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A B S T R A C T 

We release photometric redshifts, reaching ∼0.7, for ∼14M galaxies at r ≤ 20 in the 11 500 deg 

2 of the SDSS north and 

south Galactic caps. These estimates were inferred from a convolution neural network (CNN) trained on ugriz stamp images of 
galaxies labelled with a spectroscopic redshift from the SDSS, GAMA, and BOSS surv e ys. Representativ e training sets of ∼370k 

galaxies were constructed from the much larger combined spectroscopic data to limit biases, particularly those arising from the 
o v er-representation of luminous red galaxies. The CNN outputs a redshift classification that offers all the benefits of a well- 
behaved PDF, with a width efficiently signalling unreliable estimates due to poor photometry or stellar sources. The dispersion, 
mean bias, and rate of catastrophic failures of the median point estimate are of order σ MAD 

= 0.014, <�z norm 

> = 0.0015, 
η( | �z norm 

| > 0 . 05) = 4 per cent on a representative test sample at r < 19.8, outperforming currently published estimates. The 
distributions in narro w interv als of magnitudes of the redshifts inferred for the photometric sample are in good agreement with 

the results of tomographic analyses. The inferred redshifts also match the photometric redshifts of the redMaPPer galaxy clusters 
for the probable cluster members. 

Key words: methods: data analysis – techniques: image processing – catalogues – surv e ys – galaxies: distances and redshifts. 
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 I N T RO D U C T I O N  

s photometric redshifts have become inescapable in most cosmo- 
ogical endea v ours, so ha ve machine learning techniques to predict
hem. Spectroscopy alone can no longer fulfil the task of measuring 
he distances to the millions of sources detected in current photomet- 
ic sky surveys, e.g. DES (Dark Energy Surv e y Collaboration 2016 )
nd KIDS (de Jong et al. 2013 ), let alone future ones such as Euclid
Laureijs et al. 2011 ) and Vera Rubin/LSST (Ivezi ́c et al. 2019 ). Spec-
ral energy distribution (SED) template fitting techniques have been 
idely used for several decades to estimate the redshifts of galaxies 

rom multiband photometry, the so-called photometric redshifts. This 
echnique relies on a set of observed or modelled SEDs assumed to
epresent the diversity of observed galaxies (e.g. Arnouts et al. 1999 ;
lbert et al. 2006 ; Brammer, van Dokkum & Coppi 2008 ). It allows
hysical parameters to be derived in addition to redshift probability 
ensity functions (PDFs). The first neural networks for the estimation 
f photometric redshifts emerged in the early 2000s (Firth, Lahav & 

omerville 2003 ; Tagliaferri et al. 2003 ; Collister & Lahav 2004 ).
ince then, machine learning progressed enormously, helped by 

he growing wealth of data and computing capabilities. A machine 
earning algorithm learns to map the multidimensional photometric 
nformation using labelled and/or unlabelled data, i.e. data with or 
ithout known spectroscopic redshifts (supervised and unsupervised 
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rovided the original work is properly cited. 
raining methods respectively, which can be combined). The accuracy 
f the photometric redshifts derived from such optimized mapping is 
uch higher than via SED fitting provided the galaxies span the

ame parameter space as the training sample (see Brescia et al.
 2021 ) for a re vie w and Henghes et al. ( 2022 ) for a comparison of
everal such methods). Unlike SED fitting however, most machine 
earning methods have only provided point estimates. Few studies 
ave had a probabilistic approach able to estimate uncertainties, 
adeh ( 2014 ) and Sadeh, Abdalla & Lahav ( 2016 ) being the first to
rovide redshift PDFs via a classifier. Jones et al. ( 2023 ) recently
roposed Bayesian neural networks assuming Gaussian’s PDFs ‘as 
 promising way to provide accurate predictions with uncertainty 
stimates’. 

‘Deep learning’ is the latest step forward in the pursuit of
hotometric redshifts. Thanks to the development of convolutional 
eural networks (CNN, LeCun et al. 1998 ), and with the help of
raphics processing units (GPUs), (regularly sampled) images may 
ow be used directly instead of, or sometimes in addition to extracted
eatures (magnitudes, colours, etc.), which only transmit a fraction 
f the available photometric information, with variable reliability. 
eep neural networks were designed to handle the much larger 

mount of information contained in the image pixels (Hoyle 2016 ;
’Isanto & Polsterer 2018 ). They consist of successive layers of

rtificial neurons, each performing a linear transformation of the 
nput followed by a nonlinear ‘acti v ation function’. Weights are
pdated as the network processes (learns from) batches of the training 
ata, until a suitable solution is found (a loss function is minimized).
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 

http://orcid.org/0000-0002-7115-9700
http://orcid.org/0000-0002-3602-3664
http://orcid.org/0000-0002-7496-3796
mailto:marie.treyer@lam.fr
https://creativecommons.org/licenses/by/4.0/


652 M. Treyer et al. 

M

Table 1. The photometric and spectroscopic data (Sections 2.2 and 2.1 ). 

Surv e y Magnitude Size Spectra 

SDSS 10 ≤ r ≤ 20 13.8M No 
SDSS r ≤ 17.8 660k Yes 
SDSS 17.8 ≤ r ≤ 20 162k Yes 
GAMA r ≤ 20 210k Yes 
BOSS r ≤ 20 486k Yes 
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Figure 1. The redshift distributions of the SDSS, GAMA, and BOSS surv e ys 
presented in Section 2.2 , totalling 1.5M galaxies. 

Figure 2. Magnitude/redshift and ( u − g )/( g − r ) distributions of the SDSS, 
GAMA, and BOSS surv e ys (Section 2.2 ). 
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Pasquet et al. ( 2019 ) (hereafter P19 ) presented a CNN to estimate
hotometric redshifts straight from multi-band stamp images of
alaxies, without any feature extraction nor colour images. The
etw ork w as designed as a classifier into small contiguous redshift
ins, the output of which was normalized to produce PDFs. As a proof
f concept, it was applied to the flux-limited, r < 17.8, spectroscopic
ain Galaxy Sample of the SDSS (York et al. 2000 ), using ugriz

tamp images and the galactic reddening values along the lines of
ight as input data, with the spectroscopic redshifts as labels in the
ontext of supervised learning. The weighted mean values of the so-
alled PDFs were found to be photometric redshitfs of unprecedented
ccuracy in the limited redshift range of interest ( z < 0.4). Other
ethods exploiting galaxy images have since been proposed (Dey

t al. 2022 ; Hayat et al. 2021 ; Schuldt et al. 2021 ; Henghes et al.
022 ). 
Here we use a more complex CNN architecture to estimate

hotometric redshifts for the ∼14 million galaxies at r ≤ 20
ithout spectroscopy in the SDSS footprint. The photometric and

pectroscopic data are presented in Section 2 (and Appendix A ).
he architecture, input and output of the network are described in
ection 3 (and Appendix F ). Training experiments are described

n Section 4 . The performance of the final experiment is tested in
ection 5 . Its inference on the photometric sample is presented

n Section 6 (and Appendices C and D ). We conclude this work
n Section 7 . Additionally, a recipe for classifying galaxies into
lue/star-forming or red/passive types is given in Appendix B and
lternative training strategies are explored in Appendix E . The CNN
nput and output are available at: https:// deepdip.iap.fr/ treyer + 2023 .

 T H E  DATA  

he data detailed below are summarized in Table 1 . 

.1 The photometric data 

ur catalogue is drawn from the SDSS data release 16 (DR16,
humada et al. 2020 ). The SDSS is a multi-band imaging and

pectroscopic redshift surv e y that was conducted on a dedicated 2.5m
elescope at Apache Point Observatory in New Mexico. It provides
hotometry in the ugriz passbands o v er ∼11,500 deg 2 of the North
nd South galactic caps to a limiting magnitude of r = 22.5. Via the
DSS CasJob web service, we retrieved ∼15.3M catalogue entries
f non-point-like sources ( type = 3) with dereddened petrosian
agnitudes r ≤ 20, of which ∼1.5M have spectroscopic redshifts.
hus the final number of purely photometric sources for which we

nfer redshifts is ∼13.8M. A sky map of this data set is shown in
ppendix A . 
Photometric redshifts by Beck et al. ( 2016 ) (hereafter B16 ) are

vailable for nearly all these sources. They were computed using a
 -nearest neighbour algorithm (kNN, Csabai et al. 2007 ) with five
imensions (the r -band magnitude and 4 colours: ( u − g ), ( g −
 ), ( r − i ), ( i − z)). The training data included deep, high-redshift
NRAS 527, 651–671 (2024) 
pectroscopic surv e ys in addition to the SDSS. A 3D error map ( r ,
 − r , r − i ) built on the uncertainties measured for spectroscopic
alaxies helps to identify insecure estimates based on the position
f a galaxy in this grid. The accuracy of these photometric redshifts
akes them a reference in machine learning based on photometric
easurements. Last but not least, they are still the only ones available

or comparison purposes. 

.2 The spectroscopic data 

he ∼1.5M spectroscopic redshifts, used as training labels, come
rom the SDSS, GAMA and BOSS spectroscopic surv e ys described
elow, matched to the SDSS DR16 photometric catalogue described
bo v e. Fig. 1 shows the redshift distributions of these three surv e ys
nd Fig. 2 their respective magnitude/redshift and ( u − g )/( g − r )
olour distributions. A sky map of the spectroscopic data is shown
n Appendix A . 

https://deepdip.iap.fr/treyer+2023
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Figure 3. The CNN architecture. The inception module is detailed in Fig. 4 . 

Figure 4. Inception module. 
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.2.1 The SDSS survey 

he SDSS spectroscopy is nearly complete to r = 17.8, totalling 
660k galaxies, but reaches fainter magnitude to much lower 

ompleteness with targeted populations, adding ∼162k galaxies with 
7.8 < r < 20. We use the specific star formation rates (sSFRs)
erived from the SDSS spectra by Brinchmann et al. ( 2004 ) in the
ata release 12 (DR12; Alam et al. 2015 ) to draw an empirical
eparation between blue, star-forming galaxies and red, passive 
alaxies in the redshift/( u − g )/( g − r ) space (Appendix B ). This
eparation is used to balance the training samples and e v aluate the
erformance of the training experiments in the two populations. 

.2.2 The GAMA survey 

he GAMA surv e y (Driv er et al. 2009 , 2011 ; Liske et al. 2015 )
s a joint European-Australian spectroscopic surv e y combining 
V to FIR photometric data from several ground- and space- 
ased programs, including SDSS. The spectroscopy was carried out 
sing the 2dF/AAOmega multi-object spectrograph on the Anglo- 
ustralian Telescope, building on previous spectroscopic surv e ys 

uch as SDSS, the 2dF Galaxy Redshift Surv e y and the Millennium
alaxy Catalogue (MGC). We use the 4 equatorial fields (G02, G09, 
12, and G15) available in the data release 3 and 4 (DR4, Driver

t al. 2022 ), co v ering a total of ∼235 deg 2 . The spectroscopy is 98
er cent complete to r = 19.8 (Liske et al. 2015 ), except for the
02 field where only the region north of Dec ∼ 6deg was observed

o high completeness. This provides us with a sample of ∼210k 
pectroscopic galaxies at r < 20 (90 per cent of which at r > 17.8)
atched to the photometric catalogue. GAMA constitutes the main 

omponent of our training set as its completeness makes it most
epresentative of the photometric data set. 

.2.3 The BOSS survey 

e retrieved an additional 486k spectroscopic sources from, essen- 
ially (98.2 per cent), the BOSS surv e y (Da wson et al. 2013 ). These
re dominated by Luminous Red Galaxies (LRG). We will refer 
o this sample as ‘BOSS’, although a small contribution ( ∼8538 
alaxies) comes from other deep redshift surv e ys, namely: VVDS 

ide and Deep (Le F ̀evre et al. 2013 ), DEEP2 (DR4, Newman et al.
013 ), VIPERS (DR2, Scodeggio et al. 2018 ), UDSz (Bradshaw et al.
013 ; McLure et al. 2013 ), zCOSMOS-bright (Lilly et al. 2007 ). 

 T H E  C N N  

.1 Ar chitectur e 

he present network is a more complex version of the P19 CNN,
ntended for a more complex data set. Its architecture is diagrammed 
n Figs 3 and 4 . Fig. F1 in Appendix F lists all the layers with their
ype, shape, number of parameters and the layer(s) they are connected 
o upstream. We refer to P19 for a pedagogical description of the
ole played by the different types of layers. Their fig. 4 can also be
ompared to our Fig. 3 . 

As in P19 , the input data consist of images of galaxies in the five
griz bands of the SDSS surv e ys, with the galactic extinction along
he line of sight added downstream before the fully connected layers 
Section 3.2 ). The training labels are spectroscopic redshifts. 

Here too, we choose to handle the redshift estimation task by 
eans of a classification rather than, but aided by, a non-linear 

egression. The gain of using a classification rather than a regression
r of adding a regression to the classification is negligible with a
MNRAS 527, 651–671 (2024) 
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ich data set such as the bright SDSS used by P19 , but it pro v es
ore significant with sparser training sets such as the present

ata (Appendix E1 ) and even more so with high-redshift data (Ait
uahmed et al. 2023 ). 
The classes correspond to narro w, mutually exclusi ve, redshift

ins, i.e. each training galaxy belongs to a single class (one-hot
ncoding of the spectroscopic redshifts). The classifier is trained
sing the softmax cross-entropy loss function (Baum & Wilczek
987 ; Solla, Levin & Fleisher 1988 ) and the regression with the root
ean square error. The two loss functions are simply added (after

rying different weighted sums). 
A softmax acti v ation function (Bridle 1990 ) applied to the output

ayer of the classifier normalizes the outputs to 1. Such outputs
ere shown, both theoretically and experimentally, to provide good

stimates of the posterior probability of classes in the input space
Richard & Lippmann 1991 ; Rojas 1996 ) provided the network is
ufficiently complex and properly trained. Whether that is the case
ere may be questioned but we find the classification outputs to be
ery useful probability density function (PDF) proxies. We will call
hem ‘PDF’. 

Compared to P19 , the present network has 1 additional convo-
utional layer upstream, 6 inception blocks of similar complexity
nstead of 4 + 1 simpler one, and 3 additional convolutional layers
ollowing the last inception module. These have no padding and are
ollowed by an average pooling layer, which reduces the number
f trainable parameters to ∼7M compared to ∼27M in P19 . Apart
rom the softmax acti v ation function used in the last dense layer to
roduce the ‘PDFs’, all but two of the non-linear acti v ation functions
introducing non-linearity into the network) are the commonly
sed ReLU (Rectified Linear Unit, Fukushima 1969 ). The second
onvolutional layer and the last dense layer before the regression
utput use a hyperbolic tangent acti v ation function, which clips the
ynamic range. The network is trained with the Adam optimizer
Kingma & Ba 2015 ), a stochastic gradient descent method based
n the adaptive estimation of first-order and second-order moments.
We note that the results presented below are quite robust to the

pecifics of the CNN architecture. Replacing the inception blocks by
imple convolutions while retaining the same depth and number
f trainable parameters, only slightly degrades the metrics. The
ain from the inception modules is of the order of that found with
veraging a large number of models (Fig. 8 ): it takes averaging a
arge number of trained networks without inception blocks to achieve
esults similar to no averaging using inception blocks. 

.2 Training input 

he CNN is fed 64 × 64 pixel image cutouts centered on the galaxy
oordinates in the five ugriz SDSS bands, to which we add the
chlegel, Finkbeiner & Davis ( 1998 ) galactic extinction value along

he line of sight. The much larger number of galaxies and the different
amples involved in the analysis compared to P19 requires a more
fficient approach for generating the cutouts. Instead of extracting
nd resampling individual SDSS frames for every galaxy, we adopt
he following procedure: 

(i) Using SWARP (Bertin et al. 2002 ), we first re-project at once
he whole SDSS imaging surv e y on a grid of 27 070 o v erlapping
iles co v ering the surv e y footprint in the five filters, relying on the

CS parameters of the input image headers (Calabretta & Greisen
002 ) for the astrometry. The number of input frames contributing
o a given output pixel ranges from one or two for ‘regular’ SDSS
mages, to 64 for some of the galaxies in Stripe 82. Each output tile
NRAS 527, 651–671 (2024) 
s 18 192 × 18 192 pixels wide (2 ◦ × 2 ◦ with 0.396’ pixels), and
s aligned with the local North-South axis using the ZEA (zenithal
qual area) projection. 5 arcmin o v erlaps between nearest neighbours
t mid-width/height guarantee that any cutout is entirely contained
n at least one of the tiles. 

(ii) Galaxy sample requests are organized by tile, and
4 × 64 pixel cutouts are extracted without resampling around every
rojected galaxy position. 

While the new procedure is more than two orders of magnitude
aster than that of P19 , the generated cutouts are not centered as
recisely (up to half-a-pixel only), and the direction to the local north
s not al w ays as perfectly aligned with the vertical axis of the pixel
rid. Ho we ver, we did not find these changes to have a measurable
mpact on the quality of the inferred redshifts. A (64,64,5) data cube
s thus produced for the ∼15.3M sources in the DR16 photometric
atalogue. 

.3 Output assessment 

.3.1 ‘PDF’ 

e use several tests and quantities designed to e v aluate PDFs to
ssess the behaviour of our ‘PDFs’: 

(i) The Probability Integral Transform statistic (PIT, Dawid 1984 )
s based on the histogram of the cumulative probabilities at the
rue value ( CDF i = 

∑ 

z≤z i 
PDF i ( z) for galaxy i at spectroscopic

edshift z i ). A flat PIT distribution is expected from well calibrated
DFs, whereas conv e x or concav e distributions point to o v er or
nderconfident PDFs (Polsterer, D’Isanto & Lerch 2022 ). Indeed
 xcessiv ely narrow (o v erconfident) PDFs will miss the target too
ften, o v erproducing PIT values close to 0 or 1, whereas PDFs that
re too wide (underconfident) will encompass the true redshifts more
ften than not, o v erproducing intermediate PIT values. 
(ii) The credibility test proposed by Wittman, Bhaskar & Tobin

 2016 ) (hereafter WBT ) is based on the cumulative distribution
f the ‘threshold credibilities’, defined as the cumulative proba-
ilities equal to or abo v e the probability at the true value ( c i =
 

PDF i ( z) ≥PDF i ( z i ) 
PDF i ( z)), i.e. the smallest credible interval (CI) in

hich the spectroscopic redshift of a galaxy lies. With well calibrated
DFs, 1 per cent of the galaxies have their spectroscopic redshift
ithin their 1 per cent CI, 2 per cent within their 2 per cent CI, etc.,
hich translates into the cumulative distribution of c i ≤ c being equal

o c. 
(iii) The Continuous Ranked Probability Score (CRPS, well

nown in meteorological predictions, Hersbach 2000 ) is a quadratic
easure of the difference between the forecast cumulative distri-

ution function (CDF) and the empirical CDF of the observation
Zamo & Naveau 2018 ), here a unit step function around the spec-
roscopic redshift ( CRPS i = 

∫ z i 
−∞ 

C DF i ( z) 2 dz + 

∫ +∞ 

z i 
( C DF i ( z) −

) 2 dz). It can be viewed as a generalization of the MAE to
istributional predictions. 
(iv) We quantify the uncertainty of the ‘PDFs’ by the width

f the 68 per cent central credible interval, i.e. the redshift width
ncompassing 68 per cent of the distribution after chopping off the
eft and right wings in equal measure. 

(v) Other important aspects of the redshift estimate contained in
he full shape of the ‘PDF’ can also be estimated, e.g. skewness and

ulti-modality. 

Although passing one test does not ensure PDF quality (Amaro
t al. 2019 ) nor, for that matter, PDF status, we expect several
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Figure 5. Comparison between the P19 results (in blue) and the present 
work (in pink) for the SDSS sample at r ≤ 17.8. Top panels: bias, σMAD , 
and catastrophic failures as a function of z mean and magnitude. The dashed 
and solid pink lines show the present metrics before and after expanding 
the binning at z� 0.33. Bottom panels: the PIT and WBT tests. The PIT 

distribution is expected to be flat, the WBT test is expected to follow the 
unity line. The departures from the unity line are o v erlayed in faded colours, 
with units along the right-hand side y -axis (10 −2 ). 

Table 2. Performance comparison between of the four redshift estimators 
for the SDSS trainings at r < 17.8. The P19 statistics are in parentheses. 

z mean z med z peak z reg unit 

σMAD 808 (908) 800 (902) 818 (918) 810 10 −5 

<�z norm 

> 

3 (4) −31 ( −43) −87 ( −125) −27 10 −5 

η( > 0.5) 0.17 (0.31) 0.18 (0.31) 0.27 (0.39) 0.17 % 
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uccessful tests combined with measures of the accuracy of the point 
stimates (next section) to provide some level of photometric redshift 
eliability. 

.3.2 Point estimates 

lthough redshift PDFs may be directly incorporated into Bayesian 
chemes in certain cosmological studies (e.g. inferring cosmological 
arameters), point estimates are required for many others (especially 
f the ‘PDFs’ are not true PDFs). We consider the following 4
hotometric redshift estimators: i/ the weighted mean ( z mean ), ii/
he median value ( z med ) and iii/ the peak value ( z peak ) of the ‘PDF’,
nd iv/ the regression output ( z reg ). The metrics we use to assess the
ccuracy of these point estimates are identical to P19 . We define: 

(i) the normalized residuals �z norm 

= ( z cnn − z spec )/(1 + z spec ) 
(ii) the prediction bias <�z norm 

> (mean of the residuals) 
(iii) the deviation σ MAD = 1.4826 × MAD, where MAD (Median 

bsolute Deviation) is the median of | �z norm 

− Median( �z norm 

) | 
(iv) the fraction η of outliers with | �z norm 

| > 0.05 

 T R A I N I N G  EXPERIMENTS  

.1 SDSS at r ≤ 17.8 

or the purpose of comparison with P19 , we first train the CNN
ith the same data set: ∼510k SDSS galaxies at r < 17.8, the same
inning: 180 redshift classes in the range 0 < z < 0.4 with constant
idth δz = 0.4/180, and the same protocol as P19 : the database is

plit into 5 cross-validation samples, each one used in turn for testing
hile the remaining 80 per cent, augmented with randomly flipped 

nd rotated images. 1 , is used for training (other training parameters 
re given in Appendix F ). This operation is repeated 5 times with
andomly initialized weights. The final ‘PDFs’ are the average of the 
 classification outputs. 
Fig. 5 sho ws ho w this network compares with P19 (pink versus

lue lines). The top panels show the bias, σ MAD and outlier fraction 
as a function of CNN z mean and magnitude. All metrics are 

ignificantly reduced. Ho we ver, the dashed pink line in the top left
anel shows that the new CNN is plagued with a redshift ceiling
ffect similar to P19 , manifest as a steep drop in the bias at z mean ∼
.3, abo v e which no z mean is predicted despite spectroscopic redshifts
eaching higher values. We found that this effect could be mitigated 
y enlarging the bins at the highest, underpopulated redshifts, so that 
ach class contains at least 20 training galaxies ( δz = 0.0022 at z
 0.33, increasingly larger at z > 0.33, adding up to 158 bins). The

esult is shown as the solid pink line. Sparse sampling may not be
he only reason for this issue. The z� 0.3 tail of the SDSS data at r
 17.8 is entirely populated by red galaxies and these are affected

y a colour de generac y at this particular redshift, which distorts their
NN redshift distribution (see Section 5.1 ). The lower panels of
ig. 5 show the PIT and WBT tests. According to both, the new
PDFs’ are slightly o v erconfident where P19 ’s were underconfident. 
heir mean CRPS is 0.0060, versus 0.0067 for P19 . 
The performance of the various redshift estimators are shown in 

able 2 , with the P19 results in parenthesis. P19 had used z mean 

s optimal point estimate as it minimizes the bias and the rate of
 Note that these data augmentation processes can have an impact on the 
raining if the image transfer function is not isotropic, e.g. if differential 
hromatic refraction is not negligible in the data. 

c  

d
b
c
(

atastrophic failures without significantly degrading σ MAD . Ho we ver, 
ach point estimate has pros and cons: z med tends to minimize
he dispersion at the expense of the bias, z peak also optimizes the
ispersion but maximizes the catastrophic failures and generates very 
oisy redshift distributions, while z reg is a slightly degraded z mean . 
These statistics marginally outperform the two recent attempts at 

mproving the P19 performance. Hayat et al. ( 2021 ) proposed a self-
upervised representation learning method in which a network was 
re-trained with 1.2M unlabelled SDSS galaxies, then fine-tuned 
ith the labelled data. While the great potential of such methods

s undeniable, in particular at high redshifts where spectroscopy 
s very sparse, the present supervised training technique remains 
ompetitive with the SDSS data. Dey et al. ( 2021 ) presented a
eep capsule network that jointly estimates the redshift and the 
asic morphological type of galaxies (spiral/elliptical). Its backbone 
onsists of a primary convolutional layer followed by Conv-Caps 
‘capsule’) layers, composed of multiple neurons that compute not 
MNRAS 527, 651–671 (2024) 
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Figure 6. The normalized redshift and magnitude (log scale) distributions of 
the GAMA sample (grey), of the full spectroscopic sample (orange), and of 
the GAMA-like test sample (pink) for blue and red galaxies (top and bottom 

panels respectively). 

Figure 7. Magnitude/redshift distributions (left panels) and ( u − g )/( g − r ) 
distributions (right panels) of the test, training, and lefto v er samples described 
in Section 4.2.1 . 
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nly the presence or absence of a feature, but also its properties such
s rotation, size, velocity, or colour. Although this design is robust
nd invariant to image orientation, data augmentation techniques
uch as rotation and flipping were used during training. The latent
pace of the network has only 16 dimensions, which helps to study
ts interpretability. Ho we ver, compared to classical CNNs, capsule
etworks are trickier to train and can hardly be adapted to deeper
rchitectures for more complex tasks. 

.2 SDSS + GAMA + BOSS at r ≤ 20 

e expand the training to r = 20 using the deeper spectroscopy
Section 2.2 ). Randomly splitting the full spectroscopic data for
raining/validation as was done for the SDSS at r < 17.8 (e.g. 80
er cent/20 per cent) is not appropriate here, as the sample is not at
ll representative of the galaxies expected to populate the photometric
ample. While SDSS and GAMA are representative sets of galaxies at
 ≤ 17.8 and 17.8 ≤ r ≤ 19.8, respecti vely, gi ven their large redshift
ompleteness, the bright SDSS data is o v er-represented compared
o the faint GAMA data. Both surv e ys also feature strong local
tructures in their redshift distributions (Fig. 1 ). Last but not least, the
arge BOSS sample is o v erpopulated with LRGs at z spec � 0.2, which
eally are quite rare compared to ‘normal’ red galaxies at r < 20.
ver-representing a specific population in a specific redshift interval
ill bias the predictions in fa v our of those redshifts. The results
ill be deceptively good on the validation sample as it matches the

raining sample by design, but suboptimal on a different population,
hich the photometric sample is expected to be. These effects are
uantified in Appendix E3 . For these reasons we attempt to create
raining and testing samples at least roughly representative of the
eneral population at r < 20. 

.2.1 Test and training samples 

e use SDSS and GAMA as models of the Universe in their
espective magnitude range of completeness to create mock samples
ut of the full spectroscopic data. To do so, we model the redshift
istributions of blue and red galaxies in bins of magnitude with
mooth ad hoc functions; in each magnitude bin, we randomly extract
rom the full spectroscopic sample subsets of blue and red galaxies
ith redshift distributions matching these smooth distributions. The
agnitude and redshift bin widths are chosen to strike a compromise

etween mock resemblance and size. 
We first create a GAMA-like test sample using the abo v e method

 ut a v oiding GAMA itself in the random extraction in order to
ample the full sky coverage. We match the blue/red ratio and the
agnitude distribution of GAMA by randomly extracting from a

lue and a red redshift-matched sample. The result is a test sample
f 25 856 galaxies at r ≤ 19.8 resembling GAMA but with much
educed redshift structures and spanning the entire sky. Its magnitude,
edshift, and colour distributions are shown in Fig. 6 and in the top
anels of Fig. 7 . Galaxy properties are not limited to magnitude,
edshift and red/blue type, but more sophisticated methods taking
ore parameters into account (e.g. SOM) would reduce the size of

he mock sample too significantly, defeating its purpose. 
We subtract this test sample from the spectroscopic sample and

roceed to extract training samples using the abo v e method without
xcluding GAMA and adding galaxies at 19.8 < r < 20, also based on
AMA but more loosely as it is less representative in this range. The
DSS and GAMA-like subsets are concatenated without matching

he GAMA number counts, which would deplete the bright end too
NRAS 527, 651–671 (2024) 
rastically. We create in this way 25 training samples of ∼370k
alaxies, significantly smaller than throwing in the full GAMA and
DSS samples but doing so propagates unwanted training features

n the predicted redshift distributions. The 25 samples total ∼910k
nique spectroscopic galaxies and leave out a sample of ∼580k
alaxies, half of them at r < 17.8, the other half dominated by
RGs (Section 5.5 ). The intersection between any 2 training samples

s between 45 and 80 per cent. The intersection of all 25 samples
mounts to 78 682 sources, most of them in the troughs of the GAMA
edshift distribution, whose features reappear when combining any
 samples. Fig. 7 shows the magnitude/redshift and ( u − g )/( g − r )
istributions of the test, training and lefto v er samples. 
Another strategy, leaving a larger sample of leftovers available for

esting, would be to train just a few training samples several times.
sing just one training sample for instance, picked at random, leaves
early twice as many galaxies for testing. These ho we ver, are, by
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Figure 8. Bias, deviation, and rate of catastrophic failure of the averaged 
point estimates (blue) and of the corresponding point estimate of the averaged 
PDFs when rele v ant (orange), as a function of the number of CNN outputs 
being averaged for the test sample. From top left to bottom right: z mean , 
z med , z peak , and z reg . The black circles and vertical lines show the mean and 
standard deviation of the distributions. 
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Figure 9. A random sample of outputs in increasing order of spectroscopic 
redshift. The outputs of the 15 models are shown in grey, with their respective 
median values marked as coloured vertical lines. The averaged outputs (the 
final ‘PDF’) are shown in black. 
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esign, as un-representative as the smaller sample (bright galaxies 
nd faint red ones) and thus do not provide a more informative testing
pportunity. The strategy is explored in Appendix E2 . 

.2.2 Averaging 

e train the CNN with each of the 25 samples in full (without
ross-correlations) using 400 redshift bins between z = 0 and 
.9, corresponding to a bin width δz = 0.00225 similar to the
DSS training at r < 17.8. Other training parameters are given in
ppendix F . From the 25 trained networks, we infer ‘PDFs’ and

egression values for the test sample. 
The benefits of averaging the outputs of several networks are 

hown in Fig. 8 , where the bias, deviation and rate of catastrophic
ailure of the averaged z mean , z med , z peak and z reg (in blue) and of the
oint estimates of the averaged ‘PDFs’ when rele v ant (in orange),
re plotted as a function of the number of models being averaged.
he 25 points at N = 1 illustrate the variance between the 25 models.

n between these points and the final averages of the 25 models, we
andomly picked 400 combinations of N different models among the 
ens of thousands of possibilities (several million between 10 and 
5). The black circles and vertical lines show the mean and standard
eviation of the coloured points. 
For all the point estimates, σ MAD gains the most from averaging, 

hile the bias is quite insensitive to it. The median of the averaged
PDFs’ does consistently better than the averaged z med . On the
ontrary the averaged z peak do better for σ MAD and η than the mode of
he a veraged ‘PDFs’, b ut a f actor of 2 w orse for the bias, making the
atter method preferable in this case too. For all the point estimates,
he gain from using a single model to averaging 5 is significant
or σ MAD and η: averaging any 5 models does better than the best
odel among the 25. Then the o v erlap becomes large and it becomes

ossible to do better with certain combinations of, say, 10 than of
ore models, including the final average of 25. Ho we ver, the means

nd standard de viations sho w that it is unlikely, and also that 25 is
n o v erkill. 

In all that follows, we use 15 training samples randomly selected
mong the 25, a reasonable compromise between performance and 
omputing time. This choice leaves unchanged the total number of 
pectroscopic galaxies used for training and left o v er. We compute
he point estimates of the averaged ‘PDFs’ rather the average of the
oint estimates. The uncertainty on a given metric may be estimated
rom the standard deviations: they are of order 3 × 10 −5 for σ MAD 

nd the bias, and of order 0.03 for η. 
The benefit of averaging ‘PDFs’ is further illustrated in Fig. 9 ,

hich shows random examples of outputs in increasing order of 
pectroscopic redshift. The 15 CNN outputs are shown in grey, 
ith their respective z med marked as coloured vertical lines. The 

verages of the 15 outputs are plotted in black. We interpret the fact
hat these consistently provide better redshift estimations than the 
ndividual ones, which are themselves consistent with one another, 
s convergence towards true PDFs. At any rate, we remove the quotes
o alleviate the text. 

.2.3 Redshift binning 

n addition to the binning used abo v e with δz = 0.00225, we train
he 15 samples using 200, 100 and 50 bins between z = 0 and
.9, corresponding to δz = 0.0045, 0.009 and 0.018. Fig. 10 shows
ow little sensitive the point estimates ( z med here) are to the PDF
esolution. The bias, σ MAD , and rate of catastrophic failure, plotted 
s a function of z med and magnitude, are undistinguishable from the
MNRAS 527, 651–671 (2024) 
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Figure 10. Test sample metrics as a function of z med and magnitude for the 
four classification schemes. The grey histograms in the top panels are the 
shapes of the spectroscopic redshift and magnitude distributions, in log scale 
for the latter. The metrics are very little sensitive to the choice of classification 
binning within the explored range. 

Figure 11. The DIP score distribution of the test sample for the four binning 
experiments. 
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Figure 12. PIT and WBT statistics for the four binning scenarios. The 
departures from the unity line in the WBT test are o v erlayed in faded colours, 
with units along the right-hand side y -axis (10 −2 ). 

Figure 13. The point estimate distributions of blue and red test galaxies, with 
their stacked PDFs (the missing regression value is very similar to z mean ). The 
red galaxy distribution is strongly distorted around ∼0.35, to a variable degree 
depending on the point estimate. This is attributed to a colour de generac y (see 
Section 5.1 ). 
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mallest to the largest binning, suggesting that too fine a binning is
uperfluous. 

We use the DIP test (Hartigan & Hartigan 1985 ) to detect multi-
odality in the different sets of PDFs. It consists of measuring the
aximum distance at any point between the CDF and the closest

ni-modal CDF, a uni-modal distribution having a score of 0 by
efinition. Fig. 11 shows the significant impact of the bin width on
he distribution of DIP scores in the test sample. Since the bin width
as, on the contrary, very little impact on the point estimates in the
ange we tested, we conclude that the many spikes generated by the
mall bins do not represent meaningful multi-modalities but simply
he incapacity of the CNN to classify redshifts in such fine a grid.
ncreasing the bin width makes the PDFs increasingly uni-modal but
ould eventually degrade the predictions significantly, to the point
f no prediction at all in the extreme case of only 1 bin. There is
herefore an optimal resolution for the classifier, given the training
ata. 
Fig. 12 shows the PIT and WBT tests for the 4 binning scenarios.

oth are nearly perfect but the latter is more discriminatory. It shows
hat δz = 0.009 is close to the optimal resolution. Smaller bins
roduce ‘o v erconfident’, o v erly spik y PDFs, larger bins produce
underconfident’, underinformative ones. The δz = 0.009 binning
s consequently our final choice in the rest of this work. The mean
RPS for this binning and the two smaller ones is ∼0.013. It is

lightly higher ( ∼0.015) for the largest binning. 
NRAS 527, 651–671 (2024) 
 TEST  RESULTS  

.1 Colour dependence 

ig. 13 shows the distribution of the different point estimates for the
lue and red galaxies in the test sample, as well as the stacked PDF,
he spectroscopic redshift distribution and the B16 distributions (the
egression value is not displayed to limit the clutter and because it
s very similar to z mean ). The strong distortion around z spec ∼ 0.35
or the red galaxies can be attributed to a de generac y in their optical
olours. It is more or less severe depending on the point estimate:
 mean (and z reg ) generate the strongest distortion within the smoothest
istributions, z peak minimizes the distortion but generates the noisiest
discretized) distributions, z med is the best compromise considering
oth the blue and red populations. The stacked PDF best fits the
 spec distribution of both blue and red galaxies. The B16 redshifts are
ignificantly more distorted, probably because they were computed
rom the measured colours while the CNN captures more information
rom the full images. 

The left panel of Fig. 14 shows the ( g − i ) colour versus z spec 

istribution of red galaxies in the spectroscopic sample. While colour
nd redshift are well correlated at low redshift, the relation flattens
ut at z spec � 0.31, making it a harder task to predict redshifts in
his range. The right panel displays the ( g − i ) colour versus z med 

istribution of red galaxies in the test sample, colour-coded by
he mean PDF width. The o v erlaid black line is the shape of the
 med distribution (also displayed in Fig. 13 ). The strong distortion
round ∼0.35 coincides with increased PDF widths, i.e. increased
ncertainties in the classification. As shown in Fig. 13 , stacking these
ider PDFs nearly suppresses the point estimate distortion. 
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Figure 14. Left: ( g − i ) colour against z spec for the red galaxies in the full 
spectroscopic sample. The colour clearly becomes indiscriminate at z spec � 

0.31. Right: the ( g − i ) versus z med distribution of the red galaxies in the 
test sample colour-coded by the PDF width. The black profile is their z med 

distribution. The mislocated galaxies in the degenerate interval have wider 
than average PDFs, reflecting the greater uncertainty in their classification. 

Figure 15. PIT and WBT statistics for the blue and red subpopulations in the 
δz = 0.009 scenario. The PIT distribution highlights the red population bias. 
Ho we ver, both the PIT distribution and WBT test for the full sample are near 
perfect. The departures from the unity line in the WBT test are o v erlayed in 
faded colours, with units along the right-hand side y -axis (10 −2 ). 
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Figure 16. Test sample metrics as a function of z med and magnitude at r < 

17.8 and r > 17.8, with the SDSS MGS training performance for comparison 
(Section 4.1 ). The performance degrades significantly from bright to faint. 
The bright regime is similar to the SDSS MGS training despite the much 
lower number of training galaxies. 

Figure 17. Magnitude-dependent threshold designed to exclude the largest 
5 per cent of PDF widths in the test sample (red crosses). The dashed line is 
the analytical fit (equation 1 ), plateaued out below r = 15 at a PDF width of 
∼0.02. 
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Fig. 15 shows the PIT and WBT tests for the blue and red
ubpopulations and the full sample. The PIT distribution reveals 
 large positive bias for the red galaxies, whose PDFs are e xcessiv ely
o the right of their true redshift. This is indeed the case for the many
alaxies sho v ed into the CNN redshift distortion from lower z spec .
he WBT test is very close to the unity line for both galaxy types, and
loser still for the whole population. For comparison with traditional 
 σ co v erage tests: 67.3 per cent of the test galaxies have their smallest
redible interval defined by their spectroscopic redshift smaller than 
r equal to 68 per cent, while 64.6 per cent of the galaxies have their
pectroscopic redshift within the 68 per cent central credible interval 
efining the PDF width independently of the spectroscopic redshift. 
he difference points to the fact that the PDFs are non-Gaussian. 

.2 Magnitude dependence 

ig. 16 sho ws ho w the performance on the test sample degrades,
redictably, from r < 17.8 to r > 17.8. The r < 17.8 regime
emains competitive with the bright SDSS training described in 
ection 4.1 , despite the much lower number of galaxies in this
agnitude range in the present training samples ( ∼132k versus 
414k). This is expected from P19 who found that the performance 

emained virtually unchanged when the training sample size was 
educed to ∼100k. 

P19 also found that performance could be impro v ed by discarding
ources with the largest PDF widths, reporting the result of rejecting 
he largest 10 per cent and 20 per cent. Here we design a more
onserv ati ve, magnitude-dependent cut in PDF width meant to 
xclude the worst 5 per cent of PDF widths at a given r −band
agnitude in the test sample. The computed threshold is shown in
ig. 17 as red crosses. We fit the trend with a 4 th degree polynomial,
 4 
i= 0 a 5 per cent [ i] r i , where: 

 5 per cent = [1 . 26761997 × 10 1 , −3 . 30587750 , 3 . 22381178 × 10 −1 ,

−1 . 39350947 × 10 −2 , 2 . 25736799 × 10 −4 ] (1)

apping it at bright magnitude at the r = 15 value of ∼0.02. The
nal threshold is the red dashed lines in Fig. 17 . As shown in Table 3
see the next section), excluding galaxies with PDF width abo v e this
hreshold impro v es redshift quality at a minor cost (4.6 per cent of the
est sample), while allowing for the expected increase in uncertainty 
ith magnitude. Also expected is the underlying dependence with 

pectroscopic redshift. High-redshift galaxies not only tend to be 
ainter, they are also sparse in the training samples, hence their poorer
utcome. The fraction of galaxies excluded by the threshold increases 
rom 2 to 16 per cent between z = 0 and 0.6. 

We also note that, despite our attempt at matching representative 
agnitude-dependent redshift distributions, this limit inevitably 

arries biases. But by enveloping the spread of PDF widths of a
ample of spectroscopic galaxies whose image quality is on average 
ore reliable than in the full photometric SDSS surv e y (Section 6 ),

t is nevertheless a tool of quality control. 
MNRAS 527, 651–671 (2024) 
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Table 3. The CNN performance on the GAMA-like test sample, in units of 10 −5 for σMAD and <�z norm 

> , and in per cent for η( > 0.05). The B16 performance 
is reported under z B16 . The numbers and second lines in parentheses are the results of excluding galaxies above the PDF width threshold (equation 1 ). 

Blue Red All 

N 15 120 (14 463) 10 736 (10 192) 25 856 (24 655) 
z phot z mean z med z peak z reg z B16 z mean z med z peak z reg z B16 z mean z med z peak z reg z B16 

σMAD 1446 1403 1455 1474 3058 1474 1443 1466 1503 2853 1466 1421 1460 1481 3062 
(1392 1355 1403 1413 3002 1400 1382 1415 1421 2734 1402 1367 1406 1422 2987) 

<�z> −46 −78 −163 −22 −59 559 479 339 581 2706 205 153 45 228 1089 
( −77 −99 −128 −66 −59 443 373 281 459 2572 138 97 41 151 1031) 

η(%) 3.7 3.7 4.76 3.81 15.97 4.66 4.41 4.96 4.81 21.36 4.1 3.99 4.84 4.22 18.2 
( 2.75 2.8 3.56 2.77 15.3 3. 3.01 3.61 3.08 19.85 2.86 2.88 3.58 2.9 17.18) 

Figure 18. Comparison of the point estimates (in percentages): z mean is very 
similar to the regression value but positively skewed with respect to z med . The 
mean difference between any two point estimates is less than 0.5 per cent. 
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Figure 19. PIT intervals against | �z norm 

| assuming z med (the convergence at 
PIT = 0.5 and �z norm 

= 0 arises from the very definition of z med ). The grey 
scale is inverted to highlight the low-density outlier region above the green 
dashed line ( | �z norm 

| > 0.05). Outliers excluded by the PDF width threshold 
are crossed in red. All the others have PIT values close to 0 and 1, i.e. narrow 

PDFs missing the spectroscopic redshifts. 
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.3 Point estimate summary 

ig. 18 shows the distributions of the discrepancies between different
oint estimates. The PDF mean tends to be larger than the mode,
hich tends to be larger than the median (positive skewness),
o we ver, the mean dif ference between any 2 point estimates is less
han 0.5 per cent. The regression value is very similar to the mean
alue. 

The performance of the different point estimates for the blue, red
nd combined galaxies in the test sample are reported in Table 3 , with
he best scores in bold face. The metrics resulting from applying the
DF width threshold are reported in the second lines in parenthesis.
he best dispersions are consistently achieved with z med . The mean
ias is a more shifting quantity since it may take ne gativ e values.
ood scores are of the order of 10 −4 , poor ones abo v e 10 −3 , as is

he case for red galaxies. The rate of catastrophic failures remains
elow 5 per cent in all cases. Compared to B16 , the precision is
mpro v ed by a factor of ∼2 or more, the red galaxy bias and the rate
f catastrophic failures by a factor of ∼5. 

.4 Outliers 

ig. 16 shows that the fraction of catastrophic failures increases
ith magnitude and predicted redshift (it increases similarly with

pectroscopic redshift), like all metrics. Table 3 shows that applying
he PDF width threshold significantly reduces their fraction, ho we ver
bout two thirds remain within the range of other galaxies. Fig. 19 ,
hich displays the PIT intervals against | �z norm 

| , assuming z med ,
eveals that most outliers, defined as being above the green dashed
ine ( | �z norm 

| > 0.05), tend to have PIT values close to 0 and 1
equi v alently, WBT credibility interv als close to 1). This means
hat their spectroscopic redshift tends to lie to the left or right of
heir PDF. Those with intermediate PIT values would be largely
xcluded by the PDF width threshold (excluded outliers are crossed
NRAS 527, 651–671 (2024) 
n red). Let’s note that most cases of extreme PIT value are not
utliers, the y are e xpected from a flat PIT distribution. Outliers
ith narrow PDFs missing the spectroscopic redshifts cannot be

asily identified. Their visual inspection in the five bands does
ot rev eal an y specific photometric defect, nor is there an ything
oteworthy in their spatial distribution. They simply are the tail of a
ontinuous | �z norm 

| degradation occurring with increasing redshift
nd magnitude. Reducing it is likely to be difficult without a richer
raining set at high redshift. 

.5 Spectrocopic lefto v ers 

he ∼583k galaxies in the spectroscopic sample that belong neither
o the test sample nor to any of the 15 training samples have a very
imodal distribution (see Fig. 7 ): one half at r < 17.8 is a mix
f red and blue galaxies left o v er from, mostly, the bright SDSS
atalogue, the other half at 17.8 < r < 20 is mainly red galaxies.
ig. 20 shows the redshift distributions of these 2 subsets, with the
 med metrics before and after applying the PDF width threshold. In
he bright interval, the excess of galaxies around z spec ∼ 0.08 is
ignificantly larger than in the full SDSS catalogue as the training
amples were designed to a v oid it. The CNN predictions are o v erly
mooth compared to the true distribution, probably a counter bias
rom smoothing the training redshift distribution in order to a v oid
iases from such local structures. Nevertheless, the metrics remain
lose to the values derived in Table 2 . 

In the faint magnitude panel, the situation is less fa v ourable. The
ample is dominated by high-redshift LRGs that we chose to a v oid
n the training samples, and by red galaxies in the redshift interval
f the colour de generac y (Section 5.1 ). The distortion induced
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Figure 20. The redshift distributions of lefto v er galaxies at r < 17.8 and 17.8 
< r < 20 (left and right panels, respectively). The grey shaded histograms 
are the spectroscopic redshift distributions; z mean and z med are in orange 
and green, respectively. The faint interval is dominated by LRGs in the 
BOSS sample, hence the strong CNN redshift distortion around ∼0.35, here 
emphasizing an existing feature. The metrics reported in the top right corners 
are for z med . 
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Figure 21. The ( u − g )/( g − r ) colour distributions of the ‘ clean = 1’ 
photometric sample at r < 17.8 and r > 17.8 in the top left and right panels, 
respectively. The distribution are colour-coded by the mean PDF width in 
the middle panels and by the mean r -band SNR in the bottom panels. A 

bright magnitude, the star sequence stands out with the poorest PDFs and 
the highest SNR. The PDFs are predictably very inconclusive outside of the 
training contours (shown in pink), where the SNRs are also very poor. 
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2 Completeness is defined as the fraction of galaxies (stars or QSOs) that are 
correctly classified, and purity as the fraction of classified galaxies (stars or 
QSOs) that really are galaxies (stars or QSOs). 
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or these galaxies around ∼0.35 happens to emphasize an actual 
eature, also a lefto v er from the creation of the smooth training
atalogues. Although this population largely differs from the test 
ample, the deviation and rate of catastrophic failures remain within 
he range of values derived in Table 3 . However, the bias is much
arger, and ne gativ e. The redshifts are visibly underestimated. The 
raining samples were designed to represent ‘normal’ red galaxies 
ithin the magnitude and redshift range of the GAMA sample. The 
erformance is poorer for these galaxies due to the colour de generac y,
ut poorer still for LRGs that are purposely under-represented in the 
raining samples compared to their o v erwhelming presence in the 
pectroscopic sample. Adding high-redshift LRGs to the training 
amples reduces the present bias but at the cost of increasing it in the
est sample. This is shown in Appendix E3 . 

 INF EREN C E  RESULTS  

e infer the PDFs of the ∼13.8M sources without spectroscopic 
edshift in the photometric sample (Section 2.1 ), split in two 
ccording to the SDSS k eyw ord ‘clean’ referring to photometric 
uality. 
The results are presented below for the ‘clean’ ( clean = 1) sources

 ∼81.7 per cent), and in Appendix C for the ‘dirty’ ( clean = 0)
ources. 

.1 The ‘clean’ sample 

ig. 21 shows the ( u − g )/( g − r ) colour distributions of the ‘clean’
ources at 10 < r < 17.8 and 17.8 < r < 20 (left and right panels,
espectively). The colour-code indicates the density in the top panels, 
he mean PDF width in the middle panels and the mean r −band
ignal-to-noise ratio (SNR) in the bottom panels. The star sequence 
s conspicuous at r < 17.8 with very poor PDFs, unsurprisingly
ince stars were not included in the training. Also unsurprisingly, the 
DFs are very inconclusive in regions of the colour/colour plots not 
r ill represented in the training samples, the contours of which are
hown in pink. These regions devoid of spectroscopy also hav e v ery
oor SNR. They could be the locus of bona fide galaxy populations
hat were systematically missed as spectroscopic targets due to their 
ow optical SNR but it seems more likely that their colours are
rong and their PDFs useless due to poor image quality. In any

ase, whether the CNN infers in uncharted territories where machine 
earning techniques are unable to perform or whether the input data 
re flawed, the PDF widths clearly signal worthless predictions. We 
se the threshold introduced in the previous section (equation 1 ) to
iscard them. 
We also build a galaxy/star/QSO classifier. This is a CNN similar to

he redshift classifier, with the same type of input data, into which we
nsert, at the output of the last convolution, two successive layers of
6 neurons and a final 3 neuron layer for the triple classification. We
rain it with 80 000 sources in each class, randomly extracted from the
DSS spectroscopic catalogue (type 3 and 6 objects were included 
or stars and QSOs). The results are cross-validated 5 times, with 80
er cent of the data used for training and 20 per cent for validation.
redicted classes assigned according to the highest probability yield 
ompleteness and purity scores 2 abo v e 98 per cent for galaxies at all
agnitudes (save for a glitch at r ∼ 12.7) as shown in Fig. 22 . The

wo scores are actually abo v e 99 per cent for red galaxies, and 97.6
er cent and 96 per cent respectively for blue galaxies. Only type 3
ources are considered here, as in the photometric catalogue, which 
eaves only 6194 stars and 7775 QSOs. (The scores are higher for
ype 6 stars and QSOs, except for the small fraction of bright, r < 18
SOs whose purity remains low). 
Fig. 23 shows the PDF width-coloured sky map of the ‘clean’ pho-

ometric sources classified as galaxies. Redshift prediction quality is 
nevenly distributed. The ‘suspect zone’ (marked ‘sz’) identified by 
19 in the SDSS at r < 17.8 is visible in the northern region. Other
MNRAS 527, 651–671 (2024) 
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Figure 22. Completeness and purity scores of the galaxy/star/QSO classifier 
as a function of magnitude in the concatenated validation samples. Only type 
3 sources are considered. 

Figure 23. PDF width-coloured map of the sources classified as galaxies 
in the ‘clean = 1’ photometric samples. The ‘suspect zone’ identified by 
P19 in the SDSS at r < 17.8 in the northern region is marked ‘sz’. Several 
similarly degraded patches are also shown in the southern region. The larger 
than average PDF widths in the equatorial GAMA regions are due to their 
deeper than average magnitude. The lower than average PDF widths in Stripe 
82 (equatorial blue stripe) are due to better image quality. 
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Figure 24. The PDF width-coloured ( u − g )/( g − r ) distribution of the 
‘clean = 1’ photometric sample at r < 17.8 (left panels) and r > 17.8 
(right panels), following three cleansing procedures: the top panels restrict 
the sample to sources classified as galaxies, the middle panels apply the PDF 
width threshold (equation 1 ), and the bottom panels use both constraints. The 
PDF width limit alone efficiently screens both the faulty colour regions and 
most of the classified stars and QSOs. The equi v alent distributions are shown 
in Fig. C3 for the ‘ clean = 0’ sample. 

Figure 25. PDF width-coloured map of sources classified as galaxies with 
PDF width below the threshold in the full photometric samples ( ∼10.75 
million sources). The colour code is the same as in Figs 23 and C2 to highlight 
the effect of the applied threshold. 
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imilarly degraded patches also show in the southern region (many
ore are visible in the ‘ clean = 0’ subsample shown in Fig. C2 ). On

he other hand, the larger than average PDF widths in the GAMA
egions are due to their deeper than average magnitude (nearly all
AMA sources with r < 19.8 being part of the spectroscopic sample).
he lower than average PDF widths in Stripe 82 (blue equatorial
tripe in the South) are due to better image quality ( P19 ). 

Fig. 24 shows the ( u − g )/( g − r ) colour distributions of the sample
olour-coded by the mean PDF width and split into the bright and
aint magnitude interv als, follo wing three cleansing procedures: the
op panels are restricted to sources classified as galaxies (76.5 per cent
t r < 17.8, 94.3 per cent at r > 17.8), the middle panels to sources
ith PDF widths below the threshold (60.9 per cent at r < 17.8,
9.4 per cent at r > 17.8), and finally the bottom panels to classified
alaxies with PDF widths below the threshold (59.2 per cent at r <
7.8, 86.7 per cent at r > 17.8). This final procedure rejects 14.3
er cent of the initial data (6.4 per cent classified as stars or QSOs,
1.6 per cent with PDF widths abo v e the threshold). 
The PDF width limit efficiently screens both the offending colour

egions and most of the classified stars and QSOs. It also clears the
ed, ‘suspect zone’-like blotches in the sky maps (Figs 23 and C2 ).
xpectedly, the waste is much greater than in the test sample, and
uch worse still for the ‘ clean = 0’ sources, but the procedure greatly

nd homogeneously impro v es the quality of the photometric redshifts
n the two photometric subsamples, which can thus be combined. 
NRAS 527, 651–671 (2024) 
.2 The full photometric sample 

he combined ‘ clean = 0” + ’ clean = 1’ photometric sample
ontains ∼11M sources classified as galaxies with PDF widths below
he threshold. We simply refer to them as ‘galaxies’ in the rest of this
ork. Fig. 25 shows the PDF width-coloured sky distribution of these
alaxies, with the same colour code as in Figs 23 and C2 to highlight
he effect of the applied threshold. The cleansing procedure rejects
0 per cent per cent of the initial data ( ∼10 per cent are classified as
tars or QSOs, ∼17 per cent hav e PDF widths abo v e the threshold).
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Figure 26. The DIP score distribution of galaxies in the photometric sample 
(pink histogram) compared with that of the test sample (grey histogram, 
accordingly scaled). The green and orange histograms are the DIP score 
distributions of sources classified as stars or QSOs and of sources with PDF 
width abo v e the threshold, respectiv ely. 

Figure 27. Randomly selected PDFs with DIP < 0.0005 (49.7 per cent), 
0.0005 < DIP < 0.01 (36.5 per cent), 0.01 < DIP < 0.1 (13.7 per cent), and 
DIP > 0.1 (0.02 per cent), from top to bottom. 
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3 https:// tomographer.org/ 
4 We use the 6.3 version of the redMaPPer catalogues based on the SDSS 
DR8 and available at: https:// cdsarc.cds.unistra.fr/ ftp/ J/ ApJ/ 785/ 104/ 
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o we ver, it is not drastic enough to w ash aw ay the strip y disparities
ue to the SDSS observing conditions. 
Fig. 26 shows the DIP score distribution of the photometric galax- 

es compared to the scaled test sample. Also shown for comparison 
re the DIP score distributions of sources classified as stars or QSOs
nd of sources with PDF width abo v e the threshold. Fig. 27 shows
amples of PDFs of photometric galaxies with DIP scores in the 
ntervals: DIP < 0.0005 (49.7 per cent), 0 . 0005 < DIP < 0 . 01 (36.5
er cent), 0 . 01 < DIP < 0 . 1 (13.7 per cent) and DIP > 0 . 1 (0.02
er cent). The green vertical lines mark the median point estimates. 
DFs with DIP < 0.01 (86 per cent) look very close to uni-modal. Of

he remaining 14 per cent, only a very small minority with DIP > 0.1
ook compellingly multi-modal with probabilities dropping very low 

etween peaks. 
.3 Redshift distributions 

e compare the shapes of the CNN redshift distributions to those
erived from the clustering redshift technique (M ́enard et al. 2013 ;
ahman et al. 2015 ) using the online platform ‘Tomographer’ 3 This

ool is perfectly suited to our case since it relies on the SDSS-BOSS
pectroscopic population (Main Galaxy Sample, LRG and quasar 
amples), co v ering the north and south galactic caps as well as the
edshift range of our bright, r ≤ 20 sample (Chiang & M ́enard 2019 ;
hiang, M ́enard & Schiminovich 2019 ). The technique consists in

patially cross-correlating the spectroscopic population in bins of 
edshift with the sky positions of a test sample. The clustering
mplitude is directly related to the redshift distribution of the test
opulation, dN / dz , scaled by its bias b ( z) with respect to the underly-
ng dark matter density field. In a narrow interval of magnitude, the
edshift evolution of the bias may be neglected and the reconstructed
istribution compared to the test distribution with a constant scaling 
actor. 

We first run Tomographer on the spectroscopic sample in 12 
ntervals of magnitude from r = 17.6 to 20 ( � mag = 0 . 2) to test
he level of accuracy of the reconstruction. The results are shown in
ppendix D . A noisy high-redshift tail to z ∼ 3 is present in all the
agnitude bins, which we choose to ignore in the normalization to

llow for a satisfactory, though far from perfect agreement between 
he observed and reconstructed redshift distributions in the redshift 
anges of interest. This comparison gauges the accuracy we may 
xpect for unknown distributions. 

In Fig. 28 , we compare the redshift distributions of the photometric
alaxies with the outputs of Tomographer in the 12 intervals of
agnitude. The high-redshift tails are not shown for clarity but as in

he spectroscopic case, they need to be excluded in the normalization.
ere we neglect them by fitting the outputs with the following ad-
oc, 4 free parameter function F ( z) = az b e −( z/c) d . This operation
oes away with the oscillations around zero and the necessity to
herry-pick the last bin of interest to normalize each distribution 
nd compute Kullback-Leibler divergences ( dN CNN / dz || dN tomo / dz ).
hese are reported in each panel, except in the first panel where
o fit could be found. The z med KL (KL MED ) range from 0.006 to
.039 from the brightest to the faintest bin. The KL of the stacked
DFs tend to be smaller. The B16 distributions are significantly 
ore discrepant. They are plagued with a growing feature at z ∼

.35 as magnitude increases, presumably related to the red galaxy 
e generac y (Section 5.1 ). The mean redshift values, indicated for the
hree distributions with vertical lines of the appropriate colour, all 
gree within ∼ 5 per cent. 

.4 Cluster membership 

nother test of the CNN redshifts is provided by the redMaPPer
luster catalogue (Rykoff et al. 2014 ). 4 The redMaPPer Cluster 
inder is a red sequence cluster finder combining a calibration of

he red sequence with spectroscopic redshifts and a matched-filter 
echnique to find the clusters. For each cluster candidate, a redshift
nd a richness are assigned as well as a list of member galaxies at
 � 22 with their membership probability. The catalogue contains 
26k cluster candidates at z � 0.6 o v er the two SDSS galactic

aps. Based on the central galaxies with spectroscopic redshifts, the 
edshift uncertainty of the clusters is estimated to be lower than σ =
MNRAS 527, 651–671 (2024) 

https://tomographer.org/
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Figure 28. Normalized CNN redshift distributions in intervals of magnitude 
compared to the Tomographer-derived distributions (red dots, fitted by dotted 
lines). The PDF sums (in green) are shown in their native binning while 
z med (grey shaded histogram) and z B16 (dashed black histogram) use the 
Tomographer binning. Noted on each subplot are the KL divergences between 
the three photometric redshift distributions and Tomographer. The vertical 
segments mark the mean redshift of each distribution in their respective 
colour. 
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Figure 29. Comparison between the photometric redshifts of rich redMaPPer 
galaxy clusters and the CNN z med of probable cluster members in the 
photometric sample. Top panel: σMAD , bias and fraction of catastrophic 
failures as a function of galaxy membership probability P . The dashed lines 
correspond to galaxies with PDF width below the threshold, which we assume 
in the bottom panels. Bottom left: the redMaPPer redshifts of the clusters 
versus the CNN redshifts of the galaxies assigned to them with a membership 
probability P > 0.95. The straight lines are the catastrophic failure borders 
and the identity line. Bottom right: the redMaPPer redshifts of the clusters 
compared to the mean value of the PDF product of their members. Only 
clusters with at least three members are retained. 
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.01 at z ≤ 0.3 and σ = 0.015 at z ≤ 0.5, with a systematic offset
z norm 

< 0.003 o v er the whole redshift range. 
Among the ∼1.7M galaxies in the redMaPPer catalogue of

robable cluster members, ∼377k belong to our photometric sample
f sources classified as galaxies. We assign them the redshift of their
ssociated cluster, z CL (the velocity dispersion within such a system
arely exceeding σ V = 1000 km s −1 (Clerc et al. 2016 ), corresponding
o an individual redshift uncertainty σ z < 0.004) and define �z =
 z CNN − z CL )/(1 + z CL ) using z med as CNN point estimate. The top
anel of Fig. 29 sho ws ho w the deviation, bias and rate of catastrophic
ailures ( | �z| > 0.05) evolve with the membership probability. The
ashed lines correspond to galaxies with PDF width below our quality
hreshold ( ∼360k). The accuracy gradually improves from σ MAD ∼
.035 for galaxies with 0.50 < P < 0.55 to σ MAD ∼ 0.013 for galaxies
ith 0.95 < P < 1.0, while the catastrophic fraction decreases from
0 per cent to 2 per cent. 
The bottom left panel compares the redMaPPer redshift of the

lusters to the CNN redshifts of the galaxies attributed to them with
 probability P > 0.95, and with PDF width below the threshold
NRAS 527, 651–671 (2024) 
 N = 50,288). The σ MAD , mean bias and rate of catastrophic failures
re comparable to those measured in the test sample (Table 3 ). In
he bottom right panel, we compare the redMaPPer redshifts of the
lusters to the weighted mean value of the PDF product of their
embers, restricting the sample to clusters with at least 3 members
ith P > 0.95 and PDF width below the threshold ( N = 5659,
ith only 4 very rich clusters not surviving the PDF product). The

atastrophic fraction is negligible and σ MAD drops to 0.00794. It
eaches 0.00628 if we further restrict the sample to clusters with
t least 5 members ( N = 3274, with the same 4 clusters having
nconsistent members). This very good agreement mutually confirms
he completely independent redshift quality of the CNN and of the red
equence clusters, also supported by the SPIDERS cluster follow-up
Clerc et al. 2016 ). 

 C O N C L U S I O N  

nferring from a CNN trained with ugriz stamp images of galaxies
rom the SDSS, GAMA and BOSS spectroscopic surv e ys, we
stimated redshifts for the ∼14 million sources at r ≤ 20 without
pectroscopic redshift in the 11 500 deg 2 of the SDSS north and south
ootprints. The redshifts extend to ∼0.7. To limit biases, particularly
hose resulting from the o v erpopulation of Luminous Red Galaxies
n the BOSS data, we extracted from the full spectroscopic catalogue
everal training samples approximately representative of the general
alaxy population at r < 20, using GAMA as a model. The CNN
as built to classify redshifts into narrow, contiguous bins. The

lassification outputs offer all the benefits of well-behaved bona fide
DFs, passing several statistical tests and efficiently flagging, via

heir widths, unreliable estimates due to poor photometry or stellar
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ources. Based on a representative spectroscopic test sample, the 
oint estimates are more than twice as accurate as the photometric 
edshifts currently published for the SDSS at r < 20. 

We designed a magnitude-dependent PDF width threshold and 
 galaxy/star/QSO classifier to clean the inference sample, leaving 
11M sources whose CNN redshift quality we deem reliable and ho- 
ogeneous o v er the whole footprint. These redshifts are in very good

greement with the independently derived photometric redshifts of 
he redMaPPer galaxy clusters for the probable cluster members 
mong them. Their distributions in narrow bins of magnitudes also 
atch the results of tomographic analyses satisfactorily. 
Pending the release of spectroscopic redshifts by the Dark Energy 

pectroscopic Instrument (DESI) for their Bright Galaxy Sample in 
 few years these photometric redshifts are of interest for a variety
f statistical analyses. They are accurate enough to improve cluster 
embership and reveal the cosmic web in thin redshift slices (e.g. 
aigle et al. 2018 ), allowing us to extend the spectroscopic analyses
robing its impact on galaxy properties (Kraljic et al. 2018 ; Malavasi
t al. 2017 ). They may also improve the cosmological information 
etrieved from cross-correlating sparse spectroscopic samples with 
hotometric data, e.g. by reducing the shot noise at the baryon 
coustic oscillation scale (Patej & Eisenstein 2018 ). They can be 
sed to measure, e.g.: the connectivity of groups and clusters to study
he properties of their member galaxies as a function of group mass
nd assembly history (Darragh Ford et al. 2019 ); the evolution of the
ean connectivity with redshift, which depends on the cosmological 
odel and on the nature of the dark energy (Codis, Pogosyan &
ichon 2018 ); the one-point distribution of the cosmic density field 

n cylinder at a given radius in a way complementary to standard
ower spectrum analysis (albeit with different biases and sensitivity 
o cosmology, Uhlemann et al. 2018 ). 

Ho we ver, the range of the present CNN redshifts is limited and
heir precision degrade as they and magnitude increase. Going down 
n magnitude is a big challenge, especially as spectroscopic data 
ecome very sparse. More complex deep learning techniques are 
ecessary for deeper on-going surv e ys such as HSC-CLAUDS (Saw- 
cki et al. 2019 ) and future ones such as LSST (Ivezi ́c et al. 2019 ).

ork is underway that promises to reach high photometric redshift 
ccuracy to z ∼ 1.5 (Ait Ouahmed et al. in preparation), allowing 
s to extend the scope of the abo v e cosmological inv estigations. The
hallenge of satisfying the LSST science requirements to z = 3 is
et to be met. 
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Figure A1. Top: Mollweide projection of the SDSS photometric sample at 
r ≤ 20 without spectroscopy ( ∼13.8M sources). The colour code indicates 
the source density in HEALPix cells with nside = 140 (0.18 de g 2 pix el −1 ). 
The sk y co v erage is ∼11 529 de g 2 . Bottom: Mollweide projection of the 
spectroscopic sample at r ≤ 20 ( ∼1.5M galaxies). The colour code indicates 
the source density in HEALPix cells with nside = 64 (0.84 de g 2 pix el −1 ). 
The sky coverage is ∼11 029 deg 2 . The four high-density regions in red are 
the GAMA fields. 
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PPENDIX  A :  DATA  SKY  DISTRIBU TION  

ig. A1 shows the sky distribution of the photometric and spectro-
copic samples down to the dereddened petrosian magnitude of r =
0 in the two main regions of the SDSS. 
NRAS 527, 651–671 (2024) 
PPENDI X  B:  G A L A X Y  TYPE  

LASSI FI CATI ON  

o classify galaxies as either blue/star-forming or red/passive, we
se the sSFR (the star formation rate per unit stellar mass) derived
or the spectroscopic sample in the SDSS DR12 by Brinchmann
t al. ( 2004 ). Fig. B1 sho ws this sSFR (mean v alue per pixel) in
he observed ( u − g )/( g − r ) plane in several bins of redshifts. The
arrow greenish demarcations between the blue and the red zones
ighlight the bimodal distribution of the sSFR at a given redshift that
rompts the distinction between blue and red galaxies. The black
ashed lines running through these demarcations are modelled as
ollowed: 

 lim 

[( u − g) < 3] = y b + 0 . 05(( u − g) − 2) 2 

 lim 

[( u − g) > 3] = y b + 0 . 05 − 0 . 02(( u − g) − 3) , (B1) 

here 

 b [ z < 0 . 32] = 0 . 65 + 1 . 59 z + 1 . 19 z 2 

 b [ z > 0 . 32] = 1 . 28 . (B2) 

We compare this classification to that derived for GAMA at z < 0.3
y SED fitting the rich multi-band (UV to IR) photometry (Kraljic
t al. 2018 ; Treyer et al. 2018 ). The limit between blue and passive
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Figure B1. The ( u − g )/( g − r ) distribution of the SDSS spectroscopic 
sample at r < 20, coloured with the mean specific star formation rate (dex yr −1 ) 
per pixel, in dif ferent interv als of redshift. The narrow demarcations between 
the blue and the red zones highlighting the bimodal distribution of the sSFR 

are used to model boundaries between blue and red galaxies as a function of 
redshift. 
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Figure C1. The ( u − g )/( g − r ) colour distribution of the ‘ clean = 0’ 
photometric sample at r < 17.8 (left panels) and r > 17.8 (right panels), 
colour-coded by the density (top), the mean PDF width (middle) and the r 
−band SNR (bottom). The quality of the data is significantly inferior to the 
‘ clean = 1’ sample shown in Fig. 21 . 

Figure C2. PDF width coloured map of sources classified as galaxies in the 
‘ clean = 0’ photometric sample, to be compared with Fig. 23 . The difference 
between the two samples is all the more striking that the clean data are deeper. 
The larger than average PDF widths in the GAMA regions are due to their 
deeper average magnitude. The higher image quality in Stripe 82 (greenish 
equatorial stripe in the South) remains visible. 
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alaxies was set at sSFR ≈ −10 . 5 dex yr −1 . The red completeness,
efined as the number of galaxies classified as passive according 
o both criteria o v er the number of passive galaxies according to
he GAMA sSFR criterion, is 87 per cent. The red purity, defined
s the number of galaxies classified as passive according to both 
riteria o v er the number of passive galaxies according to the ( u

g )/( g − r )/redshift criterion, is 75 per cent. Likewise, the blue
ompleteness and purity are 87 per cent and 93 per cent respectively.
he present recipe tends to o v erestimate red galaxies compared to the
AMA sSFR limit but the two classifications are in reasonably good 

greement. It is ho we ver inadequate for the LRGs in the highest
edshift bin, many of which would be classified as blue. BOSS
alaxies are considered red regardless. Rough as it is, we will use this
rescription to unco v er statistical differences in CNN performance, 
f any, between the two types. Optimizing it is beyond the scope of
his paper. 

PPEN D IX  C :  T H E  ‘DIRTY’  PHOTOMETRI C  

AMPLE  

ig. C1 shows the ( u − g )/( g − r ) colour distribution of the
 clean = 0” photometric sources at r < 17.8 and 17.8 < r < 20 (left
nd right panels respectively). The distributions are colour-coded by 
he mean PDF width in the middle panels and by the mean r -band
NR in the bottom panels. We use the same colour code as in Fig. 21

o emphasize the differences between the two samples. The SNR and 
DF quality are very degraded nearly everywhere compared to the 
clean’ sample, included within the training contours. The striking 
tar sequence at r < 17.8 in Fig. 21 is drowned in sources with equally
oor PDFs. 
Fig. C2 shows the PDF width coloured sky map of the sources

lassified as galaxies, to be compared with Fig. 23 . The difference
etween the two samples is all the more striking that the present data
re brighter (< r > = 18.81) than the ’clean’ data (< r > = 19.24).
he ’suspect zone’ identified by P19 is much more prominent in this
ata set, which also contains many other similarly degraded areas, 
specially in the southern region. The enhanced image quality in 
tripe 82 (greenish equatorial stripe in the South) remains visible. 
Fig. C3 shows the ( u − g )/( g − r ) colour distributions of the sample
olour-coded by the mean PDF width and split into the bright and
aint magnitude interv als, follo wing the three cleansing procedures: 
he top panels restrict the samples to sources classified as galaxies
30.6 per cent at r < 17.8, 82.6 per cent at r > 17.8), the middle panels
o sources with PDF widths below the threshold (15.1 per cent at r
 17.8, 72.2 per cent at r > 17.8), and finally the bottom panels

o classified galaxies with PDF widths below the threshold (12.8 
er cent at r < 17.8, 69.8 per cent at r > 17.8). This final procedure
ejects 44.5 per cent of the initial data (30.5 per cent classified as
tars or QSOs, 41.8 per cent with PDF widths abo v e the threshold). 
MNRAS 527, 651–671 (2024) 
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Figure C3. The ( u − g )/( g − r ) colour distribution of the ‘ clean = 0’ sample 
colour-coded by the mean PDF width at r < 17.8 in the left panels and r > 17.8 
in the right panels. The top panels restrict the sample to sources classified as 
galaxies, the middle panels apply the PDF width threshold, and the bottom 

panels use both constraints. 
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Figure D1. The normalized redshift distributions of the spectroscopic 
sample in 12 bins of magnitude (grey shaded histograms) compared to the 
distributions derived from Tomographer (red dots). The normalization ignores 
the tail at z > 1, which allows for a better agreement at z < 1. 
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PPENDIX  D :  TO M O G R A P H E R  

 e run T omographer on the spectroscopic sample in order to test
he level of accuracy of the output distributions. The results are
hown as red dots in Fig. D1 for 12 narrow intervals of magni-
ude ( � mag = 0 . 2), with the spectroscopic redshift distributions
s shaded histograms. These need to be normalized to match the
omographer outputs. Given the many negative and unrealistically
igh data points in the high-redshift tail, we choose to ignore
verything at z > 1 and to normalize the spectroscopic redshift
istributions by the Tomographer counts at z < 1, which allows for a
uch better, though far from perfect agreement in the redshift ranges

f interest. This comparison gauges the accuracy we may expect for
nknown distributions. 
NRAS 527, 651–671 (2024) 
PPENDI X  E:  ALTERNATI VE  EXPERI MENTS  

he following experiments are conducted under the final conditions
f this work: we average the outputs of 15 networks trained with a
edshift bin width δz = 0.009. 
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1 Classification versus r egr ession 

able E1 shows the CNN performance on the test sample for different
raining strategies: classification + regression with a RMSE loss 
unction, classification + regression with a MAE loss function, 
lassification alone without re gression, re gressions alone with either 
 RMSE or a MAE loss function. The classification alone provides 
etter statistics than both regressions, especially in terms of σ MAD . 
dding a regression to the classification has a minor positive impact 
n the classification but a significant one on the σ MAD of the 
e gression. The preferred strate gy, used in this work, is highlighted

n bold. 

igure E1. The mean bias, σMAD and rate of catastrophic failures of the 
 point estimates in the test sample for the 15 networks trained under two 
trategies: 15 samples trained once (blue points), 1 sample trained 15 times 
pink points). The metric of the joint network is marked by a yellow line. The 
lack circles and vertical lines show the mean and standard deviations. The 
ight most points in each panel result from averaging the 15 outputs. 

igure E2. The z spec and z med distributions of the additional lefto v er galaxies 
t r < 17.8 (left) and 17.8 < r < 20 (right), in grey and pink respectively, with 
he corresponding metrics. The hatched histograms are the z spec distributions 
f the lefto v er galaxies common to both training strategies (shown in Fig. 20 ). 

Figure E3. The z med distributions of the lefto v er galaxies at r < 17.8 and 
17.8 < r < 20 before and after adding 50k LRGs to the training samples, in 
blue and pink respectively, with the corresponding metrics in the direction of 
the arrow. The grey shaded histograms are the z spec distributions. The bright 
sample is unchanged, the bias in the faint interval is reduced by 35 per cent. 
The deviation and rate of catastrophic failure are also impro v ed. 

Figure E4. The z med distributions of the blue and red galaxies in the test 
sample before and after adding 50k LRGs to the training samples, in blue and 
pink respectively, with the corresponding metrics in the direction of the arrow. 
The grey shaded histograms are the z spec distributions. The blue sample is 
unchanged, the red galaxy bias is increased by 37 per cent. The deviation and 
rate of catastrophic failure are also degraded. 
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2 Randomness strategy 

nstead of training several samples, with the goal of feeding the CNN
he largest variety of galaxies from the spectroscopic sample, we test
he alternativ e strate gy of training a single sample several times.
his leaves twice as many galaxies for testing. We pick one of the
5 trained samples at random and retrain it 14 times. 
Fig. E1 shows the different metrics for the different point estimates

or the 15 networks trained under the two strategies: 15 samples
rained once (blue points), 1 sample trained 15 times (pink points).
he yellow lines mark the metrics of the joint network. The scattered
oints to the left of each panel ( N = 1) show that the second strategy
enerates as much variation as the original strategy for σ MAD and 
he bias, but less for the catastrophic failures (except for z peak ). The
eneral similarity may not be surprising given that the 15 training
amples are designed to contain similar galaxies, if not the same. But
he o v erlap between 2 samples is in man y cases less than 50 per cent
o the impact of randomly initializing the weights at the start of
raining is as large as replacing half of the training set with different
ut similar sources. The right most points in each panel ( N = 15)
how that the metrics resulting from averaging the 15 outputs are
lightly poorer in the second scenario. Even if the reverse could
resumably have happened, it seems that randomizing 15 samples 
ad a higher chance of reaching lower metrics than randomizing the
nitial training weights of a unique sample. 
MNRAS 527, 651–671 (2024) 



670 M. Treyer et al. 

M

Table E1. The CNN performance on the test sample (Section 4.2 ) for different training strategies: classification + regression with RMSE loss (used in the 
present work), classification + regression with MAE loss, classification alone without re gression, re gressions alone with either an RMSE or MAE loss. The best 
statistics are highlighted in bold. 

PDF + REG(RMSE) PDF + REG(MAE) PDF REG(RMSE) REG(MAE) 

z mean z med z reg z mean z med z reg z mean z med z reg z reg 

10 5 σMAD 1466 1421 1481 1464 1431 1461 1470 1444 1586 1517 
10 5 < �z> 205 153 228 209 154 196 218 159 240 189 
η( > 0 . 05)(%) 4.1 3.99 4.22 4.05 4.06 4.26 4.18 4.16 4.2 4.15 
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As expected from the abo v e results, the metrics found for the
efto v er galaxies common to both training scenarios (the sample
hown in Fig. 20 ) are also slightly degraded. Fig. E2 shows the
ormalized spectroscopic redshift and z med distributions of the
dditional ∼542k galaxies left o v er from the second scenario. The
atched histograms are the spectroscopic redshift distributions of the
efto v er galaxies in common, for comparison. The bright fraction of
his additional sample is smoother than the hatched one, very slightly
mproving the predictions. On the contrary the faint fraction contains
alaxies in the strong peaks of the GAMA redshift distribution on
he left flank and a larger fraction of red galaxies in the region of
olour de generac y than of LRGs. The bias is reduced, compared to
he common sample shown in Fig. 20 , but the deviation and rate
f catastrophic failure are degraded. While it may be interesting
o see the effect of mixing heterogeneous populations, the twice
s large number of lefto v er galaxies does not allow for more
nformative testing. It confirms that the performance of the network
s poor for red galaxies at ’normal’ redshifts due to the colour
e generac y, v ery poor for LRGs that are deliberately relegated to
he lefto v er sample, and that the predictions are not able to capture
trong redshift structures, also deliberately smoothed in the training
amples. 

3 Luminous Red Galaxies 

ig. E3 shows the z med distributions of the lefto v er sample (shown in
ig. 20 ) at r < 17.8 and 17.8 < r < 20 before and after the addition of
0k LRGs subtracted from it in the training samples. The correspond-
ng metrics are indicated in the direction of the arrow. The bright
ample is unchanged, while the bias in the faint interval is reduced
y 35 per cent. The deviation and rate of catastrophic failure are also
mpro v ed. Ho we v er, this impro v ement is at the cost of degrading
normal’ galaxies. Fig. E4 shows the z med distributions of the blue
nd red galaxies in the test sample before and after the LRG addition.
he blue sample is unchanged, while the red galaxy bias is increased
NRAS 527, 651–671 (2024) 
y 37 per cent. The deviation and rate of catastrophic failure are also
egraded. 
This demonstrates the utmost importance of matching the training

nd test samples and that more does not necessarily mean better.
lthough the spectroscopic sample contains 1.5M galaxies, it cannot
e used as is for lack of representativeness. Randomly splitting it for
raining/validation, e.g. 80 per cent/20 per cent, as is usually done to
 v aluate the performance of a netw ork, w ould yield very misleading
esults. We choose 50 per cent/50 per cent (i.e. 750k randomly
elected galaxies for training) to illustrate the point. This is the
trategy employed by B16 . It more than doubles computing resources
memory and time) compared to the smaller, more representative
raining samples we adopt. It also doubles the bias for the red
opulation in the test sample ( b = 0096) and further degrades the
AD and rate of catastrophic failure. Meanwhile the metrics on

he validation sample are significantly better than on the test sample
 b = −0.00015, σ MAD = 0.011, η = 2 per cent ) as it matches the
raining sample by design, in particular the LRG population. The
ame applies to the performance reported by B16 on their validation
ample, which is significantly lower than this howev er, sav e for their
ven smaller bias. We note that LRGs could be used to train an
ndependent network that would impro v e their redshift estimates in
he inference sample, provided we were able to identify them. 

PPENDI X  F:  C N N  A R C H I T E C T U R E  

ig. F1 lists all the CNN layers with their type, shape, number of
arameters and the layer(s) they are connected to upstream. N is the
umber of galaxies in a batch (32 for training), NZ in the ’PDF’
utput layer is the number of redshift classes. 
In the case of the SDSS at r < 17.8 (Section 4.1 ), the CNN is

rained for 45 epochs, with a learning rate of 10 −4 from epoch 1
o 30, decreasing by a factor of 10 at epoch 30 and 40. At r < 20
Section 4.2 ), the network is trained for 50 epochs, with a learning
ate of 10 −4 from epoch 1 to 35, decreasing by a factor of 10 at epoch
5 and 45. 
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Figure F1. Successive CNN layers with their output dimension, number of trainable parameters and the layer(s) that connect(s) to them. The CNN is diagrammed 
in Figs 3 and 4 . 
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