Tom Colinot 
  
Christophe Vergez 
  
How to build a MATLAB demonstrator solving dynamical systems in real-time, with audio output and MIDI control

   

How to build a MATLAB demonstrator solving dynamical systems in real-time, with audio output and MIDI control

Tom Colinot, Christophe Vergez

Introduction

Autonomous dynamical systems are complicated objects to study and teach. Even some of the simplest ones to formulate are extremely unpredictable. The richness of this behavior is not encapsulated in the usual description of the permanent equilibrium points or periodic regimes [START_REF] Krylov | Introduction to non-linear mechanics[END_REF][START_REF] Seydel | Practical bifurcation and stability analysis[END_REF]. Some of their solutions are non-periodic, or coexist with other stable solutions [START_REF] Grebogi | Chaos, strange attractors, and fractal basin boundaries in nonlinear dynamics[END_REF]. This makes it difficult to predict which type of solution is obtained in any given situation. When the system parameters vary, complicated transient effects emerge, such as hysteresis cycles [START_REF] Tachibana | Sounding mechanism of a cylindrical pipe fitted with a clarinet mouthpiece[END_REF] or dynamical bifurcations [START_REF] Bergeot | Analytical expressions of the dynamic hopf bifurcation points of a simplified stochastic model of a reed musical instrument[END_REF].

Self-oscillating musical instruments such as wind instruments or bowed strings are modeled using autonomous dynamical systems [START_REF] Chaigne | Acoustique des instruments de musique (Acoustics of musical instruments)[END_REF]. Their example illustrates how transient effects are essential to a complete description of the system's real-life behavior, since they are experienced (at least) at the beginning and end of each note. In this spirit, it seems that a reasonable and compelling approach to experience and explore how a dynamical system reacts is implementing a virtual "musical instrument" demonstrator. By manipulating 43 the control parameters, the user can see and hear phe-44 nomena typical of nonlinear systems in real-time, in a 45 very controlled and repeatable environment. This is 46 particularly relevant in all fields related to music, such 47 as musical acoustics and instrument making. In these 48 fields, one can go even further by linking the system's 49 behavior to musical terms, such as intonation (flat, 50 sharp), nuance (piano, forte) or transient dynamics 51 (staccato, legato). The presented demonstrator aims 52 to be as general as possible, meaning that the example 53 model can be replaced by any simple dynamical system 54 with only minor adjustments. While other possible 55 environments for real-time sound synthesis exist, such 56 as C++ (notably the JUCE library), Max/MSP, or 57 Faust, this demonstrator is presented in a pure Mat-58 lab implementation, using only the Audio Toolbox 59 (audio system toolbox, matlab, signal blocks). This 60 is advantageous for the many researchers who may 61 want to reuse their preexisting codes, solvers, systems, 62 analysis or display tools. Note that the built-in Matlab tools necessary were not available before R2016a (for the Audio toolbox and most of the elements of the user interface) and R2018a (for the MIDI message handling).

After a quick presentation of the dynamical system used in the demonstrator in Section 2, the implementation choices are detailed is Section 3. Ideally, the authors wanted this paper to follow the actual lines of codes implementing the demonstrator. Sadly, the complete code is too lengthy for a journal paper (notably due to display functions, UI building and general housekeeping). With the intent of being as explicit as possible, Section 3 is built around several code snippets addressing the main challenges of a real-time audio demonstrator. The first of these code excerpts is self-contained and functional, and outputs sound generated by a dynamical system in real-time. The structure of the rest of the section follows that of the code, which is: Initialization of the audio output object (the current example uses the audiodevicewriter object).

Construction of the user interface: buttons, sliders and MIDI device handling.

Execution of the synthesis loop, typically a while loop with generation of new sound samples, and output of the audio through the audio output object.

Extraction of audio descriptors and display.

A link to the complete Matlab code is given in Appendix, as well as a compiled version with slightly faster reaction to user controls obtained with the Matlab compiler.

A simple system

For this demonstration, we use a modified Van der Pol oscillator with a quadratic and fourth power nonlinearity in the damping term. It can be seen as a simplified model of self-sustained musical instrument.

Notably, some fingerings of the saxophone display a similar dynamic [START_REF] Colinot | Numerical simulation of woodwind dynamics: investigating nonlinear sound production behavior in saxophone-like instruments[END_REF].

The system is studied in its linear stiffness form in [START_REF] Dessi | A fifthorder multiple-scale solution for hopf bifurcations[END_REF]. It is very close to the normal form of the Bautin bifurcation [START_REF] Guckenheimer | Bautin bifurcation[END_REF]. As such, its behavior is well-known, but rich enough so that it illustrates a good number of phenomena typical of autonomous nonlinear systems.

The governing equation is

ẍ + µ + σ( ẋ2 + x 2 ) + ν( ẋ2 + x 2 ) 2 ẋ + x α = 0. (1)
Hereafter, we set ν = 0.5 and α = 1 (linear stiffness) or α = 3 (cubic stiffness). The parameters µ and σ are controlled by the user. The amplitude of the oscillations can be approximated analytically as shown 113 in [START_REF] Dessi | A fifthorder multiple-scale solution for hopf bifurcations[END_REF], setting x = X cos(t), as

114 X = -σ ± σ 2 -4µν 2ν . (2) 
In the range of parameters explored here, this approx-115 imation is extremely precise. This formula gives the 116 blue surface in Figure 1. The system exhibits a Hopf bi-117 furcation at µ = 0, meaning that a periodic oscillation 118 emerges from the equilibrium [START_REF] Kuznetsov | Andronov-hopf bifurcation[END_REF]. This corresponds 119 to the point at which the linear damping coefficient 120 changes sign. Hence, the linearized oscillator becomes 121 active (energy is created) when µ < 0. The Hopf bi-122 furcation is supercritical for σ > 0 and subcritical for 123 σ < 0. There is a saddle-node bifurcation at σ 2 /(4ν) 124 when σ < 0, marking the turning point where the un-125 stable and stable periodic solutions collapse together 126 [START_REF] Kuznetsov | Saddle-node bifurcation[END_REF]. The saddle-node bifurcation merges with the 127 Hopf bifurcation at σ = 0, forming the codimension 128 2 Bautin bifurcation [START_REF] Beyn | chapter 452 Numerical Continuation, and Computation of 453 Normal Forms[END_REF]. This structure implies a 129 bistability zone, where both the equilibrium and an 130 oscillating (periodic) regime are stable. In this zone, 131 the user can experience the practical implications of 132 bistability around an inverse Hopf bifurcation, such 133 as hysteresis cycles or the impossibility to obtain an 134 oscillation of arbitrarily low amplitude.

135

A modified version of Eq. ( 1) is used, in order to 136 produce several notes without changing the dynamics 137 of the continuous-time system. With a new parame-138 ter ω 0 , the state-space representation of the system 139 becomes

140 Ẋ = ẋ ẏ = F (X) (3) = ω 0 y -x α -(µ + (σ(y 2 + x 2 ) + ν(y 2 + x 2 ) 2 )y . (4) 
The time domain integration of Eq. ( 1) is realized us-141 ing three different discretization schemes. This demon-142 strate the versatility of the approach, and highlights 143 the influence of the discretization scheme. The user 144 can switch between schemes at any time. The simplest 145 discretization scheme is the explicit Euler method [START_REF] Butcher | Numerical methods for ordinary 455 differential equations[END_REF], 146 giving the n + 1-th values of x and y as a function of 147 the n-th:

148 x[n + 1] = x[n] + ω 0 F s y[n] (5) 
y[n + 1] = y[n] + ω 0 F s (-x[n] α -(µ (6) + (σ(y[n] 2 + x[n] 2 ) + ν(y[n] 2 + x[n] 2 ) 2 )y[n]). ( 7 
)
The second method is a fourth-order Runge Kutta 149 (RK4) integration scheme [START_REF] Butcher | A history of runge-kutta methods[END_REF]. Using the F notation 150 from Eq. 3, one computes the next sample by

151 X[n + 1] = X[n] + 1 6F s (K 1 + 2K 2 + 2K 3 + K 4 ) (8)
where

K 1 = F (X[n]) K 2 = F (X[n] + K 1 2F s ) (9) K 3 = F (X[n] + K 2 2F s ) K 4 = F (X[n] + K 3 F s ). ( 10 
)
The third and last method is Matlab's built-in ode45 solver [START_REF] Shampine | The matlab 460 ode suite[END_REF]. It is also a type of Runge-Kutta integration scheme but with a auto-adaptive time step.

Implementation of the demonstrator

This section describes the implementation of the main functionalities of the demonstrator. The complete source code can be downloaded from the repository in Zenodo https://doi.org/10.5281/zenodo.8413627 [START_REF] Colinot | Dynamical system 463 audio demonstrator[END_REF].

Real-time audio on Matlab

The current implementation uses the Audio toolbox object audiodevicewriter, which communicates with the audio driver of the computer. The Matlab version used during the writing of this article is 2021a.

Fig. 2 is a self-contained, minimal working example using the system from section 2 solved with ode45.

When running this code, please lower the volume as the sound can be quite loud.

Note that, especially on Windows, best results are obtained using ASIO drivers instead of the default audio driver. In that case, the sample rate and buffer size of the ASIO driver should be equal to those of the Matlab audioDeviceWriter object. However, numerous different ASIO drivers exist depending on each user's setup. Therefore, it is hard to provide a flexible and compact ASIO-based solution. Users of the code are encouraged to adjust the audioDeviceWriter parameters to their particular hardware and driver.

User interface

The user interface displayed in Figure 1 is comprised of a main display graph, three control sliders (µ, σ and f 0 = ω 0 /(2π)), two button groups setting the integration scheme and the stiffness exponent α, and four buttons for other user actions.

Musical instrument control through MIDI

A natural way to control the demonstrator is through the MIDI protocol. This is especially relevant for any This code can be copy-pasted directly to the Matlab command window (depending on the pdf font used the " ˆ" power character needs to be manually rewritten). It is also provided as an M-file in the code archive that can be downloaded in the Appendix.

Record solution Output sound Check pending displays or callbacks end

The following subsections detail each line of this pseu-236 docode block. If, on the contrary, the solver simply gives X[n + 1] as a function of X[n] (like the RK4 and explicit Euler schemes), it is called Nbuf times. Then, the solving step is for ibuf = 1:Nbuf X_np1 = VanDerPol5_backwardsEuler(... X,mu,nu0,sigma ,2 * pi * f0,Fs); X = X_np1; positions(ibuf) = X(1); speeds(ibuf) = X(2); end

We use a test to estimate the maximum number of oscillators that can be integrated simultaneously. The test is done with no user interface or separate display. It uses 44.1 kHz sample rate and a 512 sample buffer. On the laptop this was implemented on, between 3 and 9 ode45-solved oscillators can run in parallel while keeping a fluid audio flux (depending on power consumption options). Between 4 and 12 parallel oscillators run with the RK4 solver. Using a simpler explicit Euler scheme allows between 28 and 82 oscillators to run in parallel. This gives an idea of the headroom of this architecture to accommodate bigger systems. As this result heavily depends on the user's hardware, the code to reproduce this test is given in the code archive linked in the Appendix, so each user can know their potential for more complex systems.

Format solution as audio output

The solution of the equation must fit inside a Nbufby-two matrix, which is passed as argument to the audiodevicewriter object. Here, for this simple system, minimal processing is applied. The solution is scaled by Xmax, an analytical estimate of the maximum amplitude for the considered control parameter range. The left and right channel are passed x and y respectively. This way, a direct xy plot of the audio output represents the phase space of the oscillator. In a more general case, it can be useful to listen to certain physical variables rather than others, or pro-cess them in a specific manner (filtering or nonlinear processing) for illustrative or aesthetic purposes.

Extract signal descriptors from solution

Only basic signal descriptors are extracted in this demonstrator: RMS amplitude (or rather, mean distance to the origin in the phase space) and fundamental frequency. The RMS amplitude is used as the main display indicator. For this system, it is sufficient to differentiate solution branches and locate bifurcations.

The fundamental frequency estimate is computed by a simplistic algorithm based on zero-crossings. It helps to quantify the detuning effect of the different integration schemes, and of the cubic stiffness.

Update display

Any systematic real-time display concurrent with an audio process on Matlab needs to be kept as light as possible to not perturb the audio flux. This demonstrator updates a plot with a single point, and an animatedline object inside the loop. These graphical objects represent the current and recent RMS amplitude of the solution.

Record solution if necessary

A button on the interface records the descriptors, control parameters and button values in a structure once per loop iteration. In the present demonstrator, no variable at audio rate is recorded. This prevents excessive memory usage and disk access in the event of a long recording. The data is saved in a mat-file. It is also used as soon as the recording is stopped to provide a multipurpose plot designed to support a quick analysis of the results. An example of this plot is displayed in Figure 3, where the effect of the integration scheme on fundamental frequency is illustrated. Starting with the RK4 solver, the following parameter variation is applied: beginning at µ = 0.5 and σ = 0.5, the µ parameter is decreased slowly to its minimum µ = -0.5, followed by parameter σ which also decreases until around σ = -0.6. At this point, the RMS value of the oscillation is at its highest point. The parameters σ and then µ are then slowly brought back to their initial values. This scenario is repeated with ODE45, starting from approximately 22s, and with the explicit Euler scheme, starting from approximately 39s. One can see on the fundamental frequency subplot that the RK4 scheme provides the most consistent fundamental frequency, followed closely by the ODE45 solver where variations do not exceed 1 Hz around the 440 Hz expected frequency (i.e. the eigenfrequency of the linearized oscillator). However, the explicit Euler scheme entails considerable pitch flattening when the signal amplitude increases, down to about -6 Hz (about -20 354 cents) from the expected frequency. 

Figure 1 :

 1 Figure 1: Interface of the real time dynamical system demonstrator.

Figure 2 :

 2 Figure2: Minimal working example solving the oscillator of section 2 in real-time, and outputting the audio stream. This code can be copy-pasted directly to the Matlab command window (depending on the pdf font used the " ˆ" power character needs to be manually rewritten). It is also provided as an M-file in the code archive that can be downloaded in the Appendix.

237 4 . 1

 41 Read user controls 238 User controls are read using either the MIDI messages 239 or the sliders. There are three methods to assign the 240 value of a slider to a variable. First, it is possible to 241 check the Value property of the slider on each loop 242 iteration. This is done for the f 0 parameter. This 243 solution is very close to using the ValueChangedFcn 244 callback. In both cases, the changes are applied when 245 the user releases the slider thumb. The third solution 246 is the slider callback function ValueChangingFcn, 247 which is called while the user moves the slider. This 248 solution is necessary to render progressive variations 249 of the parameters. The control parameters µ and σ 250 are updated with this method. This is useful to follow 251 a quasi-static path along the bifurcation diagram, or 252 execute a slow attack through the Hopf bifurcation.253The button values are read and stored in separate 254 variables, to be used in the loop.

255 4 . 2

 42 Solve equation during one audio 256 buffer 257 Depending on the structure of the solver function, this 258 step can take two forms. If the solver sets its own 259 time-step, and a fortiori if it is auto-adaptive (like 260 ode45), the solver function is called once to generate 261 the total number Nbuf of samples in one audio buffer. ode45 is called for Nbuf+1 time steps, and only the last Nbuf constitute the audio output.

  audioout = [positions(:) speeds(:)]/Xmax;

  355

Figure 3 :

 3 Figure 3: Example of the multipurpose plot created at the end of each recording, illustrating the fundamental frequency variation due to different integration schemes. See section 4.6 for details.

Figure 4 :

 4 Figure 4: A snapshot of the illustrative video linked at https://youtu.be/ ExgRsgB7wc (until a more stable host is determined).
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 6 ConclusionThe presented demonstrator holds a lot of potential for 374 teachers and researchers combining dynamical systems 375 with audio engineering or music. In terms of teaching, 376 it illustrates transient effects in direct and entertaining 377 ways. It can also be useful for proof of concepts, to 378 quickly assess the behavior of a dynamical system, or 379 to compare two slightly different versions (parameter 380 values, physical hypotheses or integration scheme). 381 Because it relies solely on Matlab, any researcher 382 that has mainly been coding in Matlab can reuse their 383 usual tools. In particular, we show that a continuous-384 time formulation of a system can be sufficient to pro-385 duce sound, simply leaving the integration to a built-in 386 method such as ode45. There is also reasonable head-LabCom LIAMFI (ANR-16-LCV2-007-01). The au-402 thors are grateful to Teodor Wolter for proofreading 403 the English.

  Matlab's audio toolbox support MIDI through the 198 mididevice object. First, the mididevice object 199 is created based on a user input given through the 200 MIDIlistbox object.This gives an array of midimsg objects. They signal 205 control parameter changes or note changes, depending 206 on their type. This information can be retrieved by 207 accessing the Type property of the midimsg and com-208 paring it to another string, for instance 'NoteOn' or 209 'ControlChange' (CC). This is slower (sometimes by a 210 factor of ten) than directly reading and comparing the 211 bytes of the messages, which hold the same informa-212 tion. The gain in speed is especially interesting in the 213 case of a wind controller, which sends ControlChange 214 messages very often to translate the blowing pressure 215 of the musician. An array of the message bytes is 216 created by

	nu = 0.5; sigma = -0.5; mu = -0.5; Nbuf = 512; w0 = 2 * pi * 440; Fs = 44100;
	ADW = audioDeviceWriter(Fs);	
	X = [1;1]; t = (0:Nbuf)/Fs;	
	while 1,	
	[t,Xs]=ode45(@(t,X) w0 * [X(2);-X(1)-(mu+sigma * (X(2)^2+X(1)^2)+nu * (X(2)^2+X(1)^2)^2) * X(2)],t,X.');
	X = Xs(end,:);	
	ADW(Xs(2:end,:));		201
	end	midicontroller = ...
		mididevice('Input',MIDIlistbox.Value);
		Then, at every iteration of the synthesis loop (i.e. 202
		before each audio buffer is filled with samples), the 203
		pending MIDI message are gathered using	204
		msgs = midireceive(midicontroller);
			229
		newCCmu = double(msgsbytes(imsgCCmu ,3));
		This value, scaled between the control parameter limits, 230
		gives the new control parameter value.	231
		4 Synthesis loop	232
		Each iteration of the synthesis loop produces enough 233
		audio samples to fill one audio buffer. Its structure in 234
		pseudocode is	235
		while (stopbutton is not pushed)
		Read user controls
		Solve equation during one audio buffer
		Format solution as audio output
		Extract signal descriptors from solution
		Update display

kind of music-related interpretation, as external MIDI controllers allow to control the demonstrator like a keyboard synthesizer or a wind instrument. In a more general context, MIDI controllers allow for a more fluid control than a mouse and slider. For instance, MIDI controllers facilitate the simultaneous variation 196 of several parameters. 197 217 msgsbytes = vertcat(msgs.MsgBytes); and then parsed using the first byte as the message 218 type identifier (176 for ControlChange, 144 for No-219 teOn). In the case of ControlChange, the second byte 220 in the array indicates the CC number. Different CC 221 numbers can be linked to different parameters. For 222 example, parameter µ is linked to CC number muCC 223 (2 by default), which is parsed from the MIDI message 224 bytes by 225 imsgCCmu = find((msgsbytes(:,1)==176)... &(msgsbytes(:,2)==muCC),1,'last');

In order to apply only the most recent user-provided 226 command, only the last message is read. The new 227 value of the control is contained in the third byte of 228 that message (at index imsgCCmu in the array):

  The audiodevicewriter object is used to output 357 audio. It is also responsible for the scheduling of the 358 loop. Check pending displays or call-360 backs 361The execution of user interface object callbacks and 362 refreshing of the display is ensured by the command 363 drawnow limitrate placed at the end of the loop. 364 A simple drawnow would degrade the audio out-365 put by introducing too many pauses, but drawnow 366 limitrate limits the number of pauses to 20 per sec-367 ond. This is essential to keep a robust audio stream. 368

	4.7 Output sound	356
		359
	ADW(audioout);	
	4.8	
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Data Availability Statement

The source code and .exe installer file for the demonstrator, as well as M-files reproducing results for sections 3.1 and 4.2, can be downloaded from the repository in Zenodo https://doi.org/10.5281/zenodo.8413627.

This is implemented as

263

[˜,Xts] = ode45(@(t,Xt) VanDerPol5_odefun(... Xt,t,mu,nu0,sigma ,2 * pi * f0),(0:Nbuf)/Fs,X.'); X = Xts(end,:); positions = Xts(2:end,1); speeds = Xts(2:end,2); Note that the initial condition X is returned as the first (until a more stable host is determined). 6