
HAL Id: hal-04237434
https://hal.science/hal-04237434

Submitted on 11 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

How to build a MATLAB demonstrator solving
dynamical systems in real-time, with audio output and

MIDI control
Tom Colinot, Christophe Vergez

To cite this version:
Tom Colinot, Christophe Vergez. How to build a MATLAB demonstrator solving dynamical systems
in real-time, with audio output and MIDI control. Acta Acustica, In press, �10.5281/zenodo.8413627�.
�hal-04237434�

https://hal.science/hal-04237434
https://hal.archives-ouvertes.fr

How to build a MATLAB demonstrator solving dynamical systems in

real-time, with audio output and MIDI control

Tom Colinota,b, Christophe Vergezb
a Buffet Crampon, Mantes-la-Ville, France

b Aix Marseille Univ, CNRS, Centrale Marseille, LMA, Marseille, France

Summary1

This paper explains and provides code to synthesize2

and control, in real-time, the audio signals produced3

by a dynamical system. The code uses only the Matlab4

programming language. It can be controlled with an5

external MIDI (Musical Instrument Data Interface)6

device, such as a MIDI keyboard or wind controller,7

or with mouse-operated sliders. In addition to the8

audio output, the demonstrator computes and dis-9

plays the amplitude and fundamental frequency of the10

signal, which is useful to quantify the dynamics of11

the model. For the sake of this example, it is a type12

of Van der Pol oscillator, but more complex systems13

can be handled. The demonstrator holds potential for14

pedagogical and preliminary research applications, for15

various topics related to dynamical systems: direct and16

inverse bifurcations, transient effects such as dynam-17

ical bifurcations, artifacts introduced by integration18

schemes, and above all, the dynamics of self-sustained19

musical instruments.20

1 Introduction21

Autonomous dynamical systems are complicated ob-22

jects to study and teach. Even some of the simplest23

ones to formulate are extremely unpredictable. The24

richness of this behavior is not encapsulated in the25

usual description of the permanent equilibrium points26

or periodic regimes [1, 2]. Some of their solutions are27

non-periodic, or coexist with other stable solutions [3].28

This makes it difficult to predict which type of solution29

is obtained in any given situation. When the system30

parameters vary, complicated transient effects emerge,31

such as hysteresis cycles [4] or dynamical bifurcations32

[5].33

Self-oscillating musical instruments such as wind34

instruments or bowed strings are modeled using au-35

tonomous dynamical systems [6]. Their example illus-36

trates how transient effects are essential to a complete37

description of the system’s real-life behavior, since they38

are experienced (at least) at the beginning and end of39

each note. In this spirit, it seems that a reasonable and40

compelling approach to experience and explore how41

a dynamical system reacts is implementing a virtual42

“musical instrument” demonstrator. By manipulating 43

the control parameters, the user can see and hear phe- 44

nomena typical of nonlinear systems in real-time, in a 45

very controlled and repeatable environment. This is 46

particularly relevant in all fields related to music, such 47

as musical acoustics and instrument making. In these 48

fields, one can go even further by linking the system’s 49

behavior to musical terms, such as intonation (flat, 50

sharp), nuance (piano, forte) or transient dynamics 51

(staccato, legato). The presented demonstrator aims 52

to be as general as possible, meaning that the example 53

model can be replaced by any simple dynamical system 54

with only minor adjustments. While other possible 55

environments for real-time sound synthesis exist, such 56

as C++ (notably the JUCE library), Max/MSP, or 57

Faust, this demonstrator is presented in a pure Mat- 58

lab implementation, using only the Audio Toolbox 59

(audio system toolbox, matlab, signal blocks). This 60

is advantageous for the many researchers who may 61

want to reuse their preexisting codes, solvers, systems, 62

Figure 1: Interface of the real time dynamical system
demonstrator.

Colinot et al., p. 2

analysis or display tools. Note that the built-in Mat-63

lab tools necessary were not available before R2016a64

(for the Audio toolbox and most of the elements of65

the user interface) and R2018a (for the MIDI message66

handling).67

After a quick presentation of the dynamical system68

used in the demonstrator in Section 2, the implemen-69

tation choices are detailed is Section 3. Ideally, the70

authors wanted this paper to follow the actual lines71

of codes implementing the demonstrator. Sadly, the72

complete code is too lengthy for a journal paper (no-73

tably due to display functions, UI building and general74

housekeeping). With the intent of being as explicit75

as possible, Section 3 is built around several code76

snippets addressing the main challenges of a real-time77

audio demonstrator. The first of these code excerpts78

is self-contained and functional, and outputs sound79

generated by a dynamical system in real-time. The80

structure of the rest of the section follows that of the81

code, which is:82

� Initialization of the audio output object (the cur-83

rent example uses the audiodevicewriter ob-84

ject).85

� Construction of the user interface: buttons, sliders86

and MIDI device handling.87

� Execution of the synthesis loop, typically a while88

loop with generation of new sound samples, and89

output of the audio through the audio output90

object.91

� Extraction of audio descriptors and display.92

A link to the complete Matlab code is given in Ap-93

pendix, as well as a compiled version with slightly94

faster reaction to user controls obtained with the Mat-95

lab compiler.96

2 A simple system97

For this demonstration, we use a modified Van der98

Pol oscillator with a quadratic and fourth power non-99

linearity in the damping term. It can be seen as a100

simplified model of self-sustained musical instrument.101

Notably, some fingerings of the saxophone display a102

similar dynamic [7].103

The system is studied in its linear stiffness form in104

[8]. It is very close to the normal form of the Bautin105

bifurcation [9]. As such, its behavior is well-known,106

but rich enough so that it illustrates a good number of107

phenomena typical of autonomous nonlinear systems.108

The governing equation is109

ẍ+
[
µ+ σ(ẋ2 + x2) + ν(ẋ2 + x2)2

]
ẋ+ xα = 0. (1)

Hereafter, we set ν = 0.5 and α = 1 (linear stiffness)110

or α = 3 (cubic stiffness). The parameters µ and111

σ are controlled by the user. The amplitude of the112

oscillations can be approximated analytically as shown 113

in [8], setting x = X cos(t), as 114

X =

√
−σ ±

√
σ2 − 4µν

2ν
. (2)

In the range of parameters explored here, this approx- 115

imation is extremely precise. This formula gives the 116

blue surface in Figure 1. The system exhibits a Hopf bi- 117

furcation at µ = 0, meaning that a periodic oscillation 118

emerges from the equilibrium [10]. This corresponds 119

to the point at which the linear damping coefficient 120

changes sign. Hence, the linearized oscillator becomes 121

active (energy is created) when µ < 0. The Hopf bi- 122

furcation is supercritical for σ > 0 and subcritical for 123

σ < 0. There is a saddle-node bifurcation at σ2/(4ν) 124

when σ < 0, marking the turning point where the un- 125

stable and stable periodic solutions collapse together 126

[11]. The saddle-node bifurcation merges with the 127

Hopf bifurcation at σ = 0, forming the codimension 128

2 Bautin bifurcation [12]. This structure implies a 129

bistability zone, where both the equilibrium and an 130

oscillating (periodic) regime are stable. In this zone, 131

the user can experience the practical implications of 132

bistability around an inverse Hopf bifurcation, such 133

as hysteresis cycles or the impossibility to obtain an 134

oscillation of arbitrarily low amplitude. 135

A modified version of Eq. (1) is used, in order to 136

produce several notes without changing the dynamics 137

of the continuous-time system. With a new parame- 138

ter ω0, the state-space representation of the system 139

becomes 140

Ẋ =

(
ẋ
ẏ

)
= F (X) (3)

= ω0

(
y

−xα − (µ+ (σ(y2 + x2) + ν(y2 + x2)2)y

)
.

(4)

The time domain integration of Eq. (1) is realized us- 141

ing three different discretization schemes. This demon- 142

strate the versatility of the approach, and highlights 143

the influence of the discretization scheme. The user 144

can switch between schemes at any time. The simplest 145

discretization scheme is the explicit Euler method [13], 146

giving the n+ 1-th values of x and y as a function of 147

the n-th: 148

x[n+ 1] = x[n] +
ω0

Fs
y[n] (5)

y[n+ 1] = y[n] +
ω0

Fs
(−x[n]α − (µ (6)

+ (σ(y[n]2 + x[n]2) + ν(y[n]2 + x[n]2)2)y[n]).
(7)

The second method is a fourth-order Runge Kutta 149

(RK4) integration scheme [14]. Using the F notation 150

from Eq. 3, one computes the next sample by 151

X[n+ 1] = X[n] +
1

6Fs
(K1 + 2K2 + 2K3 +K4) (8)

Colinot et al., p. 3

where152

K1 = F (X[n]) K2 = F (X[n] +
K1

2Fs
) (9)

K3 = F (X[n] +
K2

2Fs
) K4 = F (X[n] +

K3

Fs
). (10)

The third and last method is Matlab’s built-in ode45153

solver [15]. It is also a type of Runge-Kutta integration154

scheme but with a auto-adaptive time step.155

3 Implementation of the demon-156

strator157

This section describes the implementation of the main158

functionalities of the demonstrator. The complete159

source code can be downloaded from the repository in160

Zenodo https://doi.org/10.5281/zenodo.8413627 [16].161

3.1 Real-time audio on Matlab162

The current implementation uses the Audio toolbox163

object audiodevicewriter, which communicates164

with the audio driver of the computer. The Matlab165

version used during the writing of this article is 2021a.166

Fig. 2 is a self-contained, minimal working example167

using the system from section 2 solved with ode45.168

When running this code, please lower the volume as169

the sound can be quite loud.170

Note that, especially on Windows, best results are171

obtained using ASIO drivers instead of the default172

audio driver. In that case, the sample rate and buffer173

size of the ASIO driver should be equal to those of the174

Matlab audioDeviceWriter object. However, nu-175

merous different ASIO drivers exist depending on each176

user’s setup. Therefore, it is hard to provide a flexible177

and compact ASIO-based solution. Users of the code178

are encouraged to adjust the audioDeviceWriter179

parameters to their particular hardware and driver.180

3.2 User interface181

The user interface displayed in Figure 1 is comprised182

of a main display graph, three control sliders (µ, σ183

and f0 = ω0/(2π)), two button groups setting the184

integration scheme and the stiffness exponent α, and185

four buttons for other user actions.186

3.3 Musical instrument control187

through MIDI188

A natural way to control the demonstrator is through189

the MIDI protocol. This is especially relevant for any190

kind of music-related interpretation, as external MIDI191

controllers allow to control the demonstrator like a192

keyboard synthesizer or a wind instrument. In a more193

general context, MIDI controllers allow for a more194

fluid control than a mouse and slider. For instance,195

MIDI controllers facilitate the simultaneous variation 196

of several parameters. 197

Matlab’s audio toolbox support MIDI through the 198

mididevice object. First, the mididevice object 199

is created based on a user input given through the 200

MIDIlistbox object. 201

midicontroller = ...
mididevice('Input',MIDIlistbox.Value);

Then, at every iteration of the synthesis loop (i.e. 202

before each audio buffer is filled with samples), the 203

pending MIDI message are gathered using 204

msgs = midireceive(midicontroller);

This gives an array of midimsg objects. They signal 205

control parameter changes or note changes, depending 206

on their type. This information can be retrieved by 207

accessing the Type property of the midimsg and com- 208

paring it to another string, for instance ’NoteOn’ or 209

’ControlChange’ (CC). This is slower (sometimes by a 210

factor of ten) than directly reading and comparing the 211

bytes of the messages, which hold the same informa- 212

tion. The gain in speed is especially interesting in the 213

case of a wind controller, which sends ControlChange 214

messages very often to translate the blowing pressure 215

of the musician. An array of the message bytes is 216

created by 217

msgsbytes = vertcat(msgs.MsgBytes);

and then parsed using the first byte as the message 218

type identifier (176 for ControlChange, 144 for No- 219

teOn). In the case of ControlChange, the second byte 220

in the array indicates the CC number. Different CC 221

numbers can be linked to different parameters. For 222

example, parameter µ is linked to CC number muCC 223

(2 by default), which is parsed from the MIDI message 224

bytes by 225

imsgCCmu = find((msgsbytes(:,1)==176)...
&(msgsbytes(:,2)==muCC),1,'last');

In order to apply only the most recent user-provided 226

command, only the last message is read. The new 227

value of the control is contained in the third byte of 228

that message (at index imsgCCmu in the array): 229

newCCmu = double(msgsbytes(imsgCCmu,3));

This value, scaled between the control parameter limits, 230

gives the new control parameter value. 231

4 Synthesis loop 232

Each iteration of the synthesis loop produces enough 233

audio samples to fill one audio buffer. Its structure in 234

pseudocode is 235

while (stopbutton is not pushed)
Read user controls
Solve equation during one audio buffer
Format solution as audio output
Extract signal descriptors from solution
Update display

https://doi.org/10.5281/zenodo.8413627

Colinot et al., p. 4

nu = 0.5; sigma = -0.5; mu = -0.5; Nbuf = 512; w0 = 2*pi*440; Fs = 44100;
ADW = audioDeviceWriter(Fs);
X = [1;1]; t = (0:Nbuf)/Fs;
while 1,

[t,Xs]=ode45(@(t,X) w0*[X(2);-X(1)-(mu+sigma*(X(2)^2+X(1)^2)+nu*(X(2)^2+X(1)^2)^2)*X(2)],t,X.');
X = Xs(end,:);
ADW(Xs(2:end,:));

end

Figure 2: Minimal working example solving the oscillator of section 2 in real-time, and outputting the audio
stream. This code can be copy-pasted directly to the Matlab command window (depending on the pdf font used
the “ ˆ ” power character needs to be manually rewritten). It is also provided as an M-file in the code archive
that can be downloaded in the Appendix.

Record solution
Output sound
Check pending displays or callbacks

end

The following subsections detail each line of this pseu-236

docode block.237

4.1 Read user controls238

User controls are read using either the MIDI messages239

or the sliders. There are three methods to assign the240

value of a slider to a variable. First, it is possible to241

check the Value property of the slider on each loop242

iteration. This is done for the f0 parameter. This243

solution is very close to using the ValueChangedFcn244

callback. In both cases, the changes are applied when245

the user releases the slider thumb. The third solution246

is the slider callback function ValueChangingFcn,247

which is called while the user moves the slider. This248

solution is necessary to render progressive variations249

of the parameters. The control parameters µ and σ250

are updated with this method. This is useful to follow251

a quasi-static path along the bifurcation diagram, or252

execute a slow attack through the Hopf bifurcation.253

The button values are read and stored in separate254

variables, to be used in the loop.255

4.2 Solve equation during one audio256

buffer257

Depending on the structure of the solver function, this258

step can take two forms. If the solver sets its own259

time-step, and a fortiori if it is auto-adaptive (like260

ode45), the solver function is called once to generate261

the total number Nbuf of samples in one audio buffer.262

This is implemented as263

[˜,Xts] = ode45(@(t,Xt) VanDerPol5_odefun(...
Xt,t,mu,nu0,sigma,2*pi*f0),(0:Nbuf)/Fs,X.');
X = Xts(end,:);
positions = Xts(2:end,1);
speeds = Xts(2:end,2);

Note that the initial condition X is returned as the first264

line of the solution Xts. However, it is (by definition)265

the last line of previous solution. Repeating it twice in266

the audio stream causes clicks and artifacts. Therefore,267

ode45 is called for Nbuf+1 time steps, and only the 268

last Nbuf constitute the audio output. 269

If, on the contrary, the solver simply gives X[n+ 1] 270

as a function of X[n] (like the RK4 and explicit Euler 271

schemes), it is called Nbuf times. Then, the solving 272

step is 273

for ibuf = 1:Nbuf
X_np1 = VanDerPol5_backwardsEuler(...

X,mu,nu0,sigma,2*pi*f0,Fs);
X = X_np1;
positions(ibuf) = X(1); speeds(ibuf) = X(2);

end

We use a test to estimate the maximum number 274

of oscillators that can be integrated simultaneously. 275

The test is done with no user interface or separate 276

display. It uses 44.1 kHz sample rate and a 512 sam- 277

ple buffer. On the laptop this was implemented on, 278

between 3 and 9 ode45-solved oscillators can run in 279

parallel while keeping a fluid audio flux (depending 280

on power consumption options). Between 4 and 12 281

parallel oscillators run with the RK4 solver. Using a 282

simpler explicit Euler scheme allows between 28 and 283

82 oscillators to run in parallel. This gives an idea 284

of the headroom of this architecture to accommodate 285

bigger systems. As this result heavily depends on the 286

user’s hardware, the code to reproduce this test is 287

given in the code archive linked in the Appendix, so 288

each user can know their potential for more complex 289

systems. 290

4.3 Format solution as audio output 291

The solution of the equation must fit inside a Nbuf- 292

by-two matrix, which is passed as argument to the 293

audiodevicewriter object. Here, for this simple 294

system, minimal processing is applied. The solution 295

is scaled by Xmax, an analytical estimate of the maxi- 296

mum amplitude for the considered control parameter 297

range. The left and right channel are passed x and y 298

respectively. This way, a direct xy plot of the audio 299

output represents the phase space of the oscillator. 300

audioout = [positions(:) speeds(:)]/Xmax;

In a more general case, it can be useful to listen to 301

certain physical variables rather than others, or pro- 302

Colinot et al., p. 5

cess them in a specific manner (filtering or nonlinear303

processing) for illustrative or aesthetic purposes.304

4.4 Extract signal descriptors from so-305

lution306

Only basic signal descriptors are extracted in this307

demonstrator: RMS amplitude (or rather, mean dis-308

tance to the origin in the phase space) and fundamental309

frequency. The RMS amplitude is used as the main310

display indicator. For this system, it is sufficient to311

differentiate solution branches and locate bifurcations.312

The fundamental frequency estimate is computed by a313

simplistic algorithm based on zero-crossings. It helps314

to quantify the detuning effect of the different integra-315

tion schemes, and of the cubic stiffness.316

4.5 Update display317

Any systematic real-time display concurrent with an318

audio process on Matlab needs to be kept as light as319

possible to not perturb the audio flux. This demon-320

strator updates a plot with a single point, and an321

animatedline object inside the loop. These graph-322

ical objects represent the current and recent RMS323

amplitude of the solution.324

4.6 Record solution if necessary325

A button on the interface records the descriptors, con-326

trol parameters and button values in a structure once327

per loop iteration. In the present demonstrator, no328

variable at audio rate is recorded. This prevents ex-329

cessive memory usage and disk access in the event of330

a long recording. The data is saved in a mat-file. It is331

also used as soon as the recording is stopped to provide332

a multipurpose plot designed to support a quick analy-333

sis of the results. An example of this plot is displayed334

in Figure 3, where the effect of the integration scheme335

on fundamental frequency is illustrated. Starting with336

the RK4 solver, the following parameter variation is337

applied: beginning at µ = 0.5 and σ = 0.5, the µ pa-338

rameter is decreased slowly to its minimum µ = −0.5,339

followed by parameter σ which also decreases until340

around σ = −0.6. At this point, the RMS value of341

the oscillation is at its highest point. The parameters342

σ and then µ are then slowly brought back to their343

initial values. This scenario is repeated with ODE45,344

starting from approximately 22s, and with the explicit345

Euler scheme, starting from approximately 39s. One346

can see on the fundamental frequency subplot that the347

RK4 scheme provides the most consistent fundamen-348

tal frequency, followed closely by the ODE45 solver349

where variations do not exceed 1 Hz around the 440 Hz350

expected frequency (i.e. the eigenfrequency of the lin-351

earized oscillator). However, the explicit Euler scheme352

entails considerable pitch flattening when the signal353

amplitude increases, down to about −6 Hz (about −20 354

cents) from the expected frequency. 355

4.7 Output sound 356

The audiodevicewriter object is used to output 357

audio. It is also responsible for the scheduling of the 358

loop. 359

ADW(audioout);

4.8 Check pending displays or call- 360

backs 361

The execution of user interface object callbacks and 362

refreshing of the display is ensured by the command 363

drawnow limitrate placed at the end of the loop. 364

A simple drawnow would degrade the audio out- 365

put by introducing too many pauses, but drawnow 366

limitrate limits the number of pauses to 20 per sec- 367

ond. This is essential to keep a robust audio stream. 368

Figure 3: Example of the multipurpose plot created
at the end of each recording, illustrating the funda-
mental frequency variation due to different integration
schemes. See section 4.6 for details.

Colinot et al., p. 6

5 Video demonstration369

The video, also linked in the caption of Fig 4, illustrates370

possible uses of the demonstrator, and showcases the371

fluidity of the controls.372

Figure 4: A snapshot of the illustrative video linked at
https://youtu.be/ ExgRsgB7wc (until a more stable
host is determined).

6 Conclusion373

The presented demonstrator holds a lot of potential for374

teachers and researchers combining dynamical systems375

with audio engineering or music. In terms of teaching,376

it illustrates transient effects in direct and entertaining377

ways. It can also be useful for proof of concepts, to378

quickly assess the behavior of a dynamical system, or379

to compare two slightly different versions (parameter380

values, physical hypotheses or integration scheme).381

Because it relies solely on Matlab, any researcher382

that has mainly been coding in Matlab can reuse their383

usual tools. In particular, we show that a continuous-384

time formulation of a system can be sufficient to pro-385

duce sound, simply leaving the integration to a built-in386

method such as ode45. There is also reasonable head-387

room to adapt the demonstrator to a more complex388

system, especially if one is willing to simplify the inte-389

gration scheme.390

In music-related fields, this kind of demonstrator is391

all the more interesting as it bridges the gap between392

the physical model of an instrument and the actual393

instrument, by allowing to control a model with any394

musical controller supporting the MIDI protocol. The395

authors strongly believe in the potential of the real-396

time physical model control as a way to contribute to397

an objective definition of the ’playability’ or ’ease of398

playing’ of a musical instrument.399

Acknowledgments400

This study has been supported by the French ANR401

LabCom LIAMFI (ANR-16-LCV2-007-01). The au-402

thors are grateful to Teodor Wolter for proofreading403

the English.404

Data Availability Statement 405

The source code and .exe installer file for 406

the demonstrator, as well as M-files repro- 407

ducing results for sections 3.1 and 4.2, can 408

be downloaded from the repository in Zenodo 409

https://doi.org/10.5281/zenodo.8413627. 410

References 411

[1] N. M. Krylov and N. N. Bogoliubov, Introduction 412

to non-linear mechanics. No. 11, Princeton uni- 413

versity press, 1950. 414

[2] R. Seydel, Practical bifurcation and stability 415

analysis, vol. 5. Springer Science & Business 416

Media, 2009. 417

[3] C. Grebogi, E. Ott, and J. A. Yorke, “Chaos, 418

strange attractors, and fractal basin boundaries in 419

nonlinear dynamics,” Science, vol. 238, no. 4827, 420

pp. 632–638, 1987. 421

[4] T. Tachibana and K. Takahashi, “Sounding mech- 422

anism of a cylindrical pipe fitted with a clarinet 423

mouthpiece,” Progress of Theoretical Physics, 424

vol. 104, no. 2, pp. 265–288, 2000. 425

[5] B. Bergeot and C. Vergez, “Analytical expressions 426

of the dynamic hopf bifurcation points of a sim- 427

plified stochastic model of a reed musical instru- 428

ment,” Nonlinear Dynamics, vol. 107, pp. 3291– 429

3312, 2022. 430

[6] A. Chaigne and J. Kergomard, Acoustique des 431

instruments de musique (Acoustics of musical 432

instruments). Belin, 2008. 433

[7] T. Colinot, Numerical simulation of woodwind 434

dynamics: investigating nonlinear sound 435

production behavior in saxophone-like 436

instruments. PhD thesis, Aix-Marseille 437

Université, 2020. 438

[8] D. Dessi, F. Mastroddi, and L. Morino, “A fifth- 439

order multiple-scale solution for hopf bifurca- 440

tions,” Computers & structures, vol. 82, no. 31- 441

32, pp. 2723–2731, 2004. 442

[9] J. Guckenheimer and Y. A. Kuznetsov, “Bautin 443

bifurcation,” Scholarpedia, vol. 2, no. 5, p. 1853, 444

2007. 445

[10] Y. A. Kuznetsov, “Andronov-hopf bifurcation,” 446

Scholarpedia, vol. 1, no. 10, p. 1858, 2006. 447

[11] Y. A. Kuznetsov, “Saddle-node bifurcation,” 448

Scholarpedia, vol. 1, no. 10, p. 1859, 2006. 449

https://youtu.be/_ExgRsgB7wc
https://youtu.be/_ExgRsgB7wc
https://youtu.be/_ExgRsgB7wc
https://doi.org/10.5281/zenodo.8413627

Colinot et al., p. 7

[12] W. Beyn, A. Champneys, E. Doedel, W. Go-450

varets, U. Kuznetsov, A. Yu, and B. Sandstede,451

Handbook of Dynamical Systems (Vol 2), chapter452

Numerical Continuation, and Computation of453

Normal Forms. Elsevier, 2002.454

[13] J. C. Butcher, Numerical methods for ordinary455

differential equations. John Wiley & Sons, 2016.456

[14] J. C. Butcher, “A history of runge-kutta methods,”457

Applied numerical mathematics, vol. 20, no. 3,458

pp. 247–260, 1996.459

[15] L. F. Shampine and M. W. Reichelt, “The matlab460

ode suite,” SIAM journal on scientific computing,461

vol. 18, no. 1, pp. 1–22, 1997.462

[16] T. Colinot and C. Vergez, “Dynamical system463

audio demonstrator,” 2023. [Code]. GitHub.464

https://github.com/Tom-Colinot/Dynamical-465

System-Audio-Demonstrator/.466

List of Figures 467

1 Interface of the real time dynamical sys- 468

tem demonstrator. 1 469

2 Minimal working example solving the 470

oscillator of section 2 in real-time, and 471

outputting the audio stream. This code 472

can be copy-pasted directly to the Mat- 473

lab command window (depending on 474

the pdf font used the “ ˆ ” power char- 475

acter needs to be manually rewritten). 476

It is also provided as an M-file in the 477

code archive that can be downloaded in 478

the Appendix. 4 479

3 Example of the multipurpose plot cre- 480

ated at the end of each recording, il- 481

lustrating the fundamental frequency 482

variation due to different integration 483

schemes. See section 4.6 for details. . 5 484

4 A snapshot of the illus- 485

trative video linked at 486

https://youtu.be/ ExgRsgB7wc 487

(until a more stable host is determined). 6 488

https://github.com/Tom-Colinot/Dynamical-System-Audio-Demonstrator/
https://github.com/Tom-Colinot/Dynamical-System-Audio-Demonstrator/
https://github.com/Tom-Colinot/Dynamical-System-Audio-Demonstrator/
https://youtu.be/_ExgRsgB7wc

	Introduction
	A simple system
	Implementation of the demonstrator
	Real-time audio on Matlab
	User interface
	Musical instrument control through MIDI

	Synthesis loop
	Read user controls
	Solve equation during one audio buffer
	Format solution as audio output
	Extract signal descriptors from solution
	Update display
	Record solution if necessary
	Output sound
	Check pending displays or callbacks

	Video demonstration
	Conclusion

