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Abstract

In the context of the shuffle theorem, many classical integer sequences appear with a natural
refinement by two statistics q and t: for example the Catalan and Schröder numbers. In
particular, the bi-graded Hilbert series of diagonal harmonics is a q, t-analog of (n+1)n−1 (and
can be written in terms of symmetric functions via the nabla operator). The motivation for this
work is the observation that at q = −1, this q, t-analog becomes a t-analog of Euler numbers, a
famous integer sequence that counts alternating permutations. We prove this observation via a
more general statement, that involves the Delta operator on symmetric functions (on one side),
and new combinatorial statistics on permutations involving peaks and valleys (on the other
side). An important tool are the schedule numbers of a parking function first introduced by
Hicks; and expanded upon by Haglund and Sergel. Other empirical observation suggest that
nonnegativity at q = −1 holds in far greater generality.
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1 Introduction

In the early 2000s, Haglund, Haiman, Remmel, Loehr and Ulyanov stated the shuffle conjec-
ture [13]: a combinatorial formula for the symmetric function ∇en in terms on labeled Dyck
paths. The interest in the symmetric function ∇en (where ∇ is the Macdonald eigenoperator
introduced in [1]) stems from it being the bi-graded Frobenius characteristic of the diagonal
harmonic representation of the symmetric group [17]. More than a decade after its statement,
Carlsson and Mellit proved the full shuffle conjecture, which thus became a theorem [3]. By
then, many special cases were known: for example ⟨∇en, en⟩ gives the famous q, t-Catalan num-
bers [11] and ⟨∇en, hden−d⟩ the q, t-Schröder numbers [12]. A consequence of the full shuffle
theorem is that the bi-graded Hilbert series ⟨∇en, hn

1 ⟩ gives a q, t-analogue of (n + 1)n−1. It
can be described combinatorially as the generating function of length n parking functions with
respect to area and number of diagonal inversions.

The famous Euler numbers (En)n≥0 can be defined by their generating series:∑
n≥0

En
zn

n!
= tan(z) + sec(z). (1)

They answer various enumeration problems, the most famous one being that En is the number
of alternating permutations in Sn, that is, those σ such that σ1 > σ2 < σ3 > · · · . Furthermore,
they appear in Arnold’s theory of singularity, and in number theory via their relation with
Bernoulli numbers. See [29, A000111] and the many references therein. Seeing them in the
context of Macdonald q, t-combinatorics is new, and is the motivation for this project. We will
show that specializing q = −1 in the q, t-analog of (n + 1)n−1 (the bi-graded Hilbert series of
diagonal harmonics) gives:

⟨∇en, hn
1 ⟩|q=−1 = t⌊n

2/4⌋En(t) (2)

where En(t) is a t-analogue of En appearing in [18]. This specialization at q = −1 is a t-
refinement of the identity ∑

P∈PFn

(−1)area(P ) = En, (3)

where PFn are the parking functions of size n. The history of this identity can be found in
[21, 24, 25]. For the definition of parking functions and their correspondence to standardly
labeled Dyck paths, see [15, Chapter 5].

We will establish Equation (2) as a corollary of a more general statement involving a gen-
eralization of the shuffle theorem: the valley version of the Delta conjecture [14]. This is a
combinatorial formula for the symmetric function ∆′

en−k−1
en. We will mainly use the follow-

ing consequence of the Delta conjecture:

⟨∆′
en−k−1

en, h
n
1 ⟩ =

∑
P∈stLD•k(n)

qdinv(P )tarea(P )xP , (4)

2



where stLD(n)•k denotes the set of standardly labeled Dyck paths with k decorated valleys
and dinv and area are combinatorial statistics on this set. See Section 2.1 for the precise
combinatorial definitions. At k = 0, we have ∆′

en−1
en = ∇en, and the Delta conjecture

reduces to the shuffle theorem.
Specializations of the shuffle theorem and Delta conjecture at q = 0 or q = 1 have been

extensively studied (see [10] and [27], respectively). To our knowledge, apart from (3), nothing
much was known about the specialization at q = −1.

We were inspired by the following remarkable symmetric function identity, which first ap-
peared as the case m = 0 in [9, Theorem 4.11]:

n−1∑
k=0

(−q)k∆′
en−k−1

en = ∇en|q=0 . (5)

Taking the scalar product with hn
1 and evaluating at q = −1, we obtain

n−1∑
k=0

⟨∆′
en−k−1

en, h
n
1 ⟩
∣∣∣
q=−1

= ⟨∇en|q=0 , h
n
1 ⟩ = [n]t!, (6)

where the second equality is an easy consequence of the shuffle theorem.
Our main result is a combinatorial interpretation of the terms of this sum, conditional

on (4).

Theorem 1.1. For all n ∈ N, we have

n−1∑
k=0

 ∑
P∈stLD(n)•k

tarea(P )(−1)dinv(P )

 zk =
∑

σ∈Sn

tinv3(σ)zmonot(σ),

where inv3 is a new statistic on permutations generalizing Chebikin’s notion of alternating
descents [4] and monot(σ) is the number of double ascents or descents of σ (see Section 4 for
the precise definitions).

Thus, if the Delta conjecture is proven to be true, we will have the following symmetric
function interpretation.

Corollary 1.2. If Equation (4) is true, then for all n ∈ N we have:

n−1∑
k=0

⟨∆′
en−k−1

en, h
n
1 ⟩
∣∣∣
q=−1

zk =
∑

σ∈Sn

tinv3(σ)zmonot(σ).

Notice that at z = 1 our theorem agrees with Equation (6).
The specialization at z = 0 of our theorem, and the fact that at k = 0 the Delta conjecture

reduces to the shuffle theorem will imply our formula (2).
Our proof relies on the schedule formula decomposition of the combinatorial side of the

valley Delta conjecture provided in [16]. We use this schedule framework to identify the valley
decorated Dyck paths that do not cancel out when specializing to q = −1. We then provide a
bijection between these paths and permutations. This map will be defined via specific gener-
ating trees of the objects and will send area to inv3 and the number of decorations to monot.
In this way the paths with no decorations (k = 0) get sent to permutations with no double
ascents or descents, that is, alternating permutations.

2 The valley Delta conjecture

In this section, we give the definitions needed to state the valley Delta conjecture.
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2.1 Valley-decorated labeled Dyck paths

3

4

5

1

6

7

2

8

•
•

•
•

Figure 1: An element of stLD•4(8).

Definition 2.1. A Dyck path of size n is a lattice path going from (0, 0) to (n, n) consisting of
east or north unit steps, always staying weakly above the line x = y, called the main diagonal.
The set of Dyck paths is denoted by D(n).

Definition 2.2. A labeled Dyck path is a pair (π,w), where π ∈ D(n) and w its labeling : a
word of positive integers whose i-th letter labels the i-th vertical step of π, placed in the square
to the right of this step, such that the labels appearing in the same column are increasing from
bottom to top. A labeling is said to be standard if its labels are exactly 1, 2, . . . , n. The set of
(standardly) labeled Dyck paths of size n is denoted by LD(n) (respectively, stLD(n)).

Standardly labeled Dyck paths are in bijection with parking functions.

Definition 2.3. The area word of a Dyck path π ∈ D(n) is the word a of n non-negative
integers whose i-th letter is the number of whole squares between the i-th vertical step of π
and the main diagonal x = y. The area of a Dyck path is the sum of the letters of its area
word and is denoted by area(π).

Definition 2.4. Given P := (π,w) ∈ LD(n) with area word a, the i-th vertical step of P is
called a contractible valley if

• either ai−1 > ai,

• or ai−1 = ai and wi−1 < wi.

In other words, the i-th vertical step is a contractible valley if it is preceded by a horizontal

step and the following holds: after replacing the two steps with (and accordingly shifting
the i-th label one cell to the left), we still get a valid labeled path where labels are increasing
in each column.

Definition 2.5. A (valley) decorated labeled Dyck path is a triple (π,w, dv) where (π,w) ∈
LD(n) and dv is some subset of the contractible valleys of (π,w). The elements of dv are called
decorations, and we visualize them by drawing a • to the left of these contractible valleys. The
set LD(n)•k denotes the decorated labeled Dyck paths with exactly k decorations.
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Definition 2.6. Given P := (π,w, dv) ∈ LD(n)•k with area word a, a pair (i, j) of indices of
vertical steps with 1 ≤ i < j ≤ n is said to be a

• primary diagonal inversion if ai = aj , wi < wj and i ̸∈ dv,

• secondary diagonal inversion if ai = aj + 1, wi > wj and i ̸∈ dv.

The dinv of P is defined to be the total number of primary and secondary diagonal inversions
minus the number of decorated valleys and is denoted by dinv(P ).

Remark 2.7. We note that the dinv of a decorated labeled path is always a non-negative integer.
Indeed, upon some reflection, one notices that each contractible valley forces the existence of
at least one dinv pair.

Definition 2.8. Given P := (π,w, dv) ∈ LD(n)•k, the area of P is simply defined as the area
of the underlying Dyck path, disregarding the labels and decorations: area(P ) := area(π).

Example 2.9. See Figure 1 for an example of an element of stLD(8)•4. Its labeling is 34516728,
its area word 01210100 and its area is 5. Its primary dinv pairs are

(1, 5), (1, 8), (2, 6),

and its secondary dinv pairs are
(2, 7), (3, 4), (6, 7).

Thus, since there are 4 decorated valleys, the dinv is equal to 2.

2.2 Symmetric functions

For all the undefined notations and the unproven identities, we refer to [6], where definitions,
proofs and/or references can be found.

We denote by Λ the graded algebra of symmetric functions with coefficients in Q(q, t).
The standard bases of the symmetric functions are the monomial {mλ}λ, complete {hλ}λ,
elementary {eλ}λ, power {pλ}λ and Schur {sλ}λ bases. We denote by ⟨ , ⟩ the Hall scalar
product on Λ, defined by declaring that the Schur functions form an orthonormal basis.

For a partition µ ⊢ n, we denote by

H̃µ := H̃µ[X] = H̃µ[X; q, t] =
∑
λ⊢n

K̃λµ(q, t)sλ

the (modified) Macdonald polynomials, where

K̃λµ := K̃λµ(q, t) = Kλµ(q, 1/t)t
n(µ)

are the (modified) Kostka coefficients (see [15] for more details).
Macdonald polynomials form a basis of the ring of symmetric functions Λ. This is a modi-

fication of the basis introduced by Macdonald [23].
We identify the partition µ with its Ferrers diagram, i.e., with the collection of cells {(i, j) |

1 ≤ i ≤ µj , 1 ≤ j ≤ ℓ(µ)}. For each cell c ∈ µ we define the co-arm and co-leg (denoted
respectively as a′µ(c), l

′
µ(c)) as the number of cells in µ that are strictly to the left and below c

in µ, respectively (see Figure 2). Define the following constant:

Bµ := Bµ(q, t) =
∑
c∈µ

qa
′
µ(c)tl

′
µ(c).

Let f [g] denotes the plethystic evaluation of a symmetric function f in an expression g (see
[15, Chapter 1 page 19]).
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Figure 2: Co-arm and co-leg of a cell in a partition.

Definition 2.10 ([1, 3.11]). We define the linear operator ∇ : Λ → Λ on the eigenbasis of
Macdonald polynomials as

∇H̃µ = e|µ|[Bµ]H̃µ = qn(µ′)tn(µ)H̃µ.

Definition 2.11. For f ∈ Λ, we define the linear operators ∆f ,∆
′
f : Λ → Λ on the eigenbasis

of Macdonald polynomials as

∆f H̃µ = f [Bµ]H̃µ, ∆′
f H̃µ = f [Bµ − 1]H̃µ.

2.3 The statement

Now we have all the necessary definitions to state the valley Delta conjecture, which first
appeared in [14].

Conjecture 2.12. For all n, k ∈ N,

∆′
en−k−1

en =
∑

P∈LD•k(n)

qdinv(P )tarea(P )xD

where the sum is over the set of labeled Dyck paths of size n with k decorations on contractible
valleys.

Taking the (Hall) scalar product with hn
1 (i.e., the Hilbert series), the Delta conjecture

implies (4).

3 Schedule formula

In this section we discuss the schedule formula for the combinatorics of the valley Delta con-
jecture proved by Haglund and Sergel in [16]. Their formula is an extension of the first work
on schedule numbers by Hicks in her thesis [19].

Definition 3.1. The set of decorated permutations S•k
n of [n] := {1, . . . , n} is the set of per-

mutations of [n] where k of its n letters are decorated, represented as
.
σi. Set S

•
n := ⊔k∈[n]S

•k
n .

For σ ∈ S•
n, we denote by dec(σ) its number of decorations.

Definition 3.2. Given P := (π,w, dv) ∈ stLD(n)•k with area word a, the diagonal word of a
decorated labeled Dyck path is the decorated permutation of n obtained as follows. A label
wi of P is said to lie in the j-th diagonal if ai = j. List all the labels wi in the 0-th diagonal,
in decreasing order, adding a decoration on the label if i ∈ dv. Then do the same for the 1-st
diagonal, 2-nd diagonal, and so forth. Denote this diagonal word by dw(P ).
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Example 3.3. The diagonal word of the path in Figure 1 is
.
8
.
63
.
274
.
15.

Definition 3.4. For σ ∈ Sn a permutation, its major index is defined to be the sum of the
elements of the set {i ∈ [n − 1] | σ(i) > σ(i + 1)}. The reverse major index of a permutation
is simply the major index of the reverse permutation σrev := σn · · ·σ1. For any marked permu-
tation σ ∈ S•

n, denote by revmaj(σ) the reverse major index of its underlying permutation.

The following is an easy consequence of the definitions.

Proposition 3.5. For all P ∈ stLD(n)•k, we have area(P ) = revmaj(dw(P )).

Proof. Due to the condition of strictly increasing labels in the columns of labeled Dyck paths,
each diagonal has at least one label which is bigger than some label of the previous diagonal.
Thus, the labels in the j-th diagonal of P are exactly the numbers in the (j +1)-th decreasing
run of dw(P ), and they each contribute j units to the area.

The following convention will greatly simplify definitions and proofs.

Convention 3.6. Given σ ∈ Sn, we will implicitly consider that σ is preceded by a 0-th entry:
σ0 = 0. If σ ∈ S•

n, then σ0 is never decorated.

Definition 3.7 (Hicks [19]). For τ ∈ S•
n define its schedule numbers sched(τ) = (si)1≤i≤n as

follows. Take r0, r1, r2, . . . to be the decreasing runs of τ0 · · · τn (we have r0 = 0).

• If τi is undecorated and an element of rj , let

si = #{k ∈ rj | k is undecorated and k > τi}
+#{k ∈ rj−1 | k is undecorated and k < τi}.

• If τi is decorated and an element of rj , let

si = #{k ∈ rj | k is undecorated and k < τi}
+#{k ∈ rj+1 | k is undecorated and k > τi}.

To reformulate this definition of schedule numbers, we introduce the following.

Definition 3.8. Let σ ∈ Sn. A sequence of consecutive elements σi, . . . , σj (with 0 ≤ i ≤ j) in
σ is a cyclic (decreasing) run if there exists an integer k such that σi+k (mod n+1), . . . , σj+k
(mod n+ 1) is decreasing (where the modulo means we take the representative in {0, . . . , n}).
Moreover, a cyclic run σi, . . . , σj is left-maximal if either i = 0 or σi−1, . . . , σj is not a cyclic
run, and right-maximal if either j = n or σi, . . . , σj+1 is not a cyclic run.

Example 3.9. Let σ = 0649751832. Some right-maximal cyclic runs are 064, 6497, 7518. Some
left-maximal cyclic runs are 1832, 6497.

Note that for each j, there is a unique left-maximal cyclic run σi, . . . , σj (obtained by
choosing i to be minimal), and similarly for each i there is a unique right-maximal cyclic run
σi, . . . , σj (obtained by choosing j to be maximal).

Remark 3.10. The definition of schedules is rephrased as follows: if τi is undecorated (respec-
tively, decorated), then si is the number of undecorated values (excluding τi) in the maximal
decreasing cyclic run ending (respectively, starting) at τi.

Example 3.11. If τ is the diagonal word of the path in Figure 1, then we have

τ 0
.
8
.
6 3
.
2 7 4

.
1 5

s 1 2 1 2 1 2 1 1.
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Figure 3: Illustration of cyclic runs.

In Figure 3, we visualize τ by placing dots at coordinates (i, τi): white dots for undecorated
and black dots for decorated τi. Notice that if we view this picture as a cylinder, identifying
the top and the bottom, the operation σi 7→ σi+k (mod n+1) can be seen as a rotation of this

cylinder, hence the name “cyclic runs”. The maximal cyclic run starting at
.
6 is
.
63
.
27 (Figure 3,

left), so that the associated schedule number is s2 = 2. The maximal cyclic run ending at 4 is

3
.
274 (Figure 3, right), so the iassociated schedule number is s6 = 2.

Let us recall the following classical definitions.

Definition 3.12. For n ∈ N, define its q-analogue by [n]q := 1+q+ . . .+qn−1. The q-factorial
of n is given by [n]q! = [n]q[n− 1]q . . . [1]q. Of course q is an arbitrary choice of variable, later
in the text we will also encounter t-analogues.

Now, the following result can be deduced from [16, Theorem 3.13].

Theorem 3.13. Given τ ∈ S•k
n and (si)1≤i≤n its schedule numbers, we have:∑

P∈stLD(n)•k

dw(P )=τ

qdinv(P )tarea(P ) = trevmaj(τ)
∏
i∈[n]

[si]q.

A consequence of this theorem is that a marked permutation is the diagonal word of some
permutation if and only if all its schedule numbers are strictly positive. At q = −1, more terms
vanish as a consequence of the following.

Lemma 3.14. Let σ ∈ S•
n, and (s1, . . . , sn) = sched(σ). If si > 0 for all i ∈ [n], then there

exists j ≥ 1 such that the set of schedule numbers {si | 1 ≤ i ≤ n} is equal to [j].

Proof. Suppose there is an index i such that si > 1. Our goal is to show that there exists i′

such that si′ = si − 1. We distinguish two cases, (which are very similar):

• σi is not decorated. Consider the left-maximal run ending at σi, denoted R, so R =
(σh, . . . , σi) for some h with h < i. Consider the maximal i′ such that σi′ is not decorated,
and h ≤ i′ < i. It exists because si > 0. Let R′ = (σh′ , . . . , σi′) be the left-maximal
cyclic run ending at σi′ . We have h′ ≤ h (because we know that (σh, . . . , σi′) is a cyclic
run), so R and R′ overlap on every non-decorated element of R other than σi. We deduce
that si′ ≥ si−1. In case of equality, we are done. Otherwise, we iterate this construction

8



to find i′′ such that i′′ < i′ and si′′ ≥ si′ − 1, and so on. The sequence si, si′ , . . . either
increases arbitrarily or decreases by 1 at each step, and we can define the next element
as long as the last element sj satisfies sj > 1. So this sequence of schedule numbers must
eventually reach the value si − 1.

• σi is decorated. Consider the right-maximal run beginning at σi, denoted R, so R =
(σi, . . . , σj) for some j. Consider the maximal i′ such that σi′ is not decorated, and
i < i′ ≤ j. It exists because si > 0. Let R′ = σh′ , . . . , σi′ be the left-maximal cyclic
run ending at σi′ . We have h′ ≤ i (because we know that (σi, . . . , σi′) is a cyclic run),
so R and R′ overlap on every non-decorated value of R other than σi′ . We deduce that
si′ ≥ si − 1. In case of equality, we are done. Otherwise, we are back to the situation of
the previous case.

In either case, we eventually find i′ as announced. The statement in the lemma follows by
iteration.

A consequence of this lemma is that the product
∏n

i=1[si]q at q = −1 is 0 unless all schedule
numbers are 1 (if si > 1 for some i, one of the factors is [2]q = 1 + q). Therefore, the schedule
formula of Theorem 3.13 becomes:∑

P∈stLD(n)•k

dw(P )=τ

(−1)dinv(P )tarea(P ) =

{
trevmaj(τ) if sched(τ) = 1n,

0 otherwise.
(7)

Notation. We denote by S•
n(1

n) to be the subset of S•
n of marked permutations with schedule

1n.

Now, summing Equation (7) over all possible permutations with k decorations τ , we get
the following interpretation of the combinatorics of the Hilbert series of the Delta conjecture
at q = −1: ∑

P∈stLD(n)•k

(−1)dinv(P )tarea(P ) =
∑

τ∈S•k
n (1n)

trevmaj(τ). (8)

Remark 3.15. We announced in the introduction that in the case k = 0 and t = 1, the left-
hand side of (8) is the Euler number En. Comparing with the right-hand side, this means that
undecorated permutations σ ∈ Sn with schedule 1n are counted by the Euler number En. On
the other side, Ramassamy [26, Corollary 5] gave a new combinatorial interpretation of the
Euler number En as the number of total cyclic orders on {0, . . . , n} such that (i, i+1, i+2) is
clockwise oriented for each i ∈ {0, . . . , n−2}. Undecorated permutations σ ∈ Sn with schedule
1n are simply in bijection with Ramassamy’s total cyclic orders via σ 7→ (0, σ−1(1), . . . , σ−1(n)).

We close this section by providing a bijection between Sn and S•
n(1

n), whose inverse is
given by simply removing the decorations. The existence of this bijection means that each
permutation can be decorated in exactly one way, so that the result has schedule 1n.

Lemma 3.16. Let σ ∈ S•
n(1

n). Let σk, . . . , σℓ be a left-maximal cyclic run, and assume that
σℓ is undecorated. Then σk is undecorated as well, and σk+1, . . . , σℓ−1 are decorated.

Proof. Since sℓ = 1, there is exactly one undecorated entry in σk, . . . , σℓ−1. Denote σu this
undecorated entry. If u ̸= k, σk is decorated and has at least two undecorated entries (namely
σu and σℓ) in the right-maximal cyclic run beginning at σk. This would give sk ≥ 2, which
contradicts sk = 1. Thus, u = k, and we get that σk in the only non-decorated entry in
σk, . . . , σℓ−1.

Lemma 3.17. For each permutation σ ∈ Sn, there exists exactly one decorated permutation
with underlying permutation σ and schedule 1n.

9



Proof. Assuming that there exists a decoration of σ so that the schedule is 1n, the previous
lemma readily gives necessary conditions on how to find it (in particular, uniqueness will follow
from existence): we proceed from right to left (starting from σn and ending at σ1), noting than
σn is necessarily undecorated (otherwise we have sn = 0). We define a sequence of indices
i1 > i2 > · · · > im for some m ≥ 1 as follows;

• i1 = n,

• knowing ij , we find ij+1 by the condition that σij+1 · · ·σij is the left-maximal cyclic run
ending at σij ,

• the sequence stops at im = 0.

We claim that decorating the indices not in {i1, . . . , im} yields the unique decoration such that
the associated schedule is 1n. It remains only to check that the schedule of this decorated
permutation is indeed 1n.

By construction, we have sk = 1 if σk is undecorated. It remains to show sk = 1 when σk

is decorated. So, consider a right-maximal cyclic run σk, . . . , σℓ where σk is decorated.

• Suppose sk ≥ 2. So, there are two (or more) undecorated entries in this run, say σi and
σj with k < i < j. The left-maximal cyclic run ending at σj contains at least σk, . . . , σj ,
so σi being undecorated contradicts the construction of i1 > i2 > · · · > im as above.

• Suppose sk = 0. So, there are no undecorated entries in this run. Let σi be an undecorated
entry with i > k and i minimal (this exists because σn is undecorated). We have i > ℓ
(because σk+1, . . . , σℓ are decorated). Consider the left-maximal cyclic run ending at σi,
denoted σi′ , . . . , σi. It cannot begin at σi′ with i′ ≤ k, because σk, . . . , σi is not a cyclic
run (the right-maximal cyclic run beginning at σk ends at σℓ, and i > ℓ). Thus, i′ > k, so
σi′ , . . . , σi does not contain any undecorated entry apart from σi. But this means si = 0,
which is a contradiction.

Other cases being excluded, we thus have sk = 1. This completes the proof of existence and
uniqueness of the decoration with schedule 1n.

4 Permutations

We continue to use Convention 3.6: for any σ ∈ Sn, we set σ0 = 0.

Definition 4.1. Given a permutation σ = σ1 · · ·σn and an index i ∈ {2, . . . , n}, we say that
σi is a

• double ascent if σi−2 < σi−1 < σi;

• double descent if σi−2 > σi−1 > σi;

• peak if σi−2 < σi−1 > σi;

• valley if σi−2 > σi−1 < σi.

Definition 4.2. For σ ∈ Sn, we define

monot(σ) = #
{
i ∈ {2, . . . , n}

∣∣ σi is a double descent or a double ascent
}
.

Definition 4.3. Let σ ∈ Sn, a pair (i, j) with 1 ≤ i < j ≤ n is said to be a 3-inversion if one
of the following holds:

• σj is a double ascent and σj−1 < σi < σj ;

• σj is a double descent and σj−1 > σi > σj ;

• σj is a peak and σi > σj ;

10



• σj is a valley and σi < σj .

The number of 3-inversions of σ is denoted by inv3(σ).

Example 4.4. For n = 3, 123 has zero 3-inversions, 132 and 321 have one 3-inversions, 231 and
312 have two 3-inversion and 213 has three 3-inversions.

Though the definition of the statistic might not seem very natural, we will see in the proof of
Proposition 4.6 that it can be tracked via a rather simple insertion procedure on permutations
(similar to the Lehmer codes).

We recall the following classical definitions.

Definition 4.5. A statistic I on permutation is called Mahonian if∑
σ∈Sn

tI(σ) = [n]t!.

Two classical Mahonian statistics are the major index (Definition 3.4) and the inversion
number defined by

inv(σ) = #
{
(i, j)

∣∣ 1 ≤ i < j ≤ n and σi > σj

}
.

From the main result in Section 5 (Theorem 5.1) and the fact that revmaj is Mahonian, we
will be able to deduce the following.

Proposition 4.6. The statistic inv3 is Mahonian, that is:∑
σ∈Sn

tinv3(σ) = [n]t!.

In [4], Chebikin defines another variant of the inversion statistic.

Definition 4.7. Let σ ∈ Sn, define ĉi(σ) to be the number of indices j > i such that

• i is odd and σi > σj ; or

• i is even and σi < σj .

Let ı̂(σ) = ĉ1(σ) + . . .+ ĉn−1(σ).

Proposition 4.8 ([4, Corollary 3.5]). The statistic ı̂ is Mahonian. Indeed, we have∑
σ∈Sn

tı̂(σ) = [n]t!.

Definition 4.9. An alternating permutation of [n] is a permutation σ ∈ Sn such that σ1 >
σ2 < σ3 > · · · . We denote the set of such permutations by An. In other words,

An := {σ ∈ Sn | monot(σ) = 0}.

The alternating permutations are counted by the Euler numbers En.
One can easily check that if σ is alternating then ı̂(σ) = inv3(σ). But this is not true in

general. For example if σ = 123, inv3(σ) = 3 and ı̂(σ) = 1.

Definition 4.10. A 31-2 pattern in σ ∈ Sn is a triple 1 ≤ i < i + 1 < j ≤ n such that
σi > σj > σi+1. We denote by 31-2(σ) the number of 31-2 patterns in σ.

In [18], the authors introduced an interesting t-analogue to the Euler numbers that was
subsequently studied in [4] and [20].

Definition 4.11. For all n ∈ N, define:

En(t) :=
∑

σ∈An

t31-2(σ). (9)

11



This polynomial En(t) has several beautiful properties including the facts that the gener-
ating functions

∑
n≥0E2n(t)z

n and
∑

n≥0E2n+1(t)z
n have nice continued fraction expressions

[18,20].

We study here a shift of this t-analogue, namely t⌊n
2/4⌋En(t). This t-analogue is naturally

connected to our 3-inversion statistic.

Proposition 4.12. For all n ∈ N,

t⌊n
2/4⌋En(t) =

∑
σ∈An

tinv3(σ). (10)

Proof. This is a Corollary of Lemma 9.4 of [4]. In this lemma, Chebikin proves that if σ ∈ An

then ⌊n2/4⌋+ 31-2(σ) = ı̂(σ), and we just remarked that if σ ∈ An then inv3(σ) = ı̂(σ).

5 Generating trees

The goal of this section is to prove the following. Recall that we denote by S•
n(1

n) the subset
of S•

n of decorated permutations with schedule 1n.

Theorem 5.1. There is a bijection ϕ : S•
n(1

n) → Sn with the following properties:

(i) revmaj(τ) = inv3(ϕ(τ)),

(ii) dec(τ) = monot(ϕ(τ)).

We will exhibit this bijection by constructing two isomorphic generating trees.

5.1 The tree for decorated permutations of schedule 1n

We continue to use Convention 3.6: for any σ ∈ Sn, we set σ0 = 0.
Let τ ∈ Sn. Using Definition 3.8, we know that τ0 . . . τj is a cyclic run if and only if

τ1 > . . . > τj . The generation of the tree will rely on the following manipulation.

Definition 5.2. Let τ ∈ Sn and 1 ≤ k ≤ n+ 1. Denote by k + τ the permutation σ of Sn+1

defined by {
σ0 = 0,

σi+1 = (k + τi) mod n+ 1 for 0 ≤ i ≤ n.

Example. If n = 7, τ = 01423657, and k = 3, we have

k + τ = 034756182.

Lemma 5.3. Let τ ∈ Sn and σ := k + τ . For 0 ≤ i ≤ j ≤ n, τi · · · τj is a cyclic run of τ if
and only if σi+1 · · ·σj+1 is a cyclic run of σ. Moreover, for 1 ≤ j ≤ n, (τ0 · · · τj is a cyclic run
and τj + k > n+ 1) if and only if σ0 · · ·σj+1 is a cyclic run.

Proof. The first statement is a direct consequence of the definition of a cyclic run (Defini-
tion 3.8). Note that for any permutation τ , τ0 . . . τj is a cyclic run if and only if τ1 > . . . > τj .
Therefore, σ0 . . . σj+1 is a cyclic run if and only if k = σ1 > . . . > σj+1. As σj+1 = (τj + k)
mod n+ 1, we have that σj+1 < k if and only if τj + k > n+ 1.

The structure of the generating tree will closely depend upon the following quantity.

Definition 5.4. Given τ ∈ S•
n(1

n), we define its structural attribute, a(τ) to be the value of
its first undecorated letter (excluding σ0 = 0).

12



Definition 5.5. Define a tree T1 of decorated permutations as follows. Take its root to be
01 ∈ S1. For τ ∈ S•

n(1
n) with n ≥ 1 and 1 ≤ k ≤ n + 1, the k-th descendant of τ in T1,

denoted δk(τ) is the decorated permutation whose underlying permutation is σ = k + τ . The
decorations of σ are as follows:

• σ0 = 0 is never decorated,

• σ1 is decorated if and only if k > n+ 1− a(τ),

• for i ≥ 2, σi is decorated if and only if τi−1 is decorated.

See the tree on the left in Figure 5 for an illustration of the first three levels of this tree.

Example 5.6. For example, take n = 5 and τ = 0
.
534
.
21. Then a(τ) = 3 and so n+1−a(τ) = 3.

We have
δ2(τ) = 02

.
156
.
43, δ4(τ) = 0

.
4
.
312
.
65.

Let us prove some observations about T1. Suppose that τ is a decorated permutation and
its schedule is 1n.

Lemma 5.7. Take τ ∈ S•
n(1

n). If τ0 . . . τj is a right-maximal cyclic run then there is a unique
ℓ such that 1 ≤ ℓ ≤ j and τℓ is undecorated.

Proof. Call r := τ0 . . . τj . If r it contained at least two undecorated letters, the second largest
one would have schedule 2. If r contains no undecorated letters there must be exactly one
undecorated τi with i > j in the maximal decreasing cyclic run starting at τk for all 1 ≤ k ≤ j.
It follows that the maximal decreasing run ending at τi contains only decorated letters and so
its schedule would be 0 (see Remark 3.10).

Proposition 5.8. The n-th level of the tree T1 contains exactly all the decorated permutations
whose schedule numbers are 1n.

Proof. Take τ ∈ S•
n(1

n). We have to show that for all k ∈ [n + 1], sched(δk(τ)) = 1n+1. The
result will then follow from Lemma 3.17 and the fact that the tree in Definition 5.5 clearly
generates all permutations of n at the n-th level.

Set τℓ := a(τ), the unique undecorated entry in the right-maximal cyclic run containing τ0.
Thanks to Lemma 5.7, this ℓ is unique.

We construct the decorated permutation σ = δk(τ).
Thanks to Lemma 5.3 we know that if τ0 . . . τj is not a cyclic run then the cyclic runs that

contain σj+1 are in bijection with the cyclic runs that contain τj and the schedule of σj+1 is
equal to the schedule of τj , which is one.

Moreover, if j > 0 and τ0 . . . τj is a cyclic run and τj is decorated, the cyclic runs that start
at σj+1 are in bijection with the cyclic runs that start at τj and the schedule of σj+1 is equal
to the schedule of τj , which is one.

We just have to show that σℓ+1 and σ1 have schedule 1.
If τℓ + k > n+1 then (by Lemma 5.3), σ0 . . . σℓ+1 is a cyclic run. As σℓ+1 is not decorated,

we must decorate σ1 to force that σℓ+1 and σ1 have schedule 1.
If τℓ + k ≤ n+1 then σ0 . . . σℓ+1 is not a cyclic run but σ1 . . . σℓ+1 is. Therefore, σ1 . . . σℓ+1

is a left maximal run and to force σℓ+1 to have schedule 1, σ1 must be non-decorated (otherwise
σℓ+1 has schedule 0). Moreover, if σ1 is not decorated, its schedule is 1, and we can conclude
the proof.

Proposition 5.9. For all decorated permutations τ , we have

revmaj(δk(τ)) = revmaj(τ) + (n+ 1− k).

13



Proof. This is clear for k = n+ 1, as δn+1(τ) is obtained by appending n+ 1 at the beginning
of τ (which creates no new descent in the reversed permutation, thus preserving the reverse
major index).

Next, we show revmaj(δk(τ)) = revmaj(δk−1(τ))− 1. To go from δk−1(τ) to δk(τ), we add 1
to every letter, and replace n+ 1 with 1. Let m be the index of n+ 1 in δk−1(τ)

rev. Then we
have:

Des(δk(τ)
rev) =

{
(Des(δk−1(τ)

rev) \ {m}) ∪ {m− 1} if m > 1,

Des(δk−1(τ)
rev) \ {m} if m = 1.

Indeed, the m-th letter of δk−1(τ)
rev was equal to n + 1 and so was a descent, but in δk(τ)

rev

it equals 1 and so is not descent. Furthermore, if m > 1, the (m − 1)-th letter of δk(τ)
rev is

followed by 1 and so must be a descent. In any case

revmaj(δk(τ)
rev) = revmaj(δk−1(τ)

rev)−m+m− 1 = revmaj(δk−1(τ)
rev)− 1

and the result follows.

Finally, the following property follows easily from Definitions 5.4 and 5.5.

Proposition 5.10. Recall that dec(τ) is the number of decorations of τ ∈ S•
n(1

n). We have:

dec(δk(τ)) = dec(τ) + χ(n+ 1− k ≤ a(τ)).

Furthermore, we have:

a(δk(τ)) =

{
k if n+ 1− k > a(τ),

a(τ) + k (mod n+ 1) otherwise.

5.2 A second tree related to peaks and valleys

Definition 5.11. Define a tree T2 of permutations as follows. Take its root to be 1 ∈ S1. For
σ ∈ Sn and 1 ≤ l ≤ n + 1, define ηl(σ) ∈ Sn+1 to be the unique permutation σ′ such that
σ′
n+1 = l and σ′

1, . . . , σ
′
n are in the same relative order as σ1, . . . , σn. In other words, we have

σ′
i = σi + χ(σi ≥ l)

for 1 ≤ l ≤ n + 1. This permutation is called the insertion of l in σ. The permutations ηl(σ)
for 1 ≤ l ≤ n+ 1 will form the descendants of σ in T2.

See the tree on the right in Figure 5. Later (Definition 5.14), we will define a total order
on the descendants of a node in T2, in a way that will give the isomorphism with T1. This
ordering will closely depend upon the following quantity.

Definition 5.12. Given σ ∈ Sn, define its structural attribute:

ã(σ) =

{
n+ 1− σn if σn−1 < σn,

σn if σn−1 > σn,

where we consider σ0 = 0 in case n = 1.

Proposition 5.13. For σ ∈ Sn, the map ψ on {1, 2, . . . , n+ 1} defined by

inv3(ηl(σ)) = inv3(σ) + ψ(l)

is a bijection onto {0, 1, . . . , n}.
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...

n

σn−1

σn

Figure 4: Contribution to inv3 for the n+ 1 different insertions into a permutation of n.

Proof. Take σ ∈ Sn and set σ′ = ηl(σ). Notice that for j ≤ n we have that (i, j) forms a
3-inversion in σ if and only if it forms a 3 inversion in σ′ (see Definitions 4.3 and 5.11). It
follows that inv3(σ

′) = inv3(σ
′) + s where s is the number of 3-inversions of the form (i, n+1).

We distinguish two cases. We have drawn a schematic representation of the proof in Figure 4.

1. Either σ ends with an ascent, that is σn−1 < σn. So we have ã := ã(σ) = n+1−σn. This
is illustrated in the left part of Figure 4, where the values in red are the value of ψ(l).

• For l > σn, σ
′
n+1 is a double ascent. The number of i’s such that σ′

n < σ′
i < σ′

n+1 is
equal to l−(σn+1). So for l = σn+1, σn+2, . . . , n+1 we have ψ(l) = 0, 1, . . . , ã−1,
respectively.

• For l ≤ σn, σ
′
n+1 is a peak. The number of i’s such that σ′

i > σ′
n+1 is equal to

n+ l − 1. So for l = σn, σn − 1, . . . , 1 we have ψ(l) = ã, ã+ 1, . . . , n, respectively.

2. Or, σ ends with a descent, that is σn−1 > σn. So we have ã := ã(σ) = σn. This is
illustrated in the right part of Figure 4.

• For l ≤ σn, σ
′
n+1 is a double descent. The number of i such that σ′

n > σ′
i > σ′

n+1

equals σn − l. So for l = σn, σn − 1, . . . , 1 we have ψ(l) = 0, 1, . . . , ã− 1, respectively.

• For l > σn, σ
′
n+1 is a valley. The number of i such that σ′

i > σ′
n+1 is equal to l − 1.

So for l = σn + 1, . . . , n+ 1, we have ψ(l) = ã, ã+ 1, . . . , n, respectively.

In each of the two cases, we see that the values taken by ψ(l) are exactly 0, . . . , n.

Definition 5.14. For σ ∈ Sn we define the k-th descendant of σ in T2, δ̃k(σ), to be the unique
descendant ηl(σ) such that ψ(l) = n+1− k, in other words inv3(δ̃k(σ)) = inv3(σ)+ (n+1− k).

Finally, we can deduce the following from the proof of Proposition 5.13.

Proposition 5.15. Recall that monot(σ) denotes the number of double ascents and descents
of σ ∈ Sn. We have:

monot(ηk(σ)) = monot(σ) + χ(n+ 1− k ≤ ã(σ)).
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Furthermore, we have:

ã(ηk(σ)) =

{
k if k ≤ n+ 1− ã(σ),

ã(σ) if k > n+ 1− ã(σ).

5.3 Isomorphism of the trees

To prove Theorem 5.1, we define ϕ recursively as follows:

ϕ(1) = 1,

ϕ(δk(σ)) = ηk(ϕ(σ)) for all σ ∈
⊎
n≥1

S•
n(1

n).

In Figure 5, the k-th descendant of each node is the k-th descendant from the bottom, so that
the image by ϕ of an element in the left tree can be obtained by looking for the corresponding
element in the right tree, if we were to “superpose” one tree on the other.

From this definition of ϕ and the definition of k-th descendant as being the descendant
adding n+1−k units to the relevant statistic in both trees (See Definition 5.5, Proposition 5.9
and Definition 5.14), we may conclude that

revmaj(σ) = inv3(ϕ(σ)).

From Proposition 5.10 and Proposition 5.15, we deduce

dec(σ) = monot(ϕ(σ)).

Thus, we have now established Theorem 5.1.

6 Conclusion and future directions

Let us now put the pieces together.

Proof of Theorem 1.1. From the bijection in Theorem 5.1, we may deduce that∑
τ∈S•

n(1n)

trevmaj(τ)zdec(σ) =
∑

σ∈Sn

tinv3(σ)zmonot(σ).

Recall Equation 8: ∑
P∈stLD(n)•k

(−1)dinv(P )tarea(P ) =
∑

τ∈S•k
n (1n)

trevmaj(τ).

Combining these last two equations and summing over k, we get:

n−1∑
k=0

 ∑
P∈stLD(n)•k

tarea(P )(−1)dinv(P )

 zk =
∑

σ∈Sn

tinv3(σ)zmonot(σ),

which is exactly the statement in Theorem 1.1.
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Figure 5: T1 and T2 up to level 4.
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Since the left-hand side of (8) is exactly the combinatorics of the Hilbert series of the Delta
conjecture (Equation 4) at q = −1, the validity of the Delta conjecture would imply

n−1∑
k=0

⟨∆′
en−k−1

en, h
n
1 ⟩
∣∣∣
q=−1

zk =
∑

σ∈Sn

tinv3(σ)zmonot(σ), (11)

as announced in Corollary 1.2.
Since at k = 0 the Delta conjecture reduces to the shuffle theorem, our result implies that

⟨∇en, hn
1 ⟩|q=−1 =

∑
σ∈Sn

monot(σ)=0

tinv3(σ) =
∑

σ∈An

tinv3(σ) = t⌊n
2/4⌋En(t),

where the last equality comes from Proposition 4.12. Thus, we have established (2).

6.1 On q, t-symmetry and the rise Delta

We remark that our results rely heavily on the schedule number formula. This formula breaks
up the combinatorics of the valley Delta conjecture into sets of paths with the same diagonal
word and thus the same area, and expresses the dinv as a product of q-analogues. Even though
it is easy to see from the symmetric function that

∆′
en−k−1

en[X; q, t] = ∆′
en−k−1

en[X; t, q],

this q, t-symmetry is not at all obvious on the combinatorial side. In particular, there is no
schedule formula that fixes dinv and expresses area as a product of t-analogues. Thus, we have
statements for q = −1 but not for t = −1. In the same vein, there is no known schedule formula
for the rise version of the Delta conjecture (which is now a theorem [7]) and so (11) remains
conditional on the valley Delta conjecture (Conjecture 2.12).

6.2 On refinements of the Delta conjecture

Let us now say a few words about how our results relate to the well-known refinements of the
Delta conjecture.

The compositional (valley) Delta conjecture is a refinement of Conjecture 2.12, giving a
formula for the symmetric function Θek∇Cα in terms of (valley or rise) decorated Dyck paths,
where α is a composition dictating at which points the path touches the diagonal x = y.
Summing over all compositions, we have

∑
α⊨n−k Θn−k∇Cα = ∆′

en−k−1
en. See [5] for more

details on the compositional Delta conjecture. The combinatorics in this paper suggests that
the following symmetric function identities hold:∑

α⊨n−k
α ̸=(n−k)

⟨Θek∇Cα, h
n
1 ⟩|q=−1 = 0,

⟨Θek∇C(n−k), h
n
1 ⟩|q=−1 = ⟨∆′

en−k−1
en, h

n
1 ⟩|q=−1.

Indeed, schedule 1n paths always have composition n− k. If the Delta conjecture is true, this
would prove these symmetric function identities. As it stands, only the k = 0 case is proven,
via the shuffle theorem.

Similar identities can be found for the touching refinement Θk∇En,l, of the Delta conjecture,
for q = −1 and ⟨·, hn

1 ⟩:

⟨Θek∇En,l, h
n
1 ⟩|q=−1 = 0 if l > 1,

⟨Θek∇En,1, h
n
1 ⟩|q=−1 = ⟨∆′

en−k−1
en, h

n
1 ⟩|q=−1.
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Furthermore, when setting t = −1 instead of q, we noticed that

(−1)n−l⟨∇En,l, h
n
1 ⟩|t=−1

is a q-analogue of the number of ordered forests of k increasing unordered trees with n vertices
and in which all outdegrees are ≤ 2 (sequence [29, A185421]). The trees in these forests are
counted by the Euler numbers. Using these combinatorial objects, we managed to interpret
the following symmetric function identity at q = 1:

n∑
l=1

⟨∇En,l, h
n
1 ⟩|t=−1 = ⟨∇en, hn

1 ⟩|t=−1.

6.3 On representation-theoretic interpretations

Famously, the symmetric function of the shuffle theorem is the bi-graded Frobenius characteris-
tic of the diagonal co-invariant module [17]. The symmetric function ∆′

en−k−1
en is conjectured

to be the character of the 2-bosonic, 1-fermionic diagonal module [30]. At present, we know of
no representation-theoretic interpretation of the evaluation of at q = −1. Some manipulation of
Bergeron’s conjecture for characters of general boson-fermion diagonal modules [2, Conjecture
1] might provide some hints in this direction.

6.4 More positivity at q = −1

Computational evidence suggests that the evaluation at q = −1 yields t-positive results for
many other polynomials related to the shuffle theorem and Delta conjecture. For example

• ⟨∇en, hµ⟩ for any partition µ;

• ⟨∇ω(pn);hn
1 ⟩, where ∇ω(pn) is the symmetric function related to the square theorem

(conjectured in [22] and proved in [28]);

• ⟨ΘekΘel∇en−k−l, h
n
1 ⟩, where ΘekΘel∇en−k−l is the symmetric function introduced in [5]

that conjecturally unifies both versions of the Delta conjecture;

• ⟨Θeλe1, h
|λ|+1
1 ⟩, see the Theta trees conjecture in [8].

It would thus be interesting to study the q = −1 evaluation in a more general framework,
for example in modified Macdonald polynomials.

6.5 An open (combinatorial) problem

Let us end this section with a combinatorial problem. Consider the sums

Dn,j(t) =
∑

σ∈Sn,
monot(σ)≤j

tinv3(σ). (12)

In particular, this is 0 if j < 0, and Dn,j(t) = Dn,n−1(t) if j > n− 1.

Conjecture 6.1. For n > 1 and 0 ≤ j ≤ n− 1, we have:

Dn,j(t) = tn−j−1[j + 1]tDn−1,j+1(t) + [n− j − 1]tDn−1,j−1(t). (13)

It would be very interesting to give a combinatorial proof of (13). Of course, one might try
to do to this starting from the other combinatorial interpretation:

Dn,j(t) =
∑

σ∈S•(1n),
dec(σ)≤j

trevmaj(σ).
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In the case t = 1, it is possible to give a combinatorial proof of the conjecture, based on
the combinatorial interpretation in (12). The idea is to consider the map σ 7→ σ′ (where, for
σ ∈ Sn, σ

′ ∈ Sn−1 is obtained by removing the entry n), and examine how monot is distributed
among the n pre-images of a given σ ∈ Sn−1.
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