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Combinatorics of the Delta conjecture at q = -1

In the context of the shuffle theorem, many classical integer sequences appear with a natural refinement by two statistics q and t: for example the Catalan and Schröder numbers. In particular, the bi-graded Hilbert series of diagonal harmonics is a q, t-analog of (n + 1) n-1 (and can be written in terms of symmetric functions via the nabla operator). The motivation for this work is the observation that at q = -1, this q, t-analog becomes a t-analog of Euler numbers, a famous integer sequence that counts alternating permutations. We prove this observation via a more general statement, that involves the Delta operator on symmetric functions (on one side), and new combinatorial statistics on permutations involving peaks and valleys (on the other side). An important tool are the schedule numbers of a parking function first introduced by Hicks; and expanded upon by Haglund and Sergel. Other empirical observation suggest that nonnegativity at q = -1 holds in far greater generality.
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Introduction

In the early 2000s, Haglund, Haiman, Remmel, Loehr and Ulyanov stated the shuffle conjecture [START_REF] Haglund | A combinatorial formula for the character of the diagonal coinvariants[END_REF]: a combinatorial formula for the symmetric function ∇en in terms on labeled Dyck paths. The interest in the symmetric function ∇en (where ∇ is the Macdonald eigenoperator introduced in [START_REF] Bergeron | Science Fiction and Macdonald's Polynomials[END_REF]) stems from it being the bi-graded Frobenius characteristic of the diagonal harmonic representation of the symmetric group [START_REF] Haiman | Vanishing theorems and character formulas for the hilbert scheme of points in the plane[END_REF]. More than a decade after its statement, Carlsson and Mellit proved the full shuffle conjecture, which thus became a theorem [START_REF] Carlsson | A proof of the shuffle conjecture[END_REF]. By then, many special cases were known: for example ⟨∇en, en⟩ gives the famous q, t-Catalan numbers [START_REF] Haglund | Conjectured statistics for the q,t-catalan numbers[END_REF] and ⟨∇en, h d e n-d ⟩ the q, t-Schröder numbers [START_REF]A proof of the q,t-Schröder conjecture[END_REF]. A consequence of the full shuffle theorem is that the bi-graded Hilbert series ⟨∇en, h n 1 ⟩ gives a q, t-analogue of (n + 1) n-1 . It can be described combinatorially as the generating function of length n parking functions with respect to area and number of diagonal inversions.

The famous Euler numbers (En) n≥0 can be defined by their generating series:

n≥0 En z n n! = tan(z) + sec(z). (1) 
They answer various enumeration problems, the most famous one being that En is the number of alternating permutations in Sn, that is, those σ such that σ1 > σ2 < σ3 > • • • . Furthermore, they appear in Arnold's theory of singularity, and in number theory via their relation with Bernoulli numbers. See [29, A000111] and the many references therein. Seeing them in the context of Macdonald q, t-combinatorics is new, and is the motivation for this project. We will show that specializing q = -1 in the q, t-analog of (n + 1) n-1 (the bi-graded Hilbert series of diagonal harmonics) gives:

⟨∇en, h n 1 ⟩| q=-1 = t ⌊n 2 /4⌋ En(t) (2) 
where En(t) is a t-analogue of En appearing in [START_REF] Han | A different q-analogue of Euler numbers[END_REF]. This specialization at q = -1 is a trefinement of the identity P ∈PFn (-1) area(P ) = En,

where PFn are the parking functions of size n. The history of this identity can be found in [START_REF] Kreweras | Une famille de polynômes ayant plusieurs propriétés énumeratives[END_REF][START_REF] Mallows | The inversion enumerator for labeled trees[END_REF][START_REF] Pansiot | Nombres d'Euler et inversions dans les arbres[END_REF]. For the definition of parking functions and their correspondence to standardly labeled Dyck paths, see [START_REF] Haglund | The q, t-catalan numbers and the space of diagonal harmonics: with an appendix on the combinatorics of macdonald polynomials[END_REF]Chapter 5]. We will establish Equation (2) as a corollary of a more general statement involving a generalization of the shuffle theorem: the valley version of the Delta conjecture [START_REF] Haglund | The Delta conjecture[END_REF]. This is a combinatorial formula for the symmetric function ∆ ′ e n-k-1 en. We will mainly use the following consequence of the Delta conjecture:

⟨∆ ′ e n-k-1 en, h n 1 ⟩ = P ∈stLD •k (n) q dinv(P ) t area(P ) x P , (4) 
where stLD(n) •k denotes the set of standardly labeled Dyck paths with k decorated valleys and dinv and area are combinatorial statistics on this set. See Section 2.1 for the precise combinatorial definitions. At k = 0, we have ∆ ′ e n-1 en = ∇en, and the Delta conjecture reduces to the shuffle theorem.

Specializations of the shuffle theorem and Delta conjecture at q = 0 or q = 1 have been extensively studied (see [START_REF] Garsia | A proof of the delta conjecture when q=0[END_REF] and [START_REF] Romero | The delta conjecture at q=1[END_REF], respectively). To our knowledge, apart from (3), nothing much was known about the specialization at q = -1.

We were inspired by the following remarkable symmetric function identity, which first appeared as the case m = 0 in [START_REF] Adderio | The Delta square conjecture[END_REF]Theorem 4.11]:

n-1 k=0 (-q) k ∆ ′ e n-k-1 en = ∇en| q=0 . (5) 
Taking the scalar product with h n 1 and evaluating at q = -1, we obtain

n-1 k=0 ⟨∆ ′ e n-k-1 en, h n 1 ⟩ q=-1 = ⟨ ∇en| q=0 , h n 1 ⟩ = [n]t!, (6) 
where the second equality is an easy consequence of the shuffle theorem.

Our main result is a combinatorial interpretation of the terms of this sum, conditional on (4).

Theorem 1.1. For all n ∈ N, we have

n-1 k=0   P ∈stLD(n) •k t area(P ) (-1) dinv(P )   z k = σ∈Sn t inv 3 (σ) z monot(σ) ,
where inv3 is a new statistic on permutations generalizing Chebikin's notion of alternating descents [START_REF] Chebikin | Variations on descents and inversions in permutations[END_REF] and monot(σ) is the number of double ascents or descents of σ (see Section 4 for the precise definitions).

Thus, if the Delta conjecture is proven to be true, we will have the following symmetric function interpretation.

Corollary 1.2. If Equation (4) is true, then for all n ∈ N we have: σ) .

n-1 k=0 ⟨∆ ′ e n-k-1 en, h n 1 ⟩ q=-1 z k = σ∈Sn t inv 3 (σ) z monot(
Notice that at z = 1 our theorem agrees with Equation [START_REF]Decorated Dyck paths, polyominoes, and the delta conjecture[END_REF]. The specialization at z = 0 of our theorem, and the fact that at k = 0 the Delta conjecture reduces to the shuffle theorem will imply our formula [START_REF] Bergeron | The bosonic-fermionic diagonal coinvariant modules conjecture[END_REF].

Our proof relies on the schedule formula decomposition of the combinatorial side of the valley Delta conjecture provided in [START_REF] Haglund | Schedules and the Delta conjecture[END_REF]. We use this schedule framework to identify the valley decorated Dyck paths that do not cancel out when specializing to q = -1. We then provide a bijection between these paths and permutations. This map will be defined via specific generating trees of the objects and will send area to inv3 and the number of decorations to monot. In this way the paths with no decorations (k = 0) get sent to permutations with no double ascents or descents, that is, alternating permutations.

The valley Delta conjecture

In this section, we give the definitions needed to state the valley Delta conjecture. Definition 2.2. A labeled Dyck path is a pair (π, w), where π ∈ D(n) and w its labeling: a word of positive integers whose i-th letter labels the i-th vertical step of π, placed in the square to the right of this step, such that the labels appearing in the same column are increasing from bottom to top. A labeling is said to be standard if its labels are exactly 1, 2, . . . , n. The set of (standardly) labeled Dyck paths of size n is denoted by LD(n) (respectively, stLD(n)).

Valley-decorated labeled Dyck paths

Standardly labeled Dyck paths are in bijection with parking functions.

Definition 2.3. The area word of a Dyck path π ∈ D(n) is the word a of n non-negative integers whose i-th letter is the number of whole squares between the i-th vertical step of π and the main diagonal x = y. The area of a Dyck path is the sum of the letters of its area word and is denoted by area(π). Definition 2.4. Given P := (π, w) ∈ LD(n) with area word a, the i-th vertical step of P is called a contractible valley if

• either ai-1 > ai,
• or ai-1 = ai and wi-1 < wi.

In other words, the i-th vertical step is a contractible valley if it is preceded by a horizontal step and the following holds: after replacing the two steps with (and accordingly shifting the i-th label one cell to the left), we still get a valid labeled path where labels are increasing in each column. Definition 2.5. A (valley) decorated labeled Dyck path is a triple (π, w, dv) where (π, w) ∈ LD(n) and dv is some subset of the contractible valleys of (π, w). The elements of dv are called decorations, and we visualize them by drawing a • to the left of these contractible valleys. The set LD(n) •k denotes the decorated labeled Dyck paths with exactly k decorations. Definition 2.6. Given P := (π, w, dv) ∈ LD(n) •k with area word a, a pair (i, j) of indices of vertical steps with 1 ≤ i < j ≤ n is said to be a • primary diagonal inversion if ai = aj, wi < wj and i ̸ ∈ dv,

• secondary diagonal inversion if ai = aj + 1, wi > wj and i ̸ ∈ dv.

The dinv of P is defined to be the total number of primary and secondary diagonal inversions minus the number of decorated valleys and is denoted by dinv(P ).

Remark 2.7. We note that the dinv of a decorated labeled path is always a non-negative integer. Indeed, upon some reflection, one notices that each contractible valley forces the existence of at least one dinv pair. Definition 2.8. Given P := (π, w, dv) ∈ LD(n) •k , the area of P is simply defined as the area of the underlying Dyck path, disregarding the labels and decorations: area(P ) := area(π).

Example 2.9. See Figure 1 for an example of an element of stLD(8) •4 . Its labeling is 34516728, its area word 01210100 and its area is 5. Its primary dinv pairs are [START_REF] Bergeron | Science Fiction and Macdonald's Polynomials[END_REF][START_REF] Adderio | Theta operators, refined Delta conjectures, and coinvariants[END_REF], [START_REF] Bergeron | Science Fiction and Macdonald's Polynomials[END_REF][START_REF] Adderio | Tiered trees and theta operators[END_REF], [START_REF] Bergeron | The bosonic-fermionic diagonal coinvariant modules conjecture[END_REF][START_REF]Decorated Dyck paths, polyominoes, and the delta conjecture[END_REF], and its secondary dinv pairs are (2, 7), [START_REF] Carlsson | A proof of the shuffle conjecture[END_REF][START_REF] Chebikin | Variations on descents and inversions in permutations[END_REF], [START_REF]Decorated Dyck paths, polyominoes, and the delta conjecture[END_REF][START_REF] Adderio | A proof of the compositional Delta conjecture[END_REF].

Thus, since there are 4 decorated valleys, the dinv is equal to 2.

Symmetric functions

For all the undefined notations and the unproven identities, we refer to [START_REF]Decorated Dyck paths, polyominoes, and the delta conjecture[END_REF], where definitions, proofs and/or references can be found. We denote by Λ the graded algebra of symmetric functions with coefficients in Q(q, t). The standard bases of the symmetric functions are the monomial {m λ } λ , complete {h λ } λ , elementary {e λ } λ , power {p λ } λ and Schur {s λ } λ bases. We denote by ⟨ , ⟩ the Hall scalar product on Λ, defined by declaring that the Schur functions form an orthonormal basis.

For a partition µ ⊢ n, we denote by Hµ := Hµ[X] = Hµ[X; q, t] = λ⊢n K λµ (q, t)s λ the (modified) Macdonald polynomials, where

K λµ := K λµ (q, t) = K λµ (q, 1/t)t n(µ)
are the (modified) Kostka coefficients (see [START_REF] Haglund | The q, t-catalan numbers and the space of diagonal harmonics: with an appendix on the combinatorics of macdonald polynomials[END_REF] for more details). Macdonald polynomials form a basis of the ring of symmetric functions Λ. This is a modification of the basis introduced by Macdonald [START_REF] Grant | Symmetric Functions and Hall Polynomials[END_REF].

We identify the partition µ with its Ferrers diagram, i.e., with the collection of cells

{(i, j) | 1 ≤ i ≤ µj, 1 ≤ j ≤ ℓ(µ)}.
For each cell c ∈ µ we define the co-arm and co-leg (denoted respectively as a ′ µ (c), l ′ µ (c)) as the number of cells in µ that are strictly to the left and below c in µ, respectively (see Figure 2). Define the following constant:

Bµ := Bµ(q, t) = c∈µ q a ′ µ (c) t l ′ µ (c) .
Let 

∇ Hµ = e |µ| [Bµ] Hµ = q n(µ ′ ) t n(µ) Hµ.
Definition 2.11. For f ∈ Λ, we define the linear operators ∆ f , ∆ ′ f : Λ → Λ on the eigenbasis of Macdonald polynomials as

∆ f Hµ = f [Bµ] Hµ, ∆ ′ f Hµ = f [Bµ -1] Hµ.

The statement

Now we have all the necessary definitions to state the valley Delta conjecture, which first appeared in [START_REF] Haglund | The Delta conjecture[END_REF].

Conjecture 2.12. For all n, k ∈ N,

∆ ′ e n-k-1 en = P ∈LD •k (n) q dinv(P ) t area(P ) x D
where the sum is over the set of labeled Dyck paths of size n with k decorations on contractible valleys.

Taking the (Hall) scalar product with h n 1 (i.e., the Hilbert series), the Delta conjecture implies (4).

Schedule formula

In this section we discuss the schedule formula for the combinatorics of the valley Delta conjecture proved by Haglund and Sergel in [START_REF] Haglund | Schedules and the Delta conjecture[END_REF]. Their formula is an extension of the first work on schedule numbers by Hicks in her thesis [START_REF] Hicks | Parking function polynomials and their relation to the shuffle conjecture[END_REF].

Definition 3.1. The set of decorated permutations S •k n of [n] := {1, . . . , n} is the set of per- mutations of [n]
where k of its n letters are decorated, represented as .

σi. Set S • n := ⊔ k∈[n] S •k n . For σ ∈ S •
n , we denote by dec(σ) its number of decorations. Definition 3.2. Given P := (π, w, dv) ∈ stLD(n) •k with area word a, the diagonal word of a decorated labeled Dyck path is the decorated permutation of n obtained as follows. A label wi of P is said to lie in the j-th diagonal if ai = j. List all the labels wi in the 0-th diagonal, in decreasing order, adding a decoration on the label if i ∈ dv. Then do the same for the 1-st diagonal, 2-nd diagonal, and so forth. Denote this diagonal word by dw(P ). Definition 3.4. For σ ∈ Sn a permutation, its major index is defined to be the sum of the elements of the set {i ∈ [n -1] | σ(i) > σ(i + 1)}. The reverse major index of a permutation is simply the major index of the reverse permutation σ rev := σn • • • σ1. For any marked permutation σ ∈ S • n , denote by revmaj(σ) the reverse major index of its underlying permutation. The following is an easy consequence of the definitions. Proposition 3.5. For all P ∈ stLD(n) •k , we have area(P ) = revmaj(dw(P )).

Proof. Due to the condition of strictly increasing labels in the columns of labeled Dyck paths, each diagonal has at least one label which is bigger than some label of the previous diagonal. Thus, the labels in the j-th diagonal of P are exactly the numbers in the (j + 1)-th decreasing run of dw(P ), and they each contribute j units to the area.

The following convention will greatly simplify definitions and proofs. Convention 3.6. Given σ ∈ Sn, we will implicitly consider that σ is preceded by a 0-th entry:

σ0 = 0. If σ ∈ S •
n , then σ0 is never decorated. Definition 3.7 (Hicks [START_REF] Hicks | Parking function polynomials and their relation to the shuffle conjecture[END_REF]). For τ ∈ S • n define its schedule numbers sched(τ ) = (si) 1≤i≤n as follows. Take r0, r1, r2, . . . to be the decreasing runs of τ0 • • • τn (we have r0 = 0).

• If τi is undecorated and an element of rj, let si = #{k ∈ rj | k is undecorated and k > τi} + #{k ∈ rj-1 | k is undecorated and k < τi}. • If τi is decorated and an element of rj, let si = #{k ∈ rj | k is undecorated and k < τi} + #{k ∈ rj+1 | k is undecorated and k > τi}.
To reformulate this definition of schedule numbers, we introduce the following. Definition 3.8. Let σ ∈ Sn. A sequence of consecutive elements σi, . . . , σj (with 0 ≤ i ≤ j) in σ is a cyclic (decreasing) run if there exists an integer k such that σi +k (mod n+1), . . . , σj +k (mod n + 1) is decreasing (where the modulo means we take the representative in {0, . . . , n}). Moreover, a cyclic run σi, . . . , σj is left-maximal if either i = 0 or σi-1, . . . , σj is not a cyclic run, and right-maximal if either j = n or σi, . . . , σj+1 is not a cyclic run.

Example 3.9. Let σ = 0649751832. Some right-maximal cyclic runs are 064, 6497, 7518. Some left-maximal cyclic runs are 1832, 6497.

Note that for each j, there is a unique left-maximal cyclic run σi, . . . , σj (obtained by choosing i to be minimal), and similarly for each i there is a unique right-maximal cyclic run σi, . . . , σj (obtained by choosing j to be maximal). Remark 3.10. The definition of schedules is rephrased as follows: if τi is undecorated (respectively, decorated), then si is the number of undecorated values (excluding τi) in the maximal decreasing cyclic run ending (respectively, starting) at τi. Example 3.11. If τ is the diagonal word of the path in Figure 1, then we have τ 0 .

8 . 6 3 . In Figure 3, we visualize τ by placing dots at coordinates (i, τi): white dots for undecorated and black dots for decorated τi. Notice that if we view this picture as a cylinder, identifying the top and the bottom, the operation σi → σi + k (mod n + 1) can be seen as a rotation of this cylinder, hence the name "cyclic runs". The maximal cyclic run starting at . 6 is .

63

.

27 (Figure 3, left), so that the associated schedule number is s2 = 2. The maximal cyclic run ending at 4 is 3 .

274 (Figure 3, right), so the iassociated schedule number is s6 = 2.

Let us recall the following classical definitions.

Definition 3.12. For n ∈ N, define its q-analogue by [n]q := 1 + q + . . . + q n-1 . The q-factorial of n is given by [n]q! = [n]q[n -1]q . . . [START_REF] Bergeron | Science Fiction and Macdonald's Polynomials[END_REF]q. Of course q is an arbitrary choice of variable, later in the text we will also encounter t-analogues.

Now, the following result can be deduced from [START_REF] Haglund | Schedules and the Delta conjecture[END_REF]Theorem 3.13].

Theorem 3.13. Given τ ∈ S •k n and (si) 1≤i≤n its schedule numbers, we have:

P ∈stLD(n) •k dw(P )=τ q dinv(P ) t area(P ) = t revmaj(τ ) i∈[n]
[si]q.

A consequence of this theorem is that a marked permutation is the diagonal word of some permutation if and only if all its schedule numbers are strictly positive. At q = -1, more terms vanish as a consequence of the following. Proof. Suppose there is an index i such that si > 1. Our goal is to show that there exists i ′ such that s i ′ = si -1. We distinguish two cases, (which are very similar):

• σi is not decorated. Consider the left-maximal run ending at σi, denoted R, so R = (σ h , . . . , σi) for some h with h < i. Consider the maximal i ′ such that σ i ′ is not decorated, and h ≤ i ′ < i. It exists because si > 0. Let R ′ = (σ h ′ , . . . , σ i ′ ) be the left-maximal cyclic run ending at σ i ′ . We have h ′ ≤ h (because we know that (σ h , . . . , σ i ′ ) is a cyclic run), so R and R ′ overlap on every non-decorated element of R other than σi. We deduce that s i ′ ≥ si -1. In case of equality, we are done. Otherwise, we iterate this construction to find i ′′ such that i ′′ < i ′ and s i ′′ ≥ s i ′ -1, and so on. The sequence si, s i ′ , . . . either increases arbitrarily or decreases by 1 at each step, and we can define the next element as long as the last element sj satisfies sj > 1. So this sequence of schedule numbers must eventually reach the value si -1.

• σi is decorated. Consider the right-maximal run beginning at σi, denoted R, so R = (σi, . . . , σj) for some j. Consider the maximal i ′ such that σ i ′ is not decorated, and i < i ′ ≤ j. It exists because si > 0. Let R ′ = σ h ′ , . . . , σ i ′ be the left-maximal cyclic run ending at σ i ′ . We have h ′ ≤ i (because we know that (σi, . . . , σ i ′ ) is a cyclic run), so R and R ′ overlap on every non-decorated value of R other than σ i ′ . We deduce that s i ′ ≥ si -1. In case of equality, we are done. Otherwise, we are back to the situation of the previous case.

In either case, we eventually find i ′ as announced. The statement in the lemma follows by iteration.

A consequence of this lemma is that the product n i=1 [si]q at q = -1 is 0 unless all schedule numbers are 1 (if si > 1 for some i, one of the factors is [2]q = 1 + q). Therefore, the schedule formula of Theorem 3.13 becomes:

P ∈stLD(n) •k dw(P )=τ (-1) dinv(P ) t area(P ) = t revmaj(τ ) if sched(τ ) = 1 n , 0 otherwise. ( 7 
)
Notation. We denote by S • n (1 n ) to be the subset of S • n of marked permutations with schedule 1 n . Now, summing Equation ( 7) over all possible permutations with k decorations τ , we get the following interpretation of the combinatorics of the Hilbert series of the Delta conjecture at q = -1:

P ∈stLD(n) •k (-1) dinv(P ) t area(P ) = τ ∈S •k n (1 n ) t revmaj(τ ) . (8) 
Remark 3.15. We announced in the introduction that in the case k = 0 and t = 1, the lefthand side of ( 8) is the Euler number En. Comparing with the right-hand side, this means that undecorated permutations σ ∈ Sn with schedule 1 n are counted by the Euler number En. On the other side, Ramassamy [START_REF] Ramassamy | Extensions of partial cyclic orders, Euler numbers and multidimensional boustrophedons[END_REF]Corollary 5] gave a new combinatorial interpretation of the Euler number En as the number of total cyclic orders on {0, . . . , n} such that (i, i + 1, i + 2) is clockwise oriented for each i ∈ {0, . . . , n -2}. Undecorated permutations σ ∈ Sn with schedule 1 n are simply in bijection with Ramassamy's total cyclic orders via σ → (0, σ -1 (1), . . . , σ -1 (n)). We close this section by providing a bijection between Sn and S • n (1 n ), whose inverse is given by simply removing the decorations. The existence of this bijection means that each permutation can be decorated in exactly one way, so that the result has schedule 1 n . Lemma 3.16. Let σ ∈ S • n (1 n ). Let σ k , . . . , σ ℓ be a left-maximal cyclic run, and assume that σ ℓ is undecorated. Then σ k is undecorated as well, and σ k+1 , . . . , σ ℓ-1 are decorated. Proof. Since s ℓ = 1, there is exactly one undecorated entry in σ k , . . . , σ ℓ-1 . Denote σu this undecorated entry. If u ̸ = k, σ k is decorated and has at least two undecorated entries (namely σu and σ ℓ ) in the right-maximal cyclic run beginning at σ k . This would give s k ≥ 2, which contradicts s k = 1. Thus, u = k, and we get that σ k in the only non-decorated entry in σ k , . . . , σ ℓ-1 .

Lemma 3.17. For each permutation σ ∈ Sn, there exists exactly one decorated permutation with underlying permutation σ and schedule 1 n . Proof. Assuming that there exists a decoration of σ so that the schedule is 1 n , the previous lemma readily gives necessary conditions on how to find it (in particular, uniqueness will follow from existence): we proceed from right to left (starting from σn and ending at σ1), noting than σn is necessarily undecorated (otherwise we have sn = 0). We define a sequence of indices i1 > i2 > • • • > im for some m ≥ 1 as follows;

• i1 = n,
• knowing ij, we find ij+1 by the condition that σi j+1 • • • σi j is the left-maximal cyclic run ending at σi j ,

• the sequence stops at im = 0.

We claim that decorating the indices not in {i1, . . . , im} yields the unique decoration such that the associated schedule is 1 n . It remains only to check that the schedule of this decorated permutation is indeed 1 n . By construction, we have s k = 1 if σ k is undecorated. It remains to show s k = 1 when σ k is decorated. So, consider a right-maximal cyclic run σ k , . . . , σ ℓ where σ k is decorated.

• Suppose s k ≥ 2. So, there are two (or more) undecorated entries in this run, say σi and σj with k < i < j. The left-maximal cyclic run ending at σj contains at least σ k , . . . , σj, so σi being undecorated contradicts the construction of i1 > i2 > • • • > im as above.

• Suppose s k = 0. So, there are no undecorated entries in this run. Let σi be an undecorated entry with i > k and i minimal (this exists because σn is undecorated). We have i > ℓ (because σ k+1 , . . . , σ ℓ are decorated). Consider the left-maximal cyclic run ending at σi, denoted σ i ′ , . . . , σi. It cannot begin at σ i ′ with i ′ ≤ k, because σ k , . . . , σi is not a cyclic run (the right-maximal cyclic run beginning at σ k ends at σ ℓ , and i > ℓ). Thus, i ′ > k, so σ i ′ , . . . , σi does not contain any undecorated entry apart from σi. But this means si = 0, which is a contradiction.

Other cases being excluded, we thus have s k = 1. This completes the proof of existence and uniqueness of the decoration with schedule 1 n .

Permutations

We continue to use Convention 3.6: for any σ ∈ Sn, we set σ0 = 0.

Definition 4.1. Given a permutation σ = σ1 • • • σn and an index i ∈ {2, . . . , n}, we say that σi is a

• double ascent if σi-2 < σi-1 < σi;

• double descent if σi-2 > σi-1 > σi;

• peak if σi-2 < σi-1 > σi;

• valley if σi-2 > σi-1 < σi.

Definition 4.2. For σ ∈ Sn, we define monot(σ) = # i ∈ {2, . . . , n} σi is a double descent or a double ascent .

Definition 4.3. Let σ ∈ Sn, a pair (i, j) with 1 ≤ i < j ≤ n is said to be a 3-inversion if one of the following holds:

• σj is a double ascent and σj-1 < σi < σj;

• σj is a double descent and σj-1 > σi > σj;

• σj is a peak and σi > σj;

This polynomial En(t) has several beautiful properties including the facts that the generating functions n≥0 E2n(t)z n and n≥0 E2n+1(t)z n have nice continued fraction expressions [START_REF] Han | A different q-analogue of Euler numbers[END_REF][START_REF] Josuat-Vergès | Énumération de tableaux et de chemins,moments de polynômes orthogonaux[END_REF].

We study here a shift of this t-analogue, namely t ⌊n 2 /4⌋ En(t). This t-analogue is naturally connected to our 3-inversion statistic. Proposition 4.12. For all n ∈ N,

t ⌊n 2 /4⌋ En(t) = σ∈An t inv 3 (σ) . (10) 
Proof. This is a Corollary of Lemma 9.4 of [START_REF] Chebikin | Variations on descents and inversions in permutations[END_REF]. In this lemma, Chebikin proves that if σ ∈ An then ⌊n 2 /4⌋ + 31-2(σ) = î(σ), and we just remarked that if σ ∈ An then inv3(σ) = î(σ).

Generating trees

The goal of this section is to prove the following. Recall that we denote by

S • n (1 n ) the subset of S •
n of decorated permutations with schedule 1 n . Theorem 5.1. There is a bijection ϕ :

S • n (1 n ) → Sn with the following properties: (i) revmaj(τ ) = inv3(ϕ(τ )), (ii) dec(τ ) = monot(ϕ(τ )).
We will exhibit this bijection by constructing two isomorphic generating trees.

The tree for decorated permutations of schedule 1 n

We continue to use Convention 3.6: for any σ ∈ Sn, we set σ0 = 0.

Let τ ∈ Sn. Using Definition 3.8, we know that τ0 . . . τj is a cyclic run if and only if τ1 > . . . > τj. The generation of the tree will rely on the following manipulation. 

:= k + τ . For 0 ≤ i ≤ j ≤ n, τi • • • τj is a cyclic run of τ if and only if σi+1 • • • σj+1 is a cyclic run of σ. Moreover, for 1 ≤ j ≤ n, (τ0 • • • τj is a cyclic run and τj + k > n + 1) if and only if σ0 • • • σj+1 is a cyclic run.
Proof. The first statement is a direct consequence of the definition of a cyclic run (Definition 3.8). Note that for any permutation τ , τ0 . . . τj is a cyclic run if and only if τ1 > . . . > τj. Therefore, σ0 . . . σj+1 is a cyclic run if and only if k = σ1 > . . . > σj+1. As σj+1 = (τj + k) mod n + 1, we have that σj+1 < k if and only if τj + k > n + 1.

The structure of the generating tree will closely depend upon the following quantity. Definition 5.4. Given τ ∈ S • n (1 n ), we define its structural attribute, a(τ ) to be the value of its first undecorated letter (excluding σ0 = 0).

Proof. This is clear for k = n + 1, as δn+1(τ ) is obtained by appending n + 1 at the beginning of τ (which creates no new descent in the reversed permutation, thus preserving the reverse major index).

Next, we show revmaj(δ k (τ )) = revmaj(δ k-1 (τ )) -1. To go from δ k-1 (τ ) to δ k (τ ), we add 1 to every letter, and replace n + 1 with 1. Let m be the index of n + 1 in δ k-1 (τ ) rev . Then we have:

Des(δ k (τ ) rev ) = (Des(δ k-1 (τ ) rev ) \ {m}) ∪ {m -1} if m > 1, Des(δ k-1 (τ ) rev ) \ {m} if m = 1.
Indeed, the m-th letter of δ k-1 (τ ) rev was equal to n + 1 and so was a descent, but in δ k (τ ) rev it equals 1 and so is not descent. Furthermore, if m > 1, the (m -1)-th letter of δ k (τ ) rev is followed by 1 and so must be a descent. In any case

revmaj(δ k (τ ) rev ) = revmaj(δ k-1 (τ ) rev ) -m + m -1 = revmaj(δ k-1 (τ ) rev ) -1
and the result follows.

Finally, the following property follows easily from Definitions 5.4 and 5.5.

Proposition 5.10. Recall that dec(τ ) is the number of decorations of τ ∈ S • n (1 n ). We have:

dec(δ k (τ )) = dec(τ ) + χ(n + 1 -k ≤ a(τ )).
Furthermore, we have:

a(δ k (τ )) = k if n + 1 -k > a(τ ), a(τ ) + k (mod n + 1) otherwise.

A second tree related to peaks and valleys

Definition 5.11. Define a tree T2 of permutations as follows. Take its root to be 1 ∈ S1. For σ ∈ Sn and 1 ≤ l ≤ n + 1, define η l (σ) ∈ Sn+1 to be the unique permutation σ ′ such that σ ′ n+1 = l and σ ′ 1 , . . . , σ ′ n are in the same relative order as σ1, . . . , σn. In other words, we have

σ ′ i = σi + χ(σi ≥ l)
for 1 ≤ l ≤ n + 1. This permutation is called the insertion of l in σ. The permutations η l (σ) for 1 ≤ l ≤ n + 1 will form the descendants of σ in T2.

See the tree on the right in Figure 5. Later (Definition 5.14), we will define a total order on the descendants of a node in T2, in a way that will give the isomorphism with T1. This ordering will closely depend upon the following quantity. Definition 5.12. Given σ ∈ Sn, define its structural attribute:

ã(σ) = n + 1 -σn if σn-1 < σn, σn if σn-1 > σn,
where we consider σ0 = 0 in case n = 1.

Proposition 5.13. For σ ∈ Sn, the map ψ on {1, 2, . . . , n + 1} defined by

inv3(η l (σ)) = inv3(σ) + ψ(l)
is a bijection onto {0, 1, . . . , n}. Proof. Take σ ∈ Sn and set σ ′ = η l (σ). Notice that for j ≤ n we have that (i, j) forms a 3-inversion in σ if and only if it forms a 3 inversion in σ ′ (see Definitions 4.3 and 5.11). It follows that inv3(σ ′ ) = inv3(σ ′ ) + s where s is the number of 3-inversions of the form (i, n + 1). We distinguish two cases. We have drawn a schematic representation of the proof in Figure 4.

1. Either σ ends with an ascent, that is σn-1 < σn. So we have ã := ã(σ) = n + 1 -σn. This is illustrated in the left part of Figure 4, where the values in red are the value of ψ(l).

• For l > σn, σ ′ n+1 is a double ascent. The number of i's such that σ ′ n < σ ′ i < σ ′ n+1 is equal to l -(σn + 1). So for l = σn + 1, σn + 2, . . . , n + 1 we have ψ(l) = 0, 1, . . . , ã -1, respectively.

• For l ≤ σn, σ ′ n+1 is a peak. The number of i's such that σ ′ i > σ ′ n+1 is equal to n + l -1. So for l = σn, σn -1, . . . , 1 we have ψ(l) = ã, ã + 1, . . . , n, respectively.

2. Or, σ ends with a descent, that is σn-1 > σn. So we have ã := ã(σ) = σn. This is illustrated in the right part of Figure 4.

• For l ≤ σn, σ ′ n+1 is a double descent. The number of i such that σ ′ n > σ ′ i > σ ′ n+1 equals σn -l. So for l = σn, σn -1, . . . , 1 we have ψ(l) = 0, 1, . . . , ã -1, respectively. • For l > σn, σ ′ n+1 is a valley. The number of i such that σ ′ i > σ ′ n+1 is equal to l -1. So for l = σn + 1, . . . , n + 1, we have ψ(l) = ã, ã + 1, . . . , n, respectively.

In each of the two cases, we see that the values taken by ψ(l) are exactly 0, . . . , n. Definition 5.14. For σ ∈ Sn we define the k-th descendant of σ in T2, δk (σ), to be the unique descendant η l (σ) such that ψ

(l) = n + 1 -k, in other words inv3( δk (σ)) = inv3(σ) + (n + 1 -k).
Finally, we can deduce the following from the proof of Proposition 5.13. Proposition 5.15. Recall that monot(σ) denotes the number of double ascents and descents of σ ∈ Sn. We have:

monot(η k (σ)) = monot(σ) + χ(n + 1 -k ≤ ã(σ)).
Furthermore, we have:

ã(η k (σ)) = k if k ≤ n + 1 -ã(σ), ã(σ) if k > n + 1 -ã(σ).

Isomorphism of the trees

To prove Theorem 5.1, we define ϕ recursively as follows:

ϕ(1) = 1, ϕ(δ k (σ)) = η k (ϕ(σ)) for all σ ∈ n≥1 S • n (1 n ).
In Figure 5, the k-th descendant of each node is the k-th descendant from the bottom, so that the image by ϕ of an element in the left tree can be obtained by looking for the corresponding element in the right tree, if we were to "superpose" one tree on the other. From this definition of ϕ and the definition of k-th descendant as being the descendant adding n + 1 -k units to the relevant statistic in both trees (See Definition 5.5, Proposition 5.9 and Definition 5.14), we may conclude that revmaj(σ) = inv3(ϕ(σ)).

From Proposition 5.10 and Proposition 5.15, we deduce dec(σ) = monot(ϕ(σ)).

Thus, we have now established Theorem 5.1.

Conclusion and future directions

Let us now put the pieces together.

Proof of Theorem 1.1. From the bijection in Theorem 5.1, we may deduce that

τ ∈S • n (1 n ) t revmaj(τ ) z dec(σ) = σ∈Sn t inv 3 (σ) z monot(σ) .
Recall Equation 8:

P ∈stLD(n) •k (-1) dinv(P ) t area(P ) = τ ∈S •k n (1 n ) t revmaj(τ ) .
Combining these last two equations and summing over k, we get:

n-1 k=0   P ∈stLD(n) •k t area(P ) (-1) dinv(P )   z k = σ∈Sn t inv 3 (σ) z monot(σ) ,
which is exactly the statement in Theorem 1.1. Since the left-hand side of ( 8) is exactly the combinatorics of the Hilbert series of the Delta conjecture (Equation 4) at q = -1, the validity of the Delta conjecture would imply n-1 k=0 ⟨∆ ′ e n-k-1 en, h n 1 ⟩

q=-1

z k = σ∈Sn t inv 3 (σ) z monot(σ) , (11) 
as announced in Corollary 1.2.

Since at k = 0 the Delta conjecture reduces to the shuffle theorem, our result implies that ⟨∇en, h n 1 ⟩|q=-1 = σ∈Sn monot(σ)=0 t inv 3 (σ) = σ∈An t inv 3 (σ) = t ⌊n 2 /4⌋ En(t), where the last equality comes from Proposition 4.12. Thus, we have established (2).

On q, t-symmetry and the rise Delta

We remark that our results rely heavily on the schedule number formula. This formula breaks up the combinatorics of the valley Delta conjecture into sets of paths with the same diagonal word and thus the same area, and expresses the dinv as a product of q-analogues. Even though it is easy to see from the symmetric function that ∆ ′ e n-k-1 en[X; q, t] = ∆ ′ e n-k-1 en[X; t, q], this q, t-symmetry is not at all obvious on the combinatorial side. In particular, there is no schedule formula that fixes dinv and expresses area as a product of t-analogues. Thus, we have statements for q = -1 but not for t = -1. In the same vein, there is no known schedule formula for the rise version of the Delta conjecture (which is now a theorem [START_REF] Adderio | A proof of the compositional Delta conjecture[END_REF]) and so [START_REF] Haglund | Conjectured statistics for the q,t-catalan numbers[END_REF] remains conditional on the valley Delta conjecture (Conjecture 2.12).

On refinements of the Delta conjecture

Let us now say a few words about how our results relate to the well-known refinements of the Delta conjecture. The compositional (valley) Delta conjecture is a refinement of Conjecture 2.12, giving a formula for the symmetric function Θe k ∇Cα in terms of (valley or rise) decorated Dyck paths, where α is a composition dictating at which points the path touches the diagonal x = y. Summing over all compositions, we have α⊨n-k Θ n-k ∇Cα = ∆ ′ e n-k-1 en. See [START_REF] Adderio | Theta operators, refined Delta conjectures, and coinvariants[END_REF] for more details on the compositional Delta conjecture. The combinatorics in this paper suggests that the following symmetric function identities hold: Indeed, schedule 1 n paths always have composition n -k. If the Delta conjecture is true, this would prove these symmetric function identities. As it stands, only the k = 0 case is proven, via the shuffle theorem. Similar identities can be found for the touching refinement Θ k ∇E n,l , of the Delta conjecture, for q = -1 and ⟨•, h n 1 ⟩:

⟨Θe k ∇E n,l , h n 1 ⟩|q=-1 = 0 if l > 1,
⟨Θe k ∇En,1, h n 1 ⟩|q=-1 = ⟨∆ ′ e n-k-1 en, h n 1 ⟩|q=-1.
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 1 Figure 1: An element of stLD •4 (8).

Definition 2 . 1 .

 21 A Dyck path of size n is a lattice path going from (0, 0) to (n, n) consisting of east or north unit steps, always staying weakly above the line x = y, called the main diagonal. The set of Dyck paths is denoted by D(n).
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 2 Figure 2: Co-arm and co-leg of a cell in a partition.
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 2 10 ([1, 3.11]). We define the linear operator ∇ : Λ → Λ on the eigenbasis of Macdonald polynomials as
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 33 The diagonal word of the path in Figure1is .
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 3 Figure 3: Illustration of cyclic runs.

Lemma 3 . 14 .

 314 Let σ ∈ S • n , and (s1, . . . , sn) = sched(σ). If si > 0 for all i ∈ [n], then there exists j ≥ 1 such that the set of schedule numbers {si | 1 ≤ i ≤ n} is equal to [j].
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 52 Let τ ∈ Sn and 1 ≤ k ≤ n + 1. Denote by k + τ the permutation σ of Sn+1 defined by σ0 = 0, σi+1 = (k + τi) mod n + 1 for 0 ≤ i ≤ n. Example. If n = 7, τ = 01423657, and k = 3, we have k + τ = 034756182. Lemma 5.3. Let τ ∈ Sn and σ

1 σnFigure 4 :

 14 Figure 4: Contribution to inv 3 for the n + 1 different insertions into a permutation of n.

Figure 5 :

 5 Figure 5: T 1 and T 2 up to level 4.

  α⊨n-k α̸ =(n-k) ⟨Θe k ∇Cα, h n 1 ⟩|q=-1 = 0, ⟨Θe k ∇C (n-k) , h n 1 ⟩|q=-1 = ⟨∆ ′ e n-k-1 en, h n 1 ⟩|q=-1.
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• σj is a valley and σi < σj.

The number of 3-inversions of σ is denoted by inv3(σ).

Example 4.4. For n = 3, 123 has zero 3-inversions, 132 and 321 have one 3-inversions, 231 and 312 have two 3-inversion and 213 has three 3-inversions.

Though the definition of the statistic might not seem very natural, we will see in the proof of Proposition 4.6 that it can be tracked via a rather simple insertion procedure on permutations (similar to the Lehmer codes).

We recall the following classical definitions.

Definition 4.5. A statistic I on permutation is called Mahonian if

Two classical Mahonian statistics are the major index (Definition 3.4) and the inversion number defined by inv(σ) = # (i, j) 1 ≤ i < j ≤ n and σi > σj .

From the main result in Section 5 (Theorem 5.1) and the fact that revmaj is Mahonian, we will be able to deduce the following.

Proposition 4.6. The statistic inv3 is Mahonian, that is:

In [START_REF] Chebikin | Variations on descents and inversions in permutations[END_REF], Chebikin defines another variant of the inversion statistic. Definition 4.9. An alternating permutation of [n] is a permutation σ ∈ Sn such that σ1 > σ2 < σ3 > • • • . We denote the set of such permutations by An. In other words,

The alternating permutations are counted by the Euler numbers En. One can easily check that if σ is alternating then î(σ) = inv3(σ). But this is not true in general. For example if σ = 123, inv3(σ) = 3 and î(σ) = 1. Definition 4.10. A 31-2 pattern in σ ∈ Sn is a triple 1 ≤ i < i + 1 < j ≤ n such that σi > σj > σi+1. We denote by 31-2(σ) the number of 31-2 patterns in σ.

In [START_REF] Han | A different q-analogue of Euler numbers[END_REF], the authors introduced an interesting t-analogue to the Euler numbers that was subsequently studied in [START_REF] Chebikin | Variations on descents and inversions in permutations[END_REF] and [START_REF] Josuat-Vergès | Énumération de tableaux et de chemins,moments de polynômes orthogonaux[END_REF]. Definition 4.11. For all n ∈ N, define:

Definition 5.5. Define a tree T1 of decorated permutations as follows. Take its root to be 01 ∈ S1. For τ ∈ S • n (1 n ) with n ≥ 1 and 1 ≤ k ≤ n + 1, the k-th descendant of τ in T1, denoted δ k (τ ) is the decorated permutation whose underlying permutation is σ = k + τ . The decorations of σ are as follows:

• for i ≥ 2, σi is decorated if and only if τi-1 is decorated.

See the tree on the left in Figure 5 for an illustration of the first three levels of this tree. Example 5.6. For example, take n = 5 and τ = 0 

312

.

65.

Let us prove some observations about T1. Suppose that τ is a decorated permutation and its schedule is 1 n . Lemma 5.7. Take τ ∈ S • n (1 n ). If τ0 . . . τj is a right-maximal cyclic run then there is a unique ℓ such that 1 ≤ ℓ ≤ j and τ ℓ is undecorated.

Proof. Call r := τ0 . . . τj. If r it contained at least two undecorated letters, the second largest one would have schedule 2. If r contains no undecorated letters there must be exactly one undecorated τi with i > j in the maximal decreasing cyclic run starting at τ k for all 1 ≤ k ≤ j. It follows that the maximal decreasing run ending at τi contains only decorated letters and so its schedule would be 0 (see Remark 3.10).

Proposition 5.8. The n-th level of the tree T1 contains exactly all the decorated permutations whose schedule numbers are

. The result will then follow from Lemma 3.17 and the fact that the tree in Definition 5.5 clearly generates all permutations of n at the n-th level.

Set τ ℓ := a(τ ), the unique undecorated entry in the right-maximal cyclic run containing τ0. Thanks to Lemma 5.7, this ℓ is unique.

We construct the decorated permutation σ = δ k (τ ). Thanks to Lemma 5.3 we know that if τ0 . . . τj is not a cyclic run then the cyclic runs that contain σj+1 are in bijection with the cyclic runs that contain τj and the schedule of σj+1 is equal to the schedule of τj, which is one.

Moreover, if j > 0 and τ0 . . . τj is a cyclic run and τj is decorated, the cyclic runs that start at σj+1 are in bijection with the cyclic runs that start at τj and the schedule of σj+1 is equal to the schedule of τj, which is one.

We just have to show that σ ℓ+1 and σ1 have schedule 1.

If τ ℓ + k > n + 1 then (by Lemma 5.3), σ0 . . . σ ℓ+1 is a cyclic run. As σ ℓ+1 is not decorated, we must decorate σ1 to force that σ ℓ+1 and σ1 have schedule 1.

If τ ℓ + k ≤ n + 1 then σ0 . . . σ ℓ+1 is not a cyclic run but σ1 . . . σ ℓ+1 is. Therefore, σ1 . . . σ ℓ+1 is a left maximal run and to force σ ℓ+1 to have schedule 1, σ1 must be non-decorated (otherwise σ ℓ+1 has schedule 0). Moreover, if σ1 is not decorated, its schedule is 1, and we can conclude the proof. Proposition 5.9. For all decorated permutations τ , we have

Furthermore, when setting t = -1 instead of q, we noticed that (-1) n-l ⟨∇E n,l , h n 1 ⟩|t=-1 is a q-analogue of the number of ordered forests of k increasing unordered trees with n vertices and in which all outdegrees are ≤ 2 (sequence [29, A185421]). The trees in these forests are counted by the Euler numbers. Using these combinatorial objects, we managed to interpret the following symmetric function identity at q = 1:

On representation-theoretic interpretations

Famously, the symmetric function of the shuffle theorem is the bi-graded Frobenius characteristic of the diagonal co-invariant module [START_REF] Haiman | Vanishing theorems and character formulas for the hilbert scheme of points in the plane[END_REF]. The symmetric function ∆ ′ e n-k-1 en is conjectured to be the character of the 2-bosonic, 1-fermionic diagonal module [START_REF] Zabrocki | A module for the Delta conjecture[END_REF]. At present, we know of no representation-theoretic interpretation of the evaluation of at q = -1. Some manipulation of Bergeron's conjecture for characters of general boson-fermion diagonal modules [2, Conjecture 1] might provide some hints in this direction.

6.4 More positivity at q = -1

Computational evidence suggests that the evaluation at q = -1 yields t-positive results for many other polynomials related to the shuffle theorem and Delta conjecture. For example • ⟨∇en, hµ⟩ for any partition µ;

• ⟨∇ω(pn); h n 1 ⟩, where ∇ω(pn) is the symmetric function related to the square theorem (conjectured in [START_REF] Loehr | Square q,t-lattice paths and nabla(pn)[END_REF] and proved in [START_REF] Sergel | A proof of the square paths conjecture[END_REF]); • ⟨Θe k Θe l ∇e n-k-l , h n 1 ⟩, where Θe k Θe l ∇e n-k-l is the symmetric function introduced in [5] that conjecturally unifies both versions of the Delta conjecture;

• ⟨Θe λ e1, h |λ|+1 1 ⟩, see the Theta trees conjecture in [START_REF] Adderio | Tiered trees and theta operators[END_REF].

It would thus be interesting to study the q = -1 evaluation in a more general framework, for example in modified Macdonald polynomials.

An open (combinatorial) problem

Let us end this section with a combinatorial problem. Consider the sums Dn,j(t) = σ∈Sn, monot(σ)≤j

In particular, this is 0 if j < 0, and Dn,j(t) = Dn,n-1(t) if j > n -1.

Conjecture 6.1. For n > 1 and 0 ≤ j ≤ n -1, we have:

Dn,j(t) = t n-j-1 [j + 1]tDn-1,j+1(t) + [n -j -1]tDn-1,j-1(t).

It would be very interesting to give a combinatorial proof of [START_REF] Haglund | A combinatorial formula for the character of the diagonal coinvariants[END_REF]. Of course, one might try to do to this starting from the other combinatorial interpretation:

dec(σ)≤j t revmaj(σ) .

In the case t = 1, it is possible to give a combinatorial proof of the conjecture, based on the combinatorial interpretation in [START_REF]A proof of the q,t-Schröder conjecture[END_REF]. The idea is to consider the map σ → σ ′ (where, for σ ∈ Sn, σ ′ ∈ Sn-1 is obtained by removing the entry n), and examine how monot is distributed among the n pre-images of a given σ ∈ Sn-1.