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ABSTRACT

The computational design of synthetic DNA
sequences with designer in vivo properties is
gaining traction in the field of synthetic genomics.
We propose here a computational method which
combines a kinetic Monte Carlo framework with a
deep mutational screening based on deep learning
predictions. We apply our method to build regular
nucleosome arrays with tailored nucleosomal repeat
lengths (NRL) in yeast. Our design was validated
in vivo by successfully engineering and integrating
thousands of kilobases long tandem arrays of
computationally optimized sequences which could
accommodate NRLs much larger than the yeast
natural NRL (namely 197 and 237 bp, compared to
the natural NRL of ~165 bp). This method delineates
readily the key sequence rules for nucleosome
positioning in yeast and should be easily applicable
to other sequence properties and other genomes.

INTRODUCTION

Recent biotechnology techniques such as CRISPR/Cas9 and
DNA oligonucleotide in vivo assembly have opened ways to
precisely and extensively modify genomes. Taking advantage
of these technologies, several projects have been launched
with the aim to partially or completely design and assemble
synthetic genomes (1). Nevertheless, controlling chromatin
assembly and gene expression on a synthetic genome remains
a challenge. Decisive efforts have been recently made for
designing promoter sequences that produce controlled levels
of mRNA in yeast (2, 3) or the activity of enhancers in a
Drosophila cell line (4). While the control of gene expression
is now within our grasp, there is yet no efficient way to
control by sequence design the positioning of nucleosomes
along a synthetic DNA cassette inserted in an eukaryotic
genome. Nucleosome positioning is however of crucial

importance as it influences DNA accessibility to DNA binding
factors involved in DNA replication and transcription, thus
adding a supplementary level of control on top of the DNA
sequence (5, 6). In a seminal experiment, Lowary and Widom
used a SELEX approach to isolate a DNA sequence with
the highest affinity to a histone octamer among a set of
more than 5x 102 sequences (7). The resulting 147 bp
sequence, known as the 601-sequence, has been extensively
used to reconstruct regular nucleosomal arrays in vitro (e.g.
(8)). Given the success in using the 601 sequence for
nucleosome positioning in vitro, we recently addressed the
affinity of nucleosomes to the 601 sequence in vivo using
insertions in the S. cerevisiae genome of three long arrays of
approximately 50 nucleosomes, with three different spacing
between nucleosomes (167, 197 and 237 bp), also known as
nucleosomal repeat length (NRL). In this former study we
found that in sharp contrast with the in vitro experiments, the
affinity of nucleosomes to the 601 sequence was very low
in vivo (9) suggesting that this sequence is not an adequate
tool to control nucleosome positions in synthetic genomics
approaches. Computational tools are a good alternative to
optimize the design of synthetic sequences from in vivo data.
Among the available computational methods, deep learning
has been widely applied to building predictive models that
relate DNA sequences to genomic functions (10, 11). The
ability of deep neural networks to predict annotations resulting
from variations of a sequence is now used for de novo
design of genomic sequences, including tailored alternative
poly-adenylation sites (12, 13) or human 5’UTR sequences
(14, 15).

Building on these previous studies, we use here a
nucleosome occupancy predictor (16) together with a kinetic
Monte-Carlo framework in order to design three sequences (of
167 bp, 197 bp and 237 bp) that lead to a regular nucleosome
positioning when assembled into tandem repeated arrays in
vivo (Fig.1). We extend here previous work (17) and aim
at making longer arrays with variable NRL. The three NRL
chosen encompassed the natural NRL of S.cerevisiae (167 bp)
and the longest NRL known in eukaryotic species (237 bp,
found in the sea urchin sperm (18)).
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MATERIALS AND METHODS
Deep learning model training

The deep learning model, based on previous work (16), is
a CNN architecture taking as input a one-hot encoded DNA
sequence of 2001bp and outputing the nucleosome occupancy
at the center of the sequence. The input passes through 3
convolutional layers with respectively 64, 16 and 8 kernels of
size 3, 8 and 80 and reLLU activation. After each convolution is
applied a max-pooling layer with pooling size of 2, to reduce
dimensionality, followed by batch-normalization and dropout
with rate 0.2. Finally, the output of the last layer is flattened
and passed through a dense layer with reLU activation for
the the final prediction. The loss function combines Pearson’s
correlation (corr) and the mean absolute error (MAE) (loss =
MAE[Y, y] + 1 - corr[§, y], with § being the model prediction
and y the target). The modelwas trained in a supervised
manner on the YPH499 genome with the nucleosome profiles
from our previous study on 601 sequences (9), while ignoring
the synthetic repeats. The profile was truncated to the 99th
percentile of the distribution, and then normalized between
0 and 1. We train the model on all 2001bp-long sequences
and their reverse complement, with the central nucleosome
occupancy as label.

Synthetic sequence initialization

The initial sequences were determined at random. Each of the
four (A,T,G,C) nucleotides was sequentially picked N times
with a probability proportional to its abundance within the
genome. This procedure insures that starting sequences have a
GC content similar to the natural GC content of S.cerevisiae.

Synthetic sequence mutation

Our mutation and selection strategy for optimizing the
sequence is inspired from the kinetic Monte-Carlo (k-MC)
method originally designed for Ising spin systems ((20)).
Once the sequence of length NV is initialized, it is duplicated
3x N times in order to create 3 x N new sequences which
will each harbor one of the 3x N single mutations of the
sequence (Fig.1a). We then associate an energy term with each
of the mutated sequences (see below). For every sequence ¢ a
selection probability I'; is then defined as follow:

1
I;= Ee—Ei/T 1)

with Z being the normalisation factor (Z :Ze*Ei/ Ty and
1

T the temperature, a broadening factor chosen by the user
and corresponding to a classical temperature in a Maxwell-
Boltzmann distribution. The next sequence is then randomly
chosen according to this probability distribution. The ‘"

configuration is selected - with a probability I'; - and the

process continues for a given number of steps (e.g. 100).
Each chosen configuration is saved at each step, and the
configuration with the minimal energy is chosen at the end.

Synthetic sequence energy term

An energy is associated to every sequence, representing how
far the sequence is from having the desired nucleosome
positioning characteristics. The energy can be divided into
four parts (Fig.1 b), described below.

Nucleosome occupancy energy on the direct strand Eycg

In a former work we used a convolutional neural network
(CNN) to predict the nucleosome occupancy at the center
nucleotide of a 2001 bp long DNA sequence (16). In order to
evaluate the nucleosome occupancy over our synthetic array,
we first create a 2001+ N bp long sequence by repeating the
monomeric synthetic sequence. Then, this sequence is cut in
N sequences of 2001 bp long used as inputs of the network
thus providing the predicted nucleosome occupancy over the
whole synthetic sequence. The nucleosome occupancy related
energy is the distance between the predicted nucleosome
occupancy on the synthetic sequence and a target occupancy.
It forces the predicted occupancy to converge to the target
occupancy (Fig.1 ¢) The distance is defined as :

1
d(z,y) = 1= corr(a.y) + - Zlai— i @

where corr stands for the Pearson correlation and N is
the length of the sequence. The target signal y?2"9¢! starts
with the predicted nucleosome position (Gaussian coverage
distribution) and end with the predicted linker (uniform, lower
coverage distribution) :

taraet _G=T3)?
i 9 —q.e” 202 +bifi<147
, 3)
taraget ,M .
arget —a.e 202 4-bif¢>147

)

The parameters a,b and o are chosen in order to create
a realistic target (i.e which shape is similar to canonical
nucleosomal occupancies found on the genome). The results

are shown for a=0.4,b=0.2 and 0 = %.

GC content related energy Egc
As said previously, there are 4V different sequences of a
given length V. The CNN learned to position nucleosomes
for sequences within the genome of saccharomyces cerevisiae.
As aresult, one wants to get a synthetic sequence which has a
rather similar GC content as natural yeast. In order to do so, a
constraint energy was first calculated as follow:

EGC = \/(Gcsynt - GCnat)2 (4)

with GCsynt the GC content of the synthetic sequence
and GCrqt the GC content of the natural yeast (in that case,
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GCnat%0.38).

Enhanced sampling mutation energy Eput
It is common that such Monte Carlo procedure can get stuck
into a local minimum of the energy, for example by flipping
between the same two mutations. To avoid this potential
pitfall, we added a term to the energy term that penalizes
sequences that were already generated during the optimization
process.

Nucleosome occupancy energy on the reverse strand Epeq
This energy is calculated in the same way as the nucleosome
occupancy related energy on the direct strand, but using
the reverse complement strand instead. On most sequences
this term is not relevant since the nucleosomal occupancy
predicted by the network is, due to the training process, the
same for both strands. However, we added this term to add an
extra penalty to sequences for which the network would not
work as expected and would predict different occupancies for
the two strands.

E; in Eq.1 can then be written as:

E;= OZEGCZ- +5 Eregi +7vErev; + 5Emut¢ (5)

with «, 8, 7 and § the relative weights for each energy
component, chosen to get the same order of magnitude for
each energy term. In our case energies are within the same
range and we used a value of 1 for each weight.

Interpretation of the mutations selected during the
optimization process.

Positions of the mutations along the sequence

A thousand independent k-MC optimization processes were
executed and stopped after 20 steps, corresponding to the
typical number after which the energy remains stable. At each
time step, the energy associated with each possible mutation
was computed and stored. To quantify the importance of a
given nucleotide in the positioning capacity of the sequence,
the average absolute energy variation created by a mutation at
this specific position was computed.

Typical mutation logos
For each monomer length (167, 197 and 237 bp), we collected
all 5-bp long motifs centered at each mutation site during 1000
independent optimization processes stopped after 20 steps. We
then selected motifs for which a mutation induces an absolute
energy variation AEF=F;—FE; (where j is the mutated
sequence) higher than 0.5 (see Supplementary Figure S1
for the distribution of the absolute energy changes). We then
grouped the collected motifs during these 1000 independent
optimisations into four categories depending on the sign of the
energy modification and on their position in the linker region
or in the dyad region (respectively after 147 bp and between 50
bp and 100 bp). We ended up with 14938 negative mutations
in the linker, 16165 negative mutations in the dyad, 52603
positives mutations in the dyad and 158422 positive mutations
in the linker. For each of these four categories we extracted
significant logos of 5 bp using STREME (19, 21) with the
argument w=5. We also provided a list of control sequence
to STREME by passing the list of 5 bp motifs associated with
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mutations that modify the energy by less than 0.03. Finally,
we selected logos that matched more than 10 % of the input
sequences and represented them before and after the mutation.

In vivo assembly of the computationally designed
sequences

Strains, plasmids, reagents and media

In vivo genomic assembly of synthetic sequences nucleosome
positioning (SSNP, Supplementary Table 1) DNA repeats
was performed in the yeast strain YPH499. Strains derived
from this study are listed in Supplementary Table 2.
Plasmids used for the in vivo expression of spCas9 and the
guide RNA targeting the YMR262 gene have been previously
described (22) and are listed in Supplementary Table 3.
Strains were grown at 30°C in yeast extract Peptone Dextrose
2% media (YPD) or in the appropriate synthetic complete
Dextrose 2% media (SCD) minus relevant amino acids
necessary to maintain plasmid borne auxotrophic markers.
All media reagents were purchased from Formedium and
used as recommended. Oligonucleotides used in this study
were synthetized by Eurogentec. Enzymes for nucleic acids
modification were purchased from New England Biolabs.
Zymolyase 20T was purchased from Amsbio.

Assembly of synthetic nucleosome positioning DNA repeats
in the yeast genome
In vivo assembly using CRISPR/Cas9 and overlapping
oligonucleotides in the Chromosome XIII of S. cerevisiae
strain YPH499 was performed as previously described (9, 22).
In summary, donor DNA containing the left (YMR/SSNP)
and the right (SSNP/YMR) genomic junction were amplified
by PCR using primers couples O-1/0-2(0-3/0-4/0-5) and
0-10/0-6(0-7/0-8/0-9) respectively. This donor DNA
results, upon recombinational assembly, in the deletion of the
region -129 to 232 bp of the YMR gene. All oligonucleotides
used for in vivo repeat assembly are listed in Supplementary
Table 4. YPH499 was transformed with the Cas9 expressing
plasmid pRS413-Cas9-His (AJ-P1). The resulting strain was
transformed using the LiAc technique (23) with 1 ug of gRNA
expressing plasmid targeting YMR262 (AJ-P2), 100 pmol of
each of the four or six appropriate SSNP-oligonucleotides,
and 10 pmol of both YMR/SSNP left and right junction
PCR. After transformation cells were plated on SCD-His-Ura
to select cells carrying both CAS9 and gRNA expressing
plasmids. The in vivo assembly of synthetic repeated arrays
was verified by left and right junction PCR amplification
(0-1/0-2 ; O-3 ; O-4 ; O-5 and O-10/0-6 ; O-7 ; O-8 ; 0O-9)
and Sanger sequencing. The correct locus and the size of the
SSNP assembly was confirm by analyzed recombinant clones
by southern-blotting. Genomic DNA from recombinant strains
were digested with BamHI and Dral, which cut at each side
of the insertion locus. Digested DNA was electrophoresed
in 1% agarose and transferred by capillarity onto a nylon
membrane (Hybond N+, GE healthcare). Membranes were
hybridized in Church buffer at 68°C with a CyS5-labelled
genomic probe ((24) ). The genomic probe was a 1 kb DNA
fragment amplified by PCR from genomic DNA using primers
0-33/0-34 and Cy5-dCTP (see Supplementary Figure S4).
Membranes were scanned using a FLA 9500 GE healthcare.
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Mononucleosome preparation using Micrococcal Nuclease
digestion and sequencing (MNase-Seq)
Each strain was grown to a cell density of 0.8%107 cells/mL
in 250 mL SCD media at 30°C with 200 rpm shaking.
Cultures were treated with a final concentration of 1.85 %
formaldehyde for 30 min at 30°C. Cross-linking was stopped
by addition of 105 mM Glycine (final concentration). Cell
pellets (6500g, 10 min) were washed and resuspended in
50 mL of 1 M Sorbitol, 10 mM Tris pH 7.5 supplemented
with 10 mM B-mercaptoethanol and 15 mg of Zymolyase
20T, and incubated 1h at 30°C with 50 rpm shaking.
Spheroplasts were pelleted (6500g, 10 min), and lysed in
2.4 mL solution containing 1M Sorbitol, 50 mM NaCl,
10 mM Tris pH 7.5, 5 mM MgCl2, 1 mM CaCl2 and
0.75 % Igepal CA630 freshly supplemented with 1 mM
B-mercaptoethanol, 500 uM spermidine and 3000 units of
MNase. The spheroplasts/MNase mixture was then incubated
at 37°C for 30 min and stopped by adding 600 pL of 1%
SDS, 10 mM EDTA. Reversal of crosslink and protein
removal was achieved by adding 0.6 mg of Proteinase K
(ThermoFisher) and overnight incubation at 65°C. DNA
was purifed using phenol/chloroform extraction and salt
precipitation method. Mononucleosomal DNA was isolated
on a 1.8 % agarose electrophoresis gel and purified using
QIAquick Gel extraction Kit. DNA concentration was
determined using a Qubit Fluorometer and samples were
processed and sequenced on a NovaSeq 6000 S4 PE150 XP
by the Eurofins sequencing platform (NGSelect Amplicons).

RNA libraries preparation and sequencing Total RNA was
extracted by starting from 25 mL culture of each strain grown
to an ODggg of 0.5 in SCD media at 30°C with shaking
at 200 rpm. Total RNA was then purified using hot acidic
phenol method (25). After a rRNA depletion step using
respectively the Ribominus™ Transcriptome Isolation Kit
(Invitrogen, K1550-03) and the RiboCop rRNA Depletion Kit
for Yeast (Lexogen, 190), respectively for the first and the
second biological replicate, RNA concentration and quality
was determined using respectively Qubit™RNA HS assay
kit and Qubit™RNA IQ Assay kit with a Qubit®fluorometer
and standard calibration and assay protocols provided by the
manufacturer. RNA sequencing was achieved by Eurofins
following their NGSelect RNA protocol. cDNA libraries (300
bp) were then sequenced on a NovaSeq 6000 S4 PE150 XP
(2x150bp) by Eurofins.

Construction of synthetic reference genomes
For the three synthetic sequences we constructed a reference
genome with the assembly of YPH499 and an additional
scaffold carrying 7 tandem repeats with its 4kb flanking
regions on each side.

Reads alignment
After the removal of barcodes with cutadapt (version 3.4)
with parameters -m 50 -O 1, paired-end reads of 151 (Syn) or
66 bp (601) were mapped against the appropriate reference
genome using Bowtie2 (version 2.2.5) (26, 27). We allowed
a maximum fragment size of 250 bp corresponding to the
maximum length of purified fragments (-X 250). Read pairs
are not filtered for single alignments so that Bowtie2 assigns

a random repeat to each pair.

Reconstruction of sequence coverage over DNA repeats
The nucleosome occupancy along the genome was
reconstructed using bamCoverage from the deeptools package
(version 3.5.1) at base-resolution (parameter --binSize 1) from
full fragments (--extendReads) with lengths between 140 and
170 bp (--minFragmentLength 140 --maxFragmentLength
170) to consider only fragments in the mono-nucleosomal
band. It was also normalized in Count Per Million reads
(--normalizeUsing CPM). Due to potential edge effects on the
first and last repeats, the nucleosome occupancy on the DNA
repeats is extracted from the 5 middle repeats.

Prediction of Open Reading Frames over the DNA repeats
Augustus (28) predicts genes ab initio from a eukaryotic
genomic sequences based on a generalized Hidden Markov
Model. For each insertion, we predicted gene positions on
sequences corresponding to seven repeats of the insertion and
4kb flanking the insertion site (4kb en 5’ and 4kb en 3”) using
Augustus and training annotation files for saccharomyces
cerevisiae (other default parameters).

RESULTS AND DISCUSSION

Our computational model predicts the inefficiency of the
Widom-601 sequence in vivo

In order to test the in vivo ability of the Widom-601 sequence
to form regular nucleosome arrays of various NRLs we
recently synthesize and integrated such arrays within a yeast
chromosome (9). Our results unambiguously showed that the
ability of the 601 sequence to strongly position nucleosomes
is lost in S.cerevisiae (Fig.2 b). We used our nucleosome
occupancy predictor (11) on the 601 sequence arrays used
in this previous study and questioned whether it is able to
predict the nucleosome occupancy on a completely exogenous
sequence, namely the Widom-601 sequence. In agreement
with the experimental nucleosome occupancies, the predictor
anticipates that the Widom-601 sequence is unable to position
nucleosomes in vivo (Fig.2 b). The predicted occupancy is
relatively flat over the 167 bp long sequence, showing no
evidence of nucleosome localization on the first 147 bp where
the Widom-601 sequence is placed. Moreover, for both the
197 bp and the 237 bp long sequence, the predictor anticipated
that the preferential position of the nucleosomes is around the
linker, in agreement with the experimental results (Fig.2 c).
The ability of our model to predict correctly the preferential
positions of nucleosomes on exogenous sequences prompted
to use it for a design purpose.

Optimization of the monomer sequences for regular
nucleosome positioning in tandem arrays

Starting from a random sequence, we computed the effect
that would have all possible single mutations on the predicted
occupancy (Fig.1). We then selected one of these mutations
in order to obtain a nucleosomal occupancy corresponding to
nucleosomes preferentially occupying the first 147 bp while
being excluded from the rest of the linker region (the target
occupancy). We devised an energy function (Fig.1 b) based on
the distance between the predicted nucleosomal occupancy on
the tandem arrays and the target occupancy. We picked a (in
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Figure 1. Sequence optimization via kinetic Monte-Carlo. (a) General principle of the method. (b) The energy associated to a sequence is the sum of four
terms: (1) the distance between the nucleosome occupancy predicted by the model and the target nucleosome occupancy (2) the distance between the GC content
of the sequence and the natural GC content of the yeast DNA (3) a penalty if the sequence has been already sampled (4) the distance between the occupancy
predicted on the reversed complemented sequence and the target occupancy. (¢) Evolution of the predicted nucleosome occupancy over several repeats (blue
occupancies on the right) and of the corresponding energy for one repeat (corresponding points highlighted in blue) during the optimization process. The target

occupancy is displayed at the top (grey).
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Figure 2. Target, predicted and experimental nucleosome occupancies on a 1000 bp long subset of Widom-601 repeats and of synthetic sequence repeats.
(a) Target nucleosome occupancies corresponding (from left to right) to one nucleosome every 167 bp, 197 bp and 237 bp. (b,c) Normalized predicted (b) and
experimental (c) nucleosome occupancy on a 1000 bp region of 601 repeats. (d,e) Normalized predicted (d) and experimental (e) nucleosome occupancy on the
1000 bp subset of our synthetic sequence repeats. Occupancies are normalized so that the area under the curve is equal to the area under the curve of the target

occupancies

grey on Fig.1c). The overall energy diminishes during the first
20 to 50 steps of the k-MC optimisation process and is stable
afterwards (Methods and Fig.1). The distance to the target was
rapidly divided by a factor 3 during the 5 first mutations steps,
then slowly converged and finally stabilised around a value
of 0.6. The predicted nucleosome occupancies corresponding
to three time points sampled during the optimisation process

illustrate the convergence of the predicted occupancy towards
the target function (Fig.1 c, right panels).

Interestingly, for all initial random sequences we used,
5 to 20 changes out of 167 197 or 237 bp were always
sufficient to provide a sequence with nucleosome occupancy
predicted close to our target sequence (Supplementary figure
S2). Starting from random DNA seeds and after many round
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of sequence optimisation, we could produce hundreds of
positioning sequences with a predicted nucleosome occupancy
that resembles the target function used (Supplementary
figure S3). Three sequences corresponding to the three target
occupancy we wished to impose on our tandem arrays were
selected for further study.

Experimental validation of the positioning capabilities of
the synthetic sequences

In order to validate in vivo the positioning efficiency of
our three in silico optimized sequences, we performed
MNase-seq experiments on three S.cerevisiae strains in which
repeated arrays containing 167 bp, 197 bp or 237 bp long
monomers were engineered into the non essential YMR262
gene in chromosome XIII (Supplementary Figure S4,
Supplementary Methods and (9)).

We performed two technical replicates using the same
strain and a biological replicate for which we re-selected a
different strain, with a different number of insertions. While
technical replicates show highly similar mononucleosomal
length (Supplementary figure S5) and dyad positioning over
the repeats (Supplementary figure S6), the two biological
replicates show some degree of variations, potentially due to
the different number of insertions but that nonetheless lead to
similar conclusions exposed below.

The experimental nucleosomal occupancies (predicted
and experimental) over the synthetic arrays, the Widom-
601 arrays and the corresponding predicted occupancies
are shown on Fig.2. These results show that there is a
blatant similarity between the predicted occupancies and the
measured occupancy in vivo with MNase digestion analysis
(Fig.2 d,e). For all repeats, we observed a preferential
positioning of the nucleosome in the first 147 bp of the
synthetic sequence, with presence of a flat peak indicating
that nucleosome dyads (i.e. the mid-points of the sequenced
fragments) are sharply distributed around the center of the
first 147 bp (Supplementary Figure S6). For the 197 bp
long synthetic sequence, we also find a nucleosome well
positioned on the first 147 bp of the sequence and a precisely
positioned dyad (Supplementary Figure S6). For the 237 bp
repeat, the experimental occupancy exhibited a peak on the
first 150 bp followed by a constant low occupancy over 90
bp, similarly to the target. The central position of sequenced
fragments distribution (Supplementary Figure S6) showed a
strong enrichment in the center of the first 147 bp for the 167
and 197 bp repeats. For the 237 repeats, fragments centers
are more broadly distributed so that the overall nucleosome
occupancy is similar to the target we chose. All the linker
regions exhibited low nucleosome occupancy, as predicted by
our occupancy predictor.

Analysis of the optimisation process of the synthetic
sequences

In order to understand the specific features selected by the
optimization process, we performed a quantitative analysis
of the mutations. We first identified which regions of the
sequence were the most important to influence positioning
by performing 1000 k-MCMC independent, 20 steps long
optimisations and recorded at each step the energy changes
associated with each of the possible mutation. High impact
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G 25 s0 75 100 125 150 G 25 S0 75 100 125 150 175

position (bp) position (bp)

0 25 50 75 100 125 150 175 200 225

position (bp)

| aMAx — b
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Figure 3. Positions on the sequence and typical motifs around important
mutations during the optimisation process. (a) Average absolute change in
energy due to mutations at each position along the 167 bp, 197 bp and 237
bp monomer (from left to right). (b) DNA motifs enriched around important
mutations before and after running the optimisation process (respectively on
the left and right of the black arrows).
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mutations are associated with higher energy variations, either
positively or negatively. The absolute value of the average AFE
along the sequence suggests that the most important regions
for nucleosome positioning are the linker region (in blue in
Fig.3 a) and the 50 bp region surrounding the dyad axis of
the nucleosome (in red in Fig.3). In order to go further into
the sequence rules that define nucleosome occupancy on our
sequences, we studied the motifs corresponding to the most
important mutations (Online Methods). We split mutations
into four groups: positioned either in the linker or in the dyad
region and either increasing or decreasing the energy term. We
then searched for typical 5 bp long DNA motifs within each
group using STREME (19). Two types of mutations could
be extracted: mutations that construct one of the two known
nucleosome repelling motives (poly(dA-dT) and poly(dCG))
and mutations that destruct these motives (16). The sign of
the resulting energy change is dictated by the position of the
nucleotide within the monomer sequence: in the linker region,
destructive mutations increase the energy while constructive
mutations decrease the energy. In the dyad region the opposite
is true. These results are consistent with previous studies
suggesting that nucleosome attractive sequences do not exist
in S.cerevisiae genome and explain the inefficiency of the 601
sequence to position nucleosomes in vivo (5, 16).

Transcription of the synthetic arrays

Finally, we looked into the transcriptional status of the
synthetic sequences to check if any of them could act as a
promoter and sustain measurable transcription. We performed
whole genome strand specific RNA-seq of the three strains and
counted the transcripts initiated from the repeat, in comparison
to surrounding genes. We found that only the 197 bp repeat
yielded a high transcription output, leaking in the forward
direction into the leftover of the YMR262 gene in which the
array was inserted (Fig. 4 and Supplementary Figure S4).
The 167 bp and 237 bp synthetic repeats, with respectively
shorter and longer inter nucleosomal distance compared to the
197 bp repeat, do not show significant transcription. Although
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Figure 4. TTranscription of the synthetic repetitive DNA arrays. RNA
fragments counts around the repeated region from one biological replicate
of YPH499 containing 167, 197 and 237 bp repeats Augustus predictions of
open reading frames are shown below the top tracks. The second biological
replicate is presented in Supplementary Figure S7.

we can not rule out that pervasive transcription is present on
the arrays (32), our results indicate that transcription is not
strictly determined by an increase of NRL on the synthetic
repeats. More importantly, the transcription of the 197 bp
repeat shows that yeast transcription does not affect the
predicted (and observed in vivo) nucleosome occupancy on
the 197 bp array. To go further, we predicted open reading
frames (ORFs) on the arrays and neighboring regions using the
Augustus software (28). Using default parameters, Augustus
predicted ORFs originating in both the 197 and 237 bp
arrays. We hypothesize that the absence of transcripts in the
167 and 237 bp strain could be due to codon suboptimality
of the transcribed sequence (33), or in a non exclusive
manner due to lack of binding of any transcription factor.
Analysis of the three sequences shows that they carry several
start and stop codons, which makes them susceptible for
nonsense-mediated mRNA decay (NMD) through recognition
of premature stop codons (Supplementary Figure S7, (33)).
To verify that the absence of detectable transcription is not
due to the degradation of the RNAs produced, transcription
could be measured in further experiments in Xrnl1 A or Rrp6 A
strains (34). Using YeasTract+ (35), we looked for potential
transcription factor binding sites in the three monomer
sequences. The results presented in supplementary Figure S7
show that each repeat harbor several sites of potential binding
sites for positive and negative factors. Interestingly, the 197 bp
monomer contains a higher density of potential transcription
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binding sites, a first degree observation compatible with
increased transcriptional activity on this repeat.

CONCLUSION

In this study, we used the k-MC heuristic combined
with a deep learning nucleosome occupancy predictor
to design an array of nucleosome positioning sequence
inserted in the S.cerevisiae genome. By assembling DNA
tandem repeats of these synthetic sequence in yeast, we
validated that they were able to preferentially position a
nucleosome on their first 147 bp and lead to the formation
of arrays of nucleosomes positioned statistically following
the computational prediction. The sequence rules that we
extracted showed that this positioning is mainly induced
by the creation of nucleosome repelling motifs within the
linker region and the destruction of these motifs in the dyad
region,compatible with established nucleosome positionning
rule is S. cerevisiae (5). The resulting nucleosomal arrays,
with altered repeat length, are thus expected to behave
differently than regular arrays of 163 bp NRL found on
gene bodies, which are generated by the spacing activities
of chromatin remodelers (29, 30). Interesting questions that
can be asked with our constructs include the positioning
of nucleosomes on the array in the absence of remodeling
factors and the potential effect of transcription across these
arrays on NRL length. Our method, which combines a deep
learning predictive method and the k-MCMC methodology,
can be adapted to design DNA sequences with other designer
characteristics, like transcription activity, and we expect it
to play a growing role in the emerging field of synthetic
genomics. Amongst the existing limitations, it is known that
MNase digestion has sequences biases (31) that are learned
by our model and therefore can affect the prediction output. A
more precise training model could be achieved with alternative
nucleosome positioning sequencing techniques (36). Also, the
network is trained on a wild type strain in a specific growth
medium (YPD) and cannot be used to predict the outcome in
a different strain or growth condition.
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