(D) is the elastic stiffness.
To illustrate the flexibility of the model, particular forms are considered for the local

damage energy and the damage yield function [12, 42].

4.2.1. Example 1: Dissipative model

In this first example, we consider:

w(D) = −Ml (ln(1−D) +D) , Ml ≥ 0 (40)

ϕ∗(YD) =
〈fD(YD)〉2

2η
(41)

fD ≡ YD − kl = −A′(D)
ε2

2
+ κ(D̃ − D) +Ml

D
1−D − kl, kl ≥ 0 (42)

In the above model, kl is the initial damage threshold and the logarithmic part of the local
damage energy ensures D < 1 (D = 1 leads to an infinite energy).

According to the dissipation expression (3), one has in that case:

D =

∫

Ω

η
fD + kl
〈fD〉

D2
t dΩ (43)

which, even for small values of η, is nonzero when damage has increased due to the term kl.

4.2.2. Example 2: nondissipative model

Alternatively, the following model can be used:

w(D) = klD −Ml (ln(1−D) +D) , Ml, kl ≥ 0 (44)

ϕ∗(YD) =
〈fD(YD)〉2

2η
(45)

fD ≡ YD = −A′(D)
ε2

2
+ κ(D̃ − D) +Ml

D
1−D − kl (46)

In that case, the evolution of damage will be identical to the previous model considered for
the yield function has the same expression. Nevertheless, the dissipation reads:

D =

∫

Ω

η
fD
〈fD〉
D2
t dΩ (47)

which, for sufficiently small values of the relaxation parameter η, is zero. Indeed, the con-
sistency condition fDDt = 0 is recovered in that case.
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The reader shall note that even if the local damage energy w(D) has two different ex-
pressions in the above examples, it is not the case for the yield function fD. As a result,
the damage variable evolution is the same in both cases, leading to σ − ε curves that are
identical .

Similar manipulations can be made to include a contribution of the damage gradient in
the dissipation by working on the term κ(D̃ − D) in the free energy. This is, however, not
considered here.

5. Numerical solution

In this section, and as already indicated, we restrict ourselves to the 1D case, the hy-
perbolicity of the governing system is shown and the numerical solution procedure based on
finite volumes is briefly presented. This will allow to show some predictive capability of the
model.

Gathering all the ingredients developed above and making use of the change of variable
q = D̃t and p = D̃x, the governing system, specialized to one space dimension, is recast as:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

εt − vx = 0

ρvt − σx = 0

Dt =
∂ϕ∗

∂YD

D̃t = q

βqt − wlcl
2
cpx = −κ(D̃ − D)

pt − qx = 0

(48)

The last equation in this system expresses Schwarz mixed partial derivatives theorem for the
variables p and q.

Using the array vector notation, system (48) is written in the following form:

Ut + F(U)x = S(U),

U =
[
ε, ρv,D, D̃, βq, p

]T
,

F =
[
−v,−σ, 0, 0,−wlcl2cp,−q

]T
,

S =

[
0, 0,

1

τ
〈fD〉 , q,−κ(D̃ − D), 0

]T
(49)

To solve this system, a fractional-step method will be applied [43]. This consists in
solving the homogeneous system and a system of Ordinary Differential Equations (ODE)
associated with the source term in a staggered fashion. Such a procedure can be seen as a
predictor–corrector approach in which damage flow can only occur in the ODE.
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5.1. Hyperbolicity

The Riemann problem associated with system (49) consists of the quasi-linear form of
its homogeneous part and initial conditions on the vector of conserved quantities U:

Ut +
∂F(U)

∂U
Ux = 0, with

{
U(x, t = 0) = UL if x < 0

U(x, t = 0) = UR if x > 0
(50)

In (50), the Jacobian matrix J = ∂F(U)
∂U

arises from the chain rule and the subscripts R and
L denote quantities defined on the Right and Left side of the initial discontinuity located at
x = 0 respectively.

The hyperbolicity condition of this system relies on the eigenvalues and eigenvectors of J
that must respectively be real and form an complete basis. For the block diagonal Jacobian
matrix under consideration, it is easy to show that there are four nonzero eigenvalues:

cER,L = ±
√
A(DR,L)

ρ
; cDR,L = ±

√
wlcl

2
c

β
(51)

The eigenvalues cER,L correspond to the classical elastic wave speeds and cDR,L are the wave

speeds associated with the transport equation of the additional damage variable D̃.
There are three remarks about the characteristic structure of the solutions of system (49):

1. Since damage does not increase in the homogeneous system (i.e. Dt = 0), both char-
acteristic speeds are constant. For the ”damage speeds” cD, however, this due to the
choice of a constant microinertia parameter β and will be no longer true for β ≡ β(D̃).

2. Given that the eigenvalues are real and one can define a complete set of independent
eigenvectors, system (49) is hyperbolic.

3. The quasi-linear form (50) shows that the problem can be decoupled into a purely
elastic part involving waves of speeds cER,L on the one hand, and a pure transport of
the additional damage variable at speeds cDR,L.

Since the Riemann problem can be decoupled, one then has to solve:

Wt +
∂F(W)

∂W
Wx = 0, with

{
W(x, t = 0) = WL if x < 0

W(x, t = 0) = WR if x > 0
(52)

for W = [ε , ρv]T ; F = [−v , −σ]T and W = [βq , p]T ; F = [−wlcl2cp , −q]
T

. Figure 1
shows the characteristic structure of the solution of one of those Riemann problem. Owing
to the initial discontinuity between WL and WR in the Riemann problem, two waves prop-
agate leftward and rightward while carrying a jump discontinuity that result in a constant
stationary state W∗ after the passage of waves.
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Figure 1: Characteristic structure of the solution of each decoupled Riemann problem: waves
with speeds S• carrying jump discontinuities W∗

• −W•.

5.2. Solution of the homogeneous system

Considering a partition of the one-dimensional domain Ω by means of Nc finite volume
cells, a piece-wise constant approximation of U can be constructed in Ω. With, in addition,
an explicit Euler time discretization, the homogeneous part of system (49) can be discretized
in space and time for cell i between times tn and tn+1 as:

Un+1
i = Un

i −
∆tn

∆xi

(
F∗i+1/2 − F∗i−1/2

)
∀i (53)

In equation (53), F∗i±1/2 are fluxes computed at the interface between cells i and i± 1 that
result from the discontinuity of U in the piece-wise constant approximation. These terms
are the fluxes of the stationary state U∗ solution of the Riemann problem defined between
the cells.

In particular, the approximate-state Riemann solver [44], which is actually exact in this
case, is used in this work. The aforementioned solver is constructed upon the introduction
of an auxiliary vector Q, which is taken here as the opposite of F, that allows reformulating
the Riemann problem (52) by using the chain rule:

Qt −
∂Q

∂W
Qx = 0, with

{
Q(x, t = 0) = QL if x < 0

Q(x, t = 0) = QR if x > 0
(54)

The Jacobian matrix of system (54) admits two right eigenvectors R1 and R2, respectively
associated with the left and right going wave, that correspond to the columns entries of the
matrix R. The stationnary solution of system (54) is computed as:

Q∗ = QL + δ1R
1 = QR − δ2R

2 (55)

where δ1 and δ2 are the components of the solution of the following system:

R · δ = QR −QL (56)

Note that the dimension of system (56) makes its analytical solution very easy.
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At last, the flux quantities of problem (53) directly follow from equation (55) due to
the choice of the auxiliary vector Q = −F. Once the intercell fluxes have been computed
for both Riemann problems, one can advance in time the vector of conserved quantities Ui

according to the discrete equation (53).

5.3. Computation of the source term

The source term of equation (49), which essentially corresponds to the damage evolution
problem, leads to the following ODE system:

dUi

dt
= S(Ui) ∀i (57)

In order to avoid any influence on the CFL condition, this system is solved implicitly by using
a backward Euler discretization coupled with a Newton-Raphson method. It is however worth
noticing that this system of dimension 3 is fully local unlike the so far existing approaches.

The initial conditions used in the solution of (57) depends on the splitting scheme used.
Godunov splitting, which is the simplest and the one used in this work, consists in first
solving the homogeneous system and in using the computed solution as initial condition of
the solution of system (57).

To summarize, the numerical procedure for one time step ∆tn = tn+1 − tn and one cell i
of length ∆xi is as follows:

(1) Conservative update: Uh
i = Un

i − ∆tn

∆xi

(
F∗i+1/2 − F∗i−1/2

)

(2) Solution of the ODE system: Un+1
i = Uh

i + ∆tS(Un+1
i )

6. Numerical results

6.1. Constitutive model

Two different problems will be considered in this section for a one-dimensional domain of
length L = 5 mm. This solid is assumed to be made of a material for which the free energy
density and the yield function are [12, 42]:

Ψ(ε,D, D̃, D̃x) =
A(D)

2
ε2 + w(D) +

1

2
wlcl

2
cD̃2

x +
κ

2
(D̃ − D)2,

with A(D) =
1

2
(1 + sgn (ε))E(1−D)2 +

1

2
(1− sgn (ε))E

and w(D) = (1− γ)klD −Ml (ln(1−D) +D)

fD = −∂Ψ

∂D (〈ε〉)− γkl

(58)

E being Young’s modulus and sgn the sign function. In this model, γ ∈ [0, 1] is a parameter
used to tune the dissipated part of local damage energy, thus providing a general formulation
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of the situations discussed in section 4.2. Namely, the damage energy is fully stored for γ = 0
and fully dissipated for γ = 1. Note that in any case, one has:

fD = −A
′(D)

2
〈ε〉2 − kl +Ml

D
1−D + κ(D̃ − D) (59)

in such a way that for κ → ∞ and β → 0, the criterion commonly used in quasi-static is
recovered.

The choices made in terms of free energy density and yield function allows to model
unilateral effects with total recovery of the elastic modulus due to microcracks closure, that
is, E in compression and E(1−D)2 in tension. This effect is indeed of major importance in
dynamics for the role it plays on the speeds of tension and compression waves.

The microinertia parameter is on the other hand normalized as:

β = β0
ρwlcl

2
c

A(0)
(60)

Since there is no reason that any information on damage propagates faster than the acoustic
waves in the material, we should have β0 ≥ 1. The choice is made here to keep this parameter
equal to one for every numerical simulations for simplicity. However, the microinertia must
be the object of further modeling for it is expected to provide the crack propagation speed
when D = 1. This is nonetheless out of the scope of the present paper.

The values of the material parameters used in both numerical simulations are given in
table 1. The selected values of the viscosity and the penalty parameters η and κ enable the

E (GPa) ρ (kg·m−3) lc (m) η (s−1) kl (Pa) Ml (Pa) κ (Pa) wlc (Pa)
27 2500 2× 10−3 1× 10−4 50 250 1× 106 1

Table 1: Material parameters used for numerical simulations.

computation of qualitative results without encountering any numerical difficulty. A complete
analysis of these parameters, which is also out of the scope of the present paper for which
the focus is on the model derivation, should nevertheless be done in future works.

6.2. Multi-fragmentation test case
We consider the one-dimensional sample submitted to a uniform in space and time strain

rate εt = vd
L

. This is done through the combination of Dirichlet boundary conditions and
initial conditions on the velocity:

v(x = 0, t) = −vd ; v(x = L, t) = 0 ; v(x, t = 0) = −vd(1−
x

L
) (61)

As depicted in figure 2, this problem can be seen as a one-dimensional modeling of a very
thin spherical shell undergoing a constant internal pressure. The setting thus considered is
interesting for it allows to get closer from quasi-static conditions.

For the simulations, the nondissipative damage model is selected (i.e. γ = 0) and the
CFL number is set to 0.5. The simulations considered in this section ran until the physical
time t = 1.83 × 10−5 s is reached, which corresponds to 12 travels across the domain of an
elastic wave with speed cE(D = 0).
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x
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Figure 2: One-dimensional modeling of the dynamic fragmentation of a thin spherical shell.

6.2.1. Dynamical response of the medium

We start the illustration of the proposed model with a coarse mesh made of 50 uniform
finite volume cells in order to present the evolution of fields in the medium for an enforced
velocity of magnitude vd = 0.1 m/s.

Each row in figure 3 shows the stress or damage variables along the one-dimensional
medium at three different times corresponding to the columns. The first phase of the de-
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Figure 3: Stress and damage variables along the one-dimensional domain for a computation
performed with a 50 cells uniform mesh: vd = 0.1 m/s.

formation is purely elastic in such a way that stress increases homogeneously in the domain
until the damage threshold is reached (fD ≥ 0), which implies damage flow in every cells.
The state depicted in figure 3a corresponds to the very beginning of damage flow though it
cannot be distinguished in the plot. In figure 3b, however, one can see that damage flow
occurred since the damage variables are approximately equal to 0.1. Notice that the stress
continued increasing with respect to the previous time steps. This is consistent with the σ–ε
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curve (see that of the left cell provided in figure 4), in which the maximum stress is achieved
for D > 0.
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Figure 4: Constitutive model in the first cell of the domain: Left axis for σ(ε(t)) curve; Right
axis for D(ε(t)) curve.

The damage variables continue to increase after the stress crossed its maximum value as
shown in figure 3c. At that time, damage is still homogeneous. It is also worth noticing that
at t = 5.80×10−6 s, both damage variables are constant in the domain and the gap between
D and D̃ is of the order of 10−16 as can be seen in figure 3c.

The results of subsequent time steps are presented in figure 5. One can see in figure
5a that heterogeneities that are most likely due to round off errors eventually arise in the
damage profiles. As a result, the stress level is no longer constant in the domain. At time
t = 1.31× 10−5 s, several fragments are formed that is, zones where D is very close to one.
However, stress waves continue to propagate in the domain, which is seen in the stress profile
in figure 5b. From that time, damage no longer evolves so that no notable changes can be
seen between figures 5b and 5c in terms of the damage profile.

6.2.2. Mesh convergence

We now consider finer meshes made of {500, 1000, 2000, 4000} cells and four loading
conditions depending on the value of the enforced velocity vd = {0.1, 0.2, 0.4, 1.2} m/s to see
the effect on the fragmentation of the domain. These loading conditions lead to strain rate
values that respectively correspond to εt = {20, 40, 80, 240} s−1 .

Figure 6 shows the damage variable D profile in the one-dimensional domain at the end of
the computation (t = 1.83× 10−5) for the four considered strain rates. First, the number of
fragments at the end of the computation increases with the enforced strain rate as expected.
Even though the final damage profile along the one-dimensional domain differs from one
mesh size to another, which is not surprising given that the problem is somehow driven by
numerical round off error, the results do not differ significantly when the mesh is refined.

18



−0.5

0

0.5

1

σ
(M

P
a)

(d) t = 1.16× 10−5 s (e) t = 1.31× 10−5 s (f) t = 1.82× 10−5 s

0 2 4
0

0.2

0.4

0.6

0.8

1

x (mm)

D

0 2 4

x (mm)

0 2 4

x (mm)

D̃
D

Figure 5: Stress, damage and damage rate along the one-dimensional domain for a compu-
tation performed with a 50 cells uniform mesh: vd = 0.1 m/s, β0 = 1 (Continuation of figure
3)

Notice however that the damage level globally increases with the number of cells for every
imposed strain rate.

The evolution of the average fragment size obtained at the end of the computation when
the load is increased and mesh is refined can be seen in figure 7. The fragments length
is here defined as the distance between two noncontiguous cells at which D > 0.98. Con-
vergence is here analysed in two different ways. First, the left part of figure 7 plots the
evolution of the average fragment size with respect to the imposed strain rate. To plot
these curves, additional situations involving higher strain rates have been considered, namely
εt = {400, 800, 1600, 3200} s−1. It is then seen that good convergence is achieved in terms of
the mean fragment size with mesh refinement. Note nevertheless that the problem cannot
be solved using 500 cells for εt = 1600 m/s for in that case the mean fragment length is of
the same order as the mesh size ∆x = 1 × 10−2 mm. Second, the right part of the figure
shows that, for a given imposed strain rate, the average fragment size converges with the
number of cells for ε̇ ≤ 240 s−1. For larger values of the imposed strain rate, the numerical
model most likely requires more cells to reach convergence.

The mesh refinement performed also enables the analysis of computational times. Figure
8 then plots the simulation wall times with respect to the mesh size. The figure obviously
shows that doubling the number of cells leads to a CPU time that is four times bigger. This
feature of the scheme, when applied to one-dimensional problems, is due to the full locality
of the hyperbolic model proposed in this paper. Indeed, the existing nonlocal formulations,
which require the solution of nonlinear systems for the damage evolution, do not enable such
a complexity of the order O(∆x2).
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Figure 6: Shell fragmentation test case. Several uniform strain rates εt are imposed at t = 0
for four different mesh sizes. The damage field D obtained after t = 1.83× 10−5 s is plotted
along the one-dimensional domain.

6.3. One-dimensional spalling test

We now consider an impact between a projectile and an immobile solid which is modeled
in one space dimension by prescribing a positive initial velocity to the left part of the domain
and a zero initial velocity to the right part (see figure 9). This setting is well suited to perform
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Figure 9: Initial and boundary conditions for the one-dimensional spalling test
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one-dimensional simulations of the spalling test or the Laser Shock Adhesion Test.
For the simulations, both the fully dissipative (i.e. γ = 1) and the nondissipative (i.e.

γ = 0) have been considered. The physical time of the simulations is 1.5L/cE(D = 0) and
the CFL is set to 1.

6.3.1. Dynamical response of the medium

Figure 10 shows stress and damage profiles along the domain at different times, computed
with the dissipative and the nondissipative model. It can thus be seen that the two considered
models lead to the same solutions at any times.

The results in terms of stress and damage are presented in two complementary manners.
In figure 10, stress and damage profiles along the domain made of 2000 cells are shown at
different times while figure 11 displays colormaps of fields in the (x, t) plane. Thus, the plots
of figure 10 correspond to slices of figure 11 which are indicated by annotated horizontal
lines.

At the beginning of the computation, two compression waves emanate from the velocity
discontinuity and propagate toward each end of the domain (see figure 10a). After reflection
of the incident waves on the free boundaries, two unloading waves propagate toward the
interior of the domain (figure 10b). Those relaxations meet at x = 2L/3 and result in two
tensile waves moving leftward and rightward. Under that tensile stress state, damage flow is
triggered and D starts increasing, which can be seen in figure 10c. Then, figure 10d shows
that the stress level decreases at x = 2L/3 as damage increases until the domain completely
breaks at that point. Note also that the stress level on the elastic wave front decreased with
respect to time t = 1.58× 10−6 s. This is due to the time required for the stress to go back
on the yield surface during the relaxation process. The consequence of that amplitude decay
is that the damage flow associated with the tensile waves front yields a damage level that is
lower and lower as one looks further from x = 2L/3. That point appears as a color gradients
along the characteristics in figure 11.

At time t = 1.83× 10−6 s, the domain broke at x = 2L/3 (figure 10e). This leads to the
appearance of two white vertical bands in the plots of figure 11 that respectively correspond
to σ = 0 and D ≈ 1.

The stress level continues decreasing in the vicinity of the formed crack, thus making
the amplitude of the tensile waves lower and lower as indicated by the color gradient in the
left plot of figure 11. Eventually, σ becomes negative near the crack, which can be seen as
an elastic rebound due to fracture that results in two compression waves propagating left
and rightward. This appears as the blue gradient zone near the crack above line (e) in the
left plot of figure 11. The algorithm fails in capturing accurately those waves, hence the
oscillations that can be seen in figure 10f. Nonetheless, lowering down the CFL number
allows avoiding these spurious oscillations.

The presented results then demonstrate the ability to follow waves even once fragments
have formed.
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Figure 10: Stress and damage profile along the one-dimensional domain at different times
of the spalling test: comparison between the nondissipative model (solid lines) and the
dissipative one (markers).

6.3.2. Energy balance

Let us now have a look to the evolution of energy quantities during the simulation shown
in figure 12. A comparison between the nondissipative (solid lines) and fully dissipative
(markers) cases is proposed in terms of total, kinetic and free energies. As before, the
mapping can be made with figure 10 owing to annotated vertical lines.

One sees that no difference between the two settings of the model can be seen before
damage flow begins. Indeed, the total energy is conserved in both cases since the CFL is set
to 1. After the initiation of damage evolution, however, a gap due to physical dissipation
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nondissipative model and markers for the fully dissipative one

appears in total and free energy curves. Numerical diffusion also appears as the total energy
decay observed in the nondissipative case after damage flow started. This diffusion results
from damage that leads to elastic waves travelling with a speed lower than the undamaged
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celerity cE(D = 0).
Recall that in both cases γ = 0 and γ = 1, the same results in terms of stress and damage

is obtained. This parameter then enables to tune the dissipation of the model in order to,
for instance, fit experimental data without modifying the solution.

7. Conclusion

A new hyperbolic system for modeling dynamic brittle damage and fracture has been
introduced for three-dimensional problems. The derivation of the model follows from the
application of Hamilton’s variational principle to solids whose internal energy depends on
the damage internal variable commonly used and its gradient. According to the extended
Lagrangian approach [28–30], a microinertia term as well as an additional damage variable
and a penalty term are considered in the action functional. Taking into account microinertia,
which is associated with microvoids in [12], leads to the derivation of an hyperbolic system
whose numerical solution is cumbersome for explicit dynamics. Hence the introduction of
an additional damage variable that leads to a set of (nondissipative) hyperbolic equations
that can easily be solved with finite volumes. Those developments have been presented in
section 3.

In section 4, a damage evolution law has been added to the model through the introduc-
tion of the dual dissipation pseudo-potential. Note that a rate-dependent model is considered
in this work for versatility. Depending on the choice of the yield function and the free energy,
nondissipative, partially dissipative, or fully dissipative damage evolutions can be considered
as emphasized in section 4.2. The contributions of local and nonlocal terms of the free energy
to dissipation can also be tuned independently although this point has not been explored
here.

The first-order partial differential equations system obtained after a change of variable
has been shown to be hyperbolic in section 5. The homogeneous part of the system can
therefore be solved numerically by using a finite volume scheme such as Godunov scheme,
which has been briefly recalled. On the other hand, the nonhomogeneous part related to the
source term of the governing system is dealt with by an ODE solver that is here implicit. In
the end, the governing system of equations is solved using a fractional-step method consisting
of the conservative update and implicit solutions of the local source term at each step of an
explicit time discretization.

The presented numerical simulations show that the model allows to follow waves in a
brittle medium even after fracture has occurred (i.e. D ≈ 1). For the multi-fragmentation
test case, the numerical results emphasize that no mesh-dependency is seen and mesh con-
vergence is achieved in terms of number of fragments. In addition, the complexity of the
numerical scheme used is of the order O(∆x2), which results from the fully local formula-
tion of the proposed model. At last, the versatility of the model concerning the amount of
dissipated energy has been illustrated on the one-dimensional spalling test.

The presented model, which is very promising for dynamic brittle fracture applications,
must now be extended to multi-dimensional problems. This will enable comparisons with
existing approaches on the Kalthoff-Winkler test [45] for instance. Extension to finite strain
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will be considered in a forthcoming paper. In addition to the aforementioned perspectives,
the influence of the microinertia parameter should be deeply studied.
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[19] N. Moës, C. Stolz, P.-E. Bernard, N. Chevaugeon, A level set based model for damage
growth: The thick level set approach, International Journal for Numerical Methods in
Engineering 86 (3) (2011) 358–380. doi:https://doi.org/10.1002/nme.3069.

[20] N. Chevaugeon, N. Moës, Lipschitz regularization for fracture: The lip-field approach,
Computer Methods in Applied Mechanics and Engineering 402 (2022) 115644, a Special
Issue in Honor of the Lifetime Achievements of J. Tinsley Oden. doi:https://doi.

org/10.1016/j.cma.2022.115644.

[21] B. Bourdin, C. J. Larsen, C. L. Richardson, A time-discrete model for dynamic fracture
based on crack regularization, International journal of fracture 168 (2011) 133–143.

[22] M. J. Borden, C. V. Verhoosel, M. A. Scott, T. J. Hughes, C. M. Landis, A phase-field
description of dynamic brittle fracture, Computer Methods in Applied Mechanics and
Engineering 217-220 (2012) 77–95. doi:https://doi.org/10.1016/j.cma.2012.01.

008.

[23] M. Hofacker, C. Miehe, Continuum phase field modeling of dynamic fracture: variational
principles and staggered fe implementation, Int J Fract. (178) (2012) 113–129.

27

https://doi.org/https://doi.org/10.1016/j.crme.2004.09.010
https://doi.org/https://doi.org/10.1016/j.crme.2004.09.010
https://doi.org/https://doi.org/10.1016/j.cma.2004.12.016
https://doi.org/10.1016/S0022-5096(98)00034-9
https://doi.org/https://doi.org/10.1002/nme.3069
https://doi.org/https://doi.org/10.1016/j.cma.2022.115644
https://doi.org/https://doi.org/10.1016/j.cma.2022.115644
https://doi.org/https://doi.org/10.1016/j.cma.2012.01.008
https://doi.org/https://doi.org/10.1016/j.cma.2012.01.008


[24] T. Li, J.-J. Marigo, D. Guilbaud, S. Potapov, Gradient damage modeling of brittle
fracture in an explicit dynamics context, International Journal for Numerical Methods
in Engineering 108 (11) (2016) 1381–1405. doi:https://doi.org/10.1002/nme.5262.

[25] K. Moreau, N. Moes, D. Picart, L. Stainier, Explicit dynamics with a non-local damage
model using the thick level set approach, International Journal for Numerical Methods
in Engineering 102 (12 2014). doi:10.1002/nme.4824.
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