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Abstract

In a recent paper [5] P. Carmona gives an asymptotic formulae for
the top Lyapunov exponent of a linear T -periodic cooperative differ-
ential equation, in the limit T → ∞. This short note discusses and
extends this result.

1 Notation and main results

Let d ≥ 1 be an integer. Let M denote the closed convex cone con-
sisting of real d × d matrices having off diagonal nonnegative entries.
Elements of M are usually called Metzler or cooperative matrices. As
usual, a matrix M ∈ M is called irreducible if for all i, j ∈ {1, . . . , d}
there exist n ∈ N and a sequence i1 = i, i2, . . . , in = j such that
Mil,il+1

> 0 for l = 1, . . . , n − 1. Equivalently eM has positive entries.
Throughout we let S denote a compact metric space and

A : S 7→ M,

a continuous mapping. We consider the linear differential equation

dy

dt
= A(ωt)y (1)

with initial condition y(0) = x ∈ R
d
+ \{0}, under the following assump-

tions:
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(i) The process (ωt)t≥0 if a continuous time Feller Markov process1 on
S and is uniquely ergodic. By this we mean that (ωt)t≥0 has a
unique invariant probability measure denoted µ.

(ii) The average matrix Ā =
∫

S A(s)µ(ds) is irreducible.

Remark 1 A sufficient (but non necessary) condition ensuring that Ā
is irreducible is that A(s) is irreducible for some s in the topological
support of µ. The (easy) proof is left to the reader.

Example 1 (Periodic case) Suppose S = R/Z identified with the
unit circle and

ωt = s+ t (mod 1)

for some s ∈ S. This is the case considered in [5]. Observe that here µ
is the Lebesgue normalized measure on S.

Example 2 (Quasi-periodic case) A natural generalization of Ex-
ample 1 is as follows. Suppose S = (R/Z)n is the n-torus and

ωt = (s1 + ta1, s2 + ta2, . . . , sn + tan) (mod 1)

for some s = (s1, . . . , sn) ∈ S and (a1, . . . , an) rationally independent
numbers. That is

∑n
i=1 kiai 6= 0 for any integers k1, . . . , kn such that

(k1, . . . , kn) 6= (0, . . . , 0). Again (ωt)t≥0 is uniquely ergodic with µ the
Lebesgue measure on S.

Example 3 (Switching) Suppose S = {1, . . . , n} for some n ∈ N
∗

and (ωt)t≥0 is an irreducible continuous time Markov chain on S. In
other words, the infinitesimal generator of (ωt)t≥0 writes

Lf(i) =

n
∑

j=1

aij(f(j) − f(i))

for all f : S 7→ R, where (aij) is an irreducible rate matrix. Then
(ωt)t≥0 is uniquely ergodic and µ is the unique probability vector solu-
tion to

n
∑

j=1

(µjaji − µiaij) = 0

for all i = 1, . . . , n. This situation has been considered in [4].

1The precise definition will be recalled in the beginning of Section 2
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Example 4 Suppose S is a compact connected riemannian manifold
and (ωt)t≥0 a Brownian motion (or an elliptic diffusion) on S. Then
(ωt)t≥0 is uniquely ergodic and µ is the normalized volume on S (or
a measure absolutely continuous with respect to the volume, in the
diffusion case).

Let ∆ := ∆d−1 = {x ∈ R
d
+ :

∑d
i=1 xi = 1} be the unit d − 1 simplex.

Every y ∈ R
d
+ \ {0} can be written as

y = ρθ,

with ρ = 〈y,1〉 =∑d
i=1 yi > 0 and θ = y

〈y,1〉 ∈ ∆. Here and throughout,

1 stands for the vector (1, . . . , 1)t, and 〈·, ·〉 is the usual Euclidean scalar
product on R

d.
Using this decomposition, the differential equation (1) rewrites

dρ

dt
= ρ〈A(ωt)θ, 1〉 (2)

and
dθ

dt
= F (ωt, θ), (3)

where for all (s, θ) ∈ S ×∆

F (s, θ) = A(s)θ − 〈A(s)θ,1〉θ. (4)

The following proposition is proved in [4], Proposition 2.13, in the
case corresponding to Example 3. It mainly relies on the Random
Perron-Frobenius theorem as proved by Ruelle [14] and later by Arnold,
Demetrius and Gundlach [1] (see also [12], [10], and the references
therein). The proof given in [4] extends to the general situation con-
sidered here. Details are given in the next section.

Proposition 1 Let (ρt, θt) be solution to ((2), (3)). The process (ωt, θt)t≥0

is a Feller Markov process uniquely ergodic on S ×∆.
Let Π denotes its (unique) invariant probability and let

Λ =

∫

S×∆
〈A(s)θ,1〉Π(dsdθ).

Then, for every initial conditions ρ(0) > 0, θ(0) ∈ ∆ and ω0 = s, with
probability one,

lim
t→∞

log(ρt)

t
= Λ.
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For further notice, we call Λ the top Lyapunov exponent2 of the system
given by (1). For periodic linear differential equations it corresponds to
what is sometimes called the principal Lyapunov exponent [10], or the
largest Floquet multiplier [5]. That is, the Floquet exponent with the
largest real part. For further details we refer the reader to the Section
II.2 of the excellent survey [10] by Mierczyński.

Corollary 2

∫

S
[ min
i=1,...,d

d
∑

j=1

Aji(s)]µ(ds) ≤ Λ ≤
∫

S
[ max
i=1,...,d

d
∑

j=1

Aji(s)]µ(ds)

Proof: for all θ ∈ ∆ and s ∈ S

min
i=1,...,d

d
∑

j=1

Aji(s) ≤ 〈A(s)θ, 1〉 ≤ max
i=1,...,d

d
∑

j=1

Aji(s)

✷

Remark 2 Let C := {θ ∈ R
d
+ : 〈θ, θ〉 = 1}. An alternative decom-

position of y ∈ R
d
+ \ {0} is to write y = ρθ with ρ =

√

〈y, y〉 and
θ = y/ρ ∈ C. This leads to another expression for Λ given as

Λ =

∫

S×C
〈A(s)θ, θ〉Π̃(dsdθ)

where Π̃ is a probability over S×C. As a consequence we get the other
estimate:
∫

S
λmin(

A(s) +A(s)t

2
)µ(ds) ≤ Λ ≤

∫

S
λmax(

A(s) +A(s)t

2
)µ(ds)

where λmin (respectively λmax) stands for the smallest (largest) eigen-
value. Other estimates, mainly for periodic systems, can be found in
[10] and in [11] for more general systems.

In the particular case of a periodic system (Example 1), more can be
said.

2see the remark 3 for a justification of this terminology
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Proposition 3 Suppose S = R/Z ∽ [0, 1[ as in Example 1. There
exists a continuous 1-periodic function t ∈ R → θ∗(t) ∈ ∆, such that:
For all s ∈ S and ωt = s + t (mod 1), t → θ∗(s + t) is the unique 1-
periodic solution to (3). It is globally asymptotically stable in the sense
that

lim
t→∞

‖θ(t)− θ∗(s+ t)‖ = 0

for every solution (θ(t))t≥0 to (3) with ωt = s+t (mod 1). In particular,

Π(dsdθ) = dsδθ∗(s)(dθ)

and

Λ =

∫ 1

0
〈A(s)θ∗(s),1〉ds.

1.1 Slow and fast regimes

For all T > 0, let ωT
t = ωt/T . Like (ωt)t≥0, (ωT

t )t≥0 is a Feller Markov
process on S, uniquely ergodic with invariant probability µ. The pa-
rameter 1/T can be understood as a velocity parameter. For instance,
in the context of Example 1, (ωT

t )t≥0 is a T -periodic signal. In the
context of Example 3, its mean sojourn time in each state i ∈ S is
proportional to T.

Consider the differential equation (1) with (ωt)t≥0 replaced by (ωT
t )t≥0.

We let ΠT and ΛT denote the corresponding invariant probabilities on
S ×∆ and top Lyapunov exponent as defined in Proposition 1. This
section considers the fast and slow regimes obtained as T → 0 and
T → ∞.

For a d× d real matrix M, we let λmax(M) denote the largest real
part of its eigenvalues.

For r > 0 sufficiently large, Ā + rI has nonnegative entries and is
irreducible. Hence, by Perron-Frobenius theorem (applied to Ā+ rI),
λmax(Ā) is an eigenvalue and there exists a unique vector, the Perron-
Frobenius vector of Ā, θ∗ ∈ ∆, such that

Āθ∗ = λmax(Ā)θ∗.

Proposition 4 (Fast regime)

lim
T→0

ΠT = µ⊗ δθ∗

5



(for the weak* topology) and

lim
T→0

ΛT = λmax(A).

Note that Proposition 4 has been proven for Example 3 in ([4], Corol-
lary 2.15). The next result generalizes [5] beyond Example 1. Let
supp(µ) be the topological support of µ. Assume that for all s ∈
supp(µ), A(s) is irreducible. Then, under this assumption, there exists
for all s ∈ supp(µ) a unique Perron-Frobenius vector for A(s), θ∗(s) ∈ ∆
characterized by

A(s)θ∗(s) = λmax(A(s))θ
∗(s).

Proposition 5 (Slow regime) Assume that for all s ∈ supp(µ), A(s)
is irreducible. Then

lim
T→∞

ΠT = µ(ds)δθ∗(s)

(for the weak* topology) and

lim
T→∞

ΛT =

∫

S
λmax(A(s))µ(ds).

2 Proofs

Notation and Background

If X is a metric space (such as S,∆, S × ∆) we let B(X) denote the
space of real valued Borel bounded functions on X and C(X) ⊂ B(X)
the subspace of bounded continuous functions. For all f ∈ B(X) we
let ‖f‖∞ = supx∈X |f(x)|. If ν is a probability on X and f ∈ B(X) we
write νf for

∫

X fdν.
Our main assumption that (ωt)t≥0 is a Feller Markov process on

S means, as usual, that (ωt)t≥0 is a Markov process whose transition
semigroup (Pt)t≥0 is Feller. That is:

(a) Pt(C(S)) ⊂ C(S);

(b) limt→0 Ptf(s) = f(s) for all f ∈ C(S) and s ∈ S.
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It turns out (see e.g [8], Theorem 19.6) that (a) and (b) make (Pt)t≥0

strongly continuous in the sense that limt→0 ‖Ptf − f‖∞ = 0 for all
f ∈ C(S).

An invariant probability for (ωt)t≥0 (or (Pt)t≥0) is a probability µ on
S such that for all t ≥ 0 µPt = µ (i.e µPt(f) = µ(f) for all f ∈ B(S)).
Feller continuity and compactness of S imply that such a µ always exist
(see e.g [2], Corollary 4.21). Our assumption that (ωt)t≥0 is uniquely
ergodic means that µ is unique.

A useful consequence of Feller continuity is that we can assume
without loss of generality that (ωt)t≥0 is defined on the space Ω consist-
ing of cadlag (right-continuous, left limit) paths ω : R+ 7→ S equipped
with the Skorohod topology and associated Borel sigma field (see e.g [8],
Theorem 19.15). As usual, for all s ∈ S we let Ps denote the law of
(ωt)t≥0 starting from ω0 = s and Pµ =

∫

S Psµ(ds). The associated
expectations are denoted Es and Eµ.

For all ω ∈ Ω and t ≥ 0 we let Θt(ω) denote the shifted path defined
as Θt(ω)(s) = ω(t+ s). Ergodicity of µ for the Markov process (ωt)t≥0

makes Pµ ergodic (but not uniquely ergodic) for the dynamical system
(Θt)t≥0 on Ω (see e.g [2], Proposition 4.49).

2.1 Proof of Propositions 1 and 3

For ω ∈ Ω the solution to (1) writes y(t) = Φ(t, ω)x where (Φ(t, ω))t≥0

is solution to the matrix valued differential equation

dM

dt
= A(ωt)M,M(0) = Id.

Let M+ ⊂ M denote the set of d× d Metzler matrices having positive
diagonal entries. Observe that

Φ(t, ω) ∈ M+

for all t ≥ 0. Indeed, for R large enough and all s ∈ S, A(s) + 2RId ≥
RId so that e2RtΦ(t, ω) ≥ eRtId (componentwise).

For all θ ∈ ∆, the solution to (3) with initial condition θ(0) = θ,
writes

θ(t) = Ψ(t, ω)(θ) :=
Φ(t, ω)θ

〈Φ(t, ω)θ,1〉 .

Let M++ ⊂ M+ the set of matrices having positive entries.

Lemma 6 For Pµ almost all ω ∈ Ω :
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(i) There exists N ∈ N such that Φ(t, ω) ∈ M++ for all t ≥ N ;

(ii) For all θ, θ′ ∈ ∆

lim
t→∞

‖Ψ(t, ω)θ −Ψ(t, ω)θ′‖ = 0.

Proof: (i). First observe that Φ(t, ω) ∈ M++ ⇔ eRtΦ(t, ω) ∈ M++

for all R > 0. Therefore, replacing A(s) by A(s) +RId for R > ‖A‖∞,
we can assume without loss of generality that A(s) ∈ M+ for all s ∈ S.

Let x(t) = Φ(t, ω)x with x ∈ R
d
+ \ {0}. Suppose xi(0) > 0. Then

xi(t) > 0 because ẋi(t) ≥ Aii(ωt)xi(t) ≥ 0. By irreducibility of Ā, for all
j 6= i there exists a sequence i0 = i, i1, . . . , in = j such that Āikik−1

> 0

for k = 1, . . . n. By ergodicity there exists a Borel set Ω̃ ⊂ Ω with
Pµ(Ω̃) = 1 such that for all ω ∈ Ω̃

1

t

∫ t

0
A(ωu)du → Ā.

Therefore, for all ω ∈ Ω̃, there exists a sequence t1 > t2 > . . . > tn
with

Aikik−1
(ωtk) > 0.

By right continuity of (ωt) we also have Aikik−1
(ωt) > 0 for tk ≤ t ≤

tk + ε for some ε > 0. It follows that ẋi1(t) ≥ Ai1,i(ωt)x1(t) > 0 for all
t1 ≤ t ≤ t1 + ε. Hence xi1(t) > 0 for all t > t1. Similarly xi2(t) > 0
for all t > t2 and, by recursion, xj(t) > 0 for all t > tn. In summary,
we have shown that for all i, j ∈ {1, . . . , d} and ω ∈ Ω̃, there exists a
time tn depending on i, j, ω such that for all t ≥ tn xj(t) > 0 whenever
xi(0) > 0. This proves (i).

(ii). Let R
d
++ = {x ∈ R

d : xi > 0, for all i = 1 . . . d} and ∆̇ =
∆ ∩R

d
++ be the relative interior of ∆. The projective or Hilbert metric

dH on R
d
++ (see Seneta [15]) is defined by

dH(x, y) = log
max1≤i≤d xi/yi
min1≤i≤d xi/yi

.

Note that for all α, β > 0, dH(αx, βy) = dH(x, y) so that dH is not a
distance on R

d
++. However its restriction to ∆̇ is. Furthermore, for all

θ, θ′ ∈ ∆̇,
max
1≤i≤d

|θi − θ′i| ≤ edH (θ,θ′) − 1. (5)

By a theorem of Garret Birkhoff (see e.g [15], Section 3.4), for all
M ∈ M+,

sup
{x,y∈Rd

++
dH (x,y)>0}

dH(Mx,My)

dH(x, y)
= τ [M ] (6)
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where 0 ≤ τ(M) ≤ 1 is the number defined as τ(M) =
1−
√

r(M)

1+
√

r(M)

with r(M) = mini,j,k,lmin
MikMjl

MjkMil
if M ∈ M++ and r(M) = 0 if

M ∈ M+ \ M++. In particular, for M ∈ M+, τ(M) < 1 if and
only if M ∈ M++.

For all 0 ≤ s ≤ t, let

Fs,t(ω) = max{log(τ [Φ(t− s,Θs(ω)]), s − t} ∈ [s− t, 0].

By the cocycle property (i.e Φ(t, ω) = Φ(t−s,Θs(ω))◦Φ(s, ω)), (Fs,t)0≤s≤t

is a subbaditive process. That is

Fs,u ≤ Fs,t + Ft,u and Fs,t ◦Θv = Fs+v,t+v

for all s ≤ t ≤ u and v ≥ 0. Note also that t, s → Fs,t(ω) is continuous
and that sup

0≤s≤t≤1
|Fs,t| ≤ 1, so that the integrability conditions required

for the continuous time version of Kingman’s subadditive ergodic the-
orem (as stated in [9], Theorem 5.6) are satisfied. Therefore, by this
theorem,

lim sup
t→∞

log(τ [Φ(t, ω)])

t
≤ lim

t→∞

F0,t(ω)

t
= γ,

Pµ almost surely, where

γ = inf
t>0

Eµ
F0,t

t
.

Clearly γ < 0. For otherwise we would have that τ [Φ(n, ω)] = 1 ⇔
Φ(n, ω) ∈ M+ \M++ for all n ∈ N, Pµ almost surely, in contradiction
with (i).

Let N be like in assertion (i) of the Lemma. Then, by what pre-
cedes, Pµ almost surely,

lim sup
t→∞

log(dH(Ψ(t+N,ω)(θ),Ψ(t+N,ω)(θ′)))

t

≤ lim sup
t→∞

log(τ [Φ(t,ΘN (ω))])

t
+lim sup

t→∞

log(dH(Ψ(N,ω)(θ),Ψ(N,ω)(θ′)))

t
= γ.

By inequality (5), this concludes the proof. ✷

Let (Qt)t≥0 denote the semigroup of the process (ωt, θt)t≥0. Then, for
all f ∈ B(S ×∆) (s, θ) ∈ S ×∆,

Qtf(s, θ) = Es[f(ωt,Ψ(t, ω)(θ))].
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Lemma 7 The semigroup (Qt)t≥0 is Feller.

Proof: We need to show that (a) Qt(C(S ×∆) ⊂ C(S ×∆) and (b)
limt→0 Qtf(s, θ) = f(s, θ) for all f ∈ C(S ×∆).

(a). It is easy to verify that there exist constants c1, c2 ≥ 0 such
that for all s, s′ ∈ S, θ, θ′ ∈ ∆

‖F (s, θ)− F (s, θ′)‖ ≤ c1‖θ − θ′‖ (7)

‖F (s, θ)− F (s′, θ)‖ ≤ c2‖A(s)−A(s′)‖

where F is defined by (4). Fix ε > 0 and let ω̃ be the path defined as
ω̃u = ωkε for all kε ≤ u < (k + 1)ε. Then, by Gronwall’s lemma,

‖Ψ(t, ω)(θ)−Ψ(t, ω̃)(θ)‖ ≤ ct

∫ t

0
‖A(ω(u)) −A(ω̃(u))‖du (8)

where ct = ec1tc2. Thus, by Jensen inequality,

Es(‖Ψ(t, ω)θ −Ψ(t, ω̃))θ)‖)2 ≤ Es(‖Ψ(t, ω)(θ)−Ψ(t, ω̃)(θ)‖2)

≤ c2t t

∫ t

0
Es(‖A(ωu))−A(ω̃u)‖2)du

The choice of the norm being arbitrary we can assume that the norm
on the right hand side of the preceding inequality is the Euclidean on
R
d2 . Then, for all kε ≤ u < (k + 1)ε,

Es(‖A(ωu))−A(ω̃u)‖2) = Es

(

E(‖A(ωu))−A(ω̃u)‖2)|Fkε)
)

= Es(Pu−kε(‖A‖2)(ωkε)− 2〈A(ωkε), Pu−kε(A)(ωkε)〉+ ‖A(ωkε)‖2)
≤ sup

0≤h≤ε
‖Ph(‖A‖2)− ‖A‖2)‖∞ + 2‖A‖∞‖PhA−A‖∞ := δ(ε).

Observe that δ(ε) → 0 as ε → 0 by strong continuity of (Pt)t≥0.
Combining the two last inequalities, we get

Es(‖Ψ(t, ω)(θ)−Ψ(t, ω̃)(θ)‖2) ≤ c2t t
2δ(ε) (9)

Let now f ∈ C(S ×∆). Then, for every δ > 0 there exists α > 0, such
that

|f(s, θ)− f(s, θ′)| ≤ δ + 2‖f‖1‖θ−θ′‖≥α

Thus
|Qtf(s, θ)− Es(f(ωt,Ψ(t, ω̃)(θ))|
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≤ Es (|f(ωt,Ψ(t, ω)(θ))− f(ωt,Ψ(t, ω̃)(θ))|) ≤ δ + 2
‖f‖
α2

c2t t
2δ(ε).

This shows that the left hand term goes to 0 uniformly in (s, θ) ∈ S×∆
as ε → 0.

In order to conclude it suffices to show that (s, θ) → Es (f(ωt,Ψ(t, ω̃)(θ)))
is continuous. For all s ∈ S, let (Ψs

t )t≥0 denote the semi-flow on ∆ in-
duced by the autonomous differential equation dθ

dt = F (s, θ) Then for
kε ≤ t < (k + 1)ε

f(ωt,Ψ(t, ω̃)(θ)) = f(ωt,Ψ
ωkε

t−kε ◦ ...Ψωε
ε ◦Ψω0

ε (θ))

Now, for every h ∈ C(Sk+2×∆), Feller continuity of (Pt)t≥0, makes the
map (s, θ) → Es(h(ωt, ωkε, . . . , ω0, θ) continuous. This is immediate to
verify when h is a product function (i.e h(sk+1, . . . , s0, θ) = hk+1(sk+1)·
h0(s0)g(θ)) and the general case follows by the density in C(Sk+2×∆)
of the vector space span by product functions. This concludes the proof
of (a).

(b). Let f ∈ C(S×∆) and δ > 0. Because ‖Ψ(t, ω)(θ)−θ‖ ≤ t‖F‖∞,
‖Qtf(s, θ)−Es(f(ωt, θ))‖ ≤ δ for all t sufficiently small. By Feller con-
tinuity of (Pt) limt→0 Es(f(ωt, θ)) = limt→0 Pt(f(·, θ))(s) = f(s, θ). ✷

We can now conclude the proof of Proposition 1. It follows from Lemma
6 (ii) that for all f : S ×∆ 7→ R continuous (hence uniformly continu-
ous) and all θ, θ′ ∈ ∆,

lim
t→∞

|f(ωt,Ψ(t, ω)θ)− f(ωt,Ψ(t, ω)θ′)| = 0

Ps almost surely, for µ almost all s ∈ S. Hence, for all θ, θ′ ∈ ∆,

lim
t→∞

|Qtf(s, θ)−Qtf(s, θ
′)| = 0, (10)

for µ almost all s ∈ S. Let now Π be an invariant probability of (Qt)t≥0.
Such a Π always exist because (Qt)t≥0 if Feller on S ×∆ compact. To
prove that Π is unique, assume that Π′ is another invariant probability.
Then, writing Πf for

∫

S×∆ f(s, θ)Π(dsdθ),

Πf −Π′f = ΠQtf −Π′Qtf

=

∫

S

[
∫

∆×∆
(Qtf(s, θ)−Qtf(s, θ

′))Π(dθ|s)Π(dθ′|s)
]

µ(ds)

where for each s ∈ S, Π(.|s) (respectively Π′(.|s)) is a conditional dis-
tribution of Π (respectively Π′) (see [6], Section 10.2). It then follows

11



from (10) and dominated convergence that Πf = Π′f. Thus Π = Π′.
This proves unique ergodicity.

Now, unique ergodicity and Feller continuity of (ωs, θs)s≥0 imply
that for every continuous function g : S ×∆ → R

lim
t→∞

1

t

∫ t

0
g(ωs, θs)ds =

∫

gdΠ

Ps,θ almost surely for all s, θ ∈ S × ∆. (see e.g [2], Proposition
7.1 for discrete time chains combined with Proposition 4.58 to han-
dle continuous time). This concludes the proof of Proposition 1 with
g(s, θ) = 〈A(s)θ,1〉).

Remark 3 By the multiplicative ergodic theorem, there exist numbers
Λ1 < . . . < Λr, r ≤ d, called Lyapunov exponents, such that for Pµ

almost all ω and all x ∈ R
d \ {0},

lim
t→∞

log ‖Φ(t, ω)x‖
t

:= Λ(x, ω) ∈ {Λ1, . . . ,Λr}.

The set of x ∈ R
d for which Λ(x, ω) < Λr is a vector space (depend-

ing on ω) having nonzero codimension. On the other hand, by what
precedes, Λ(x, ω) = Λ for all x ∈ R

d
+ \ {0}. It follows that Λ = Λr.

Proof of Proposition 3

For s ∈ S = R/Z, let ω[s] ∈ Ω be the path defined as

ωt[s] = s+ t (mod 1).

By Brouwer fixed point theorem, the map Ψ(1, ω[0]) : ∆ 7→ ∆ has a
fixed point θ∗. Set θ∗(t) = Ψ(t, ω[0])(θ∗). Then

θ∗(t+ 1) = Ψ(t, ω[1]) ◦Ψ(1, ω[0])(θ∗) = θ∗(t)

proving that t → θ∗(t) is 1-periodic.
For all s ∈ S and θ ∈ ∆

lim
t→∞

‖Ψ(t, ω[s])(θ)−θ∗(t+s)‖ = lim
t→∞

‖Ψ(t, ω[s])(θ)−Ψ(t, ω[s])(θ∗(s))‖ = 0,

by Lemma 6 applied with ω = ω[s] and θ′ = θ∗[s]. Observe here, that
the conclusions of Lemma 6 hold with ω = ω[s] for all s ∈ S simply
because ω[s] is 1-periodic.
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3 Proof of Propositions 4 and 5

For all T > 0, let (QT
t )t≥0 denote the semigroup of (ωT

t , θt)t≥0 with
ωT
t = ωt/T and (θt)t≥0 is solution to (3) when ωt is replaced by ωT

t .
Using the notation of the preceding section one sees that

QT
t (f)(s, θ) = Es

[

f(ωt/T ,Ψ(t, ωT )(θ))
]

for all f ∈ B(S ×∆).

Proof of Proposition 4

For all θ ∈ ∆, let F̄ (θ) =
∫

S F (s, θ)µ(ds), where F is defined by (4). Let
(Ψ̄t)t≥0 denote the semi-flow on ∆ induced by the differential equation
θ̇ = F̄ (θ). The following lemma follows from the averaging principle as
given in Freidlin and Wentzell [7](Theorem 2.1, Chapter 7).

Lemma 8 For all δ > 0 and t ≥ 0,

lim
T→0

Pµ

(

sup
θ∈∆,0≤u≤t

‖Ψ(u, ωT )(θ)− Ψ̄u(θ)‖ ≥ δ

)

= 0.

In particular, for all f ∈ C(∆) and t ≥ 0,

lim
T→0

Eµ

[

‖f ◦Ψ(t, ωT )− f ◦ Ψ̄t‖∞
]

= 0.

Proof: We claim that

lim
R→∞

sup
t≥0

Pµ

(∣

∣

∣

∣

1

R

∫ t+R

t
F (ωs, θ)ds− F̄ (θ)

∣

∣

∣

∣

≥ δ

)

= 0. (11)

Indeed, by stationarity (invariance of Pµ for (Θt)t≥0),

Pµ

(
∣

∣

∣

∣

1

R

∫ t+R

t
F (ωs, θ)ds− F̄ (θ)

∣

∣

∣

∣

≥ δ

)

= Pµ

(
∣

∣

∣

∣

1

R

∫ R

0
F (ωs, θ)ds− F̄ (θ)

∣

∣

∣

∣

≥ δ

)

for all t ≥ 0; and the right hand term goes to 0, as R → ∞, by ergodicity
of µ.

By the averaging theorem (Theorem 2.1, Chapter 7 in [7]), condition
(11) implies that for all δ > 0, t ≥ 0 and θ ∈ ∆,

lim
T→0

Pµ

(

sup
0≤u≤t

‖Ψ(u, ωT )(θ)− Ψ̄u(θ)‖ ≥ δ

)

= 0. (12)
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By Lipschitz continuity (see (7)) and Gronwall’s lemma,

sup
0≤u≤t

‖Ψ(u, ωT )(θ)−Ψ(u, ωT )(θ′)‖+ ‖Ψ̄t(θ)− Ψ̄t(θ
′)‖ ≤ 2ec1t‖θ − θ′‖

for all θ, θ′ ∈ ∆. Fix ε < δ
4e

−c1t and let {B(θi, ε), i = 1, . . . , N} be a
finite covering of ∆ by balls of radius ε. Then

sup
0≤u≤t,θ∈∆

‖Ψ(u, ωT )(θ)−Ψ̄u(θ)‖ ≤ max
i=1,...,N

sup
0≤u≤t

‖Ψ(u, ωT )(θi)−Ψ̄u(θi)‖+δ/2.

Hence

Pµ

(

sup
0≤u≤t,θ∈∆

‖Ψ(u, ωT )(θ)− Ψ̄u(θ)‖ ≥ δ

)

≤
N
∑

i=1

Pµ

(

sup
0≤u≤t

‖Ψ(u, ωT )(θi)− Ψ̄u(θi)‖ ≥ δ/2

)

.

The right hand term goes 0 as T → 0 by (12). ✷

We now prove the proposition. Let ΠT be the invariant measure of
(QT

t )t≥0 and let Π0 be a limit point of (ΠT )T>0 for the weak* topology,
as T → 0. That is: ΠTnf → Π0f for some sequence Tn → 0 and all
f ∈ C(S ×∆).

Let p : S × ∆ → ∆ be the projection defined as p(s, θ) = θ and
let ΠT

2 = ΠT ◦ p−1 be the second marginal of ΠT . Similarly, set Π0
2 =

Π0 ◦ p−1.
For all f ∈ C(∆) and t ≥ 0,

ΠT
2 f = ΠT (f ◦ p) = ΠTQT

t (f ◦ p) =
∫

S×∆
Es[f(Ψ(t, ωT )(θ))]ΠT (dsdθ).

Thus,

|ΠT
2 f −ΠT

2 (f ◦ Ψ̄t)| =
∣

∣

∣

∣

∫

S×∆
Es[f(Ψ(t, ωT )(θ))− f(Ψ̄t(θ))]Π

T (dsdθ)

∣

∣

∣

∣

≤
∫

S
Es[‖f ◦Ψ(t, ωT )− f ◦ Ψ̄t‖∞]µ(ds) = Eµ[‖f ◦Ψ(t, ωT )− f ◦ Ψ̄t‖∞].

Here we have used the fact that the first marginal of ΠT is µ. Using
Lemma 8, it comes that

Π0
2f = Π0

2(f ◦ Ψ̄t)

for all t ≥ 0. This proves that Π0
2 is invariant for {Ψ̄t}t≥0, but since

{Ψ̄t}t≥0 has θ∗ as globally asymptotically stable equilibrium, necessar-
ily Π0

2 = δθ∗ . On the other hand, the first marginal of Π0 is µ. Thus
Π0 = µ⊗ δθ∗ . This concludes the proof.
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Proof of Proposition 5

Recall (see the proof of Lemma 7) that for all s ∈ S, we let (Ψs
t )t≥0

denote the semi-flow on ∆ induced by the differential equation θ̇ =
F (s, θ).

Let (Q∞
t )t≥0) denote the Markov semigroup on S ×∆ defined as

Q∞
t f(s, θ) = f(s,Ψs

t(θ))

for all f ∈ B(S ×∆).

Lemma 9 For all f ∈ C(S ×∆) and t ≥ 0

lim
T→∞

‖QT
t f −Q∞

t f‖∞ = 0.

Proof: Let f ∈ C(S×∆). By uniform continuity of f, for every t > 0
and δ > 0 there exists α > 0 such that

|f(ωT
t ,Ψ(t, ωT )θ)−f(s,Ψs

t(θ))| ≤ δ+2‖f‖∞1{d(ωT
t ,s)+‖Ψ(t,ωT )(θ)−Ψs

t (θ)‖≥α}.

Thus

‖QT
t f(s, θ)−Q∞

t f(s, θ)‖ ≤ Es

(

|f(ωT
t ,Ψ(t, ωT )(θ)− f(s,Ψs

t(θ))|
)

≤ δ + 2‖f‖∞
Es(‖Ψ(t, ωT )(θ)−Ψs

t (θ)‖) + Pt/T (d(., s))(s)

α
.

By Feller continuity, Pt/T (d(., s))(s) → 0 uniformly in s ∈ S as T → ∞.
This follows for example from Lemma 19.3 (F3) in [8]. Now the estimate
(9) applied with ωT in place of ω, (Pt/T )t≥0 in place of (Pt)t≥0 and ε > t
gives

sup
s∈S

Es(‖Ψ(t, ωT )(θ)−Ψs
t (θ)‖) ≤ c2t2δ(ε/T ). (13)

with δ(ε/T ) → 0 as T → ∞. This concludes the proof. ✷

We can now prove Proposition 5. Let ΠT be the invariant measure of
(ωT

t , θt) and let Π∞ be a limit point of (ΠT )T>0 for the weak* topology.
That is ΠTnf → Π∞f for some sequence Tn → ∞ and all f ∈ C(S×∆).
Then,

|ΠT (f)−ΠT (Q∞
t f)| = |ΠT (QT

t (f)−Q∞
t (f))| ≤ ‖QT

t (f)−Q∞
t (f)‖∞.

Thus, by Lemma 9, (ii), Π∞(f) = Π∞(Q∞
t (f)). Now for all s ∈ supp(µ)

lim
t→∞

Q∞
t (f)(s, θ) = lim

t→∞
f(s,Ψs

t(θ)) = f(s, θ∗(s)).
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Thus, since Π∞(supp(µ)×∆) = 1, it comes that

Π∞(f) =

∫

S

∫

∆
f(s, θ∗(s))Π∞(dsdθ) =

∫

S
f(s, θ∗(s))µ(ds).

This proves the first part of Proposition 5. The second part follows
directly from the first one.

4 Concluding remarks

The results and proofs given here all rely on the assumption that (ωt)
is a Markov process. In particular, they do not apply to the case where
t → ωt is a deterministic periodic signal with discontinuities. This
situation is investigated in a forthcoming preprint [3]. In the particular
case of Example 3, a first order expansion of ΛT when T goes to 0 or
∞ we bill given in another forthcoming preprint [13].
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