Alexandre Honorat
email: alexandre.honorat@inria.fr

Automated Buffer Sizing of Dataflow Applications in a High-Level Synthesis Workflow

Keywords: Hardware → High-level and register-transfer level synthesis FPGA, High-Level Synthesis, dataflow, buffer sizing

High-Level Synthesis (HLS) tools are mature enough to provide efficient code generation for computation kernels on FPGA hardware. For more complex applications, multiple kernels may be connected by a dataflow graph. Although some tools, such as Xilinx Vitis HLS, support dataflow directives, they lack efficient analysis methods to compute the buffer sizes between kernels in a dataflow graph. This paper proposes an original method to safely approximate such buffer sizes. The first contribution computes an initial overestimation of buffer sizes, wihout knowing the memory access patterns of kernels. The second contribution iteratively refines those buffer sizes thanks to cosimulation. Moreover, the paper introduces an open source framework using these methods to facilitate dataflow programming on FPGA using HLS. The proposed methods and framework have been tested on 7 dataflow applications, and outperform Vitis HLS cosimulation in 5 benchmarks, either in terms of BRAM and LUT usage, or in term of exploration time. In the 2 other benchmarks, our best method gets results similar to Vitis HLS. Last but not least, our method admits directed cycles in the application graphs.

CCS Concepts: •

INTRODUCTION

High-Level Synthesis (HLS) technology is now mature to address large applications both on Field Programmable Gate-Array (FPGA) and Application-Specific Integrated Circuit (ASIC), with industrial tools Xilinx Vitis HLS and Intel HLS for FPGA, Catapult from Siemens and Stratus HLS from Cadence for ASIC, and open-source tools LegUp and Bambu [START_REF] Cong | FPGA HLS Today: Successes, Challenges, and Opportunities[END_REF]. Those tools have been proved efficient to create statically scheduled kernels based on sequential algorithms described in C/C++. They are however challenged to describe or extract parallelism from larger multi function programs, which is essential to take advantage of the hardware inherent parallelism at a coarser level. Multiple abstractions have been proposed to overcome this problem, with a particular interest in Domain-Specific Language (DSL) to raise the level of abstraction. A prominent example is machine learning, with the use of ONNX to abstract DNN as an high-level, architecture agnostic model which can be optimized to various platforms such as Graphics Processing Unit (GPU) and FPGA.

Other applications domains have also developed their own DSL to raise the level of abstraction, with approaches such as Halide [START_REF] Ragan-Kelley | Decoupling Algorithms from Schedules for Easy Optimization of Image Processing Pipelines[END_REF] in image processing. The main goal of such tools based on program abstractions is to propose an implementation matching both hardware and user constraints.

While HLS tools, such as Vitis HLS, manage efficiently the hardware code generation of each kernel, tools based on program abstractions, such as FINN-R [START_REF] Blott | FINN-R: An End-to-End Deep-Learning Framework for Fast Exploration of Quantized Neural Networks[END_REF], take care of the code generation of data movements and standard kernels, and specialize both data types and kernel implementations. As Halide and to some extent FINN-R (via its support of ONNX), most of such program abstractions for HLS are data driven, with an explicit representation of data exchanged between computations and their interaction with these data. One problem is then to compute the sizes of buffers used for data exchanges. These program abstractions match dataflow models of computation such as Synchronous DataFlow (SDF) [START_REF] Lee | Synchronous data flow[END_REF], which have a rich history of buffer analysis and optimization to propose parallel and memory efficient implementations, including FPGA ones [START_REF] Ade | Buffer memory requirements in DSP applications[END_REF][START_REF] Lauwereins | Grape-II: a system-level prototyping environment for DSP applications[END_REF]. But as HLS allows for more and more complex kernels, applications in the SDF model are too coarse grain to analyze compared with the requirements and optimizations of FPGA implementations. Indeed, FPGA offer very limited memory on chip in the form of Block Random Access Memory (BRAM) and registers, but enable fine grain, custom synchronization at the pixel level instead of lines or an entire image. The challenge is then to analyze and propose optimized buffer sizes at this fine granularity, with a problem too large for classic approaches such as exact optimization based on exact memory access patterns [START_REF] Wang | Communication storage optimization for static dataflow with access patterns under periodic scheduling and throughput constraint[END_REF].

In this work, we propose two complementary methods for the buffer sizing of dataflow graphs on FPGA; the first method gives theoretical worst-case bounds while the second method refines those bounds concretely based on iterative cosimulations. The first method models dataflow graphs using an affine representation amenable to Integer Linear Programming (ILP) analysis, without knowing the access patterns of kernels. This model is used to overestimate buffer sizes and provides a guarantee to reach optimal throughput of a dataflow graph of periodic actors. We extend this model to fine grain analysis for FPGA while keeping its fast and efficient analysis. The second method uses cosimulation as a basis to run Design Space Exploration (DSE) on buffer sizes. Multiple heuristics are proposed to reduce the number of iterations of the DSE by taking advantage of FPGA specificities and reach optimized buffer sizes. While the two buffer sizing methods are our main contributions, an additional contribution is their open-source implementation in the PREESM [START_REF] Pelcat | Preesm: A dataflow-based rapid prototyping framework for simplifying multicore DSP programming[END_REF] fast prototyping tool now supporting code generation for dataflow graphs of Xilinx HLS kernels. This code generation enables us to evaluate our method on 7 open-source applications, 5 real ones plus 2 synthetic ones, and ensures reproducible results.

The rest of the paper is organized as follows. Section 2 sets the theoretical background on the dataflow model and its application on FPGA; Section 3 details our code generation flow and motivates our work to automatize buffer sizing. Section 4 introduces the Affine DataFlow Graph (ADFG) model and the ILP analysis proposed to bound buffer sizes; Section 5 describes the DSE refining the buffer size bounds with cosimulation. An evaluation of the contributions is reported in Section 6; finally, Section 7 reviews related work before concluding.

BACKGROUND

In this paper we consider buffer sizing of dataflow applications modeled with SDF graphs, and executed on FPGA with free-running kernels. This section presents the minimal knowledge needed about these two assumptions: first the SDF model and second the free-running mode.

SDF model

The SDF [START_REF] Lee | Synchronous data flow[END_REF] model offers to design static applications as graphs of actors connected together by First-In First-Out (FIFO) buffers. Each actor can be fired multiple times and its data production (resp.

×1

×(ROWS * COLS) ×1 ×(ROWS * COLS)

Fig. 1. Gaussian blur difference application as a multi-rate SDF graph. Above each actor is its number of firings.

consumption) rates on each output (resp. input) buffer are not required to equal the rates on the other end of the buffer. Thus the SDF model is said to be multi-rate whereas a mere task graph model with equal rates is said to be single-rate. The unit of data rates is called a token and can be associated to a different size in bits for each buffer. We denote as 𝜏 𝑝 the production rate of a buffer, and 𝜏 𝑐 the consumption rate.

One important feature of the SDF model is to assert buffers having bounded sizes. The SDF theory ensures this when a repetition vector of the given graph exists. Otherwise, the input graph is said to be inconsistent; in this work we consider only consistent SDF graphs. The repetition vector ì 𝑟 stores the minimal number of actor firings so that all buffers go back to their initial state. SDF graphs can contain directed cycles, where at least one buffer must contain initial tokens called delays to avoid data starvation. The main problem tackled in this paper is to compute all buffer sizes 𝛿 which minimize memory requirements while avoiding deadlocks for a given throughput.

An example of a Gaussian difference application modeled as an SDF graph is given in Figure 1. In this application, there are four actors: two Gaussian blurs each processing a whole image of ROWS * COLS pixels, and duplication and difference actors both fired at the pixel level. Hence, actors GaussianBlur1 and GaussianBlur2 are fired only once each, while Duplicate and Difference are fired ROWS * COLS times each. The Gaussian difference application contains one undirected graph cycle1 since there are two different paths between Duplicate and Difference actors. One path involves the extra actor GaussianBlur2 and thus implies a cycle delay: pixels at same location in the image will not arrive at the same time on both inputs of Difference actor.

The SDF model allows the processing resource to fire an actor only when at least 𝜏 𝑐 (𝑒) tokens are present on each input buffer 𝑒. In the case of a cycle delay, buffers of the two different cycle paths may need to have different sizes, depending on the schedule and the processing time of actors on each path. This makes the buffer sizing problem a difficult one. In this paper we assume that all actors are self-timed and data-driven, and run concurrently with no shared resource; this corresponds to an As Soon As Possible (ASAP) concurrent schedule [START_REF] Kwok | Static Scheduling Algorithms for Allocating Directed Task Graphs to Multiprocessors[END_REF].

In an FPGA, all input and output data are usually not consumed in a single time unit (called a clock cycle). Cyclo-Static DataFlow (CSDF) [START_REF] Bilsen | Cycle-static Dataflow[END_REF] is an extension of the SDF model which makes it possible to refine the token rates as a sequence of integers, eventually being only 0 and 1. Note that a coarse SDF view of a CSDF graph can be obtained by simply summing each CSDF token rate sequence. In this paper, we consider an SDF application graph as the main input, but we internally refine it as an CSDF abstracted one, as it is seen in Sections 4.1 and 4.2.

HLS free-running kernels

The free-running mode2 provided by the Xilinx Vitis tool enables FPGA designers to allow multiple kernel firings by a single C call in the HLS code. The kernels are then fired indefinitely as soon as their input data are available: the free-running mode corresponds to self-timed data-driven kernels. Besides, Xilinx Vitis provides a dataflow pragma supporting kernels linked together in the HLS code by streams having fixed depths. Such stream depths correspond to the buffer sizes that we compute. The HLS pragma is compatible with the free-running mode and we use both in this paper. Yet, most Xilinx dataflow examples are single-rate ones not benefiting from the free-running mode, such as Xilinx version of Gaussian difference 3 .

In this paper, we consider only HLS kernels producing/consuming a constant number of tokens on each buffer. Moreover, all inter-kernel communications are done through FIFO buffers using hls::stream to enable fine grain buffer sizing. Those two assumptions about kernels and buffers match the SDF model, and in the rest of the paper, we identify the considered HLS kernels with SDF actors. In our internal analysis, we eventually refine kernels as CSDF abstracted actors, but without knowing precisely the token rates, a.k.a access patterns.

MOTIVATION: HLS GLUE CODE FOR DATAFLOW APPLICATIONS

One advantage of programming abstraction tools such as Halide [START_REF] Ragan-Kelley | Decoupling Algorithms from Schedules for Easy Optimization of Image Processing Pipelines[END_REF] or FINN-R [START_REF] Blott | FINN-R: An End-to-End Deep-Learning Framework for Fast Exploration of Quantized Neural Networks[END_REF] is to let the user focus on the application functionnality by managing automatically glue code generation and kernel specialization. Such tools rely on existing HLS code compilers such as Xilinx Vitis HLS. In this paper, we focus on the SDF programming abstraction and use Xilinx Vitis HLS as compiler. Latest developments in Xilinx Vitis HLS made glue code generation for SDF application possible and we briefly present our contribution about automated code generation in Section 3.1. However, as Xilinx Vitis HLS requires bounded buffer sizes for hardware implementation, a first challenge is to compute initial buffer sizes for the glue code generation. A second challenge is to refine the initial buffer sizes thanks to cosimulation. Section 3.2 presents an overview of this buffer sizing approach, and both challenges are adressed further in Sections 4 and 5, respectively. Contrary to existing exact dataflow buffer sizing approaches [START_REF] Wang | Communication storage optimization for static dataflow with access patterns under periodic scheduling and throughput constraint[END_REF], our approach scales to more and more complex kernels. Indeed, an extra constraint is to compute buffer sizes in a reasonable time.

Glue code generation

Our code generation is implemented in the open-source4 dataflow framework PREESM [START_REF] Pelcat | Preesm: A dataflow-based rapid prototyping framework for simplifying multicore DSP programming[END_REF],which we extended with FPGA support as presented in Figure 2. In this framework, the user (i.e. designer) on the left specifies their application as a dataflow graph of kernels in the SDF model using a graphical representation as in Figure 1. Kernels are implemented by the user for a specific target. Generic kernels, such as broadcasts, are provided by PREESM with optimized implementation. For example, the Duplicate kernel of Gaussian Difference application (depicted in Figure 1) is a generic broadcast kernel provided by PREESM. A generic kernel to initialize delays is also provided. Such delay kernel is automatically inserted in the graph, replacing a delayed buffer by two buffers around the delay kernel. It acts as a mere pass-through after the initialization.

Our implementation generates glue code for the FPGA, for testing before deployment, and for control by a host processor. For the device, a C++ dataflow region is generated with all free-running kernels as defined in Section 2.2 and buffers connecting those kernels. Additionally, data transfer kernels are generated for communication between the device and the host. Those kernels are functional but not optimized (e.g. buffer sizing, burst transfer), and could be improved as future work on heterogeneous optimization [START_REF] Soldavini | Automatic Creation of High-Bandwidth Memory Architectures from Domain-Specific Languages: The Case of Computational Fluid Dynamics[END_REF][START_REF] Xiang | HeteroFlow: An Accelerator Programming Model with Decoupled Data Placement for Software-Defined FPGAs[END_REF].

A code excerpt generated for the Gaussian Difference application is given in Listing 1. The main kernel representing the whole dataflow graph, prefixed by top_graph, has as many arguments as the number of input and output streams connected to data transfer kernels and declared as axi streams in the first two pragma. The last two pragma disable classic kernel control in order to run subsequent kernel calls in free-running mode. Following lines (not shown) declare streams between kernels and specify their depths. Finally, each kernel is called once to be implemented for hardware synthesis.

For functional evaluation by the user using simulation or cosimulation, the generated kernels are sorted by their topological order in the dataflow graph in order to avoid starvation 5 . In this case, kernels are executed as many times as specified in the repetition vector ì 𝑟 multiplied by the number of iterations as discussed later in Section 5.1. To further facilitate functional evaluation, testbench code is generated and interfaced with the main kernel, and is used for both simulation and cosimulation in Xilinx Vitis HLS.

For host interfacing, code is generated in multiple formats with OpenCL for Vitis, Python for PYNQ and bare metal for low level implementation on Zynq. In any case, all kernels of the considered application are mapped on the same unique FPGA target. Listing 1. Xilinx Vitis HLS pragma used for the main kernel dataflow region, here generated for Gaussian Difference application.

Overview of our buffer sizing approach

The afformentioned glue code generation must declare streams with bounded buffer sizes for hardware implementation. Computing minimal buffer sizes with the knowledge of the exact memory access patterns of kernels does not scale and infering those access patterns from HLS kernel code is difficult as well. In this paper we propose an original approach to avoid those two difficulties. First, we compute safe but overestimated buffer sizes in order to perform glue code generation for cosimulation. Second, we refine those buffer sizes thanks to iterated cosimulations. Figure 2 depicts the whole flow of our automated buffer sizing approach. The initial buffer sizing is performed internally by PREESM, right before glue code generation (center left, see steps ❶ and ❷).

A loop can be observed on the top right part, in which the cosimulations are launched iteratively until buffer sizes cannot be refined anymore (see step ❸). The refinement stops when decreasing any of the buffer sizes slows down or deadlocks the application. Alternatively, it could be stopped as soon as the buffer sizes are small enough to be implemented on the target. Our initial buffer sizing is fast because it does not rely on exact code analysis: cycle accurate behavior of actors including access patterns are not needed. Instead, a software synthesis is applied independently to each kernel in order to derive their timing metrics, from which their worst-case access patterns can be inferred. Those kernel timing metrics are the Initiation Interval (II) and the Execution Time (ET); they are produced by Xilinx Vitis HLS in our case (top left of Figure 2). Following the dataflow terminology, kernel ET denoted 𝐸𝑇 corresponds to each SDF actor total execution time, otherwise known as latency or Worst Case Execution Time (WCET). Kernel II denoted 𝐼𝐼 corresponds to the period of a possibly pipelined actor, with 𝐼𝐼 ≤ 𝐸𝑇 since the kernel may need initial computations to reach its steady pipelined state. In its CSDF refinement, a kernel 𝐼𝐼 equals the lengths of all its related buffer input/output rate sequences. Based on those metrics, PREESM also computes the whole graph II, highlighting potential bottlenecks in the application.

Regarding the graph II timing metric, it is used for the buffer sizing refinement by iterated cosimulations: it must remain identical to assert that the refined buffer sizes do not decrease the application throughput. Between each cosimulation, the glue code is not regenerated and only buffer sizes are updated. Experiments show that the iterative refinement by cosimulation is faster, for two large applications, than the Xilinx Vitis HLS buffer sizing approach. Moreover, our approach works for application graphs having directed and undirected cycles, whereas the Xilinx Vitis HLS approach does not always support directed cycles.

INITIAL BUFFER SIZING

Initial buffer sizing is built on prior work on synchronous languages. In this section we present the conclusions of these works without providing proofs since they are either a simple adaptation to the constraints of HLS kernels, or taken as is from existing work. In particular, Equations (1) to (5) are our own, while Equations (6) to [START_REF] Cheng | DASS: Combining Dynamic and Static Scheduling in High-level Synthesis[END_REF] come from multiple works on the ADFG tool [START_REF] Bouakaz | Real-time scheduling of dataflow graphs[END_REF][START_REF] Honorat | ADFG: a scheduling synthesis tool for dataflow graphs in real-time systems[END_REF]. All of these equations rely on an abstraction of kernel firing clocks, whose ticks are kernel cycles in our case (Section 4.1). Such clocks make it possible to get an affine overestimation of token production and consumption (Section 4.2). The affine overestimation is the main part of this contribution: it enables us to not require exact memory access patterns of the kernels. Finally, an ILP formulation solves buffer sizing considering the affine overestimation (Section 4.3). While affine overestimation has been used for the buffer sizing of CSDF graphs [START_REF] Maarten | Efficient Computation of Buffer Capacities for Cyclo-Static Dataflow Graphs[END_REF] even before the ADFG tool, our new Equations (1) to (5) introduce linear constraints specific to FPGA and to the ILP formulation of the ADFG theory.

Abstraction of clock cycles

The concrete placement of token production and consumption during the execution of an application on FPGA is difficult to observe and even more difficult to predict. Yet some bounds can be quickly computed thanks to an abstraction of clock cycles: in this paper we consider a periodic abstraction of events occurring per clock cycle. Such events are: token production or consumption, pure processing and finally stall (i.e. absence of processing).

. CSDF (firing ≡ 0/1) periodic 𝑝 and 𝑐

𝐼𝐼 𝑝 = 8 (≥ 𝜏 𝑝 = 4) 𝐼𝐼 𝑐 = 1 (≥ 𝜏 𝑐 = 1) 𝐼𝐼 𝑝 = 8 ticks 𝑝 𝑐 (10101010) (1) p. ĉ.
.

CSDF (firing ≡ 0/1) worst 𝑝, periodic 𝑐 𝐸𝑇 𝑝 = 10 (≥ 𝐼 𝐼 𝑝 = 8) 𝐸𝑇 𝑐 = 2 (≥ 𝐼 𝐼 𝑐 = 1) 𝜑 𝑝→𝑐 ≥ 𝐸𝑇 𝑝 -𝐼𝐼 𝑝 = 2 ticks 𝑝 𝑐 (00 11110000) (10)
Fig. 3. Activation clocks of: SDF periodic kernel firings (top), CSDF periodic token production and consumption (center) and CSDF unbalanced production and periodic consumption with phase (bottom). Solid circles represent firings implying token production/consumption, and empty circles represent the kernel processing not producing nor consuming any token. Vertical ticks without any circle correspond to kernel stall.

At the SDF coarse level, token production and consumption as well as pure processing time of a single kernel firing are all considered at once. An example is depicted at the top of Figure 3, between a producer kernel 𝑝 and a consumer 𝑐 connected by a single buffer. Considering 𝜏 𝑝 = 4 and 𝜏 𝑐 = 1, the SDF repetition vector gives 4 firings of 𝑐 for each of 𝑝 in order to ensure bounded buffers. The periodic placement of firings over clock cycles minimizes locally the buffer size between 𝑝 to 𝑐. Globally, 𝑝 or 𝑐 can be connected to other kernels affecting the buffer size: for example, if 𝑐 waits for another input whose processing time is longer, more tokens of 𝑝 will accumulate on the buffer before being consumed.

However, executing a kernel on FPGA constrains the token production and consumption a little bit more, which fits in the CSDF model. Indeed, we assume that only one token is produced or consumed per clock cycle, based on the buffer implementation constraints. This assumption can be relaxed by using multiple buffers or grouping tokens if they are produced by batch. As a consequence, II must be greater or equal than all connected buffer rates: 𝐼𝐼 𝑎 ≥ max 𝑒 * →𝑎 ∪𝑒 𝑎→ * 𝜏 𝑎 (𝑒). This is required to enable the production of all tokens during II cycles. Moreover we assume II and ET independent of kernel input/output values. Hence with the information of the II of each kernel, it is possible to deduce a best (periodic) case of token placement over 𝐼𝐼 clock cycles, as at the center of Figure 3, or to deduce a worst case as at the bottom of Figure 3. In the best case, all token production and consumption occur on the same clock cycle; as kernels are executed in free-running mode, 𝑐 stalls on half of the ticks while 𝑝 is always present to process or to produce data. However the reality of implementation more commonly leads to unbalanced token production or consumption and unbalanced execution time. More generally, note that a clock cycle common to both 𝑝 and 𝑐 does not always imply a firing of 𝑝 or 𝑐; it is especially the case when 𝜏 𝑝 and 𝜏 𝑐 are relative prime numbers in the SDF case, or 𝐼𝐼 𝑝 and 𝐼𝐼 𝑐 in the CSDF refinement we are now considering.

In the CSDF model considered in Figure 3, producing a token on a buffer (a push) and consuming another one from it (a pop) can occur during the same clock cycle. This is safe only if the buffer is neither full nor empty before such cycle, and the worst case is considered in our equations: a push, respectively a pop, can only occur if the buffer is not full, respectively empty, at the beginning of a cycle. An example execution is depicted in Figure 4, with a single producer actor connected to a single consumer actor (graph on top). On the producer side, 𝐼𝐼 𝑝 is always executed at the end, while on the consumer side, 𝐼𝐼 𝑐 is always executed at the beginning; furthermore no token production

𝑝 𝑐

(00 00001111) or consumption marked as 1 can appear outside the 𝐼𝐼 rate sequence. This hypothesis ensures non-overlapping pushes or pops in the pipeline, which would come from the same actor accessing the same buffer. In both Figures 3 and4, the 𝐼𝐼 rate sequences are written in bold, and only this rate is actually considered in the CSDF refinement. Indeed, once the graph reaches steady state the same operations are periodically repeated, and only the 𝐼𝐼 rate sequences remain useful to the analysis since the rates outside 𝐼𝐼 cannot carry any token. The steady state is reached at cycle 8 in Figure 4.

(0101 0) 𝐸𝑇 𝑝 = 10, 𝐼𝐼 𝑝 = 8, 𝜏 𝑝 = 4 𝐸𝑇 𝑐 = 5, 𝐼𝐼 𝑐 = 4, 𝜏 𝑐 = 2 0 10 FPGA cycle pipeline 𝑝 pipeline 𝑐 buffer usage (size = 2) : ✘ ✘ 0 0 0 0 0 0 1 1 1 × 1 0 × 0 0 0 0 0 1 1 1 × 1 0 × × × × × × 1 0 1 0 0 1 0 1 0 0 × 1 0 1 0 Fig. 4.
In the same example, the buffer of size 2 becomes full and causes a stall at cycle 8 for the producer actor 𝑝. This extra stall occurs periodically (e.g. at cycle 17) and the maximal throughput is not reached: a new complete execution of 𝑝 occurs every 9 cycles whereas 𝐼𝐼 𝑝 = 8. In our equations, we compute buffer sizes to guarantee maximum throughput. Finally, the clock abstraction is characterized by three variables: 𝑛, 𝜑, 𝑑 defining an affine relation between the producer and the consumer kernel of each buffer. Affine relations come from the theory of synchronous languages, as used for SIGNAL [START_REF] Le | Polychrony for system design[END_REF][START_REF] Smarandache | Validation of Mixed Signal-Alpha Real-Time Systems through Affine Calculus on Clock Synchronisation Constraints[END_REF] 6 . Variables 𝑛 and 𝑑 characterize the linear part, whose fraction is irreducible and defined in Equation [START_REF] Ade | Buffer memory requirements in DSP applications[END_REF]. They give the relative number of firings of 𝑝 for each firing of 𝑐 and vice versa. At the CSDF level, a firing is simply a busy clock cycle of token production or consumption, or a busy clock cycle of pure processing.

𝑛 𝑑 = 𝜏 𝑝 𝐼𝐼 𝑝 × 𝐼𝐼 𝑐 𝜏 𝑐 (1)
The affine part is set by the phase 𝜑, bounded as in Equation (2) to ensure that a token cannot be consumed before the producer kernel enters in its II phase. In this way, the potential latency of a pipelined kernel represented by its ET is taken into account, as in Figure 4.

𝜑 𝑝→𝑐 ≥ 𝐸𝑇 𝑝 -𝐼𝐼 𝑝 ≥ 0 (2)
Note that this equation is an overestimation if initial tokens, a.k.a. delays, are present in the buffer. Moreover, in the case of directed graph cycles, 𝜑 can be negative since at least one kernel has to break the cycle. Then, if there is a delay 𝜃 𝑒 𝑝→𝑐 (always positive), it must compensate for the extra phase introduced by the ET difference. Equation (3) formalizes this reasoning and generalizes Equation (2) (see Section 4.2 for 𝑎 𝑝 notation).

𝜃 𝑒 𝑝→𝑐 ≥ 𝑎 𝑝 × (𝐸𝑇 𝑝 -𝐼𝐼 𝑝) -𝜑 𝑝→𝑐 𝑛 (3)
The linear coefficients 𝑛 and 𝑑 are directly available and the periodic assumption also gives naturally the bottleneck of the graph as well as its own II, in Equation [START_REF] Shuvra | Synthesis of Embedded Software from Synchronous Dataflow Specifications[END_REF].

𝐼𝐼 graph = max ∀𝑎∈kernels ì 𝑟 [𝑎] × 𝐼𝐼 𝑎 (4)
The bottleneck kernel is simply given considering argmax in the previous equation. However 𝜑 is bounded but remains to be computed, as well as the buffer sizes.

Affine overestimation

In order to bound the buffer sizes, we then need to introduce another variable depending on the token placement over the II clock cycles of a kernel. This variable 𝜆 represents the distance between the reality of token production or consumption and the ideal periodic case. In the ideal periodic case, 𝑎 𝑝 = 𝜏 𝑝 𝐼 𝐼 𝑝 tokens are produced per firing of 𝑝. In the worst case, all tokens are produced at the beginning, as in the bottom part of Figure 3, or symmetrically at the end of the kernel II. Figure 5 depicts the same worst case, this time with the total production in function of clock cycles. The ideal case corresponds to the blue solid line of slope 𝑎 𝑝 , in the center. 𝜆 𝑝 is the maximal vertical distance between the 𝑎 𝑝 and the real token placement plotted with the black stepped line. Yet, it is possible to overestimate 𝜆 𝑝 without knowing the real token placement, i.e. memory access pattern.

The worst possible 𝜆 can be computed as in Equation [START_REF] Bilsen | Cycle-static Dataflow[END_REF].

𝜆 = 𝜏 (1 - 𝜏 𝐼𝐼) (5)
Indeed, the fastest possible token production is achieved by the identity function 𝜏 = 𝐼𝐼 since we assume 𝜏 ≤ 𝐼𝐼 . So 𝜆 is the distance between maximum production 𝜏 and the total production at the clock cycle 𝜏, that is:

𝜆 𝑝 = 𝜏 -(𝑎 𝑝 × 𝜏).
The unit of 𝜆 is a token and 𝜆 ∈ [0, 𝜏 [. The theory of ADFG states that the accumulated token production p tot (c) at clock cycle c for a given buffer can then be bounded by affine equations as in Equation (6). In the general form, 𝜆 is different for the lower bound and the upper one. Yet, without any more information about token production or consumption placement, we consider the worst case of symmetrical lambda overestimation: 𝜆 𝑙 = 𝜆 𝑢 = 𝜆. Equation (6) is similar for the total token consumption case.

𝑎 𝑝 × c -𝜆 𝑙 𝑝 ≤ p tot (c) ≤ 𝑎 𝑝 × c + 𝜆 𝑢 𝑝 (6)

General ILP

Main equations from ADFG work [START_REF] Bouakaz | Real-time scheduling of dataflow graphs[END_REF][START_REF] Bouakaz | Affine Data-Flow Graphs for the Synthesis of Hard Real-Time Applications[END_REF] enable to derive an ILP formulation to compute buffer sizes based on the aforementioned affine relations and lambda overestimation. As in FPGA, buffers are considered independent between them: especially, they do not share memory. Bounded buffer sizes within the ADFG periodic abstraction naturally avoids back-pressure: a firing occurs only if enough inputs are ready (avoids underflow) and if outputs can be pushed on buffer (avoids overflow).

Equation (7) avoids data underflow while Equation (8) avoids overflow. Their formulation requires two additional variables. First, 𝜃 𝑒 which is a fixed constant in our case: 𝜃 𝑒 is the number of initial tokens present on each buffer, being 0 by default. Second, 𝛿 𝑒 which is free and represents the size of buffer 𝑒 between kernels 𝑝 and 𝑐.

𝜃 𝑒 + 𝑎 𝑝 𝜑 𝑝→𝑐 𝑛 ≥ 𝜆 𝑢 𝑐 + 𝜆 𝑙 𝑝 + 𝑎 𝑝 𝑛 + 𝑑 -1 𝑛 (7)
𝜃 𝑒 + 𝑎 𝑐 𝜑 𝑝→𝑐 𝑑 ≤ 𝛿 𝑒 -𝜆 𝑢 𝑝 -𝜆 𝑙 𝑐 -𝑎 𝑐 𝑛 + 𝑑 -1 𝑑 (8)
These equations express a phase-delay-size trade-off: increasing initial tokens 𝜃 𝑒 (fixed in our case) can compensate for the phase 𝜑 𝑝→𝑐 (variable to compute). But increasing both 𝜃 𝑒 and 𝜑 𝑝→𝑐 increases the buffer size. Note that multiple buffers may exist between the same kernels, hence the 𝛿 𝑒 notation. On the contrary, 𝜑 𝑝→𝑐 is only indexed by its producer and consumer kernels, and is common to all buffers between them. Here, 𝜆 is fixed and specific to each buffer side. Buffer 𝑒 is not specified when there is no ambiguity, as for 𝑎 𝑐 , 𝑛, and 𝑑. Equation (9) is needed for the support of directed and undirected graph cycles (of length 𝑘 affine relations). This equation ensures that all phases involved in a graph cycle actually compensate for each other: at least one kernel in the cycle has to start before the others and so must have a negative phase with its predecessor. There is one equation per graph cycle in the cycle basis, detected with Paton's algorithm [START_REF] Paton | An Algorithm for Finding a Fundamental Set of Cycles of a Graph[END_REF], which runs in cubic time.

𝑘 ∑︁ 𝑖=1 (𝑖 -1 𝑙=1 𝑑 𝑙) (𝑘 𝑙=𝑖+1 𝑛 𝑙)𝜑 𝑖 = 0 (9)
Finally, the ILP objective function is to minimize the sum of buffer sizes. As there is a tradeoff between phases and buffer sizes 𝛿, the objective actually minimizes the sum of all of them considering absolute values of phases 𝜑.

∑︁ 𝑒 ∈buffers 𝛿 𝑒 + ∑︁ 𝑒 𝑝→𝑐 ∈buffers 𝑎 𝑐 𝑑 |𝜑 𝑝→𝑐 | (10)
This ILP formulation suffers from a major drawback: all equations involving quotients need to be scaled by a common denominator. Such common denominator can be arbitrarily large depending on the relative primality of the numerators. To avoid reaching values too large we have relaxed the equations in two ways. A first relaxation is to upgrade the II of producer and consumer kernels to max{𝐼𝐼 𝑝 , 𝐼𝐼 𝑐 } if 𝐼𝐼 𝑝 ≈ 𝐼𝐼 𝑐 (i.e. < 1% difference); this relaxation will slightly overestimate the worst case 𝜆 metric. A second optional relaxation is to consider the Linear Programming (LP) relaxation of the ILP formulation, that is, to allow phases and buffer sizes being real numbers in R + . This relaxation may produce unsound results and we consider it only if the ILP solver does not find solutions. Two cases make the solver fail: either an application with directed cycles lacks delays on some buffers, or the integer values of common quotient denominators are too large to be handled correctly by the solver. The latter case occurred in several of our experiments, but can be avoided by replacing the current solver with a more robust one 7 . Rounding up the obtained real values gave valid results in our experiments.

In the end, the benefits of using ADFG theory are its soundness 8 , the support of graph cycles, and its computational rapidity if solved as LP relaxation (despite the cycle basis algorithm). However, the periodic abstraction enforces some solutions and can be suboptimal, worsening the overestimation of worst case 𝜆. Also, we do not get the concrete resulting schedule but only a periodic abstraction of it. Considering the overestimation drawback, we overcome this by combining this first formal buffer sizing method with a more classical DSE of buffer sizes thanks to cosimulation, as described in the next section.

COSIMULATION BUFFER SIZING

Buffer sizing can be obtained with a DSE starting from a safe overestimation of buffer sizes. The DSE iteratively decreases those initial buffer sizes while checking at each step, with a cosimulation, that the graph still matches our optimization constraints. In our experiment the constraints are (1) that throughput measured as 𝐼𝐼 graph is respected and (2) that the graph is still live, i.e. not deadlocked. If those constraints are not respected, it means that last buffer size decrease was too large, then we say that the cosimulation failed and the DSE tries a smaller buffer size decrease. While this method is rather naive, multiple aspects can be optimized. In particular, our method consists of multiple additional heuristics which smartly choose:

• the cosimulation duration, that is the number of kernel executions to run before asserting if steady state was reached, see Section 5.1; • the order in which buffer sizes are decreased, see Section 5.2;

• and finally the next smaller buffer size to evaluate at each new step, see Sections 5.3 and 5.4.

All of those heuristics are complementary and can be used together; moreover, they are all deterministic.

Simple bisection

The standard DSE performs a bisection on each buffer size until any further decrease makes the cosimulation fail, and then optimizes the next buffer. However it is not easy to predict when such failure can occur during the cosimulation, and consequently how long to run the cosimulation. How long is not measured in time in the case of dataflow graphs: it is measured in the number of graph iterations, an iteration being firing every kernel the number of times specified in the repetition vector ì 𝑟 . The cosimulation cannot be directly parameterized by the number of iterations, but it can be indirectly thanks to the amount of input data given to the dataflow graph. If one dataflow graph iteration processes a single image, then the number of iterations is the number of images provided as cosimulation input data.

Before actually performing the DSE, the number of required graph iterations is first evaluated in the following way: starting from 3 graph iterations, a cosimulation is launched until reaching a steady state. The steady state is reached when the two last iterations 𝐼𝐼 * graph are measured to be equal. 𝐼𝐼 * graph denotes the practical value of 𝐼𝐼 graph (see Equation (4)) as measured by the cosimulation tool. Xilinx Vitis HLS actually provides 𝐸𝑇 * graph and we compute 𝐼𝐼 * graph (𝑖) of graph iteration 𝑖 as: 𝐸𝑇 * graph (𝑖) -𝐸𝑇 * graph (𝑖 -1), hence 3 graph iterations as a starting point. If the graph does not reach the steady state, the number of graph iterations is doubled and a new cosimulation runs, until the steady state is detected. Along this entire process the initial buffer sizes are not optimized yet so if they are safely overestimated, then a steady state is always reached 9 and there cannot be any deadlock for those buffer sizes. In the remaining part of the paper, we say that a cosimulation reaches the steady state only if both aforementioned optimization constraints about throughput equivalence and absence of deadlock are also respected.

The DSE starts once the required number of graph iterations to reach the steady state is set. The number of graph iterations can actually decrease during the DSE since smaller buffer sizes constrain the graph even more, which brings the steady state earlier. Once a steady state is reached at a smaller graph iteration, this iteration number is set as the new maximum for all subsequent cosimulations (except if it failed).

Note that Xilinx Vitis HLS offers the cosim_design -enable_fifo_sizing option to perform buffer sizing, starting with infinite buffer sizes by default, or with the ones provided by the designer otherwise. Yet the Xilinx option does not provide info about the number of graph iterations needed to compute the buffer sizes, and our heuristic to reach the steady state can be used in this context too. In our experiments we always call cosim_design -enable_fifo_sizing with the steady state heuristic since we observed that buffer sizes returned by the Xilinx tool do not provide throughput guarantee if not measured at steady state.

Bisection by lambda optimization

In the simple bisection heuristic, each buffer size is optimized up to its minimum, one after the other. However, the overestimation performed with ADFG theory also gives an indication about which buffer sizes are more likely overestimated than others. This indication lies in the affine bounds depending on 𝜆, as depicted in Figure 5. Large 𝜆 values imply numerous possible token placements over the clock ticks, and consequently a larger overestimation since initial buffer sizing considers the worst possible 𝜆. Yet, 𝜆 is not defined by the buffer, but by its end: one for the producer side and another for the consumer side. Thus the heuristic here is to consider the sum of producer and consumer 𝜆 of each buffer 𝑒 in order to sort them, and to start by optimizing the largest 𝜆 𝑒 𝑝→𝑐 = 𝜆 𝑝 + 𝜆 𝑐 .

Only considering buffers sorted by 𝜆 𝑒 𝑝→𝑐 do not speed up the simple bisection DSE. To do so, the heuristic also considers large 𝜆 𝑒 𝑝→𝑐 altogether: a single cosimulation is launched for the next smaller buffer size of all buffers having 𝜆 𝑒 𝑝→𝑐 > 0.5 × max 𝑒 ∈buffers {𝜆 𝑒 𝑝→𝑐 }. If the cosimulation reaches the steady state, it saves as many cosimulations as the number of buffers considered together minus one. Moreover, the value of 𝜆 𝑒 𝑝→𝑐 is divided by 2 for each optimized buffer to reflect the reduction in size and overestimation. At the opposite, if the cosimulation fails, it costs an extra cosimulation, and each buffer is then optimized independently as in the simple bisection version. In such case, their 𝜆 𝑒 𝑝→𝑐 values are updated independently according to each cosimulation result: if it fails again, 𝜆 𝑒 𝑝→𝑐 is set to 0 to avoid reconsidering buffer 𝑒, and otherwise 𝜆 𝑒 𝑝→𝑐 is divided by 2. The DSE iterates with the lambda optimization until all 𝜆 𝑒 𝑝→𝑐 = 0. Then it falls back to the simple bisection.

Initial test optimization

Except in directed or undirected cycles, the buffers do not require large sizes: for example, if the dataflow graph is a tree, all buffers could be of size 2. Even in cycles, the buffers do not need large sizes if the involved kernels have similar timings and access patterns. Thus, the initial test optimization tries to optimize each buffer directly to its minimum size ≥ 2 before starting the bisection. If the cosimulation reaches the steady state, the tested minimum buffer size is set and it avoids all intermediate steps of the bisection. In the case of a bisection by lambda, 𝜆 𝑒 𝑝→𝑐 is set as well. Otherwise, if the cosimulation fails, the initial test continues and tries to optimize the next buffer. Note that after setting a buffer size to its initial minimum value, the buffer size can still be optimized to the concrete minimum of 2 by the bisection.

The minimum buffer size tested by the heuristic is 5 in our case and this value is not chosen arbitrarily: it minimizes the number of Look-Up Tables (LUTs) on the tested Xilinx Zynq 7020 SoC target. Indeed, we experimented on a micro-benchmark containing only one buffer which is popped and pushed a large number of times in a for loop. The experiment aimed to measure the resource usage of that buffer on the hardware implementation (post place and route). Resource usage is measured in function of the width in bits of buffer tokens, and in function of the specified buffer size in number of tokens, a.k.a. depth according to Xilinx terminology. Some results of that experiment are reported in Figure 6, especially Figure 6a for the case of small buffer sizes. Surprisingly it can be seen for widths 8, 16 and 32 that LUT usage is always higher for buffer size 2 than for buffer size 5 (from 41 LUTs down to 29 LUTs for 32 bits width). Then LUT usage increases again with the buffer size, but the minimum LUT usage is observed for buffer size 5. Those small variations are caused by the FIFO access control implementation with hardcoded boundaries values, and are technology dependent. The minimum buffer size can be set per technology in our framework, and the dataflow model allows for larger than needed FIFOs to take advantage of the smaller LUT usage. In the case of bisection by lambda, 𝜆 𝑒 𝑝→𝑐 is then fixed to 4, that is the minimum initial buffer size minus one token.

Resource-wise optimization

Most buffer optimizations consider resource cost as a linear function of the buffer size. In this optimization we study how to more accurately model the hardware cost of a buffer to reduce the number of steps of our DSE. Figure 6a gives the usage of LUT (measured post place and route) for small buffer sizes, vaguely corresponding to a step function. Yet, besides the global minimum for buffer size 5, it is hard to model LUT usage given the very low cost and large variation from one buffer size to the next. However, the usage of BRAM clearly corresponds to a monotonic step function according to our measurements and it is possible to establish a model of it. The same monotonic step function is observed for the results obtained after software synthesis.

Equation [START_REF] Choi | FLASH: Fast, Parallel, and Accurate Simulator for HLS[END_REF] gives the number of BRAM in function of the buffer size 𝛿 𝑒 , the width in bits of tokens stored by the buffer, and BRAM_size whose value is either 18 Kib, or 16 Kib if 𝛿 𝑒 > 4096. While this model has been established by reverse-engineering for the Xilinx Zynq 7020 SoC target, it is possible to deduce a similar one for most common platforms. Indeed, this model reflects the fact that BRAMs or equivalents come in discrete quantities with a limited set of read/write ports, meaning that a single FIFO can be mapped to a BRAM even if it does not fill the entire BRAM memory. Such model enables the DSE to optimize the hardware resource usage rather than buffer sizes per se.

#BRAM = 2 ⌈log 2 (𝛿 𝑒) ⌉ × token_width(𝑒) BRAM_size (11)
Finally, resource-wise optimization consists of two heuristics to decide which next buffer size to use in the cosimulations launched by the bisection, instead of simply dividing the current one by 2. First, it is possible thanks to the BRAM model to directly go to the largest buffer size fitting the lower plateau of the step function depending on buffer size in number of tokens and on token bit width. Additionally, the bisection stops if both lower bound and upper bound of the buffer size correspond to the same strictly positive number of BRAM. Second, if the buffer size requires no BRAM at all, our heuristic directly stops the optimization of this buffer because the improvement in number of LUT will be negligible compared to the global number of LUT of the application. Here the LUT model corresponds to a constant cost if no BRAM is involved. We respectively call the two aforementioned heuristics BRAM buffer model and BRAM+LUT buffer model in the following section presenting our evaluation.

EXPERIMENTS

This section presents the evaluation of our proposed approach. It first introduces the benchmarks used to evaluate our proposed flow, and then the experimental results obtained using the different methods introduced in Sections 4 and 5.

Benchmarks

We select a set of benchmarks to demonstrate the buffer sizing opportunities using PREESM on FPGA. The main difficulty is to find existing benchmarks with graph cycles in HLS as a comparison. Up to now, applications with graph cycles are considered challenging due to the very problem of finding buffer sizes, and are not recommended by Xilinx in its dataflow directive, advising against single-producer-consumer violations, bypassing tasks and channel sizing, and feedback betwen tasks 10 . In that sense this work is an enabler, and few applications can be reused as is. We have designed 7 dataflow benchmark applications to demonstrate our method, all having at least one undirected cycle; 2 applications have directed cycles.

The only application based on existing work is Gaussian Difference. It is based on the namesake application provided as part of the Xilinx Vitis Libraries, and was rewritten with no dependence to Xilinx Libraries for open-source distribution. The application is showcased in Figure 1, which presents a single undirected graph cycle. We also designed another version of the Gaussian Difference application, integrating a directed cycle: the image difference is performed with the previous iteration result.

The next 3 benchmarks were developed specifically to evaluate the performance of our approach. Color filter is an image processing pipeline similar to the color detect example provided by Xilinx, with the added value of using the result as a filter on the original image, creating a single large graph cycle. DWT and IDWT are the direct and inverse versions of the discrete wavelet transform (a Daubechies 2 implementation), used for signal coding and compression such as JPEG2000. Those applications are multirate, taking advantage of SDF expressivity and the free-running kernels implementation. They include multiple undirected graph cycles and poses the biggest challenge for buffer sizing.

The first 5 benchmarks are listed with their characteristics in the top part of Table 1. Those applications are all in the image processing domain, and need to be able to analyze large resolution, with nearly 2 million firings for Color Filter. This is a challenge to express using a single rate approach and would require a potentially large number of duplicated kernels. The analysis of those applications for fast buffer sizing is made possible by the ADFG theory as presented in the next Section 6.2. Any other approach using token per token and/or single rate analysis is difficult to scale to that resolution. The 𝜆 𝑒 𝑝→𝑐 metric is an indicator of uncertainty on the possible timing of token production or consumption. This is the main source of overestimation of ADFG theory. The high values of maximum 𝜆 𝑒 𝑝→𝑐 (up to 2530) and 𝐼𝐼 graph (up to 1 million) show the variability in kernel characteristics and the challenge posed for analysis. Regarding kernel internal code, multiple different kernels may implement the same function and IDWT, for example, uses 6 different functions on a total of 17 kernels. However, each kernel has its own implementation of the function in the generated code. The other benchmark applications use 3 to 6 different functions in their kernels. All benchmarks are available publicly as part of the PREESM applications repository 11 .

The last 2 benchmarks, in the bottom part of Table 1, are synthetic as they do not model any real application. Their number of kernels in the SDF graph are parameterized. We used multiple versions of those applications and report only the minimum and the maximum value of each characteristic. Figure 7 presents a small version of the synthetic application with directed cycles. Kernels form a ×N ×1 ×1 ×N Fig. 7. Synthetic application with directed cycles as a multi-rate SDF graph. Above each actor is its number of firings. The black circles represent delays.

mere chain, connected with extra feedback buffers to create as many directed cycles. Kernels on the left "implode" their 2 × 𝑁 integer inputs in a single output by accumulating them. Kernels on the right "explode"' their unique input by duplicating it on each output 𝑁 times. In our case 𝑁 = 2, makes the number of firings grow exponentially: 2 #kernel 2

-1 for the kernels at both ends. A large number of delays, up to 2 #kernel 2

+3 in the outermost feedback buffer, ensures that no deadlock occurs.

In the version with undirected cycles, feedback buffers are replaced by forward ones without any delay, and kernels are reversed to "explode" tokens on the left and "implode" tokens on the right to keep the graph consistent. These two benchmarks are not representative of real applications; but despite their simplicity, they highlight different behaviors when using our buffer sizing method or the one of Vitis HLS.

Results

To evaluate our approach, we base our experiments on the previously presented open-source PREESM dataflow framework and open-source benchmarks. Synthesis, cosimulation and bitfile generation are performed on an Ubuntu 20.04 desktop with an Intel core i9 10900, 64 GB of RAM and a 1 TB SSD, using Xilinx Vitis HLS 2021.2. All results in this section are reported after HLS synthesis, with additional implementation results after place and route reported for Table 2. Most of the reported exploration time stems from cosimulation, a fully sequential operation as implemented by Xilinx Vitis HLS with cosim_design tool. Target hardware is the Zynq 7020 SoC with a synthesis frequency of 100 MHz, and implementations are tested both on the Zedboard for the OpenCL and bare metal interfaces, and on the PYNQ Z2 for the PYNQ interface.

Our main comparison point is the -enable_fifo_sizing option provided by Xilinx Vitis HLS cosim_design tool. This option is used considering the heuristic to reach the steady state, as presented in Section 5.1. To evaluate this heuristic, we record the number of cosimulations launched by the buffer sizing method, denoted #step, as well as the total number of graph iterations, denoted #iteration. We noticed that -enable_fifo_sizing option actually runs two cosimulations one after the other; this behavior is taken into account to measure the #step and #iteration metrics.

Main synthesis results are reported in Table 2. For each image processing application we measure the resource usage in BRAM and LUT, at the end of different buffer sizing methods. For each method, total exploration time (including all syntheses and cosimulations) and total number of steps and graph iterations are also reported. The different buffer sizing methods respectively are, from top to bottom: BS-1 initial buffer sizing with ADFG theory (see Section 4), which is used as a first step of all subsequent methods; BS-2 Xilinx Vitis HLS cosimulation with -enable_fifo_sizing option, the main comparison method;

BS-3 simple bisection (see Section 5.1); BS-4 simple bisection with BRAM buffer model (see Section 5.4); BS-5 simple bisection with BRAM+LUT buffer model (see Section 5.4); BS-6 initial test (see Section 5.3) then bisection by lambda (see Section 5.2) with simple bisection (see Section 5.1) as fallback; BS-7 finally, all heuristics of Section 5 with BRAM+LUT buffer model.

For small applications Gaussian Difference and Color Filter in Table 2, respectively having only 3 and 8 kernels, our methods BS-4 to BS-7 find the reference number of BRAM of the Xilinx method BS-2. Similarly, number of LUTs also stays in the same order of magnitude. Method BS-3 on Gaussian Difference is an exception, requiring 6 BRAM instead of the reference 5. The order in which buffers are optimized is causing our heuristic to reach a local minimum: the first two buffers are reduced to size 2 and prevent correctly optimizing the last two buffers, left at sizes 787 and 986. On the contrary, Xilinx reference method BS-2 optimizes the first two buffers to size 3 only, the third one to size 730 and finally the last one to size 3 again. Thus a too tight optimization of each buffer one after the other does not always result in a good solution. But most importantly, our methods are not competitive w.r.t. exploration time for small applications: for the fastest method BS-7, exploration time is up to 10 times longer than the reference (for Color Filter).

However, while our methods fall behind Xilinx for the exploration time on small applications, an opposite conclusion is found for larger applications in Table 2. For both DWT and IDWT applications, our method BS-7 outperforms the reference method BS-2 in the number of BRAM by a factor up to 2 (for IDWT). Moreover, exploration time is of same order of magnitude for both methods BS-2 and BS-7; it is slightly better for method BS-7 in the case of DWT: 6953 sec. against 8100 sec. for the reference. In only one case, for DWT method BS-2, we noticed a significant difference between the number of BRAM predicted by synthesis, 56, higher than the one after implementation, 52. Nevertheless, all methods BS-3 to BS-7 gives a better buffer sizing reducing the number of BRAM compared to the reference.

The preceding observations show that method BS-7 combining all heuristics is the most effective for the buffer sizing of our two large applications, but not for the two small ones. We shall now focus on some particular aspects of the heuristics and the applications, including the synthetic ones, before concluding on those experiments.

Number of graph iterations.

The first heuristic, presented in Section 5.1, limits the number of graph iterations; the minimum is 3 iterations and the maximum is reached at steady state for ADFG initial buffer sizing. The same graph iteration heuristic is used by all methods BS-2 to BS-7 but the order in which they reduce buffer size influence the number of iterations to reach the steady state. The small applications Gaussian Difference and Color Filter do not benefit from this heuristic, since their number of graph iterations is always the minimum of 3 for each launched cosimulation. This result can be seen by dividing the #iteration column by the #step column in Table 2. On the contrary, reaching the steady state for large applications DWT and IDWT requires up to 24 graph iterations 12 for method BS-2. We notice that the average number of graph iterations is larger for Xilinx method BS-2, around 11 iterations, than for all subsequent methods, around 3 for DWT and 4 for IDWT. The instrumentation introduced by method BS-2 is increasing the number of iterations which, combined with two cosimulations causes this overhead. For methods BS-3 to BS-7, the initial maximum number of graph iterations to reach the steady state is only 6 whereas the heuristic uses the same initial ADFG sizing. The difference in average, 11 iterations for method BS-2 versus 3 and 4 for others, also highlights the fast decrease of maximum graph iteration during the bisection, Table 2. Results of a selection of buffer sizing methods for the 5 image processing benchmarks. BRAM and LUT resource usage is given by the last successful cosimulation during DSE, and exploration time includes the failed ones. Exploration time also includes HLS synthesis + cosimulation runtime over at least 3 graph iterations, except for pure ADFG (no need for DSE). #step is the total number of launched cosimulations and #iteration is the total number of graph iterations. Number of optimized buffers. Another way to evaluate our buffer sizing method is to consider the number of buffers whose size is actually reduced between the initial ADFG sizing overestimation and the final result. Number of optimized buffers is reported in Table 3 for two buffer sizing methods and all benchmarks. For DWT and IDWT applications, around half of the buffers are not modified by the best method BS-7. This result suggests a relatively good efficiency of the ADFG initial buffer sizing: it overestimates only half of the buffers. Table 3 also provides the number of buffers directly reduced to size 5 according to the heuristic presented in Section 5.3. This heuristic is quite efficient for all applications: it reduces the size of around half of the buffers. In the end, the other heuristics in method BS-7 optimize a limited number of buffers, which is the difference between last two rows: for example, 4 buffers and 2 buffers over 20 respectively for DWT and IDWT applications.

Buffer

Focus on Gaussian Difference. Note that our implementation differs from the Xilinx Library13 : we offer the same functionality without relying on the Xilinx Vision Vitis Library. The main buffer size between the Duplicate and Difference kernels (see Figure 1) has a hardcoded size of 15360 pixels, that is almost a full image, in the Xilinx version for resolution 128x128. In our implementation considering resolution 720x540, the same buffer has a size of 2541 pixels using only ADFG, 2048 pixels if considering BRAM+LUT model, and 727 otherwise. This implementation demonstrates the difficulty of setting buffer sizes even for simple applications. The buffer size computed by ADFG is already an order of magnitude lower without resorting to cosimulation. A smaller buffer size is also an advantage for cosimulation methods to reduce the number of iterations needed to reach the steady state, directly proportional to the method exploration time.

Focus on Gaussian Cyclic. This variation of the Gaussian Difference application features one directed cycle and makes the buffer sizing problem challenging. Our method is able to compute buffer sizes in such case, but Xilinx Vitis HLS stops as soon as it detects a cycle and so there is no result for method BS-2 on the Gaussian Cyclic application in Tables 2 and3. Yet, Xilinx Vitis HLS does not always detect deadlocks on cycles during regular cosimulations without its buffer sizing option: we observed that the cosimulation runs indefinitely in such case, with all signals blocked. Thus, a timeout has been added to detect deadlocked cosimulations, so that Method BS-2 always terminates. Moreover, the number of BRAM after place and route is significantly reduced compared to the synthesis results of Vitis HLS. We expect this to come from the implemented delay which requires a large amount of BRAM, and the application was still validated on hardware.

Focus on exploration time. IDWT results of methods BS-2 to BS-7 in Table 2 are also reported in Figure 8 in function of the cumulative exploration time of the buffer sizing method at each new valid buffer sizing (cumulative exploration time includes runtime of failed cosimulations). All methods can be clearly distinguished, method BS-7 being the fastest on the left of both plots. On Figure 8a representing LUT usage, method BS-5 using the BRAM+LUT buffer model is the only one to increase over exploration time. This phenomenon is due to the fact that the heuristic of method BS-5 stops the bisection at the end of each BRAM plateau, which uses more LUT if no BRAM is required (see corresponding LUT usage in Figure 6a). This shows the limit of our BRAM+LUT buffer model, but the resource overhead is still negligible with an increase of less than 0.1% in LUT usage. On Figure 8b, an interesting point is the presence of small plateaus for methods BS-3 and BS-4 because they optimize buffer sizes down to the exact token even if there is no resource gain. On the contrary, method BS-6 has only one plateau at the end. This phenomenon is due to the initial test optimization (see Section 5.3) which first optimizes all buffers one by one to size 5 if possible, and then performs a bisection. As small buffers are already optimized to size 5, any further reductions up to minimum size 2 made by the bisection do not improve the BRAM usage. Best performing method BS-5 and especially BS-7 avoids such plateaus thanks to the BRAM+LUT buffer model. Similar plots are obtained for all the 5 image processing benchmarks.

Focus on synthetic benchmark applications. For the two synthetic applications, we measured the exploration time and the sum of buffer sizes given by the proposed method BS-7 and by Vitis HLS method BS-2, for an increasing number of kernels (and even more firings) in each application. The runtime of method BS-1 has been separated from the exploration time. It remains constant and low (< 1 sec.) even when the number of kernels, firings and cycles increase. For the version of the application with undirected cycles, the results are plotted in Figure 9. In this case, the exploration time of both methods quickly explodes, but the explosion comes faster for method BS-2 than for the proposed method BS-7: we had to stop method BS-2 after 1 hour whereas ours gave a result in a few minutes for a graph with 24 kernels. Regarding the quality of the solution, measured as the sum of buffer sizes, both methods reach the same order of magnitude. Our method BS-7 requires slightly larger sizes because it does not further improve a buffer size once it holds in LUTs only and no BRAM (see the BRAM+LUT buffer model in Section 5.4). For the version of the application with directed cycles, the results are plotted in Figure 10 and show an opposite behavior: our method BS-7 is quite slower than the Vitis HLS method BS-2 (more than 5× slower for 32 kernels) but it drastically improves the buffer sizes at such point that no BRAM is required. This second result is also related to the difficulty of computing the number of required delays: it appears that way less delays than initially designed are necessary to avoid deadlocks. Computing the minimal number of delays is still an open-problem for which only sufficient conditions are known [START_REF] Marchetti | A sufficient condition for the liveness of weighted event graphs[END_REF]. The Vitis HLS method BS-2 appears to be conservative and sets buffer sizes so that all delays hold in it; on the contrary our method BS-7 continues to optimize buffer sizes, taking advantage of the fact that not all delays are necessary.

Conclusion on experiments.

The evaluation of our sizing methods (especially method BS-7) asserts their efficiency for 2 large image processing applications. For small applications, only the ADFG sizing method presented in Section 4 appears useful (by providing an initial buffer sizes refined by Vitis HLS only, see method BS-2). For the 2 tested synthetic dataflow applications with different number of kernels and firings, our method BS-7 outperforms Vitis HLS method BS-2, regarding either exploration time or buffer sizes but not both at the same time. Unfortunately, we lack more benchmarks to strengthen these observations. For example, the bisection by lambda (see method BS-6) shows no clear benefit since it seemed to be outperformed by the other heuristics. Moreover, we cannot yet characterize precisely the applications for which our approach is particularly efficient, as for DWT and IDWT applications. Important application characteristics to consider for future evaluations are the access patterns of the kernels since our current synthetic applications contain only kernels with two very simple functions. To our knowledge, there is no current HLS dataflow benchmark able to represent this diversity of characteristics, especially considering SDF graphs. In this sense our work makes a wider category of dataflow applications amenable for the problem of buffer sizing, and we call for new benchmarks benefiting from it. In particular, we are able to analyze application graphs with directed cycles, whereas Xilinx Vitis HLS is not able to refine their buffer sizes in our experiments. Last but not least, we provide to Vitis HLS initial buffer sizes in order to perform its own refinement of buffer sizes, which the tool is currently unable to provide. Those sizes guarantee to reach optimal throughput at the cost of an overestimation, based on the ADFG theory.

RELATED WORK

The buffer sizing problem has been studied both from a dataflow model perspective and from an HLS compilation chain perspective.

SDF analysis for buffer sizing

Multiple buffer sizing results exist for SDF graphs, but usually for CPU architecture using static schedules. For example, the APGAN algorithm [START_REF] Shuvra | Synthesis of Embedded Software from Synchronous Dataflow Specifications[END_REF] clusters dataflow actors together to minimize the memory of the static schedule and to ease the buffer size analysis. This is not applicable in our case: clustering kernels increases their memory requirements while forcing the designers to manually set the internal buffer sizes. Yet, the SDF model has already been used at coarse grain and with static schedules in the context of FPGA, as in the Grape-II tool [START_REF] Ade | Buffer memory requirements in DSP applications[END_REF][START_REF] Lauwereins | Grape-II: a system-level prototyping environment for DSP applications[END_REF] (limited to a subset of SDF). At the opposite, memory access patterns [START_REF] Ghosal | Static dataflow with access patterns: Semantics and analysis[END_REF], model SDF applications at the cycle level when a token is pushed or popped from a buffer. Due to cycle level precision, SDF with access patterns, a.k.a. SDF-AP, requires a high computation time [START_REF] Wang | Communication storage optimization for static dataflow with access patterns under periodic scheduling and throughput constraint[END_REF] to solve buffer sizing with ILP. SDF-AP is close to CSDF for which optimal buffer sizing methods exist [START_REF] Koh | K-Periodic Scheduling for Throughput-Buffering Trade-Off Exploration of CSDF[END_REF][START_REF] Maarten | Efficient Computation of Buffer Capacities for Cyclo-Static Dataflow Graphs[END_REF]; however, such generic methods do not handle the specificity of FPGA such as Equation (2) in our case. SDF-AP too does not match perfectly with FPGA implementations and has been refined to handle stalls and direct token consumption [START_REF] Du | Actors with stretchable access patterns[END_REF], still facing the same complexity and poor scalability. SDF-AP has also been used in the generation of HLS code from templated Haskell [START_REF] Folmer | High-Level Synthesis of Digital Circuits from Template Haskell and SDF-AP[END_REF]; this work is limited by the access patterns required as an input from the user. In any case, it is difficult to know the exact access patterns, especially for closed-source implementations (IP). Our method works without knowledge of the access patterns, using instead the ADFG abstraction to reduce the analysis complexity. image processing applications but does not focus on systolic arrays. Clockwork supports multi-rate dataflow by extracting an SDF graph from the polyhedral representation of an application. This polyhedral representation also enables Clockwork to perform optimizations such as loop fusion. With an analysis time ranging from seconds to minutes, Clockwork is proving efficient in the range of applications it can address. Both AutoSA [START_REF] Wang | AutoSA: A Polyhedral Compiler for High-Performance Systolic Arrays on FPGA[END_REF] and Clockwork [START_REF] Huff | Clockwork: Resource-Efficient Static Scheduling for Multi-Rate Image Processing Applications on FPGAs[END_REF] are complementary tools to our approach, able to provide an optimized and statically scheduled part of the kernels present in the input dataflow graphs, similarly to the approach presented in DASS [START_REF] Cheng | DASS: Combining Dynamic and Static Scheduling in High-level Synthesis[END_REF].

CONCLUSION

In this paper, we presented an original analysis and DSE heuristics to optimize buffer sizes. The ADFG-based analysis enables quick prototyping with performance guarantees based on high level information provided by the HLS static scheduler. Our DSE further improves buffer sizes of two large image processing applications, with up to a factor 2 improvement in BRAM usage compared with the approach proposed by Xilinx, whereas the exploration time is of same order of magnitude. The improvement regarding buffer sizes is even greater for applications having directed cycles. However, this comes at the cost of a slower exploration time in some cases, including two small image processing applications. In any case, Vitis HLS does not provide initial overestimates of buffer sizes in order to refine them. Our other contribution, adapting the ADFG theory to FPGA, improves this point by rapidly providing to Vitis HLS such overestimated sizes. Overall we demonstrate the buffer sizing of multi-rate SDF applications on FPGA, without prior knowledge on the access patterns of the kernels. Our contributions were demonstrated on an open-source framework with functional code generation on Xilinx FPGA based on HLS. Both our analysis method and code generation support cycles in the dataflow graph, which is the main challenge of buffer sizing and makes our tool an enabler for multi-rate dataflow applications. Future work aims at extending our approach by taking advantage of kernel abstractions such as the work by Choi et al. [START_REF] Choi | FLASH: Fast, Parallel, and Accurate Simulator for HLS[END_REF] to both speedup cosimulation during DSE and potentially enhance kernel description in the ADFG theory. Looking further, a natural extension of our analysis would be to consider external memory and heterogeneous mapping, which would challenge our model by requiring multiple abstraction levels.

 extern "C" { void top_graph_GaussianDifference (hls :: stream < ap_uint <8 > > & input_stream , hls :: stream < ap_uint <8 > > & output_stream) { # pragma HLS INTERFACE axis port = input_stream name = input_stream # pragma HLS INTERFACE axis port = output_stream name = output_stream # pragma HLS interface ap_ctrl_none port = return # pragma HLS dataflow disable_start_propagation // follows declaration of streams with their depth ... // follows one call to each dataflow kernel with related streams ...

 ≡ 𝜏) periodic 𝑝 and 𝑐 𝜏 𝑝 = 4 𝜏 𝑐 = 1 𝜏 𝑝 /(gcd{𝜏 𝑝 , 𝜏 𝑐 }) = 4 ticks 𝑝 𝑐

Fig. 5 .

 5 Fig.5. Affine token production bounds over time (if no stall). Token production placement giving the worst 𝜆 𝑝 value is plotted with the black stepped line (corresponds to Figure3, bottom plot). Upper bound is plotted in dotted red (upper left), symmetrical lower bound in dotted green (lower right), average token production per clock cycle in solid blue (center).

 LUT usage for buffer sizes requiring less than 1 BRAM (post place and route).

 BRAM usage for buffer sizes requiring at least 1 BRAM (post place and route).

Fig. 6 .

 6 Fig.6. Non-linear evolution of resource usage depending on buffer size in number of tokens, a.k.a. depth, and on token width for Xilinx Zynq 7020 SoC target (hardware implementation post place and route).

 LUT usage for IDWT (HLS synthesis). BRAM usage for IDWT (HLS synthesis).

Fig. 8 .

 8 Fig.8. Resource usage comparison of IDWT for different cosimulation buffer sizing methods. Cumulative exploration time of each method is only reported for valid buffer sizes, but includes failed cosimulations.

 Total exploration time of methods BS-2 and BS-7 (HLS synthesis), not including the common time for method BS-1. Sum of buffer sizes computed by methods BS-2 and BS-7 (HLS synthesis).

Fig. 9 .

 9 Fig. 9. Results of methods BS-2 and BS-7 on the synthetic benchmark with undirected cycles.

 Total exploration time of methods BS-2 and BS-7 (HLS synthesis), not including the common time for method BS-1.

 Sum of buffer sizes computed by methods BS-2 and BS-7 (HLS synthesis).

Fig. 10 .

 10 Fig. 10. Results of methods BS-2 and BS-7 on the synthetic benchmark with directed cycles.

Table 1 .

 1 Characteristics of tested applications. Left columns gives application name and input image resolution. Middle columns gives metrics inherent to the dataflow graph. #cycles counts undirected graph cycles. Right columns gives metrics depending on kernels in the application and computed with ADFG theory.

	Application	resolution #kernels #firings #buffers #cycles max 𝜆 𝑒 𝑝→𝑐	𝐼𝐼 graph
	Gaussian Diff.	720x540	3 777602	4	1	1267 390072
	Gaussian Cyclic	720x540	4 1166402	5	1	1267 390072
	Color Filter	720x540	8 1944005	8	1	2530 1166400
	DWT	352x288	17 304720	20	4	1554 102955
	IDWT	352x288	17 304720	20	4	1554 102955
	Synthetic undir.	min	8	30	9	3	2	48
	Synthetic directed	min	8	30	9	4	2	56
	Synthetic undir.	max	32 131070	47	15	2 196608
	Synthetic directed	max	32 131070	47	16	2 229376

Table 3 .

 3 Results of buffer sizing cosimulation in terms of number of buffers optimized. A buffer is considered as optimized if its size is reduced compared with the initial ADFG sizing. Numbers in the last row are included in those of the above row. Whether or not this fact is correlated to the efficiency of our method for DWT and IDWT applications requires more investigation. Nevertheless, the exploration time is dominated by the total number of graph iterations, and decreasing the number of graph iterations per cosimulation is crucial.

	#buffers in the application Gaussian Gaussian Color DWT IDWT
		Diff.	Cyclic Filter		
	in total	4	5	8	20	20
	optimized by BS-2 [Vitis]	4	-	7	10	2
	optimized by BS-7 [ours]	4	2	7	12	12
	↩→ directly to size 5	3	2	4	8	10
	while optimizing buffer sizes.					

ACM Trans. Reconfig. Technol. Syst., Vol. 00, No. 0, Article 0. Publication date: 2023.

An undirected cycle in a directed graph 𝐺 is defined as a cycle in the corresponding undirected version of 𝐺. ACM Trans. Reconfig. Technol. Syst., Vol. 00, No. 0, Article 0. Publication date:

https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Free-Running-Kernels

https://github.com/Xilinx/Vitis_Libraries/tree/main/vision/L1/examples/gaussiandifference

https://preesm.github.io ACM Trans. Reconfig. Technol. Syst., Vol. 00, No. 0, Article 0. Publication date: 2023.

The topological order also supports directed cycles thanks to the delays; delays indicate where to break the cycles so that the cycles' kernels can be ordered. ACM Trans. Reconfig. Technol. Syst., Vol. 00, No. 0, Article 0. Publication date: 2023.

http://polychrony.inria.fr/publications.php ACM Trans. Reconfig. Technol. Syst., Vol. 00, No. 0, Article 0. Publication date: 2023.

The PREESM tool uses the solver ojAlgo (https://www.ojalgo.org/), version 53.0. The solver GLPK-online (https://cocoto. github.io/glpk-online/) is able to solve all the ILP formulations otherwise failing with ojAlgo in our benchmarks.

All formal proofs are available in original Bouakaz' thesis[START_REF] Bouakaz | Real-time scheduling of dataflow graphs[END_REF].ACM Trans. Reconfig. Technol. Syst., Vol. 00, No. 0, Article 0. Publication date: 2023.

This is true because we assume II and ET independent to kernel input/output, see Section 4.1. ACM Trans. Reconfig. Technol. Syst., Vol. 00, No. 0, Article 0. Publication date: 2023.

https://docs.xilinx.com/r/2021.2-English/ug1399-vitis-hls/Dataflow-Optimization-Limitations ACM Trans. Reconfig. Technol. Syst., Vol. 00, No. 0, Article 0. Publication date: 2023.

https://github.com/preesm/preesm-apps/tree/master/fpga ACM Trans. Reconfig. Technol. Syst., Vol. 00, No. 0, Article 0. Publication date: 2023.

As the number of graph iterations doubles until reaching the steady state, the maximum can be retrieved for Xilinx method BS-2 (not using bisection but launching two cosimulations per try): 90 = (3 + 6 + 12 + 24) × 2. ACM Trans. Reconfig. Technol. Syst., Vol. 00, No. 0, Article 0. Publication date: 2023.

https://github.com/Xilinx/Vitis_Libraries/tree/main/vision/L1/examples/gaussiandifference

https://kohesio.ec.europa.eu/en/projects/Q3687075 ACM Trans. Reconfig. Technol. Syst., Vol. 00, No. 0, Article 0. Publication date: 2023.

Received 22 February 2023; revised 9 June 2023; revised 18 August 2023; accepted 1 September 2023 ACM Trans. Reconfig. Technol. Syst., Vol. 00, No. 0, Article 0. Publication date: 2023.

ACKNOWLEDGMENTS

This work was part of the EXCELCAR 2 project 14 , which received funding from the European Union and the Région Bretagne (France) as part of the ERDF programme. We thank Pedro Ciambra for his valuable comments.

In [START_REF] Hadi Alizadeh | Scalable Analysis for Multi-Scale Dataflow Models[END_REF], authors develop a method to compute the maximum achievable throughput of a dataflow graph of actors similar to FPGA kernels. Their analysis takes benefit of an extra Finite State Machine (FSM) separating the kernel phases into an initial read (rush-in), a cyclic computation phase and a final write (rush-out). Their method requires the current buffer sizing as an input, and is run iteratively to discover which buffer sizes enable the maximal throughput. However this is possible only if the FSM controlling the kernel rush-in and rush-out phases is known. In our work we have no hypothesis on such kernel phases.

Same authors also proposed an iterative buffer sizing method [START_REF] Hendriks | Monotonic Optimization of Dataflow Buffer Sizes[END_REF][START_REF] Steven Van Der Vlugt | Modeling and Analysis of FPGA Accelerators for Real-Time Streaming Video Processing in the Healthcare Domain[END_REF] without needing for FSMs. Their input is still a pure CSDF [START_REF] Bilsen | Cycle-static Dataflow[END_REF] graph, and thus they benefit from dedicated throughput analysis methods to assert the throughput of each buffer size distribution. Instead PREESM rely on Xilinx Vitis HLS cosimulations to do so, as we consider the application kernels as black boxes, especially not knowing the precise start of rush-in and rush-out phases. Moreover to accelerate our iterative method, PREESM benefits from the initial buffer size distribution computed with ADFG, and from the resource-wise optimization to reduce the number of iterations. Both techniques could be reused to accelerate the method in [START_REF] Hendriks | Monotonic Optimization of Dataflow Buffer Sizes[END_REF][START_REF] Steven Van Der Vlugt | Modeling and Analysis of FPGA Accelerators for Real-Time Streaming Video Processing in the Healthcare Domain[END_REF]. As their implementation is not open-source, we were not able to compare with it. We expect their implementation to be close to our method BS-6 at best or method BS-3 at worst, as they do not model hardware ressource usage as in method BS-7.

To overcome the lack of a kernel internal model, other approaches such as CAPH [START_REF] Sérot | CAPH: A Language for Implementing Stream-Processing Applications on FPGAs[END_REF] language rely on SystemC simulation to refine bufffer sizing. Similarly, the FLASH [START_REF] Choi | FLASH: Fast, Parallel, and Accurate Simulator for HLS[END_REF] tool provides fast cycle-accurate simulation extracted from the HLS C++ model. As FLASH extracts FSM to model the communications of kernels, such FSM may help to refine the way we overestimate the 𝜆 metric (see Equation (5)) in PREESM. Interesting future work could also reuse the FLASH model in the iterative cosimulation, but FLASH is not open-source at the moment.

HLS tools with buffer optimization

In a recent review [START_REF] Mostafa | Towards Automatic High-Level Code Deployment on Reconfigurable Platforms: A Survey of High-Level Synthesis Tools and Toolchains[END_REF] on HLS from 2020, buffer sizing was mentioned only for the CAPH [START_REF] Sérot | CAPH: A Language for Implementing Stream-Processing Applications on FPGAs[END_REF] language and related compilation tool, but has been a big interest recently. For example, both FINN-R [START_REF] Blott | FINN-R: An End-to-End Deep-Learning Framework for Fast Exploration of Quantized Neural Networks[END_REF] and hls4ml [START_REF] Borras | Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark[END_REF] HLS tools perform dataflow buffer sizing, relying on the the Xilinx Vitis HLS tool (see method BS-2).

More precise buffer sizing methods come at the cost of their execution time: up to an hour [START_REF] Josipović | Buffer Placement and Sizing for High-Performance Dataflow Circuits[END_REF] for fine grain single-rate dataflow graphs whose buffer placement is solved at the same time by ILP. In single-rate dataflow, all kernels are executed the same number of times, simplifying analysis. Same authors proposed the DASS [START_REF] Cheng | DASS: Combining Dynamic and Static Scheduling in High-level Synthesis[END_REF] tool which can reuse memory thanks to dynamic scheduling. Our tool, PREESM, does not support dynamic scheduling but supports multi-rate dataflow.

A recent interest in dataflow-inspired DSL synthesis using HLS has spurred new work addressing buffer sizing for FPGA. Aetherling [START_REF] Durst | Type-Directed Scheduling of Streaming Accelerators[END_REF] compiler is also able to compute precise buffer sizing thanks to its type system embedding the clock delay implied by each computational operator it supports. More precisely, Aetherling performs retiming using registers to balance the operator delays, instead of streams sizes in our case. As Aetherling relies on the Halide [START_REF] Ragan-Kelley | Decoupling Algorithms from Schedules for Easy Optimization of Image Processing Pipelines[END_REF] language, unknown operators are not supported. On the contrary, PREESM considers kernels as black boxes without assumptions on their inner C++ code. HeteroFlow [START_REF] Xiang | HeteroFlow: An Accelerator Programming Model with Decoupled Data Placement for Software-Defined FPGAs[END_REF] too takes Halide as an input, via the HeteroHalide [START_REF] Li | HeteroHalide: From Image Processing DSL to Efficient FPGA Acceleration[END_REF] compiler. While HeteroFlow supports data transfer directives written by the designer, as well as buffer reuse, it does not embed a delay type system to perform buffer sizing. The FLOWER [START_REF] Amiri | FLOWER: A comprehensive dataflow compiler for high-level synthesis[END_REF] tool relies on AnyDSL [START_REF] Leißa | AnyDSL: A Partial Evaluation Framework for Programming High-Performance Libraries[END_REF] to get input dataflow graphs. Similarly to PREESM, FLOWER generates glue code linking kernels with streams, and separates a top kernel from an input and output one. To our understanding, HeteroFlow and FLOWER are limited to single-rate dataflow.

The AutoSA [START_REF] Wang | AutoSA: A Polyhedral Compiler for High-Performance Systolic Arrays on FPGA[END_REF] tool focus on the synthesis of systolic arrays on FPGA thanks to polyhedral techniques applied on C input code. Clockwork [START_REF] Huff | Clockwork: Resource-Efficient Static Scheduling for Multi-Rate Image Processing Applications on FPGAs[END_REF] also relies on polyhedral techniques to compile