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Compression experiments are widely used to study the mechanical properties of materials at
micro- and nanoscale. However, the conventional engineering stress measurement method used
in these experiments neglects to account for the alterations in the material’s shape during loading.
This can lead to inaccurate stress values and potentially misleading conclusions about the material’s
mechanical behavior, especially in the case of localized deformation. To address this issue, we present
a method for calculating true stress in cases of localized plastic deformation commonly encountered
in experimental settings: (i) a single band and (ii) two bands oriented in arbitrary directions with
respect to the vertical axis of the pillar (either in the same or opposite directions). Our simple
analytic formulas can be applied to homogeneous and isotropic materials and crystals, requiring
only standard data (displacement-force curve, aspect ratio, shear band angle and elastic strain
limit) obtained from experimental results and eliminating the need for finite element computations.
Our approach provides a more precise interpretation of experimental results and can serve as a
valuable and simple tool in material design and characterization.

I. INTRODUCTION

Compression experiments conducted on pillars have
proven to be a valuable method for analyzing the mechan-
ical behavior of materials at the micro- and nano-scales.
This approach involves the fabrication of micro-pillars
(often with focused ion beam (FIB) techniques) followed
by an uni-axial compression to study its mechanical re-
sponse in a strain-driven process. This method has been
particularly useful for investigating the onset and evolu-
tion of plastic deformation in materials, by exploring the
local deformation mechanism (when compression test are
carried out in situ SEM), see for instance [1–11]. Specifi-
cally, micro-pillar compression experiments have revealed
numerous new phenomena, including the transition from
wild-to-mild plasticity [7], pristine-to-pristine plastic de-
formation [12], the ”smaller is stronger” effect [13], size-
and shape-dependent flow stresses [1, 14, 15] and, mi-
crostructural control of plastic flow [16], among others.

During such compression experiments, the material
can undergo significant plastic deformation, which can
manifest in either homogeneous deformation or slip/kink
bands [17–25]. Homogeneous deformation occurs when
the material undergoes uniform deformation through-
out its structure, while slip/kink bands result from lo-
calized deformation that can form along some preferred
orientation [26, 27]. The resulting engineering strain-
stress curve is related to a displacement-force experi-
mental recording, but in order to accurately character-
ize the material’s mechanical behavior, it is necessary
to determine the Eulerian (true) stress that is exerted
within the deformation zone. It is especially crucial to
be able to accurately interpret the mechanical properties
of engineered or designed materials using various meth-
ods to assess whether desired enhancements have been
achieved [28, 29]. The significance of using true stress

in assessing mechanical responses has been discussed in
prior studies related to the mechanical behavior of metal-
lic glass [30, 31]. However, of particular importance is
the fact that, to the best of our knowledge, there is cur-
rently no established method to calculate the required
load-bearing area to evaluate true stress, during plastic
localization mechanisms.
In this context, the aim of this study is to derive sim-

ple formulas for calculating true stress in cases involv-
ing slip/kink band formation during mechanical loading
while avoiding the need for lengthy and complex finite
element computations that deal with large deformations
of crystals. Specifically, we consider different scenarios
of localization observed frequently in experiments: (i) a
single band and (ii) two bands oriented in arbitrary di-
rections with respect to the vertical axis of the pillar. For
each case, we derive a formula and employ it to assess the
reliability of previous experimental results.

II. SIMPLE MODELING OF PILLARS’
DEFORMATION

After the initial loading process, which is associated
with small-strain linear elastic behavior, the pillars un-
dergo significant plastic deformation, making the elas-
tic deformations negligible in comparison to the plas-
tic ones. From these plastic deformation processes, two
distinct scenarios emerge: homogeneous and slip/kink
band, as illustrated schematically in Figure 1 and de-
tailed subsequently. The Cauchy stress tensors corre-
sponding to these two deformation mechanisms exhibit
different patterns. In either scenario, the primary chal-
lenge is to determine the true stress σtrue within the uni-
axial Cauchy stress tensor σ = −σtrueez ⊗ ez, where ei
represents the elements of the orthonormal basis of the
three-dimensional Euclidean vector space, acting on the
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Extended Data Figure 3 | Morphology of the nanocrystalline CrCoNi and amorphous Ti-Zr-

Nb-Si pillars after compression tests shown in Figure 3. The red arrows indicate some of the shear 

bands. 
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Extended Data Figure 4 | Mechanical properties of the pillar samples with diameters of 1.2 µm, 

580 nm and 200 nm. a-c, SEM images of the crystal-glass nano-laminated alloy pillar samples after 

compression test. The decrease of the whole thickness indicates homogeneous plastic deformation. 

The cracking of the deformed pillars in (a) and (b) may result from tension stress from the horizontal 

direction. d, Compressive engineering stress-strain curves of the pillar samples with different 

diameters. The arrows in a and b denote the cracks on the deformed pillars.  
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FIG. 1. Schematic representation of the nano or micro-pillar deformation. The linear elastic regime, ϵeng < ϵe, is followed
by one of the two types of plastic flow. Up: homogeneous deformation, Bottom: shear/kick band deformation (experimental
illustration taken from [28]).

active area Au.
To be more specific, let R0 and L0 represent the initial

(Lagrangian) radius and height of the cylindrical pillar,
respectively, while R and L denote the current (Eulerian)
dimensions during deformation, as shown in Fig. 1. Let
ϵeng = (L0−L)/L0 denote the overall engineering strain.
Let F = −Fez represent the force applied to the top of
the pillar during deformation, where F = σtrueAu, and
let σengdenote the nominal (engineering) stress, i.e., F =
σengA0, with A0 = πR2

0 is the original cross-sectional
area.

We assume knowledge of the initial pillar shape, specif-
ically the aspect ratio f0 = L0/2R0, and have access
to the engineering strain-stress curve, denoted as the
function ϵeng → σeng(ϵeng). The primary objective of
this paper is to derive a simple formula for estimating
the engineering strain-true stress curve, represented as
ϵeng → σtrue(ϵeng).

Elastic deformation

For ϵeng < ϵe (or equivalently for σeng < σeng
e ) the

pillar exhibits a linear elastic behavior. Here, ϵe and
σeng
e = σeng(ϵe) represent the strain and stress limits of

elasticity, which can be easily identified in each stress-
strain (or force-displacement) curve. Since the elastic
strain limit ϵe, is usually small (less that 3%) the elas-
tic linear theory can be accepted as a good approxima-
tion. For isotropic materials, the deformed shape is also a
cylinder, and the stress is uniaxial throughout the pillar:

Au = A = πR2, F = σtrueπR2 and σengR2
0 = σtrueR2.

For anisotropic materials, such as monocrystals, during
the elastic phase, the pillar is no longer a perfect cylinder.
However, since the deformation is small, the deviation
from a cylindrical shape can be neglected.
For small values of δe = σeng

e /3K (where K is the
bulk modulus) and ϵe, the formula for true stress is well-
known:

σtrue = σeng(1− ϵeng), for ϵeng ≤ ϵe. (1)

Note that since 1 − ϵeng ≈ 1 for ϵeng < ϵe the difference
between the true and engineering stress in not significant,
and we can conclude that σtrue ≈ σeng during the elastic
phase.

Homogeneous uni-axial stress

For larger deformations, ϵeng > ϵe, in the first scenario
the deformation is homogeneous and the stress through-
out the entire pillar is assumed to be uni-axial, given
by σ = −σtrueez ⊗ ez, where Au = A = πR2. For
materials modeled by a pressure-independent plasticity
law, plastic deformation is isochoric and the volume is
preserved. In the case of isotropic materials, the de-
formed shape remains a cylinder, and since the further
elastic deformation of the volume can be neglected we
have V = πR2L = Ve = πR2

eLe, where Re and Le are
the radius and length of the pillar at the end of the elas-
tic phase. After some algebra we find the well known
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conjecture we compare in Fig. 3 the data for Mo (BCC), Al (FCC) and Mg (HCP) pillars of the
same size (3500 nm). In particular, the Mo pillars display a much smoother mechanical response
and a larger exponent ∑ º 4.0. Given this scenario, one would expect the difference between
FCC and BCC to disappear for T > Ta , when the role of thermal activation in the dynamics of
screw dislocation disappears. This assertion is supported by the results reported in Abad et al.[1],
where stronger plastic intermittency in BCC materials at higher temperatures was observed. At
these temperatures lattice friction apparently no longer inhibits large scale self organization and
the nature of the internal scale l changes.
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Figure 3. The effect of lattice structure on plastic fluctuations. (a) A comparison of stress-
strain curves for 3500 nm pillars of three different materials, Mg (HCP), Al (FCC) and Mo
(BCC). The stresses have been normalized by G , the shear modulus of each material. (b)
Corresponding cumulative distributions of plastic displacements X over the entire loading.
The solid lines represent the fit of the data with eq. (2), and the corresponding lower cut-off
values X0 are 0.50 nm (Mg), 1.02 nm (Al) and 2.07 nm (Mo). (c) to (e): SEM images of (c)
Al, (d) Mg and (e) Mo micropillars after compression. Single slip is observed for Al and Mg,
while isotropic deformation is observed for Mo.

Another factor biasing the competition between short-range and long-ranges interactions is
the damping of dislocation motion: if strong enough, it can inhibit fast dislocation avalanches
[17]. Consistently with this observation, plastic intermittency is suppressed in micropillars
deformed at strain-rates (∏ 1 s°1) that are larger than the internal relaxation rate limited by
lattice friction [108]. The damping related effects should not, however, depend on system size
L, which excludes its role in the critical to super-critical transition observed in BCC micropillars
even at low T (Fig. 1). Here it is appropriate to refer to recent DDD simulations which suggest
that at low T < Ta and relatively large system sizes, strain fluctuations are controlled by the slow
(thermally activated) screw dislocation motion, hence avalanches can be damped [17]. Instead,
at sub-µm sizes, the external stress imposed on samples enhance the athermal mobility of screw
dislocations to the level of edge ones, making irrelevant the thermally activated motion. In
particular, the DDD simulations show a reduced sensitivity of strength to temperature as the
size of BCC micropillars diminishes [16]. This implies that the damping mentioned above is
suppressed, which allows the initiation and propagation of strain bursts [17]. To summarise,
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FIG. 2. (Left): Schematic representation of localized plastic deformation following the elastic stage with the Cauchy stress
tensor acting in different regions of the pillar. (Right, top): The plan of the shear band with its area Ab between two ellipses
representing the upper and lower sections of the pillar. (Right, bottom) : Its projection on the horizontal plane (experimental
image taken from [22]).

formula

σtrue = σeng(1− ϵeng), for ϵeng > ϵe. (2)

However, for large values of ϵeng, using the nominal stress
σeng instead of the Cauchy stress σtrue can significantly
alter the behavior of the stress-strain diagram, giving a
false impression of overall hardening-like behavior.

Single slip/kink band plastic deformation

In the second scenario, for ϵeng > ϵe, deformation is
localized in a narrow zone between two parallel planes
with a normal vector n, determined by the angle α with
respect to the vertical axis ez, see Fig. 2. The Cauchy
stress tensor acting in the shear band is given by σ =
τ(n ⊗ t + t ⊗ n) − pI, where t is the slip direction, τ
is the shear stress and, I is the identity matrix. Since
the Cauchy stress tensor acting in the regions above and
below the shear band is assumed to be uniaxial, i.e., σ =
σtrueez ⊗ ez, we can deduce that the expression for the
shear stress τ , acting in the shear band, is proportional
to the true stress:

τ =
1

2
sin(2α)σtrue. (3)

Let us now compute the area Au between the two disks
(or equivalently Ab = Au/ cos(α) the area between the
two ellipses) Ce and C corresponding to the projection on
the basal plane of the two cylinders (see Fig. 2). One
of the circles is translated by a distance of b = D cot(α),
where D = Le − L is the vertical displacement of the
upper pillar region. After some simple computations,

one can find that the area Au between the two regions is
given by

Au = R2
e

[
π − b

Re

√
1− b2

4R2
e

− 2 arcsin

(
b

2Re

)]
.

Denoting by f0 = L0/2R0 the initial shape number and
by fe = Le/2Re = (1− ϵe)

3/2f0 the shape number at the
end of the elastic phase, and by ϵeng∗ = (L − Le)/Le =
(ϵeng − ϵe)/(1+ ϵe) the engineering (plastic) deformation
with respect to the configuration at the end of the elastic
phase, we get

Au = R2
eΦ(ϵ

eng
∗ fe cot(α)), (4)

where we have denoted by

Φ(s) = π − 2s
√

1− s2 − 2 arcsin(s).

Taking into account that R2
0/R

2
e = (1 −√

1− 4δe(1− ϵe))/2δe we can deduce that:

σtrue =
σengπ(1−

√
1− 4δe(1− ϵe))

2δeΦ((ϵeng − ϵe)/(1 + ϵe)fe cot(α))
, (5)

for ϵeng > ϵe.
For small values of ϵe and δe, we have R

2
0/R

2
e ≈ 1− ϵe,

fe ≈ f0, and the plastic deformation reads ϵeng∗ ≈ ϵeng −
ϵe. We can deduce a simplified formula for the true stress:

σtrue =
π(1− ϵe)σ

eng

Φ(s)
, (6)

where s is given by

s = (ϵeng − ϵe)f0 cot(α), for ϵeng > ϵe. (7)
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observed for FIB-fabricated FCC pillars. The latter may be related to the difficulty of fabricating
dislocation-free crystals due to the easiness for Ga+ ions to penetrate light FCC crystals, which
generates FIB-induced defects (small dislocation loops) near the surface [129, 49].

However, a recent study [59] showed that such FIB-induced dislocation loops in Al micropillars
can be eliminated by thermal annealing, which makes the stress-strain response more brittle-
like. Unfortunately, the associated statistics of strain burst sizes has not been analysed. While
our observations on BCC crystals argue for a sharp transition from a critical dynamics at L ª µm
to a more ductile behavior at larger system sizes [12, 140], similar transition seems to be more
gradual for FCC materials. Figure 2 illustrates this effect for pure Al. While the size effect on
strength is still apparent (Fig. 2(a)), slip burst distributions are characterized by a power law tail
over a wider L-range (ª 500 to 3500 nm) than for Mo, with ∑ º1.6-1.7, closer to the mean-field
value 1.5 (Fig. 2(b)). At larger system sizes, say L=6 µm, a larger exponent emerges, in association
with a smoother mechanical response. These observations may be viewed as another argument
supporting the idea of non-universal character of the exponent ∑.
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Figure 2. From mild to wild fluctuations in Al micropillars. (a) stress-strain curves (shear).
(b) Cumulative distributions of plastic displacements X detected over the entire loading.
The solid lines represent the fit of the data with eq. (2), and the corresponding lower cut-off
values X0 are, from top to bottom: 0.64, 0.73, 0.61 and 1.02 nm. (c) to (e): SEM images of
(c) 500 nm, (d) 2000 nm and (e) 6000 nm micropillars after compression. Multislip is only
observed for the largest micropillars (6 µm).

One can show that all the distributions shown in Fig.2(b) are well described by the generic
formula

P (X ) = X ∑°1
0

°(∑°1)X ∑
e°X0/X (1)

P (> X ) = 1°
°(∑°1, X0

X )

°(∑°1)
, (2)

where °(a, x) is the incomplete gamma function, and the exponential term represents a lower
cut-off to power law statistics occurring around X = X0. These expressions characterize the
presence of wild (scale free, power-law distributed) fluctuations at large scales X ¿ X0, coexisting
with mild fluctuations associated with a characteristic size X0 at small scales. Eqs. (1-2) received
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conjecture we compare in Fig. 3 the data for Mo (BCC), Al (FCC) and Mg (HCP) pillars of the
same size (3500 nm). In particular, the Mo pillars display a much smoother mechanical response
and a larger exponent ∑ º 4.0. Given this scenario, one would expect the difference between
FCC and BCC to disappear for T > Ta , when the role of thermal activation in the dynamics of
screw dislocation disappears. This assertion is supported by the results reported in Abad et al.[1],
where stronger plastic intermittency in BCC materials at higher temperatures was observed. At
these temperatures lattice friction apparently no longer inhibits large scale self organization and
the nature of the internal scale l changes.
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Figure 3. The effect of lattice structure on plastic fluctuations. (a) A comparison of stress-
strain curves for 3500 nm pillars of three different materials, Mg (HCP), Al (FCC) and Mo
(BCC). The stresses have been normalized by G , the shear modulus of each material. (b)
Corresponding cumulative distributions of plastic displacements X over the entire loading.
The solid lines represent the fit of the data with eq. (2), and the corresponding lower cut-off
values X0 are 0.50 nm (Mg), 1.02 nm (Al) and 2.07 nm (Mo). (c) to (e): SEM images of (c)
Al, (d) Mg and (e) Mo micropillars after compression. Single slip is observed for Al and Mg,
while isotropic deformation is observed for Mo.

Another factor biasing the competition between short-range and long-ranges interactions is
the damping of dislocation motion: if strong enough, it can inhibit fast dislocation avalanches
[17]. Consistently with this observation, plastic intermittency is suppressed in micropillars
deformed at strain-rates (∏ 1 s°1) that are larger than the internal relaxation rate limited by
lattice friction [108]. The damping related effects should not, however, depend on system size
L, which excludes its role in the critical to super-critical transition observed in BCC micropillars
even at low T (Fig. 1). Here it is appropriate to refer to recent DDD simulations which suggest
that at low T < Ta and relatively large system sizes, strain fluctuations are controlled by the slow
(thermally activated) screw dislocation motion, hence avalanches can be damped [17]. Instead,
at sub-µm sizes, the external stress imposed on samples enhance the athermal mobility of screw
dislocations to the level of edge ones, making irrelevant the thermally activated motion. In
particular, the DDD simulations show a reduced sensitivity of strength to temperature as the
size of BCC micropillars diminishes [16]. This implies that the damping mentioned above is
suppressed, which allows the initiation and propagation of strain bursts [17]. To summarise,

C. R. Physique, 0000, 1, no 0, 000-000

b Au

b1

Au

b1=b2

b
Ce

CC
Ce

C1
C1C2

C

Ce Ce

C

FIG. 3. Schematic representation of localized plastic deformation: two localized bands with two different orientation angles:
(left) α1, α2 > 0; (right) α1 > 0 > −α2. Insets are taken from the experiments in [22]. In the upper part, we plot the projection
on the horizontal plane of the bands with their area Au at different stages of localization.

Note that to use the simplified formula we only need to
know the elastic limit ϵe, the shear band angle α and the
initial aspect ratio f0. However, the exact formula given
in Eq. 5 requires also δe: the ratio between engineering
stress σeng

e at the end of the elastic phase and the bulk
modulus K.
In contrast to the homogeneous deformation scenario,

here the true stress is larger than the engineering stress.
Therefore, in many strain-stress diagrams, the plateau or
softening of the engineering stress should be viewed as a
hardening of the true stress.

It should also be noted that combining the above for-
mula with equation (3) allows for the calculation of the
shear stress τ as a function of the shear plastic strain γp,
which can be expressed as

γp =
Le − L

cos(α)Hb
=

(ϵeng − ϵe)L0

cos(α)Hb
,

where Hb represents the thickness of the shear band.
Note the plastic shear strain γp is proportional with the
plastic axial engineering strain ϵengp = ϵeng − ϵe.

Multiple slip/kink band plastic deformation

It is worth noting that in certain experiments, the
formation of multiple shear or kink bands is frequently
observed [9, 22, 32]. To account for the presence of
these additional bands we shall use a similar approach,
as described above. Since the analysis becomes signif-
icantly more complex we shall suppose, as is depicted
in Fig. 3, that we deal with only two shear bands
(n1, t1) and (n2, t2) with co-planar slipping systems (i.e.
n1 ∧ t1 = n2 ∧ t2). We shall also suppose that the shear
band (n1, t1) becomes inactive at ϵeng = ϵeng1 (corre-
sponding to circle C1 at the distance b1 = D1 cot(α1)
from circle Ce) when the slip starts on the shear band

(n2, t2). Notice that for ϵeng < ϵeng1 we deal with a sin-
gle slip system and the simplified formula (6-7) is still
valid. For ϵeng > ϵeng1 we need to distinguish two cases:
when the orientation angles of the two shear bands have
the same sign (α1, α2 > 0 as shown in Fig. 3 on the
left) or when they have opposite signs (−α2 < 0 < α1 as
shown in Fig. 3 on the right).
In the first case, depicted in Fig. 3 on the left, for

ϵeng > ϵeng1 the intersection of three cylinders’ projections
on the basal plane is the intersection of circle C with Ce at
the distance b = b1 + (D−D1) cot(α2). In the simplified
formula (6), the variable s is computed as follows:

s = f0(ϵ
eng − ϵe) cot(α1) for ϵeng ∈ [ϵe, ϵ

eng
1 ], (8)

s = f0((ϵ
eng
1 − ϵe) cot(α1) + (ϵeng − ϵeng1 ) cot(α2)), (9)

for ϵeng ≥ ϵeng1 . We remark that if the two shear bands
have the same slope α1 = α2 = α, then the formula (6)
is still valid.
In the second case, depicted on the right in Fig. 3, we

remark that for ϵeng > ϵeng1 the projection C of the upper
cylinder on the basal plane is in the opposite direction.
Hence, in a first phase, when the circle C is approaching
to Ce and the distance b between C and C1 is less than
b1, the intersection of three cylinders’ projections does
not change (i.e., it remains the intersection of Ce and
C1). This phase ends when C coincides with Ce, i.e. when
ϵeng = ϵeng2 , where we have denoted by

ϵeng2 = ϵeng1 + (ϵeng1 − ϵe) cot(α1)/ cot(α2).

For ϵeng > ϵeng2 the intersection of the projections of
the three cylinders becomes the intersection of C and
C1. Then in the simplified formula (6) s reads as (8)
for ϵeng ∈ [ϵe, ϵ

eng
1 ], and

s = f0(ϵ
eng
1 − ϵe) cot(α1), for ϵ

eng ∈ [ϵeng1 , ϵeng2 ], (10)
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while for ϵeng > ϵeng2 we have

s = f0((ϵ
eng
1 − ϵe) cot(α1) + (ϵeng − ϵeng2 ) cot(α2)). (11)

It’s worth noting that in the second case there exists a
plateau [ϵeng1 , ϵeng2 ] during which the effective area does
not decrease (s is constant in (10)).

Note that in the case of multiple shear bands, the true
stress formulas (8-11) require, in addition to the single-
band case (6), only the value of the strain ϵeng1 associated
with the beginning of the second shear band formation.

III. TRUE STRESS COMPUTATION AND
RE-INTERPRETATION OF THE

STRESS-STRAIN CURVES

In this section, we want to illustrate how the formulas
deduced in the previous section alter some experimental
engineering strain-stress curves reported in the literature.
We consider one case of homogeneous plastic deformation
and three cases of localized plastic deformation: a single
band, two bands with orientation angles having the same
sign (α1, α2 > 0), and opposite signs (−α2 < 0 < α1).

Homogeneous and single slip/kink band plastic
deformation

As a first example, we will reconsider the strain-stress
behavior of a crystal-glass symbiotic alloy investigated in
[28]. In this study, the authors plotted the engineering
strain-stress curves to characterize the crystal-glass nano-
laminated alloy sample’s mechanical properties compared
with its crystalline and amorphous counterparts. In-
terestingly, the authors found that the nano-laminated
crystal-glass alloy appeared to be tougher than its indi-
vidual components when analyzing the engineering stress
data (see Fig. 4(a) in [28]). However, when we calculate
the engineering strain vs. true stress curves for two cases:
(i) the crystal-glass nano-laminated alloy undergoing ho-
mogeneous deformation using the conventional formula
provided in Eq. (2); (ii) the CrCoNi crystal experienc-
ing slip band deformation using Eq. 5 (or the simplified
formula given in Eqs. 6-7), we observe a contradictory
outcome in both cases. Specifically, the nano-laminated
alloy exhibits softening, as shown in Fig. 4(a), while the
CrCoNi crystal demonstrates hardening, as depicted in
Fig. 4(b). This finding emphasizes the significance of
taking into account the current deformation state of the
material, even in the absence of a strong localization.

Lastly, we emphasize that when comparing the true
stress curves obtained using Eq. (5) and the simplified
formulas provided in Eqs. (6-7), as shown in Fig. 4(b),
we observed minimal differences, even at high strains.
Consequently, we will exclusively utilize the simplified
formulations in the following example.

FIG. 4. Engineering strain vs. nominal stress (red) and true
stress (blue) curves. Nominal stress values are taken from
[28]) and the calculated true stress curves are calculated using
the formulas derived here. (a) homogeneous deformation of a
crystal-glass nano-laminated alloy sample calculated with the
classical formulas (1), (2); (b) single shear band deformation
of a CrCoNi crystal calculated with formulas (1), (5) (blue)
and simplified formula (6-11) (green). Here, we took α = π/4,
f0 =1, εe =2.5% and σeng

e =3.23 GPa. Insets show the final
state of the pillar at the end of the loading.

Multiple slip/kink band plastic deformation

In our second example, we illustrate two cases of mul-
tiple shear bands. One is constructed from magnesium,
featuring a hexagonal close-packed (HCP) crystal lattice
symmetry and possessing a radius of 3500 nm. The other
pillar is made of aluminum, exhibiting a face-centered cu-
bic (FCC) symmetry and having a radius of 6000 nm. In
the case of the magnesium pillar, we observe the emer-
gence of two shear bands oriented in the same direction
(α1, α2 > 0), while in the aluminum pillar, two shear
bands are oriented such that −α2 < 0 < α1, as depicted
in the insets in Fig. 3, see also [22]. The experimental
engineering strain-stress curves for magnesium and alu-
minum, displayed in Figs. 5(a,b), are plotted in red. It’s
important to note that the stress values in both cases
represent engineering stress and do not account for the
current shape of the pillars. We then apply Eqs. (6) (8-
11) (for the first case we used α1 = α2 = π/4, f0 =1,
εe =1.7% and ε1 =7%, while for the second we take
α1 = α2 = π/4, f0 =1, εe =0.9% and ε1 =9%) to obtain
the true-stress curves, which are shown in Fig. 5 in blue.

We observe that when examining the stress-strain of
the magnesium pillar in Fig. 5(a), strain-hardening be-
comes evident after a 10 percent deformation, a phe-
nomenon not observable when using engineering stress
measurements.

In the case of the aluminum pillar, however, the overall
qualitative trend is similar in both engineering and true
stresses, i.e., an almost flat regime between 2-10 percent
deformation followed by a strain-hardening regime. This
is due to the fact that the slips on the shear bands are
in opposite directions. Indeed, in this case, as it follows
from (10), the ratio between the engineering and true
stresses is constant for a large strain interval [ϵeng1 , ϵeng2 ].
The main difference is primarily quantitative in stress
values, which are slightly larger when true stress is used.



6

FIG. 5. Comparison of engineering strain vs. nominal stress
(red) and true stress (blue) curves. The nominal stress values
are taken from [22]) and the true stress values are calculated
using the simplified formulas (1),(6), (8-11). (a) Magnesium
sample featuring two bands with α1, α2 > 0. (b) Aluminum
with featuring two bands oriented such that −α2 < 0 < α1.
Insets show final state of the pillar at the end of the loading.

IV. CONCLUSION

In conclusion, our study provides formulas for calcu-
lating true stress in cases where slip/kink bands form
during mechanical loading in compression experiments
on pillars. These formulas are very simple and need only
the engineering stress data, some geometric data (aspect
ratio), and some mechanical data (elastic limit) which are
very simple to get from the experimental results. A more

precise alternative to these simple formulas could be very
long and difficult finite element computations involving
large deformation of crystals. However, using these for-
mulas, we re-evaluated the robustness of previous exper-
imental results and found that considering the current
deformation state of engineered materials can be impor-
tant for accurately interpreting their mechanical behavior
at small scales. To be more precise, our analysis revealed
that, in some cases, the true stress led to conclusions that
were exactly opposite to those found using the engineer-
ing stress, while in other cases, the difference is mainly
quantitative and the overall trend is similar. To con-
clude, our work provides a valuable tool for accurately
interpreting the mechanical behavior of materials under
compressive loads and for drawing appropriate conclu-
sions based on the true stress values.
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