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A note on the top Lyapunov exponent of linear cooperative systems

In a recent paper [5] P. Carmona gives an asymptotic formulae for the top Lyapunov exponent of a linear T -periodic cooperative differential equation, in the limit T → ∞. This short note discusses and extends this result.

Notation and main results

Let d ≥ 1 be an integer. Let M denote the closed convex cone consisting of real d × d matrices having off diagonal nonnegative entries. Elements of M are usually called Metzler or cooperative matrices. As usual, a matrix M ∈ M is called irreducible if for all i, j ∈ {1, . . . , d} there exist n ∈ N and a sequence i 1 = i, i 2 , . . . , i n = j such that M i l ,i l+1 > 0 for l = 1, . . . , n -1. Equivalently e M has positive entries. Throughout we let S denote a compact metric space and A : S → M, a continuous mapping. We consider the linear differential equation

dy dt = A(ω t )y (1) 
with initial condition y(0) = x ∈ R d + \ {0}, under the following assumptions:

(i) The process (ω t ) t≥0 if a continuous time Feller Markov process 1 on S and is uniquely ergodic. By this we mean that (ω t ) t≥0 has a unique invariant probability measure denoted µ.

(ii) The average matrix Ā = S A(s)µ(ds) is irreducible.

Remark 1 A sufficient (but non necessary) condition ensuring that Ā is irreducible is that A(s) is irreducible for some s in the topological support of µ. The (easy) proof is left to the reader.

Example 1 (Periodic case) Suppose S = R/Z identified with the unit circle and ω t = s + t (mod 1)

for some s ∈ S. This is the case considered in [START_REF] Carmona | Asymptotic of the largest Floquet multiplier for cooperative matrices[END_REF]. Observe that here µ is the Lebesgue normalized measure on S.

Example 2 (Quasi-periodic case) A natural generalization of Example 1 is as follows. Suppose S = (R/Z) n is the n-torus and ω t = (s 1 + ta 1 , s 2 + ta 2 , . . . , s n + ta n ) (mod 1)

for some s = (s 1 , . . . , s n ) ∈ S and (a 1 , . . . , a n ) rationally independent numbers. That is n i=1 k i a i = 0 for any integers k 1 , . . . , k n such that (k 1 , . . . , k n ) = (0, . . . , 0). Again (ω t ) t≥0 is uniquely ergodic with µ the Lebesgue measure on S.

Example 3 (Switching) Suppose S = {1, . . . , n} for some n ∈ N * and (ω t ) t≥0 is an irreducible continuous time Markov chain on S. In other words, the infinitesimal generator of (ω t ) t≥0 writes

Lf (i) = n j=1 a ij (f (j) -f (i))
for all f : S → R, where (a ij ) is an irreducible rate matrix. Then (ω t ) t≥0 is uniquely ergodic and µ is the unique probability vector solution to n j=1 (µ j a ji -µ i a ij ) = 0 for all i = 1, . . . , n. This situation has been considered in [START_REF] Benaïm | Random switching between vector fields having a common zero[END_REF]. 1 The precise definition will be recalled in the beginning of Section 2 Example 4 Suppose S is a compact connected riemannian manifold and (ω t ) t≥0 a Brownian motion (or an elliptic diffusion) on S. Then (ω t ) t≥0 is uniquely ergodic and µ is the normalized volume on S (or a measure absolutely continuous with respect to the volume, in the diffusion case).

Let ∆ := ∆ d-1 = {x ∈ R d + : d i=1 x i = 1} be the unit d -1 simplex. Every y ∈ R d + \ {0} can be written as y = ρθ, with ρ = y, 1 = d i=1 y i > 0 and θ = y y,1 ∈ ∆.
Here and throughout, 1 stands for the vector (1, . . . , 1) t , and •, • is the usual Euclidean scalar product on R d .

Using this decomposition, the differential equation ( 1) rewrites

dρ dt = ρ A(ω t )θ, 1 (2) 
and

dθ dt = F (ω t , θ), (3) 
where for all (s, θ)

∈ S × ∆ F (s, θ) = A(s)θ -A(s)θ, 1 θ. ( 4 
)
The following proposition is proved in [START_REF] Benaïm | Random switching between vector fields having a common zero[END_REF], Proposition 2.13, in the case corresponding to Example 3. It mainly relies on the Random Perron-Frobenius theorem as proved by Ruelle [START_REF] Ruelle | Analyticity properties of the characteristic exponents of random matrix[END_REF] and later by Arnold, Demetrius and Gundlach [START_REF] Arnold | Evolutionary formalism for products of positive random matrices[END_REF] (see also [START_REF] Mierczyński | Principal Lyapunov exponents and principal Floquet spaces of positive random dynamical systems. II. Finite-dimensional systems[END_REF], [START_REF] Mierczyński | Estimates for principal lyapunov exponents: A survey[END_REF], and the references therein). The proof given in [START_REF] Benaïm | Random switching between vector fields having a common zero[END_REF] extends to the general situation considered here. Details are given in the next section.

Proposition 1 Let (ρ t , θ t ) be solution to ((2), ( 3)). The process (ω t , θ t ) t≥0 is a Feller Markov process uniquely ergodic on S × ∆.

Let Π denotes its (unique) invariant probability and let

Λ = S×∆ A(s)θ, 1 Π(dsdθ).
Then, for every initial conditions ρ(0) > 0, θ(0) ∈ ∆ and ω 0 = s, with probability one,

lim t→∞ log(ρ t ) t = Λ.
For further notice, we call Λ the top Lyapunov exponent2 of the system given by [START_REF] Arnold | Evolutionary formalism for products of positive random matrices[END_REF]. For periodic linear differential equations it corresponds to what is sometimes called the principal Lyapunov exponent [START_REF] Mierczyński | Estimates for principal lyapunov exponents: A survey[END_REF], or the largest Floquet multiplier [START_REF] Carmona | Asymptotic of the largest Floquet multiplier for cooperative matrices[END_REF]. That is, the Floquet exponent with the largest real part. For further details we refer the reader to the Section II.2 of the excellent survey [START_REF] Mierczyński | Estimates for principal lyapunov exponents: A survey[END_REF] by Mierczyński. 

Λ = S×C A(s)θ, θ Π(dsdθ)
where Π is a probability over S × C. As a consequence we get the other estimate:

S λ min ( A(s) + A(s) t 2 )µ(ds) ≤ Λ ≤ S λ max ( A(s) + A(s) t 2 )µ(ds)
where λ min (respectively λ max ) stands for the smallest (largest) eigenvalue. Other estimates, mainly for periodic systems, can be found in [START_REF] Mierczyński | Estimates for principal lyapunov exponents: A survey[END_REF] and in [START_REF] Mierczyński | Lower estimates of top Lyapunov exponent for cooperative random systems of linear ODEs[END_REF] for more general systems.

In the particular case of a periodic system (Example 1), more can be said. for every solution (θ(t)) t≥0 to (3) with ω t = s + t (mod 1). In particular,

Proposition 3 Suppose S = R/Z ∽ [0,
Π(dsdθ) = dsδ θ * (s) (dθ)
and

Λ = 1 0 A(s)θ * (s), 1 ds.

Slow and fast regimes

For all T > 0, let ω T t = ω t/T . Like (ω t ) t≥0 , (ω T t ) t≥0 is a Feller Markov process on S, uniquely ergodic with invariant probability µ. The parameter 1/T can be understood as a velocity parameter. For instance, in the context of Example 1, (ω T t ) t≥0 is a T -periodic signal. In the context of Example 3, its mean sojourn time in each state i ∈ S is proportional to T.

Consider the differential equation ( 1) with (ω t ) t≥0 replaced by (ω T t ) t≥0 . We let Π T and Λ T denote the corresponding invariant probabilities on S × ∆ and top Lyapunov exponent as defined in Proposition 1. This section considers the fast and slow regimes obtained as T → 0 and T → ∞.

For a d × d real matrix M, we let λ max (M ) denote the largest real part of its eigenvalues.

For r > 0 sufficiently large, Ā + rI has nonnegative entries and is irreducible. Hence, by Perron-Frobenius theorem (applied to Ā + rI), λ max ( Ā) is an eigenvalue and there exists a unique vector, the Perron-Frobenius vector of Ā, θ * ∈ ∆, such that

Āθ * = λ max ( Ā)θ * . Proposition 4 (Fast regime) lim T →0 Π T = µ ⊗ δ θ *
(for the weak* topology) and

lim T →0 Λ T = λ max (A).
Note that Proposition 4 has been proven for Example 3 in ( [START_REF] Benaïm | Random switching between vector fields having a common zero[END_REF], Corollary 2.15). The next result generalizes [START_REF] Carmona | Asymptotic of the largest Floquet multiplier for cooperative matrices[END_REF] beyond Example 1. Let supp(µ) be the topological support of µ. Assume that for all s ∈ supp(µ), A(s) is irreducible. Then, under this assumption, there exists for all s ∈ supp(µ) a unique Perron-Frobenius vector for A(s), θ * (s) ∈ ∆ characterized by

A(s)θ * (s) = λ max (A(s))θ * (s). Proposition 5 (Slow regime) Assume that for all s ∈ supp(µ), A(s) is irreducible. Then lim T →∞ Π T = µ(ds)δ θ * (s)
(for the weak* topology) and lim

T →∞ Λ T = S λ max (A(s))µ(ds).

Proofs

Notation and Background

If X is a metric space (such as S, ∆, S × ∆) we let B(X) denote the space of real valued Borel bounded functions on X and C(X) ⊂ B(X) the subspace of bounded continuous functions. For all f ∈ B(X) we let f ∞ = sup x∈X |f (x)|. If ν is a probability on X and f ∈ B(X) we write νf for X f dν.

Our main assumption that (ω t ) t≥0 is a Feller Markov process on S means, as usual, that (ω t ) t≥0 is a Markov process whose transition semigroup (P t ) t≥0 is Feller. That is:

(a) P t (C(S)) ⊂ C(S); (b) lim t→0 P t f (s) = f (s) for all f ∈ C(S) and s ∈ S.
It turns out (see e.g [START_REF] Kallenberg | Foundations of modern probability[END_REF], Theorem 19.6) that (a) and (b) make (P t ) t≥0 strongly continuous in the sense that lim t→0 P t f -f ∞ = 0 for all f ∈ C(S).

An invariant probability for (ω t ) t≥0 (or (P t ) t≥0 ) is a probability µ on S such that for all t ≥ 0 µP t = µ (i.e µP t (f ) = µ(f ) for all f ∈ B(S)). Feller continuity and compactness of S imply that such a µ always exist (see e.g [START_REF] Benaïm | Markov Chains on Metric Spaces[END_REF], Corollary 4.21). Our assumption that (ω t ) t≥0 is uniquely ergodic means that µ is unique.

A useful consequence of Feller continuity is that we can assume without loss of generality that (ω t ) t≥0 is defined on the space Ω consisting of cadlag (right-continuous, left limit) paths ω : R + → S equipped with the Skorohod topology and associated Borel sigma field (see e.g [START_REF] Kallenberg | Foundations of modern probability[END_REF], Theorem 19.15). As usual, for all s ∈ S we let P s denote the law of (ω t ) t≥0 starting from ω 0 = s and P µ = S P s µ(ds). The associated expectations are denoted E s and E µ .

For all ω ∈ Ω and t ≥ 0 we let Θ t (ω) denote the shifted path defined as Θ t (ω)(s) = ω(t + s). Ergodicity of µ for the Markov process (ω t ) t≥0 makes P µ ergodic (but not uniquely ergodic) for the dynamical system (Θ t ) t≥0 on Ω (see e.g [START_REF] Benaïm | Markov Chains on Metric Spaces[END_REF], Proposition 4.49).

Proof of Propositions 1 and 3

For ω ∈ Ω the solution to (1) writes y(t) = Φ(t, ω)x where (Φ(t, ω)) t≥0 is solution to the matrix valued differential equation

dM dt = A(ω t )M, M (0) = Id.
Let M + ⊂ M denote the set of d × d Metzler matrices having positive diagonal entries. Observe that

Φ(t, ω) ∈ M +
for all t ≥ 0. Indeed, for R large enough and all s ∈ S, A(s) + 2RId ≥ RId so that e 2Rt Φ(t, ω) ≥ e Rt Id (componentwise). For all θ ∈ ∆, the solution to (3) with initial condition θ(0) = θ, writes

θ(t) = Ψ(t, ω)(θ) := Φ(t, ω)θ Φ(t, ω)θ, 1 .
Let M ++ ⊂ M + the set of matrices having positive entries.

Lemma 6 For P µ almost all ω ∈ Ω :

(i) There exists N ∈ N such that Φ(t, ω) ∈ M ++ for all t ≥ N ;

(ii) For all θ, θ ′ ∈ ∆ lim t→∞ Ψ(t, ω)θ -Ψ(t, ω)θ ′ = 0. Proof: (i). First observe that Φ(t, ω) ∈ M ++ ⇔ e Rt Φ(t, ω) ∈ M ++ for all R > 0. Therefore, replacing A(s) by A(s) + RId for R > A ∞ ,
we can assume without loss of generality that A(s) ∈ M + for all s ∈ S.

Let x(t) = Φ(t, ω)x with x ∈ R d + \ {0}. Suppose x i (0) > 0. Then x i (t) > 0 because ẋi (t) ≥ A ii (ω t )x i (t) ≥ 0.
By irreducibility of Ā, for all j = i there exists a sequence i 0 = i, i 1 , . . . , i n = j such that Āi k i k-1 > 0 for k = 1, . . . n. By ergodicity there exists a Borel set Ω ⊂ Ω with P µ ( Ω) = 1 such that for all ω ∈ Ω

1 t t 0 A(ω u )du → Ā.
Therefore, for all ω ∈ Ω, there exists a sequence

t 1 > t 2 > . . . > t n with A i k i k-1 (ω t k ) > 0.
By right continuity of (ω t ) we also have

A i k i k-1 (ω t ) > 0 for t k ≤ t ≤ t k + ε for some ε > 0. It follows that ẋi 1 (t) ≥ A i 1 ,i (ω t )x 1 (t) > 0 for all t 1 ≤ t ≤ t 1 + ε. Hence x i 1 (t)
> 0 for all t > t 1 . Similarly x i 2 (t) > 0 for all t > t 2 and, by recursion, x j (t) > 0 for all t > t n . In summary, we have shown that for all i, j ∈ {1, . . . , d} and ω ∈ Ω, there exists a time t n depending on i, j, ω such that for all t ≥ t n x j (t) > 0 whenever x i (0) > 0. This proves (i).

(ii). Let R d ++ = {x ∈ R d : x i > 0, for all i = 1 . . . d} and ∆ = ∆ ∩ R d ++ be the relative interior of ∆. The projective or Hilbert metric d H on R d ++ (see Seneta [START_REF] Seneta | Non-negative matrices and Markov chains[END_REF]) is defined by

d H (x, y) = log max 1≤i≤d x i /y i min 1≤i≤d x i /y i .
Note that for all α, β > 0, d H (αx, βy) = d H (x, y) so that d H is not a distance on R d ++ . However its restriction to ∆ is. Furthermore, for all θ, θ ′ ∈ ∆, max

1≤i≤d |θ i -θ ′ i | ≤ e d H (θ,θ ′ ) -1. (5) 
By a theorem of Garret Birkhoff (see e.g [START_REF] Seneta | Non-negative matrices and Markov chains[END_REF], Section 3.4), for all

M ∈ M + , sup {x,y∈R d ++ d H (x,y)>0} d H (M x, M y) d H (x, y) = τ [M ] (6) 
where 0 ≤ τ (M ) ≤ 1 is the number defined as τ (M ) =

1- √ r(M ) 1+ √ r(M )
with r(M ) = min i,j,k,l min

M ik M jl M jk M il if M ∈ M ++ and r(M ) = 0 if M ∈ M + \ M ++ . In particular, for M ∈ M + , τ (M ) < 1 if and only if M ∈ M ++ .
For all 0 ≤ s ≤ t, let 

F s,t (ω) = max{log(τ [Φ(t -s, Θ s (ω)]), s -t} ∈ [s -t,
γ = inf t>0 E µ F 0,t t .
Clearly γ < 0. For otherwise we would have that τ [Φ(n, ω)] = 1 ⇔ Φ(n, ω) ∈ M + \ M ++ for all n ∈ N, P µ almost surely, in contradiction with (i).

Let N be like in assertion (i) of the Lemma. Then, by what precedes, P µ almost surely,

lim sup t→∞ log(d H (Ψ(t + N, ω)(θ), Ψ(t + N, ω)(θ ′ ))) t ≤ lim sup t→∞ log(τ [Φ(t, Θ N (ω))]) t +lim sup t→∞ log(d H (Ψ(N, ω)(θ), Ψ(N, ω)(θ ′ ))) t = γ.
By inequality [START_REF] Carmona | Asymptotic of the largest Floquet multiplier for cooperative matrices[END_REF], this concludes the proof. ✷

Let (Q t ) t≥0 denote the semigroup of the process (ω t , θ t ) t≥0 . Then, for all f ∈ B(S × ∆) (s, θ) ∈ S × ∆,

Q t f (s, θ) = E s [f (ω t , Ψ(t, ω)(θ))].

Lemma 7

The semigroup (Q t ) t≥0 is Feller.

Proof: We need to show that (a) Q t (C(S × ∆) ⊂ C(S × ∆) and (b) lim t→0 Q t f (s, θ) = f (s, θ) for all f ∈ C(S × ∆). (a)
. It is easy to verify that there exist constants c 1 , c 2 ≥ 0 such that for all s, s ′ ∈ S, θ, θ ′ ∈ ∆

F (s, θ) -F (s, θ ′ ) ≤ c 1 θ -θ ′ (7) F (s, θ) -F (s ′ , θ) ≤ c 2 A(s) -A(s ′ )
where F is defined by ( 4). Fix ε > 0 and let ω be the path defined as ωu = ω kε for all kε ≤ u < (k + 1)ε. Then, by Gronwall's lemma,

Ψ(t, ω)(θ) -Ψ(t, ω)(θ) ≤ c t t 0 A(ω(u)) -A(ω(u)) du (8) 
where c t = e c 1 t c 2 . Thus, by Jensen inequality,

E s ( Ψ(t, ω)θ -Ψ(t, ω))θ) ) 2 ≤ E s ( Ψ(t, ω)(θ) -Ψ(t, ω)(θ) 2 ) ≤ c 2 t t t 0 E s ( A(ω u )) -A(ω u ) 2 )du
The choice of the norm being arbitrary we can assume that the norm on the right hand side of the preceding inequality is the Euclidean on R d 2 . Then, for all kε ≤ u < (k + 1)ε,

E s ( A(ω u )) -A(ω u ) 2 ) = E s E( A(ω u )) -A(ω u ) 2 )|F kε ) = E s (P u-kε ( A 2 )(ω kε ) -2 A(ω kε ), P u-kε (A)(ω kε ) + A(ω kε ) 2 ) ≤ sup 0≤h≤ε P h ( A 2 ) -A 2 ) ∞ + 2 A ∞ P h A -A ∞ := δ(ε).
Observe that δ(ε) → 0 as ε → 0 by strong continuity of (P t ) t≥0 . Combining the two last inequalities, we get

E s ( Ψ(t, ω)(θ) -Ψ(t, ω)(θ) 2 ) ≤ c 2 t t 2 δ(ε) (9) 
Let now f ∈ C(S × ∆). Then, for every δ > 0 there exists α > 0, such that

|f (s, θ) -f (s, θ ′ )| ≤ δ + 2 f 1 θ-θ ′ ≥α Thus |Q t f (s, θ) -E s (f (ω t , Ψ(t, ω)(θ))| ≤ E s (|f (ω t , Ψ(t, ω)(θ)) -f (ω t , Ψ(t, ω)(θ))|) ≤ δ + 2 f α 2 c 2 t t 2 δ(ε).
This shows that the left hand term goes to 0 uniformly in (s, θ) ∈ S ×∆ as ε → 0.

In order to conclude it suffices to show that (s, θ) → E s (f (ω t , Ψ(t, ω)(θ))) is continuous. For all s ∈ S, let (Ψ s t ) t≥0 denote the semi-flow on ∆ induced by the autonomous differential equation dθ dt = F (s, θ) Then for kε ≤ t < (k + 1)ε

f (ω t , Ψ(t, ω)(θ)) = f (ω t , Ψ ω kε t-kε • ...Ψ ωε ε • Ψ ω 0 ε (θ))
Now, for every h ∈ C(S k+2 ×∆), Feller continuity of (P t ) t≥0 , makes the map (s, θ) → E s (h(ω t , ω kε , . . . , ω 0 , θ) continuous. This is immediate to verify when h is a product function (i.e h(s k+1 , . . . , s 0 , θ) = h k+1 (s k+1 )• h 0 (s 0 )g(θ)) and the general case follows by the density in C(S k+2 × ∆) of the vector space span by product functions. This concludes the proof of (a).

(b). Let f ∈ C(S ×∆) and δ > 0. Because Ψ(t, ω)(θ)-θ ≤ t F ∞ , Q t f (s, θ) -E s (f (ω t , θ))
≤ δ for all t sufficiently small. By Feller continuity of

(P t ) lim t→0 E s (f (ω t , θ)) = lim t→0 P t (f (•, θ))(s) = f (s, θ). ✷
We can now conclude the proof of Proposition 1. It follows from Lemma 6 (ii) that for all f : S × ∆ → R continuous (hence uniformly continuous) and all θ, θ ′ ∈ ∆,

lim t→∞ |f (ω t , Ψ(t, ω)θ) -f (ω t , Ψ(t, ω)θ ′ )| = 0 P s almost surely, for µ almost all s ∈ S. Hence, for all θ, θ ′ ∈ ∆, lim t→∞ |Q t f (s, θ) -Q t f (s, θ ′ )| = 0, (10) 
for µ almost all s ∈ S. Let now Π be an invariant probability of (Q t ) t≥0 . Such a Π always exist because (Q t ) t≥0 if Feller on S × ∆ compact. To prove that Π is unique, assume that Π ′ is another invariant probability. Then, writing Πf for S×∆ f (s, θ)Π(dsdθ),

Πf -Π ′ f = ΠQ t f -Π ′ Q t f = S ∆×∆ (Q t f (s, θ) -Q t f (s, θ ′ ))Π(dθ|s)Π(dθ ′ |s) µ(ds)
where for each s ∈ S, Π(.|s) (respectively Π ′ (.|s)) is a conditional distribution of Π (respectively Π ′ ) (see [START_REF] Dudley | Real analysis and probability[END_REF], Section 10.2). It then follows from [START_REF] Mierczyński | Estimates for principal lyapunov exponents: A survey[END_REF] and dominated convergence that Πf = Π ′ f. Thus Π = Π ′ . This proves unique ergodicity. Now, unique ergodicity and Feller continuity of (ω s , θ s ) s≥0 imply that for every continuous function g : S × ∆ → R 

Proof of Proposition 3

For s ∈ S = R/Z, let ω[s] ∈ Ω be the path defined as ω t [s] = s + t (mod 1).

By Brouwer fixed point theorem, the map By Lipschitz continuity (see [START_REF] Freidlin | Random perturbations of dynamical systems, volume 260 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF]) and Gronwall's lemma,

Ψ(1, ω[0]) : ∆ → ∆ has a fixed point θ * . Set θ * (t) = Ψ(t, ω[0])(θ * ). Then θ * (t + 1) = Ψ(t, ω[1]) • Ψ(1, ω[0])(θ * ) = θ * (t) proving that t → θ * (t) is 1-periodic.
sup 0≤u≤t Ψ(u, ω T )(θ) -Ψ(u, ω T )(θ ′ ) + Ψt (θ) -Ψt (θ ′ ) ≤ 2e c 1 t θ -θ ′
for all θ, θ ′ ∈ ∆. Fix ε < δ 4 e -c 1 t and let {B(θ i , ε), i = 1, . . . , N } be a finite covering of ∆ by balls of radius ε. Then

sup 0≤u≤t,θ∈∆ Ψ(u, ω T )(θ)-Ψu (θ) ≤ max i=1,...,N sup 0≤u≤t Ψ(u, ω T )(θ i )-Ψu (θ i ) +δ/2. Hence P µ sup 0≤u≤t,θ∈∆ Ψ(u, ω T )(θ) -Ψu (θ) ≥ δ ≤ N i=1 P µ sup 0≤u≤t Ψ(u, ω T )(θ i ) -Ψu (θ i ) ≥ δ/2 .
The right hand term goes 0 as T → 0 by [START_REF] Mierczyński | Principal Lyapunov exponents and principal Floquet spaces of positive random dynamical systems. II. Finite-dimensional systems[END_REF]. ✷

We now prove the proposition. Let Π T be the invariant measure of (Q T t ) t≥0 and let Π 0 be a limit point of (Π T ) T >0 for the weak* topology, as T → 0. That is: Π Tn f → Π 0 f for some sequence T n → 0 and all f ∈ C(S × ∆).

Let p : S × ∆ → ∆ be the projection defined as p(s, θ) = θ and let Π T 2 = Π T • p -1 be the second marginal of Π T . Similarly, set

Π 0 2 = Π 0 • p -1 .
For all f ∈ C(∆) and t ≥ 0,

Π T 2 f = Π T (f • p) = Π T Q T t (f • p) = S×∆ E s [f (Ψ(t, ω T )(θ))]Π T (dsdθ).
Thus,

|Π T 2 f -Π T 2 (f • Ψt )| = S×∆ E s [f (Ψ(t, ω T )(θ)) -f ( Ψt (θ))]Π T (dsdθ) ≤ S E s [ f • Ψ(t, ω T ) -f • Ψt ∞ ]µ(ds) = E µ [ f • Ψ(t, ω T ) -f • Ψt ∞ ].
Here we have used the fact that the first marginal of Π T is µ. Using Lemma 8, it comes that Π 0 2 f = Π 0 2 (f • Ψt ) for all t ≥ 0. This proves that Π 0 2 is invariant for { Ψt } t≥0 , but since { Ψt } t≥0 has θ * as globally asymptotically stable equilibrium, necessarily Π 0 2 = δ θ * . On the other hand, the first marginal of Π 0 is µ. Thus Π 0 = µ ⊗ δ θ * . This concludes the proof.

Proof of Proposition 5

Recall (see the proof of Lemma 7) that for all s ∈ S, we let (Ψ s t ) t≥0 denote the semi-flow on ∆ induced by the differential equation θ = F (s, θ).

Let (Q ∞ t ) t≥0 ) denote the Markov semigroup on S × ∆ defined as

Q ∞ t f (s, θ) = f (s, Ψ s t (θ))
for all f ∈ B(S × ∆).

Lemma 9 For all f ∈ C(S × ∆) and t ≥ 0 lim By Feller continuity, P t/T (d(., s))(s) → 0 uniformly in s ∈ S as T → ∞. This follows for example from Lemma 19.3 (F 3 ) in [START_REF] Kallenberg | Foundations of modern probability[END_REF]. Now the estimate (9) applied with ω T in place of ω, (P t/T ) t≥0 in place of (P t ) t≥0 and ε > t gives sup s∈S E s ( Ψ(t, ω T )(θ) -Ψ s t (θ) ) ≤ c 2 t 2 δ(ε/T ).

T →∞ Q T t f -Q ∞ t f ∞ = 0. Proof: Let f ∈ C(S
with δ(ε/T ) → 0 as T → ∞. This concludes the proof. ✷

We can now prove Proposition 5. Let Π T be the invariant measure of (ω T t , θ t ) and let Π ∞ be a limit point of (Π T ) T >0 for the weak* topology. That is Π Tn f → Π ∞ f for some sequence T n → ∞ and all f ∈ C(S ×∆). Then,

|Π T (f ) -Π T (Q ∞ t f )| = |Π T (Q T t (f ) -Q ∞ t (f ))| ≤ Q T t (f ) -Q ∞ t (f ) ∞ .
Thus, by Lemma 9, (ii), Π ∞ (f ) = Π ∞ (Q ∞ t (f )). Now for all s ∈ supp(µ) This proves the first part of Proposition 5. The second part follows directly from the first one.

lim t→∞ Q ∞ t (f )(s, θ) = lim

Concluding remarks

The results and proofs given here all rely on the assumption that (ω t ) is a Markov process. In particular, they do not apply to the case where t → ω t is a deterministic periodic signal with discontinuities. This situation is investigated in a forthcoming preprint [START_REF] Benaïm | Dispersal-induced growth in a time-periodic environment when the migration is asymmetric[END_REF]. In the particular case of Example 3, a first order expansion of Λ T when T goes to 0 or ∞ we bill given in another forthcoming preprint [START_REF] Monmarché | Asymptotic expansion of the lyapunov exponentfor fast and slow switching linear odes[END_REF].

AARemark 2

 2 ji (s)]µ(ds) ≤ Λ ≤ ji (s)]µ(ds) Proof: for all θ ∈ ∆ and s ∈ S min i=1,...,d d j=1 A ji (s) ≤ A(s)θ, 1 ≤ max Let C := {θ ∈ R d + : θ, θ = 1}. An alternative decomposition of y ∈ R d + \ {0} is to write y = ρθ with ρ = y, y and θ = y/ρ ∈ C. This leads to another expression for Λ given as

Remark 3

 3 s , θ s )ds = gdΠ P s,θ almost surely for all s, θ ∈ S × ∆. (see e.g[START_REF] Benaïm | Markov Chains on Metric Spaces[END_REF], Proposition 7.1 for discrete time chains combined with Proposition 4.58 to handle continuous time). This concludes the proof of Proposition 1 with g(s, θ) = A(s)θ, 1 ). By the multiplicative ergodic theorem, there exist numbers Λ 1 < . . . < Λ r , r ≤ d, called Lyapunov exponents, such that for P µ almost all ω and all x ∈ R d \ {0},lim t→∞ log Φ(t, ω)x t := Λ(x, ω) ∈ {Λ 1 , . . . , Λ r }.The set of x ∈ R d for which Λ(x, ω) < Λ r is a vector space (depending on ω) having nonzero codimension. On the other hand, by what precedes, Λ(x, ω) = Λ for all x ∈ R d + \ {0}. It follows that Λ = Λ r .

  For all s ∈ S and θ ∈ ∆lim t→∞ Ψ(t, ω[s])(θ)-θ * (t+s) = lim t→∞ Ψ(t, ω[s])(θ)-Ψ(t, ω[s])(θ * (s)) = 0,by Lemma 6 applied with ω = ω[s] and θ ′ = θ * [s]. Observe here, that the conclusions of Lemma 6 hold with ω = ω[s] for all s ∈ S simply because ω[s] is 1-periodic.

  t→∞ f (s, Ψ s t (θ)) = f (s, θ * (s)). Thus, since Π ∞ (supp(µ) × ∆) = 1, it comes that Π ∞ (f ) = S ∆ f (s, θ * (s))Π ∞ (dsdθ) = S f(s, θ * (s))µ(ds).

  0].

	By the cocycle property (i.e Φ(t, ω) = Φ(t-s, Θ s (ω))•Φ(s, ω)), (F s,t ) 0≤s≤t
	is a subbaditive process. That is

F s,u ≤ F s,t + F t,u and F s,t • Θ v = F s+v,t+v for all s ≤ t ≤ u and v ≥ 0. Note also that t, s → F s,t (ω) is continuous and that sup 0≤s≤t≤1 |F s,t | ≤ 1, so that the integrability conditions required for the continuous time version of Kingman's subadditive ergodic theorem (as stated in

[START_REF] Krengel | Ergodic Theorems[END_REF]

, Theorem 5.6) are satisfied. Therefore, by this theorem,

lim sup t→∞ log(τ [Φ(t, ω)]) t ≤ lim t→∞ F 0,t

(ω)

t = γ, P µ almost surely, where

see the remark

for a justification of this terminology
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Proof of Propositions 4 and 5

For all T > 0, let (Q T t ) t≥0 denote the semigroup of (ω T t , θ t ) t≥0 with ω T t = ω t/T and (θ t ) t≥0 is solution to (3) when ω t is replaced by ω T t . Using the notation of the preceding section one sees that

for all f ∈ B(S × ∆).

Proof of Proposition 4

For all θ ∈ ∆, let F (θ) = S F (s, θ)µ(ds), where F is defined by (4). Let ( Ψt ) t≥0 denote the semi-flow on ∆ induced by the differential equation θ = F (θ). The following lemma follows from the averaging principle as given in Freidlin and Wentzell [START_REF] Freidlin | Random perturbations of dynamical systems, volume 260 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF](Theorem 2.1, Chapter 7).

Lemma 8 For all δ > 0 and t ≥ 0, lim

In particular, for all f ∈ C(∆) and t ≥ 0, lim

Indeed, by stationarity (invariance of P µ for (Θ t ) t≥0 ),

for all t ≥ 0; and the right hand term goes to 0, as R → ∞, by ergodicity of µ.

By the averaging theorem (Theorem 2.1, Chapter 7 in [START_REF] Freidlin | Random perturbations of dynamical systems, volume 260 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF]), condition [START_REF] Mierczyński | Lower estimates of top Lyapunov exponent for cooperative random systems of linear ODEs[END_REF] implies that for all δ > 0, t ≥ 0 and θ ∈ ∆, lim T →0 P µ sup 0≤u≤t Ψ(u, ω T )(θ) -Ψu (θ) ≥ δ = 0.

(12)