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GENUS THEORY OF p-ADIC PSEUDO-MEASURES

HILBERT’S KERNELS & ABELIAN p-RAMIFICATION

GEORGES GRAS

Abstract. We consider, for real abelian fields K, the Birch–
Tate formula linking #K2(ZK) to ζK(−1); we compare, for qua-
dratic and cyclic cubic fields with p ∈ {2, 3}, #K2(ZK)[p∞] to
the order of the torsion group TK,p of abelian p-ramification
theory given by the residue of ζK,p(s) at s = 1. This is done via
the “genus theory” of p-adic pseudo-measures, inaugurated in
the 1970/80’s and the fact that TK,p only depends on the p-class
group and on the normalized p-adic regulator of K (Theorem
1.6A). We apply this to prove a conjecture of Deng–Li giving
the structure of K2(ZK)[2∞] for an interesting family of real
quadratic fields (Theorem 1.6B). Then, for p ≥ 5, we give a
lower bound of rkp(K2(ZK)) in cyclic p-extensions K/Q (Theo-
rem 1.6C). Complements, PARI programs and tables are given
in Appendices.
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1. Introduction and prerequisites

The aim of this paper is to utilize the link between p-adic L-
functions Lp(s, χ), of even Dirichlet’s characters χ = ϕψ (ϕ of prime-
to-p order, ψ of non-trivial p-power order), and classical arithmetic
p-invariants of the corresponding cyclic number field K, then to show
that these invariants have some connections due to the character ψ
(genus theory principle). This connection does exist because of re-
flection theorems of class field theory and this allows to get additional
informations.

Let’s give some notations for the description of these methods and
the statement of the results:

1.1. Notations. (i) Let χ =: ϕψ be an even character, where ϕ is of
prime-to-p order and ψ of p-power order pe, e ≥ 1. For a ∈ Z×

p , let

θ(a) be the unique ξ ∈ torZp(Z
×
p ) such that a ≡ ξ (mod p) for p 6= 2

(resp. a ≡ ξ (mod 4) for p = 2). The character θ will be considered
as the cyclotomic character of Q(µq) (q = p or 4).

LetK be the real cyclic field fixed by χ and letM be the subfield of
Qab fixed by the character θ−1 χ; since K is real, M is an imaginary
field. Let M0 be the maximal subfield of M of prime-to-p degree:

• for p 6= 2, then M ⊆ K(µp), and M0 is the fixed field of θ−1ϕ
since θ is of order p− 1; if ϕ = χ0 (the unit character), M0 = Q(µp);

• for p = 2, then M ⊂ K(
√
−1), and M0 is the fixed field of ϕ

since θ is of order 2; if ϕ = χ0, M0 = Q.

(ii) Let m be the maximal ideal of Qp(µpe) and let vm be the cor-
responding valuation with image Z (so, vm = (p− 1) pe−1 · vp).

(iii) For any prime number r, let pdr be the degree of the splitting
field of r in M/M0; let D =

∑
ℓ p

dℓ , for ℓ 6= p ramified in M/M0 and
totally split in M0/Q; whence for ℓ 6= p such that:

• for p 6= 2: ψ(ℓ) = 0 and (θ−1 ϕ)(ℓ) = 1;

• for p = 2: ψ(ℓ) = 0 and ϕ(ℓ) = 1 (let K̂ with [K : K̂] = 2; then

M is the quadratic extension of K̂ distinct from K and K̂(
√
−1)).



GENUS THEORY OF p-ADIC PSEUDO-MEASURES 3

1.2. Overview of the method. Genus theory does exist for Lp-
functions, as this was initiated in the 1970/80’s with the genus the-
ory of p-adic abelian pseudo-measures [Gra1986b, Théorème (0.3)],
[Gra1987, Théorème (0.1)] including the tricky split case θ−1ϕ(p) = 1.
The results of genus theory under consideration claim that:

(1.1)

{
either vm

(
1
2 Lp(s, χ)

)
> C(s), ∀s ∈ Zp,

or vm
(
1
2 Lp(s, χ)

)
= C(s), ∀s ∈ Zp,

for an explicit C(s), which is a constant C as soon as θ−1ϕ(p) 6= 1
(see Theorem 4.4 defining C(s), essentially depending on D).

This allows to assign, for p ∈ {2, 3}, similar properties to the fol-
lowing arithmetic p-invariants depending on values of Lp-functions:

(a) We will consider, at first (Section 1.3), the torsion group TK,p of
the Galois group of the maximal abelian p-ramified (non-complexi-
fied) pro-p-extension Hpr

K,p of K. In the real abelian case, TK,p =

Gal(Hpr
K,p/K∞), where K∞ is the cyclotomic Zp-extension of K.

Analytically (where ∼means equality “up to a p-adic unit factor”):

#TK,p ∼ [K ∩ Q∞ : Q]×
∏
χ 6=1

1
2 Lp(1, χ),

where χ runs trough the set of primitive Dirichlet’s characters of K
[Co1975, Appendix], [Se1978], while class field theory elucidates it
completely with Formula (1.3) [Gra2018b], which explains that TK,p

plays a central role in this study.

(b) Then we will focus (Section 1.4) on the the Hilbert tame kernel
K2(ZK) of the ring of integers ZK of K and, for p = 2, we will replace
it by the regular kernel R2(ZK) in the ordinary sense, linked to the
Hilbert one via the exact sequence [Gar1971]:

(1.2) 1→ R2(ZK) −→ K2(ZK) −→ (Z/2Z)[K :Q] → 1.

The class field theory information about the regular kernel comes
in general from reflection theorems giving formulas (1.4) and (1.5);
we have refrained from citing all the articles re-proving well-known
reflection theorems between K2(ZK)[p∞], TK,p, HK,p, published in
the 1980–90’s by several authors.

(c) Then #K2(ZK), being in relation with the complex L(−1, χ)’s,
we use (Section 1.5), when it is possible, the classical link between
p-adic and complex L-functions for some comparison of the two p-
adic invariants K2(ZK)[p∞] and TK,p

1, with the use of property (1.1)
when it applies, thus giving new informations.

1.3. Torsion group of abelian p-ramification. Class field theory
is especially convenient to state the arithmetic properties of TK,p

(e.g., [Gra2005, § III.2.c, § III.4.b, § IV.3], after some pioneering works
[BP1972, Gra1986a, Jau1986, Ng1986, GJ1989] and many others).

Numerical aspects are given in [Gra2017a] with PARI [PARI] pro-
grams and the order of magnitude of #TK,p is studied in [Gra2019b].

1A p-invariant may be denoted XK [p∞] when it is of the form XK ⊗ Zp, for
a finite global invariant XK . Otherwise it is denoted XK,p; it is only conjectural
[Gra2016, Section 8] that TK,p can be written TK ⊗ Zp; this conjecture is out of
reach but may be coherent with the finiteness of HK (class group) and K2(ZK),
and is supported by many heuristics. For convenience, we will also use the notation
XK,p when XK does exist (e.g., HK,p = HK [p∞]).
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We refer to Appendix A.1 for the program computing the structure
of TK,p in complete generality. The following diagram is valid for any
number field K fulfilling Leopoldt’s conjecture, replacing K∞ by the

compositum K̃ of the Zp-extensions of K:

≃ WK,p

TK,p

T
bp

K,p

≃ HK,p

≃ UK,p/EK,p

Hpr

K,pK̃Hnr
K,p Hbp

K,p≃ RK,p
K̃

Hnr
K,pHnr

K,p∩K̃

K

Definitions and notations are the following:

(i) HK,p is the p-class group and Hnr
K,p the p-Hilbert class field;

(ii) RK,p is the normalized p-adic regulator, defined as a Zp-module

in [Gra2018b, Section 5, Proposition 5.2]; its order is the classical p-
adic regulator, up to an explicit factor;

(iii) UK,p is the group of principal local units at p, EK,p the closure
in UK,p of the group of units EK and WK,p := torZp(UK,p)/µp(K);

(iv) Hbp
K,p (resp. T

bp
K,p), named in [Ng1986] the Bertrandias–Payan

field (resp. module), is issued from [BP1972]; Hbp
K,p is the compositum

of the p-cyclic extensions of K embeddable in p-cyclic extensions of
arbitrary large degree; see [GJN2016] for complements. Whence:

(1.3) #TK,p =
#HK,p

[Hnr
K,p ∩ K̃ : K]

× #RK,p × #WK,p.

In the real case, K∞/K is in general totally ramified, so that the
formula becomes #TK,p = #HK,p × #RK,p × #WK,p.

Remark 1.1. From [Gra2018b, Proposition 5.2], we can give the
following examples:

(i) For p = 2 and K = Q(
√
m) (m > 0 square-free), this formula

becomes #TK,2 ∼ hK × log2(εK)

2
√
m

, where hK is the class number and

εK the fundamental unit.

(ii) For p = 3 and a cyclic cubic field K, then #TK,3 ∼ hK × RK,3

3u

with u = 2 (resp. u = 1) if 3 is unramified (resp. ramified) and where
RK,3 is the usual 3-adic regulator

1.4. Tame and regular Hilbert’s kernels. Let K be any number
field, let p ≥ 2 be a prime number and let Sp(K) be the set of p-places
of K; put K ′ := K(µp) and let Sp(K

′) be the set of p-places of K ′.

Recall that ω : Gal(Q(µp)/Q) → µp−1, called the cyclotomic (or
Teichmüller) character, is defined by the Galois action on µp (conduc-
tor p, order p−1 for p 6= 2); it is the unit character χ0 for p = 2 since
µ2 ⊂ Q. For p 6= 2, we have in some sense ω = θ (Notations 1.1 (i)),
but for p = 2, do not confuse ω with θ as cyclotomic character of
Gal(Q(µ4)/Q) (conductor 4, order2).
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1.4.1. First reflection theorem. The regular kernelR2(ZK) (see (1.2))
fulfills, from Tate’s results [Tate1970, Tate1976] and reflection theo-
rem [Gra1998, Théorème 11.1] or [Gra2005, Theorem II.7.7.3.1], the

following p-rank formula, where H
Sp(K ′)res
K ′ is the Sp(K

′)-class group
in the restricted sense, δ = 1 or0, according as µp ⊂ K or not:

(1.4)





rkp(R2(ZK)) = rkp
(
(H

Sp(K ′)res
K ′ )ω−1

)

+ #{v ∈ Sp(K), v totally split in K ′/K} − δ,
rk2(R2(ZK)) = rk2

(
HS2res

K

)
+ #S2 − 1.

1.4.2. Second reflection theorem. Due to the reflection theorem be-
tween p-class groups and p-torsion groups of abelian p-ramification
theory, we get similarly [Gra2005, Proposition III.4.2.2]:

(1.5)





rkp(TK,p) = rkp
(
(H

Sp(K ′)res
K ′ )ω

)

+ #{v ∈ Sp(K), v totally split in K ′/K} − δ
rk2(TK,2) = rk2

(
HS2res

K

)
+ #S2 − 1.

From the two previous relations, we get:

(1.6) rkp(R2(ZK)) = rkp(TK,p),

as soon as ω2 = 1, that is to say, if K contains the maximal real
subfield of Q(µp), a framework widely developed in [GJ1989]; these
techniques yielding generalizations as that of Keune [Keu1989].

The relation was proven in [Gra1986a, Theorems 1, 2] (in which
R2(ZK) was denoted H0

2K), to characterize, for p ∈ {2, 3}, the
abelian p-extensions K/Q such thatR2(ZK)[p∞] = 1 (p-regular fields
studied in [GJ1989, BGr1992, RØ2000]).

We note that Q(µp)
+ ⊆ K is always fulfilled for p ∈ {2, 3}. More

generally, [Gra1998, Remarque 11.5] gives, when K contains µp, the
corresponding relation (1.6) with characters:

rkχ(R2(ZK)) = rkω2χ−1(TK,p).

Class field theory approach of the structures of K2(ZK)[p∞] and
TK,p has given a huge literature, especially for rank computations, of-
ten restricted to p ∈ {2, 3}, probably with (1.6) when ω2 = χ0, to get
practical results (e.g., [BS1982, Gra1986a, Keu1989, Ber1990, Br1992,
Qin1995, YF2000, KM2003, Br2005, Yue2005, Qin2005, DeLi2023]).

For results in the case p ≥ 5, see Section 6.

1.5. Arithmetic v.s. analytic properties. To complete these
class field theory aspects, we will use the following (p-adic and com-
plex) analytic formulas and the correspondence, for p ∈ {2, 3}, be-
tween p-adic and complex L-functions of characters χ of K:

(1.7)





#TK,p ∼ [K ∩ Q∞ : Q]×
∏
χ 6=1

1

2
Lp(1, χ),

#K2(ZK) = 2[K:Q] ×
(
1

6

∏
[F :K]=2

#µ(F )

2

)
×

∏
χ 6=1

1

2
L(−1, χ),

where µ(F ) is the group of roots of unity of the field F .

For more history and theoretical contributions, one may refer to
[Ba1968, Tate1970, Gar1971, Tate1976, Jau1986, Ng1986, Hur1987,
GJ1989, Keu1989, Kol1989, Ng1990, HuK1998, RWK2000, Kol2002,
Yue2002, Gra2005, Qin2010], among many others, dealing with the
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more concrete results we have cited previously; for some generaliza-
tions to the wide étale kernels WK2i(K), see for instance [Ng1992,
JaSo2001, JaMi2006, AAM2021].

But our goal is to return to very simple effective p-adic methods
allowing computations, by means of pseudo-measures. We intend to
provide, simultaneously, survey and history parts about these various
questions.

These pseudo-measures are the Mellin transform (via a reflection
principle) of Stickelberger elements, and give rise, after twisting, to p-
adic measures of the form

(
S ∗

Ln
(c)(s)

)
n
, s ∈ Zp, in the group algebras

Zp/qp
nZp[Gal(Ln/Q)] of the layers Ln := K(µqpn) of the cyclotomic

Zp-extension of K(µq) (q = 4 or p) [Gra1978, Section II].

This was done after the main pioneering works of Kubota–Leopoldt
[KL1964], then Fresnel [Fr1965], Amice–Fresnel [AF1972], Iwasawa
[Iw1972], Coates [Co1975], Serre [Se1978], giving many results, as
the value of the residue of Dedekind p-adic ζ-functions at s = 1
and some annihilation theorems for p-class groups, torsion groups
TK,p and similar invariants [Gra1978, Gra1979, Jau1990, BN2005,
Jau2021, Jau2023]; this was considerably generalized to a totally real
base field by Colmez in [Col1988] and Deligne–Ribet in [DR1980].

The Iwasawa framework of these constructions is very similar and
is detailed in [Wa1997, § 7.2].

1.6. Main results of the article. We describe three results about
the study and the comparison of the modules K2(ZK)[p∞] and TK,p:

(a) From the properties of the constant C described in § 1.2 and
stated in Theorem 4.4, we obtain the following results for quadratic
fields (p = 2) and cyclic cubic ones (p = 3):

Theorem A. (see Theorem 4.5 for the proof).

(i) Let K = Q(
√
m) be a real quadratic field of conductor 6= 8.

Assume that v2(#TK,2) = C (equivalent to v2
(
1
2L2(1, χ)

)
= C

from formula (1.7)); then #K2(ZK)[2∞] = 2C+2.

(ii) Let K be a cyclic cubic field of conductor 6= 9.
Assume that v3(#TK,3) = C (so, v3

(
L3(1, χ) × L3(1, χ

2)
)
= C);

then #K2(ZK)[3∞] = 3C.

(iii) If v2(TK,2) > C (resp. v3(TK,3) > C), #K2(ZK)[2∞] > 2C+2

(resp. #K2(ZK)[3∞] > 3C).

We compute, in Appendix B.1, #R2(ZK)[2∞] for quadratic fields
by means of explicit pseudo-measures yielding expressions of Theorem
4.1 and Corollary 4.2; this allows safe verifications.

(b) We apply the case of equality to a family of real quadratic
fields introduced in [DeLi2023, Theorem 1.2] and prove the Deng–Li
conjecture on K2(ZK)[2∞] in the following TheoremB (Section 5):

Theorem B. Let K = Q(
√
m), m = ℓ1ℓ2 · · · ℓn, n even, with:

• ℓ1 ≡ 3 (mod 8), ℓi ≡ 5 (mod 8) for i ≥ 2,

•
(
ℓ1
ℓ2

)
= −1,

(
ℓ1
ℓj

)
= 1 for j ≥ 3,

(
ℓi
ℓj

)
= −1 for 2 ≤ i < j ≤ n.

Then HK,2 ≃ (Z/2Z)n−1, TK,2 ≃ (Z/2Z)n−2 × Z/4Z, and:

K2(ZK)[2∞] ≃ (Z/2Z)n−1 × Z/23Z (Deng–Li conjecture).
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(c) The cases p ∈ {2, 3} being very specific (thus well studied in
the literature) because of the relation (2.1) for m = 2 between p-adic
and complex L-functions, we have obtained the following TheoremC
when p is distinct from 2 and 3 (see Theorem 6.1 for a much more
general statement over a real base field k of prime-to-p degree):

Theorem C. Let K/Q be a cyclic p-extension for p ≥ 5 and let Sta
be the set of primes ℓ 6= p ramified in K/Q.

Then rkp(K2(ZK)) ≥ #Sta. In particular, K2(ZK)[p∞] = 1 if and
only if K is contained in the cyclotomic Zp-extension Q∞ of Q.

2. Computation of #K2(ZK)[p∞], p ∈ {2, 3}
2.1. Birch-Tate formula and Lp-functions. Let ζK(s) be the De-
dekind zeta-function of the real abelian number field K.

Then ζK(s) =
∏
χ
L(s, χ), as product of the complex L-functions,

where χ runs trough the set of primitive Dirichlet’s characters of
K, for which L(s, χ0) = ζQ(s) for the unit character. In the p-adic

context, definition of Lp-functions is as follows (e.g., [Fr1965, Section
5 (a), Remarque], Amice–Fresnel [AF1972, Section 1]):

(2.1)





Lp(1−m,χ) = (1− pm−1 χ(p))L(1−m,χ), for:
m > 1 & m ≡ 0 (mod (p− 1)) if p > 2,

m > 1 & m ≡ 0 (mod 2) if p = 2.

This allows to compute for instance L(−1, χ) in terms of Lp-func-
tions for p = 2 and p = 3 since m = 2 fulfills the congruent conditions
required in (2.1).

The Birch-Tate formula is the following equality (proved as conse-
quence of the Mazur–Wiles “Main Theorem” in abelian theory and
complements in the case p = 2 [Kol1989]):

(2.2)





#K2(ZK) = w2(K) ζK(−1) = w2(K) ζQ(−1)
∏

χ 6=χ0

L(−1, χ),

w2(K) = 4 ·
∏

[F :K]=2

#µ(F )

2
(see (1.7)).

For instance, w2(Q) = 24 and ζQ(−1) =
1

12
; then #K2(Z) = 2,

giving #R2(Z) = 1 as expected since TQ,p = 1 for all p.

Thus, the computation of the p-Sylow subgroup #K2(ZK)[p∞] of
K2(ZK) is possible for p = 2 and p = 3 with the following formulas

(using ζQ(−1) =
1

12
and (2.1) for m = 2):





#K2(ZK)[2∞] ∼ w2(K)

12
×

∏
χ 6=χ0

1

1− 2χ(2)
L2(−1, χ),

#K2(ZK)[3∞] ∼ w2(K)

12
×

∏
χ 6=χ0

1

1− 3χ(3)
L3(−1, χ),

where ∼means equality up to a p-adic unit factor for the consideredp.
Since the denominators 1 − pχ(p) are invertible in Zp, the formulas
become with expression (2.2) of w2(K):





#K2(ZK)[2∞] ∼
∏

[F :K]=2

#µ2(F )

2
×

∏
χ 6=χ0

L2(−1, χ),

#K2(ZK)[3∞] ∼ 1

3

∏
[F :K]=2

#µ3(F )×
∏

χ 6=χ0

L3(−1, χ).
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2.2. Formulas for quadratic and cubic fields. We deduce the
following expressions with p ∈ {2, 3}; due to exact sequence (1.2)
when p = 2, we do not write the corresponding results for R2(ZK).

(a) Real quadratic fields.

(i) For real quadratic fields K = Q(
√
m), m 6= 2, 3, p = 2:





∏
[F :K]=2

1

2
· #µ2(F ) = 2 (F = K(µ4), F = K(µ6));

#K2(ZK)[2∞] ∼ 2 · L2(−1, χ).

(ii) For Q(
√
2),

∏
[F :K]=2

#µ2(F )

2
= 4 (F = K(µ8), F = K(µ6));

so, #K2ZQ(
√
2)[2

∞] ∼ 4 · L2(−1, χ) ∼ 4.

(iii) For Q(
√
3),

∏
[F :K]=2

#µ2(F )

2
= 4 (F = K(µ4), F = K(µ6) =

K(µ4)); so, #K2ZQ(
√
3)[2

∞] ∼ 4 · L2(−1, χ) ∼ 8.

(iv) For p = 3, K 6= Q(
√
3), the formulas are:





1

3

∏
[F :K]=2

#µ3(F ) = 1 (F = K(µ6));

#K2(ZK)[3∞] ∼ L3(−1, χ).

(v) For Q(
√
3),

1

3

∏
[F :K]=2

#µ3(F ) = 3 (F = K(µ3), F = K(µ4) =

K(µ6)); so, #K2ZQ(
√
3)[3

∞] ∼ 3 · L3(−1, χ) ∼ 3.

(b) Cyclic cubic fields.

(i) For cubic fields K of conductor distinct from 9, p = 3:




1

3

∏
[F :K]=2

#µ3(F ) = 1 (F = K(µ6));

#K2(ZK)[3∞] ∼ L3(−1, χ)× L3(−1, χ2),

for the two conjugate characters of order 3 of K.

(ii) For the cubic field of conductor 9,
1

3

∏
[F :K]=2

#µ3(F ) = 3

(F = K(µ9)); then #K2(ZK)[3∞] = 3 · L2(−1, χ) ∼ 1.

(iii) For p = 2, the formulas are, for the two conjugate characters
of order 3 of K:





∏
[F :K]=2

1

2
· #µ2(F ) = 2 (F = K(µ4), F = K(µ6));

#K2(ZK)[2∞] ∼ 2 · L2(−1, χ) × L2(−1, χ2).

3. Definition of a p-adic pseudo-measure (SLn)n

Let K be a real abelian field and put Ln := K(µqpn), q ∈ {p, 4},
as usual, and n ≥ 0.

3.1. The Stickelberger elements. The conductor of Ln is of the
form fLn = qpnf , for a prime-to-p integer f , taking n large enough if
p ramifies in K (otherwise, f is the conductor of K) (in formulas we
shall abbreviate fLn by fn).

Then put, where all Artin symbols are taken over Q:

SLn := −
fn∑
a=1

(
a

fn
− 1

2

)(
Ln

a

)−1
,
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as restriction to Ln of SQ(µ
fn

), where a runs trough the prime-to-fn

integers a ∈ [1, fn].

3.2. Norms of the Stickelberger elements. Let f and m be such
that m | f ; consider Q(µf ) and Q(µm) and let NQ(µ

f
)/Q(µm) be the

restriction map Q[Gal(Q(µf )/Q)]→ Q[Gal(Q(µm)/Q)]. We have:

(3.1) NQ(µ
f
)/Q(µm)(SQ(µ

f
)) =

∏
ℓ|f, ℓ∤m

(
1−

(
Q(µm)

ℓ

)−1)
·SQ(µm).

Let L/K be an extension of abelian fields of conductors m and f ;
we define SL := NQ(µ

f
)/L(SQ(µ

f
)) and SK := NQ(µm)/K(SQ(µm)),

respectively; then, NL/K(SL) =
∏

ℓ|f, ℓ∤m

(
1 −

(
K

ℓ

)−1)
· SK . This

implies NL/K(SL) = 0 as soon as a prime ℓ | f totally splits in K.

3.3. Twists of the Stickelberger elements. Let c be an integer

prime to 2pf ; for Ln = K(µqpn), put: SLn(c) :=
(
1−c

(
Ln

c

)−1)
·SLn .

Then SLn(c) ∈ Z[Gal(Ln/Q)]. Indeed, we have:

SLn(c) =
−1

fn

∑
a

[
a
(
Ln

a

)−1
− ac

(
Ln

a

)−1(Ln

c

)−1]
+

1− c

2

∑
a

(
Ln

a

)−1
;

let a′c ∈ [1, fn] be the unique integer such that a′c · c ≡ a (mod fn);
put a′c · c− a = λna(c)fn, λ

n
a(c) ∈ Z; then, using the bijection a 7→ a′c

in the second summation and the fact that
(
Ln

a′
c

)(
Ln

c

)
=

(
Ln

a

)
:

(3.2)





SLn(c) =
−1

fn

[∑
a
a
(
Ln

a

)−1
−

∑
a
a′cc

(
Ln

a′
c

)−1(Ln

c

)−1]

+
1− c

2

∑
a

(
Ln

a

)−1

=
∑
a

(
λna(c) +

1− c

2

)(
Ln

a

)−1
∈ Z[Gal(Ln/Q)].

This twisted form gives the Stickelberger p-adic measure used to
generate the Lp-functions of K as explained in the next Section.

4. The measure (S ∗
Ln

(c))n defining Lp(s, χ)

Consider the algebras An := Zp/qp
nZp[Gal(Ln/Q)], n ≥ 0. The

Mellin transform (e.g., [Gra1978, § II.1]) is defined, on An, by the
following image of any σ ∈ G, where a, defined modulo fn = qpnf ,
represents σ as Artin symbol:




σ =

(
Ln

a

)
7→ θ(a)〈a〉s

(
Ln

a

)−1
= a〈a〉s−1

(
Ln

a

)−1

= a〈a〉s−1σ−1 (mod qpnf), s ∈ Zp,

and the image, in An, of the expression (3.2) of SLn(c) by this trans-
form yields the p-adic measure in lim←−

n

An giving annihilation theorems

for real invariants and p-adic functions Lp(s, χ) for n → ∞; indeed,
since Ln = K(µqpn), one gets, from the norm relations (3.1),

NLn+1/Ln
(S ∗

Ln+1
(c)(s)) ≡ S

∗
Ln

(c)(s) (mod qpn), n ≥ 0.

So, we will use the following approximations:

S
∗
Ln

(c)(s) ≡
fn∑
a=1

(
λna(c) +

1− c

2

)
a−1〈a〉1−s

(
Ln

a

)
(mod qpn).
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4.1. Approximations modulo qpn of Lp(s, χ). The Lp-functions,
of even Dirichlet’s characters, are obtained by means of the Mellin
transform of the previous twisted pseudo-measures, so that the Mellin

transform of
(
1−c

(
Ln

c

)−1)
is
(
1−〈c〉1−s

(
Ln

c

))
and is a factor of the

p-adic measure
(
S ∗

Ln
(c)(s)

)
n
that must be dropped when this makes

sense (thus in any case, except χ = χ0 and s = 1):

Theorem 4.1. Let c be any odd integer, prime to p and to the con-
ductor f of K. For all n large enough, let fn be the conductor of
Ln = K(µqpn), and for all a ∈ [1, fn], prime to fn, let a′c be the
unique integer in [1, fn] such that a′c · c − a = λna(c)fn, λ

n
a(c) ∈ Z.

The twisted p-adic measure generating the Lp-functions is given by
the restriction S ∗

K,n(c)(s) of S ∗
Ln

(c)(s) to K, giving, for all n ≥ 0:

S ∗
K,n(c)(s) ≡

fn∑
a=1

[
λna(c) +

1− c

2

]
a−1〈a〉1−s

(
K

a

)
(mod qpn).

Whence the Lp-functions of Dirichlet’s character χ of K:

Lp(s, χ) =
1

1− χ(c)〈c〉1−s
× lim

n→∞

fn∑
a=1

[
λna(c) +

1− c

2

]
a−1〈a〉1−sχ(a).

This formula is used in Appendices B.1, B.3, C.1, C.3, D.3, for
explicit numerical computations.

Corollary 4.2. Assume that p ∈ {2, 3}; in this context, θ2 = χ0.
Since for s = −1, a−1〈a〉1−s = a−1〈a〉2 = a, we get:

Lp(−1, χ) = 1

1− χ(c)〈c〉2 × lim
n→∞

fn∑
a=1

[
λna(c) +

1− c

2

]
aχ(a).

Corollary 4.3. Assume χ 6= χ0 and χ(c) 6= 1. For s = −1, 〈c〉 ≡ 1
(mod q) and χ(c) ∈ µ[K:Q] \ {1}; so, in the quadratic case with p = 3

and in the cubic case with p = 2, 1− χ(c)〈c〉2 is invertible. Then:

• 1− χ(c)〈c〉2 ∼ 2 for the quadratic case and p = 2,

• 1− χ(c)〈c〉2 ∼ 1− ζ3 for the cubic case and p = 3.

From formulas of Section 2.2 one gets:

(i) For p = 2 in the quadratic case K = Q(
√
m), m 6= 2, 3 and a

half summation giving 1
2 L2(s, χ), for #R2(ZK)[2∞]=

1

4
#K2(ZK)[2∞]

one obtains (since 1− χ(c)〈c〉2 ∼ 2):




#R2(ZK)[2∞] ∼ 1

2
L2(−1, χ)

≡ 1

2

fn/2∑
a=1

[
λna(c) +

1− c

2

]
aχ(a) (mod 2n).

(ii) For the cubic case with p = 3, (1− χ(c)〈c〉2)(1 − χ2(c)〈c〉2) ∼
(1− ζ3)(1 − ζ23 ) ∼ 3, giving, with N = NQ(µ3)/Q:





#K2(ZK)[3∞] ∼ L3(−1, χ) · L3(−1, χ2)

≡ 1

3
N
( fn/2∑

a=1

[
λna(c) +

1− c

2

]
aχ(a)

)
(mod 3n).

4.2. Genus theory of p-adic pseudo-measures. We have ob-
tained in [Gra1987, Théorème 0.2], the following results which does
not seem very known but states the property of “stability” mentioned
in the Introduction and may be linked to the existence (or not) of ze-
roes of Lp-functions (for examples about zeroes of Lp-functions, one
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may refer to [Wa1980, Wa1981, Wa1995, Wa1996, Wa1997] and see
Appendix C.4 for some illustrations of this influence):

Theorem 4.4. Under Notations 1.1, where χ = ϕψ is even, ϕ of
prime-to-p order and ψ of order pe, e ≥ 1, we have, with D =

∑
ℓ p

dℓ

and ǫ = 0 (resp. ǫ = 1) when ϕ 6= χ0 (resp. ϕ = χ0):

(a) vm

(
1
2Lp(s, χ)

)
≥ C(s), ∀ s ∈ Zp, where C(s) is as follows:

(ip) p 6= 2 and θ−1ϕ(p) 6= 1 (i.e., p not totally split inM0); then:

C(s) = C = D− ǫ.
(i2) p = 2 and ϕ(2) 6= 1 (i.e., 2 not totally split in M0); then:

C(s) = C = D.

(iip) p 6= 2, θ−1ϕ(p) = 1 and θ−1χ(p) 6= 1 (i.e., p totally split in
M0 and not totally split in M); then:

C(s) = C = D+ pdp .

(ii2) p = 2, ϕ(2) = 1 and θ−1χ(2) 6= 1 (i.e., 2 totally split in
M0 and not totally split in M); then:

C(s) = C = D+ 2d2 − 2ǫ.

(iiip) p 6= 2, θ−1χ(p) = 1 (i.e., p totally split in M); then:

C(s) := D+ vm(p s).

(iii2) p = 2, θ−1χ(2) = 1 (i.e., 2 totally split in M); then:

C(s) := D+ vm(q s)− 2ǫ.

(b) We have either the equality:

vm
(1
2
Lp(s, χ)

)
= C(s), ∀ s ∈ Zp,

or the strict inequality:

vm
(1
2
Lp(s, χ)

)
> C(s), ∀ s ∈ Zp,

(with s 6= 0 in cases (iiip) and (iii2)).

So, under the case of stability vm
(
1
2Lp(s, χ)

)
= C(s), ∀ s ∈ Zp,

a computation may be done at a suitable value s for Lp(s, χ), e.g.,

s = 1 giving #TK,p ∼ [K ∩ Q∞ : Q] ×
∏
χ 6=1

1

2
Lp(1, χ); thus #TK,2 ∼

1

2
L2(1, χ) for K real quadratic, except K of conductor 8, or #TK,3 ∼

L3(1, χ)× L3(1, χ
2) for K cyclic cubic, except K of conductor 9.

Which gives the main process and Theorem 1.6A, where C(s) =
C, as soon as s ∈ Z×

p , since vm(s) = 0 in cases (iii) (e.g., s = ±1):
Theorem 4.5. We obtain the following results:

(i) Let K be a real quadratic field of character χ of conductor
6= 8, and set p = 2. Assume that the knowledge of #TK,2 (e.g., us-

ing formula (1.3)) implies v2
(
1
2L2(1, χ)

)
= C; then v2

(
1
2L2(s, χ)

)
=

C, ∀ s ∈ Z2, whence in particular, #K2(ZK)[2∞] = 2C+2.

We have C = D (resp. C = D−1) if 2 splits (resp. does not split)
in M = Q(

√−m).

(ii) Let K be a cyclic cubic field of character χ of conductor 6=
9, and set p = 3. Assume that the knowledge of #TK,3 implies
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vm
(
L3(1, χ)

)
= C; then vm

(
L3(s, χ)

)
= C, ∀ s ∈ Z3, then in par-

ticular, #K2(ZK)[3∞] = 3C. We have C = D− 1.

(iii) If v2
(
1
2L2(1, χ)

)
> C (resp. vm

(
L3(1, χ)

)
> C), then one

obtains #K2(ZK)[2∞] > 2C+2 (resp. #K2(ZK)[3∞] > 3C).

Considering for instance [DeLi2023, Theorem 1.2] giving, for this
specific family of real quadratic fields:

K2(ZK)[2∞] ≃ (Z/2Z)n−1 × Z/2δZ, δ ≥ 3,

the Deng–Li conjecture is δ = 3; we intend to prove it by means of
the previous process from showing that #TK,2 = 2n:

Corollary 4.6. Under the conditions: #HK,2 = 2n−1, RK,2 = 1 and
#WK,2 = 2, then #TK,2 = 2n, giving the valuation n for 1

2L2(1, χ);

so, Theorem 4.5 (i) yields C = D = n, since 2 splits in Q(
√−m),

and the conjecture δ = 3 follows.

4.3. Modulus of continuity of Lp(s, χ). Whatever p, if χ is of
prime-to-p order, genus theory is empty and this raise the question
of the “independence” (or not) of #K2(ZK)[p∞] and #TK,p. This
is related to the rank formula (1.6) when K contains the maximal
real subfield of Q(µp), but is also a consequence of the existence of a
non-trivial modulus of continuity for Lp(s, χ), whatever χ = ϕψ, as
follows [Gra1987, Théorème 0.3]:

Theorem 4.7. With Notations 1.1, we have, for all s, t ∈ Zp:

1

2
Lp(t, χ) − 1

2
Lp(s, χ) ≡ a (t− s) (mod qmV(t− s)),

with a computable constant a (a = 0 when ϕ 6= χ0) and V of the

form V = D −max
ℓ

(pdℓ − pdp + ǫ, ǫ) (ǫ = 1 if ϕ = χ0, 0 otherwise),

where ℓ runs trough the set of primes ramified in M/M0, totally split
in M0/Q and such that 1

q logp(ℓ) 6≡ 0 (mod p).

In the case ψ = χ0, ϕ 6= χ0, the above formula becomes:

1

2
Lp(t, ϕ) ≡ 1

2
Lp(s, ϕ) (mod q (t− s)).

Thus, even if the genus principle is empty, there is a non-trivial
congruence between the orders of the two corresponding invariants.

For instance, we get
1

2
Lp(1, ϕ) ≡ 1

2
Lp(−1, ϕ) (mod 2q), whence:

{
#K2(ZK)[3∞] ≡ #TK,3 (mod 3), for quadratic fields,

#R2(ZK)[2∞] ≡ #TK,2 (mod 8), for cyclic cubic fields.

In the case of real quadratic fields for p = 3 (resp. of cyclic cubic
fields for p = 2), see the numerical results given in Appendix B.3
(resp. Appendix C.3).

5. Proof of the Deng–Li conjecture δ = 3

We consider the family defined in [DeLi2023, Theorem 1.2]. We
will prove the conjecture δ = 3 in the writing:

K2(ZK)[2∞] ≃ (Z/2Z)n−1 × Z/2δZ

and some other properties of this family of real quadratic fields.

Recall that K = Q(
√
m), m = ℓ1ℓ2 · · · ℓn, n even, with:

(i) ℓ1 ≡ 3 (mod 8), ℓi ≡ 5 (mod 8) for i ≥ 2,



GENUS THEORY OF p-ADIC PSEUDO-MEASURES 13

(ii)
(
ℓ1
ℓ2

)
= −1,

(
ℓ1
ℓj

)
= 1 for j ≥ 3,

(iii)
(
ℓi
ℓj

)
= −1 for 2 ≤ i < j ≤ n.

Condition (i) implies m ≡ −1 (mod 8) and K of discriminant 4m;

then
(
ℓi
ℓj

)
=

( ℓj
ℓi

)
for all i, j since for i 6= j, one of the two primes is

congruent to 1 modulo 4. It implies also that the fundamental unit
ε is of norm 1 since −1 is not norm in K/Q; then, if ε = a + b

√
m,

one has a2 + b2 ≡ 1 (mod 8), whence, either a = 4a′ with b odd, or
b = 4b′ with a odd.

Let p be the prime ideal above (2) and let Kp be the completion
of K at p; thus Kp = Q2(

√
−1) proving that 2 is local norm at 2 in

K/Q and that the norm group of local units is equal to 1 + 4Z2.

The Hasse norm residue symbols, of the form
(
ℓi, K/Q

ℓj

)
, charac-

terizing the property “ℓi local norm at ℓj in K/Q”, are given by the

quadratic residue symbols
(
ℓi
ℓj

)
; indeed, ℓi norm in Qℓj(

√
m)/Qℓj is

equivalent (for i 6= j) to ℓi square in Q×
ℓj

since the norm group of

local units of Qℓj(
√
m) is of index 2 in µℓj−1 ⊕ (1 + Zℓj

).

We can add the properties:

(iv)
(
2
ℓi

)
=

(
− 1

) ℓ2i −1

8 = −1, for all i,
(
ℓ1
2

)
= −1,

(
ℓi
2

)
= 1 for i ≥ 2

(in the meaning ℓi norm (or not) in Q2(
√
−1)/Q2).

(v)
(
ℓi
ℓi

)
= 1 for all i 6= 2 and

(
ℓ2
ℓ2

)
= −1, obtained from the product

formula of the Hasse norm residue symbols of fixed ℓi with n even.

Put G := Gal(K/Q) =: 〈σ〉 and:

ΩK := {(s1, . . . , sn+1) ∈ Gn+1, s1 · · · sn+1 = 1} ≃ Gn;

let hK be the map Q× → ΩK defined, by means of the Hasse norm

residue symbols, by hK(x) =
((

x, K/Q
v

))
v
, where v runs trough the

n+ 1 places ramified in K/Q, and for which the product formula:

∏
v ramified

(
x, K/Q

v

)
= 1

holds as soon as (x) is the norm of an ideal in K/Q, hence local norm
at every non-ramified place (i.e., x ∈ {−1, 1} ·Q×2).

Whence the matrix of symbols, product formula taken on each line:

(5.1)

2 ℓ1 ℓ2 ℓ3 . . . ℓi . . . ℓn

2 1 −1 −1 −1 . . . −1 . . . −1

ℓ1 −1 1 −1 1 . . . 1 . . . 1

ℓ2 1 −1 −1 −1 . . . −1 . . . −1

ℓ3 1 1 −1 1 . . . −1 . . . −1

...

ℓi 1 1 −1 −1 . . . 1 . . . −1

...

ℓn 1 1 −1 −1 . . . −1 . . . 1

−1 −1 −1 1 1 . . . 1 . . . 1

5.1. Proof of HK,2 ≃ (Z/2Z)n−1. This is proven in [DeLi2023], but
we can bring more informations and remarks. The first one is given
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by the Chevalley–Herbrand formula [Che1933, pp. 402-406] in K/Q:

#H
G
K,2 =

2n+1

[K : Q](EQ : EQ ∩NK/Q(K×))
,

since n+ 1 primes ramify, with EQ = {±1}; we shall write instead:

(5.2) #H
G
K,2 =

#ΩK

#hK(EQ)
=

2n

#hK({±1}) = 2n−1,

since −1 6∈ NK/Q(K
×).

Lemma 5.1. The subgroup H G
K,2 is elementary of 2-rank n− 1; it is

generated by the classes of the prime ideals li | ℓi, i = 1, . . . , n, and by
the class of p | (2). There are two independent relations of principality
of the form pa0

∏n
i=1 l

ai
i = (α) between the ramified primes (where the

exponents are 0 or 1), an obvious one being
∏n

i=1 li = (
√
m).

Proof. We have the classical exact sequence, where EK = 〈−1, ε〉 is
the group of units of K and where H ram

K,2 is the subgroup of H G
K,2

generated by the classes of the ramified primes:

1→H
ram
K,2 −→H

G
K,2 −→ {±1} ∩NK/Q(K

×)/NK/Q(EK)→ 1,

giving here H G
K,2 = H ram

K,2 ≃ (Z/2Z)n−1, the right term being trivial;
so, there are exactly two independent relations of principality between
the ramified primes.

Then, from [Gra2017b, § 4.4] generalizing our old papers in “Annales
de l’Institut Fourier”, we have for the second element of the filtration:

#

((
HK,2/H

G
K,2

)G)
=

#ΩK

#hK(Λ)
, Λ = 〈−1, 2, ℓ1, . . . , ℓn〉Z;

then, #hK(Λ) = (Λ : Λ ∩ NK/Q(K
×)) = 2n, by computing norm

residue symbols with the Rédei matrix (5.1) which is of rank n;
whence HK,2 = H G

K,2 = H ram
K,2 ≃ (Z/2Z)n−1. �

A program computing these relations is given Appendix A.2.

5.2. The non-trivial relation for n even. Consider the relations:

(5.3)





pa0
n∏

i=1
l
ai
i =: pa0

∏
i∈I

li = (α), α ∈ K×,

NK/Q(α) = s 2a0
∏
i∈I

ℓi, s ∈ {±1},

where I is a subset of [1, n] and s = ±1; from the trivial relation
(
√
m) =

∏n
i=1 li and NK/Q(

√
m) = −∏n

i=1 ℓi we deduce (α
√
m) =

(c) pa0
∏n

i=1 l
ai
i , where ai = 1− ai and c =

∏
i∈I ℓi; taking α := α

√
m

c ,

one gets the equivalent complementary relations, where I = [1, n]\ I:

(5.4)





pa0
∏
i∈I

li = (α),

NK/Q(α) = −s 2a0
∏
i∈I

ℓi.

Lemma 5.2. (i) In the relations (5.3) and (5.4), one has a0 = 1 and
the two non-trivial equivalent relations may be written:

• p ·∏j∈J lj = (β), J ⊆ {2, . . . , n}, #J ≡ 1 (mod 2).

• p · l1
∏

j∈J lj = (β), J ⊆ {2, . . . , n}, #J ≡ 0 (mod 2),

The relation without l1 is p · l2 = (β).
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(ii) These relations are given by the ideals (ε+ 1) and (ε− 1) for

which
ε+ 1

ε− 1
= C · √m, where C is an odd rational number.

(iii) There exists a sign s0 such that (ε+ s0) = (c) p · l2.
Proof. (i) Assume that a0 = 0; let

∏
j∈J lj = (β) be the non-trivial

relation such that J ⊆ [2, n] (so, J 6= ∅). Then ∏
j∈J ℓj = ±NK/Q(β);

since NK/Q(β) ≡ 1 (mod 4) as well as the ℓj’s, we get
∏

j∈J ℓj =

NK/Q(β). Consider the symbols
(∏

j∈J ℓj

ℓi

)
, i ∈ [1, n], using (5.1):

• For i = 2, one gets
(∏

j∈J
ℓj

ℓ2

)
= 1 if and only if #J is even (which

solves the case n = 2 since J = {2}).
• for i = 1, one obtains

(∏
j∈J

ℓj

ℓ1

)
= 1 if and only if j = 2 6∈ J ;

• for any i ≥ 3,
(∏

j∈J
ℓj

ℓi

)
= 1 if and only if j = i 6∈ J .

So we obtain J = ∅ (absurd); whence the relation p ·∏j∈J lj = (β)

for J ⊆ [2, n].

Then
(
2
∏

j∈J
ℓj

ℓi

)
= 1 for all i ∈ [1, n] since NK/Q(β) = −2

∏
j∈J ℓj

is not possible (−1 is not local norm at 2); so this is equivalent to(∏
j∈J

ℓj

ℓi

)
= −1 for all i ∈ [1, n]. The case i = 2 gives #J odd; the

case i ∈ J , when j = 2 6∈ J , gives a contradiction, as well as 2 ∈ J
and i 6∈ J , so that one verifies that only the relation p · l2 = (β) holds
(the (n + 1) × (n + 1) matrix (5.1) is of rank n and the sum of the
two lines corresponding to 2 and ℓ2 gives again the norm relation).

(ii) We have (ε+s)1−σ = sε; so (ε+s) is a principal invariant ideal
necessarily of the form (cs)pms, cs ∈ Q×, p | (2), ms | (

√
m). Then,

ε+ 1

ε− 1
= C · √m since

(
ε+ 1

ε− 1
· 1√

m

)1−σ
= 1. �

Lemma 5.3. The case b even does not occur.

Proof. Assume that b is even; then b = 4b′; there exists a sign s = ±1
such that a+ s ≡ 2 (mod 4), so that ε+ s = a+ s+ 4b′

√
m and the

ideal (ε+s) = (a+s+4b′
√
m) is of the form (2)(a′′+2b′

√
m) with a′′

odd, which can not give the non-trivial relations of Lemma 5.2 since
a′′ + 2b′

√
m is “odd” (absurd). �

Lemma 5.4. In the writing ε = a+ b
√
m, a = 4a′ with a′ odd.

Proof. Assume that a′ = 2a′′ and put θs′ := ε+ s′ = 8a′′ + s′ + b
√
m,

s′ ∈ {±1}. We have, using mb2 = a2 − 1, NK/Q(θs′) = 2(8a′′s′ + 1).
From Lemma 5.2 (iii) the non-trivial relation may be written (where
c is an odd rational), (θs′) = (c) p l2 giving by taking the norm:

8a′′s′ + 1 = s c2 l2 ≡ 5s (mod 8), s ∈ {±1};
which is absurd. �

5.3. Structure of TK,2 and triviality of RK,2. Let’s give the
Kummer generators of the maximal sub-extension, of Hpr

K,2/K, of
exponent 2.

Lemma 5.5. The module TK,2 is of Z2-rank n− 1 and the maximal
sub-extension of Hpr

K,2/K∞, of exponent 2, is the Kummer extension

K∞(
√
ε,
√
ℓ1, . . . ,

√
ℓn), under the existence of the two independent

relations
√
ℓ1 · · ·

√
ℓn =

√
m ∈ K× and

√
2
√
ℓ2 = α

√
ε, α ∈ K×.
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Proof. The maximal sub-extension of Hpr
K,2/K, of exponent 2, is the

Kummer extension K(
√
2,
√
ε,
√
ℓ1, . . . ,

√
ℓn) (all the radicals a in the√

a’s are squares of ideals of K and are totally positive; there is
no other radicals since HK,2 = H ram

K,2 ). We utilize the fact that√
2 ∈ K∞, then the relations ℓ1 · · · ℓn = m ∈ K×2 and p l2 = (α),

α ∈ K×, giving, by squaring, 2ℓ2 = α2η > 0, η ∈ EK , η 6= 1; then we
may assume that η = ε, whence 2ℓ2 = α2ε.

Whence the result since TK,2 is a direct factor in Gal(Hpr
K,2/K). �

Theorem 5.6. The normalized 2-adic regulator RK,2 is trivial.

Proof. We have ε = a+ b
√
m = 4a′ + b

√
m with a2 −mb2 = 1; then:

ε2 = a2 + 2ab
√
m+mb2 = 1 + 2mb2 + 8a′b

√
m.

Recall that a′ is odd (Lemma 5.4), that b is odd and m ≡ −1
(mod 8); thus ε2 ≡ 1− 2 + 8

√
m (mod 16); whence log2(ε) ∼ 4.

From [Gra2018b, Proposition 5.2], we have, in our context:

#RK,2 ∼
1

2
·
(
Z2 : log(NK/Q(UK,2))

)

#WK,2 ·
∏

p|2 Np
· RK√

DK
,

where RK = log2(ε) is the usual 2-adic regulator [Wa1997, § 5.5] and
DK the discriminant of K. Since we have

(
Z2 : log(NK/Q(UK,2))

)
=(

Z2 : log(1+4Z2)
)
= 4, RK ∼ 4, #WK,2 = 2,

∏
p|2Np = 2,

√
DK ∼ 2,

this yields #RK,2 ∼ 1.

Formula (1.3) gives #TK,2 = 2n−1 × 1× 2 = 2n, and Corollary 4.6
ends the proof of the Deng–Li conjecture δ = 3. �

6. The p-rank of K2(ZK) when p ≥ 5

We consider a prime number p ≥ 5 and a cyclic p-extension K/k
fulfilling some conditions:

Theorem 6.1. Let p be a prime ≥ 5. Let k be a real abelian number
field of prime-to-p degree and let K be any cyclic p-extension of k,
abelian over Q. We assume that K ∩Q(µp) = Q and that p does not
totally split in K(µp)/K. Let Sta be the set of primes ℓ 6= p, ramified
in K/k, and let tℓ ≥ 1 be the number of prime ideals above ℓ in k/Q.
Then rkp

(
K2(ZK)

)
≥∑

ℓ∈Sta
tℓ.

In particular, for all primes ℓ ≡ 1 (mod p) and for any non-trivial
p-extension K/Q, contained in Q(µℓ)/Q, we have K2(ZK)[p∞] 6= 1.

Proof. Let ζp be a generator of µp and let Q′ := Q(ζp), k
′ := k(ζp) and

K ′ := K(ζp); put G := Gal(K ′/k′) and g := Gal(K ′/K). Recall that
ω : g → µp−1(Zp) is the Teichmüller character of g (such that ζsp =:

ζ
ω(s)
p , for all s ∈ g) and that any Zp[g]-moduleX is the sum

⊕p−1
j=1Xωj

in an obvious meaning. Since p ≥ 5, ω 6= ω−1 and the comparison of
K2(ZK)[p∞] = K2(RK)[p∞] with TK,p made in [GJ1989] does not
hold.

The primes of Sp(K) being not totally split in K ′/K, the ω−1-
component of the Zp[G]-module 〈Sp(K ′)〉 ⊗ Zp generated by Sp(K

′)
above Sp(K) is trivial; thus, formula (1.4) becomes:

rkp(K2(ZK)) = rkp
(
(HK ′,p)ω−1

)
.
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We note that a prime number ℓ, ramified in K/Q with ramification
index divisible by p, fulfills the condition ℓ ≡ 1 (mod p) (for gener-
alizations to the non-Galois case, see [Gra2005, II, § (d)]); whence ℓ
totally splits in Q′/Q and, for l | ℓ in k, the p−1 prime ideals L above
l in k′ ramify in K ′/k′ with the same ramification index; this gives
(p − 1)tℓ ramified ideals in K ′/k′, whence #Sta(k

′) = (p− 1)
∑

ℓ∈Sta

tℓ.

Let Gv ⊆ G be the inertia group in K ′/k′ of a ramified place v
of k′ (so v is a prime ideal above ℓ 6= p or a prime ideal above p,
but the ω−1-component of 〈Sp(k′)〉 ⊗ Zp is trivial), and put S(k′) =
Sta(k

′) ∪ Sp(k′). Let Ek′ be the group of units of k′:

The Chevalley–Herbrand formula in K ′/k′ writes:

#H
G
K ′,p = #H

nr
k′,p ×

#Ωk′

#hk′(Ek′)
,

where H nr
k′,p ⊆ Hk′,p corresponds to Gal(Hnr

k′ /K
′ ∩ Hnr

k′ ) and Ωk′ ={
(sv)v ∈

⊕
v∈S(k′)Gv ,

∏
v sv = 1

}
, hk′ : Ek′ → Ωk′ being the map

defined by the family of Hasse norm residue symbols
((x,K′/k′

v

))
v

which fulfill the “product formula” on units. This formula is associ-
ated to the following exact sequences:

(6.1)





1→ JK ′/k′(Hk′,p) ·H ram
K ′,p −→H

G
K ′,p

−→ Ek′ ∩NK ′/k′(K
′×)/NK ′/k′(EK ′)→ 1,

1→ Ek′/Ek′ ∩NK ′/k′(K
′×)

−→ Ωk′ −→ Gal(Hgen
K ′/k′/K

′Hnr
k′ )→ 1,

where JK ′/k′ is the extension of classes, H ram
K ′,p the subgroup of HK ′,p

generated by the ramified primes, Hgen
K ′/k′ ⊆ Hnr

K ′ the genus field, fixed

by H
1−σ
K ′,p , where σ generates G [Gra2005, Proposition IV.4.5].

The link between the two aspects (fixed points and genus exact
sequences) is given by Gal(Hgen

K ′/k′/K
′) ≃HK ′,p/H

1−σ
K ′,p and the exact

sequence 1→H G
K ′,p →HK ′,p →H

1−σ
K ′,p → 1.

More precisely, we need the ω−1-component of H G
K ′,p and of the

terms of the exact sequences. For H G
K ′,p, this computation has been

done in Jaulent’s Thesis [Jau1986, Chapitre III] and reproduced in
[Gra2023, § 2.2, Theorem 2.1 (ii)]; the difficulty comes from the fact
that Hk′,p is not necessary isomorphic to a sub-module of HK ′,p (in-
deed, only JK ′/k′(Hk′,p) makes sense as sub-module of HK ′,p and
JK ′/k′ is not necessarily injective). It writes under our context:

(6.2) #(H G
K ′,p)ω−1 = #(H nr

k′,p)ω−1 × #(Ωk′)ω−1

#(hk′(Ek′))ω−1

.

Since Ek′ = Ek′+ ⊕ µp (up to a prime-to-p index), where the sub-
group Ek′+ of real units of k′ is of even character, and since µp is
of character ω 6= ω−1, the ω−1-component of hk′(Ek′) is trivial and
exact sequences (6.1) and formula (6.2) reduce to:

(6.3)





(H G
K ′,p)ω−1 ≃

(
JK ′/k′(Hk′,p) ·H ram

K ′,p

)
ω−1 ,

(Ωk′)ω−1 ≃ (Gal(Hgen
K ′/k′/K

′Hnr
k′ ))ω−1 ,

#(H G
K ′,p)ω−1 = #(H nr

k′,p)ω−1 × #(Ωk′)ω−1 .
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Whence:

(6.4)

{
rkp

(
K2(ZK)

)
= rkp

(
(HK ′,p)ω−1

)

≥ rkp(HK ′,p/H
1−σ
K ′,p )ω−1 ≥ rkp(Ωk′)ω−1 .

Let G′ := 〈Gv〉v ≃ Gal(K ′/K ′∩Hnr
k′ ); the product formula may be

interpreted by means of the exact sequence:

1→ Ωk′ −→
⊕

v∈S(k′)
Gv −→ G′ ⊆ G→ 1,

in which the character of G′ and that of
⊕

v∈Sp(k′)
Gv is the unit

character. Whence (Ωk′)ω−1 ≃
⊕

v∈Sta(k′)
Gv .

For ℓ ∈ Sta, let peℓ , eℓ ≥ 1, be the ramification index of ℓ in K ′/k′.
The inertia groups Gv , for v | ℓ in k′, does not depend on v and by
abuse may be denoted Gℓ. Since each of the tℓ primes l | ℓ in k,
totally splits in k′/k into p− 1 primes L | l of k′, one may write:

⊕
L

GL =
⊕

ℓ∈Sta

⊕
l|ℓ

⊕
L|l
Gℓ ≃

⊕
ℓ∈Sta

((
Z/peℓZ

)p−1
)tℓ
,

in which, each ℓ-component is, as Galois module, isomorphic to tℓ
copies of the regular representation

⊕p−1
j=1

(
Z[Gℓ]/p

eℓZ[Gℓ]
)
ωj whose

ω−1-component is of order peℓ. Whence (Ωk′)ω−1≃⊕
ℓ∈Sta

(Z/peℓZ)tℓ .
Thus, one obtains, from (6.4), rkp(K2(ZK)) ≥∑

ℓ∈Sta
tℓ. �

Corollary 6.2. We obtain the following consequences:

(i) #(H nr
k′,p)ω−1 × #(Ωk′)ω−1 = #

(
JK ′/k′(Hk′,p) ·H ram

K ′,p

)
ω−1

.

(ii) If K2(Zk)[p
∞] = 1, then (H ram

K ′,p)ω−1 ≃⊕
ℓ∈Sta

(Z/peℓZ)tℓ .

(iii) If k = Q, then:

• rkp(K2(ZK)) ≥ #Sta;

• (H ram
K ′,p)ω−1 ≃⊕

ℓ∈Sta
Z/peℓZ.

Proof. Cases (i), (ii) come from the fact that K2(Zk)[p
∞] = 1 is

equivalent to (Hk′,p)ω−1 = 1, then to (6.3). If k = Q,
∑

ℓ∈Sta
tℓ =

#Sta; then (HQ′,p)ω−1 = 1 from Ribet’s reciprocal of Herbrand’s

criterion, since the Bernoulli number B2 =
1
6 is prime to p [Rib2008,

Theorem 5, p. 45]. Whence (iii). �

Remarks 6.3. (i) For p = 3, ω−1 = ω, so that (H G
K ′,p)ω−1 depends

on
#(ΩQ′)ω−1

#hQ′(µ3)
which may be trivial, when Sta = {ℓ} and [K : Q] = 3.

(ii) Replacing K2(ZK)[p∞] by TK,p (whatever the prime p ≥ 3)
and ω−1 by ω, hQ′(µp) may be non-trivial, being of character ω. So,
if K/Q is of prime conductor ℓ, HK,p = 1 and we may have TK,p = 1
but K2(ZK)[p∞] 6= 1.

(iii) For a table of numerical examples, see Appendix D.1 for the
computation of #K2(ZK)[p∞], p ≥ 3, and Appendix D.2 for the com-
putation of rk5(K2(ZK)[5∞]. Numerical tables are given in [Br2005]
for cyclic cubic fields; more on computations of p-ranks are given in
Qin’s papers [Qin1995, Qin2005, Qin2010].
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7. Conclusion

These explicit calculations lead to a confirmation of the properties
of the Lp-functions when s varies in Zp and takes the values s ∈
{−1, 1}, giving annihilation theorems, orders of isotypic components
of classical p-invariants.

Other invariants than class groups, torsion groups and regular
kernels exist, as for instance the Jaulent logarithmic class group

H̃K,p
2 [Jau1994b, Jau2021, Jau2023] linked to the wild Hilbert kernel

[Jau1994a, Théorème 9] and in relation with Greenberg’s conjecture
[Jau2019, Jau2020] (see Appendices B.2, C.2 for some computations),
and invariants of the higher K-theory (giving conjectural expressions
suggested in [Gra1998, Section 12, Conjecture 12.2] and some results
of [JaMi2006]).

An important problem is to find the structure of these invariants, it
being understood that they fulfill, once genus part has been taken into
consideration, standard densities in the spirit of the Cohen–Lenstra–
Martinet–Malle distributions. A specific technique, of genus theory
type, does exist in cyclic p-extensions, especially for p-class groups
with determining the canonical filtration by means of a natural al-
gorithm generalizing Chevalley–Herbrand fixed points formula (large
bibliography, synthesized in [Gra2017b]).

A main question being to find such algorithms for the other p-
invariants, which unfortunately does not exist to our knowledge; the
case of the most important groups TK,p being very interesting; in-
deed, class field theory (by means of computation of suitable ray class
groups) gives the group structure, but this computational aspect does
not give a method to determine the filtration in cyclic p-extensions;
only the fixed points formula, is known [Gra2005, Theorem IV.3.3].

In a cohomological viewpoint, TK,p is closely related to the Tate–

Chafarevich group III2K,p := Ker
[
H2(GK,S,Fp) → ⊕p|pH

2(GKp
,Fp)

]
,

and that TK,p ≃ H2(GK,S,Zp)
∗ [Ng1986, Théorème1.1], where GK,S

is the Galois group of the maximal p-ramified pro-p-extension of K
and GKp

the local analogue over Kp; generalizations of the same kind
are done in the literature, as in [Kol2002, Theorem 0.4, 0.7, 0.11, . . . ],
[AAM2021, Theorem 3.5, Example 4.3], with analogous cohomologi-
cal framework, without any workable algorithm.

A major difficulty is to interpret, in terms of ideals, global units
and so on, such cohomology groups; the case of TK,p ≃ H2(GK,S,Zp)

∗

is edifying since GK,S is inaccessible, while TK,p depends on the p-
class group and on the normalized p-adic regulator, of K. Of course,
cohomology gives important and non-obvious relations but, in the
previous example, it is the knowledge of TK,p which yields impor-
tant information on GK,S (e.g., case of the simplest structure giving
the notion of p-rational fields issued from [Gra1986a, Mov1988] and
largely developed in a lot of papers; see [Gra2019a, Appendix] for a
survey about this notion and general abelian p-ramification theory).

2Also denoted, most often in the literature, C̃ℓK,p, T̃K,p as quotient of TK,p;
but it looks more like the p-class group HK,p and there exists a formula of the

form #TK,p = H̃K,p · R̃K,p · W̃K,p, for a suitable “logarithmic regulator”, see
[Jau2019, Schema § 2.3]. Moreover it may capitulates in real p-extensions ofK (the
key for Greenberg’s conjecture), while TK,p never capitulates under Leopoldt’s
conjecture.
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Maybe the link we made in [Gra2005, § III.2, Theorem III.2.6, The-
orem III.3.3] and [GJ1989, Appendice], using logarithms of ideals for
an effectiveness of the arithmetic, may be generalized.

As a final remark, we point out the fact that these analytic genus
theory aspects of p-adic pseudo-measures are stated in [Gra1986b] for
any totally real base field k replacing Q (under Leopoldt’s conjecture
for p, to get the important result of deployment [Gra2005, Theo-
rem III.4.1.5]), and allowing similar technics with genus fields frome
Deligne–Ribet pseudo-measures; these results being completed with
for instance the article by Maire [Mai2018] on the class field theory
aspects and governing fields about the existence of prescribed p-cyclic
ramified extensions for which an analog of Theorem 4.4 should apply.

Acknowledgements. I thank with pleasure Litong Deng and Yong-
xiong Li for interesting exchanges about their paper, giving to me
the idea of taking again into account my old papers on genus theory
of p-adic pseudo-measures, hoping that arithmetic invariants of new
families of real abelian fields can be elucidated via this method.

Appendix A. Data relating to the Deng–Li family

This section is only concerned by the family of quadratic fields
described and studied in Section 5; we illustrate and confirm various
numerical aspects.

A.1. Computation of HK,p, TK,p and H̃K,p. We compute the
three fundamental invariants for this family, it being understood that
the structure of HK,p and complex analytic properties are given in
[DeLi2023] in order to study K2(ZK)[2∞].

A.1.1. General program for HK,p, TK,p. It may be convenient to re-
call the program computing the structures of HK,p and TK,p for a
number field K, for any p ∈ [bp,Bp], as soon as a defining polynomial
P ∈ Z[X] (monic, irreducible) is given (in P); for the computation of
TK,p, the parameter nu must be chosen such that pnu be larger than
the exponent of the result T [Gra2017a, § 2.1]; the number r is the
number r2 + 1 of independent Zp-extensions of K:

{P=x^3-7*x+1;bp=2;Bp=5*10^5;K=bnfinit(P,1);r=K.sign[2]+1;

print("P=",P," H=",K.cyc);forprime(p=bp,Bp,nu=6;

Kpn=bnrinit(K,p^nu);HKn=Kpn.cyc;T=List;e=matsize(HKn)[2];

R=0;for(k=1,e-r,c=HKn[e-k+1];v=valuation(c,p);if(v>0,R=R+1;

listinsert(T,p^v,1)));if(R>0,print("p=",p," rk(T)=",R," T=",T)))}

P=x^3-7*x+1 H=[] P=x^8-8*x+1 H=[4]

p=7 rk(T)=1 T=[7] p=2 rk(T)=1 T=[4]

p=701 rk(T)=1 T=[701] p=3 rk(T)=1 T=[3]

A.1.2. Case of the Deng–Li family. The following program verifies
the structure of HK,2 and TK,2 for the Deng–Li family of quadratic
fields, for n = 4:

{L=List

([7215,26455,77415,119535,142935,153735,166335,171015,196359,

226655,241215,243295,257335,283855,311415,315055,420135,430495,

447135,473415,475215,490295,504295,545415,550615,552695,553335,

563695,568815,592215,603655,606615,633399,657735,665223,673215,

685815,687895,727935,751335,755495,757055,790495,798135,803751,

807455,818935,833199,849615,878415,884455,886015,886335,896415,

905255,911495,934935,961935,973655,981695,990015]);
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p=2;nu=9;for(j=1,61,P=x^2-L[j];K=bnfinit(P,1);HK=K.cyc;

Kpn=bnrinit(K,p^nu);HKn=Kpn.cyc;T=List;e=matsize(HKn)[2];

for(k=1,e-1,c=HKn[e-k+1];v=valuation(c,p);if(v>0,listput(T,p^v)));

print("P=",P," T=",T," H=",HK))}

P=x^2-7215 T=[2,2,4] H=[2,2,2] P=x^2-981695 T=[2,2,4] H=[10,2,2]

P=x^2-26455 T=[2,2,4] H=[2,2,2] P=x^2-990015 T=[2,2,4] H=[18,2,2]

From (1.6), the 2-ranks of R2(ZK) and TK,2 are equal to 3, this
implies, since K2(ZK)[2∞] ≃ (Z/2Z)3 × Z/23Z, that:

R2(ZK)[2∞] ≃ (Z/2Z)2 × Z/22Z ≃ TK,2.

More generally, for the Deng–Li family, we have:

R2(ZK)[2∞] ≃ TK,2 ≃ (Z/2Z)n−2× Z/22Z, HK,2 ≃ (Z/2Z)n−1.

From this, we verify that WK,2 ≃ Z/2Z, which is coherent with
the formula #TK,2 = #HK,2 × #RK,2 × #WK,2 since the normalized
2-adic regulator is trivial from Theorem 5.6.

A.1.3. Logarithmic class group. The computation of H̃K,2 (instruc-
tion CLog = bnflog(K, 2)) for the Deng–Li family, gives always the
structure (Z/2Z)2 for n = 4; but we do not know if this invariant is
given by the L2(s, χ)’s at some s ∈ Z2 (see §B.2 for the computation

of H̃K,2 for quadratic fields and §C.2 for the cubic case):

P=x^2-7215 CLog=[[2,2],[],[2,2]] T=[2,2,4] H=[2,2,2]

P=x^2-26455 CLog=[[2,2],[],[2,2]] T=[2,2,4] H=[2,2,2]

(...)

P=x^2-981695 CLog=[[2,2],[],[2,2]] T=[2,2,4] H=[10,2,2]

P=x^2-990015 CLog=[[2,2],[],[2,2]] T=[2,2,4] H=[18,2,2]

Moreover, the third component of bnflog(K, 2) gives the S2-class group
HK,2/cl(p) ≃ Z/2Z × Z/2Z, where p | 2 is ramified; this result con-
firms that necessarily p is non-principal of order 2.

A.2. The canonical non-trivial relation. The program gives the
non-trivial relation whose writing does not contain l1 (with ℓ1 ≡ 3
(mod 8)), then that obtained multiplying by (

√
m). We have proven

that this relation is always pl2 = (α) (Lemma 5.2). The list L gives
the exponents a0, a1, a2, . . ., of ideals p, l1, l2, . . ., in this order espe-
cially for the particular primes l1, l2 (which is not so immediate since
the PARI factorization of m gives primes in the ascending order).
The generator α of the relation of principality is α = u + v

√
m; for

checking, its norm N and the sign S of N are computed:

{m=List

([7215,26455,77415,119535,142935,153735,166335,171015,196359,

226655,241215,243295,257335,283855,311415,315055,420135,430495,

447135,473415,475215,490295,504295,545415,550615,552695,553335,

563695,568815,592215,603655,606615,633399,657735,665223,673215,

685815,687895,727935,751335,755495,757055,790495,798135,803751,

807455,818935,833199,849615,878415,884455,886015,886335,896415,

905255,911495,934935,961935,973655,981695,990015]);p=2;

for(j=1,61,M=m[j];D=quaddisc(M);r=omega(D);L0=List;

for(i=1,r,listput(L0,0));P=x^2-M;K=bnfinit(P,1);print();Lel=List;

Div=component(factor(D),1);listput(Lel,2,1);h=3;for(i=2,r,c=Div[i];

if(Mod(c,4)==-1,el1=c;listput(Lel,c,2)));for(i=2,r,c=Div[i];

if(c!=el1 & kronecker(c,el1)==-1,el2=c;listput(Lel,c,3)));

for(i=2,r,c=Div[i];if(c!=el2 & Mod(c,4)==1,h=h+1;listput(Lel,c,h)));

print("M=",M," D=",Lel);for(k=1,2^r-1,B=binary(k);t=#B;

LB=L0;for(i=1,t,listput(LB,B[i],r-t+i));F=idealfactor(K,D);

Fel=List;CFel=component(F,1);listput(Fel,CFel[1],1);h=3;
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for(i=2,r,c=CFel[i][1];if(Mod(c,4)==-1,el1=c;

listput(Fel,CFel[i],2)));

for(i=2,r,c=CFel[i][1];if(c!=el1 & kronecker(c,el1)==-1,el2=c;

listput(Fel,CFel[i],3)));

for(i=2,r,c=CFel[i][1];if(c!=el2 & Mod(c,4)==1,h=h+1;

listput(Fel,CFel[i],h)));

A=1;for(j=1,r,e=LB[j];if(e==0,next);A=idealmul(K,A,Fel[j]);

Q=bnfisprincipal(K,A);u=Q[2][1];v=Q[2][2];

if(Q[1]==0 & u!=0,print("L=",LB);N=u^2-M*v^2;S=sign(N);

print(component(factor(abs(N)),1));

print("u=",u," v=",v," S=",sign(S)))))}

Let’s give some excerpts showing all possible cases:

M=7215 D=[2,3,5,13,37] M=26455 D=[2,11,13,5,37]

L=[1,0,1,0,0] L=[1,0,1,0,0]

[2,5] [2,13]

u=-85 v=1 S=1 u=86654841 v=-532769 S=1

L=[1,1,0,1,1] L=[1,1,0,1,1]

[2,3,13,37] [2,5,11,37]

u=1443 v=17 S=-1 u=1084184915 v=-6665757 S=-1

M=504295 D=[2,11,173,5,53] M=665223 D=[2,3,461,13,37]

L=[1,0,1,0,0] L=[1,0,1,0,0]

[2,173] [2,461]

u=7970980451749 v=11224562253 S=1 u=10603 v=13 S=1

L=[1,1,0,1,1] L=[1,1,0,1,1]

[-1,2,5,11,53] [2,3,13,37]

u=-32719598967495 v=46075031513 S=-1 u=18759 v=23 S=-1

Appendix B. Quadratic fields

B.1. Computation of #K2(ZK)[2∞], TK,2 and C. The following
program computes, instead, #R2(ZK)[2∞] for any real quadratic field
(so f is m or 4m) and TK,2 for checking of Theorem 4.4 (cases (ii2)
and (iii2) and property (b) about equality v.s. inequality, for all
s ∈ Zp). In that cases, ǫ = 1, D is the number of odd ramified primes,
and C = D (resp. C = D− 1) if θ−1χ(2) = 1 (resp. θ−1χ(2) 6= 1).

Recall that nu and n must be chosen large enough (below we take
n = 10 for m > 100, n = 13 for m > 103).

We do not write the trivial cases TK,2 = R2(ZK)[2∞] = 1.

{p=2;q=4;nu=10;n=6;for(m=5,2000,if(core(m)!=m,next);f=quaddisc(m);

P=x^2-m;K=bnfinit(P,1);Kpn=bnrinit(K,p^nu);H=Kpn.cyc;T=List;

e=matsize(H)[2];valT=0;for(k=1,e-1,h=H[e-k+1];v=valuation(h,p);

if(v>0,valT=valT+v;listput(T,p^v)));f=quaddisc(m);fn=q*p^n*f;c=1;

while(gcd(c,2*m)!=1 || kronecker(f,c)!=-1,c=c+1);S=0;

forstep(a=1,fn/2,2,if(gcd(a,m)!=1,next);aa=lift(Mod(a/c,fn));

la=(aa*c-a)/fn;eps=kronecker(m,a);S=S+a*eps*(la+(1-c)/2));

valR=valuation(S,2)-1;D=omega(m);if(Mod(m,2)==0,D=D-1);

C=D;if(Mod(m,8)!=-1,C=D-1);

if(valT==C,print("m=",m," c=",c," T=",T," v_2(T)=",valT,

" val(R_2Z)=",valR," C=",C," Equality"));

if(valT>C,print("m=",m," c=",c," T=",T," v_2(T)=",valT,

" v_2(R_2Z)=",valR," C=",C," Inequality")))}

m=7 c=5 T=[4] v_2(T)=2 v_2(R_2Z)=2 C=1 Inequality

m=14 c=3 T=[2] v_2(T)=1 v_2(R_2Z)=1 C=0 Inequality

m=15 c=13 T=[4] v_2(T)=2 v_2(R_2Z)=2 C=2 Equality

m=17 c=3 T=[2] v_2(T)=1 v_2(R_2Z)=1 C=0 Inequality

m=21 c=11 T=[2] v_2(T)=1 v_2(R_2Z)=1 C=1 Equality

m=23 c=3 T=[4] v_2(T)=2 v_2(R_2Z)=2 C=1 Inequality

m=30 c=11 T=[2] v_2(T)=1 v_2(R_2Z)=1 C=1 Equality
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m=31 c=7 T=[8] v_2(T)=3 v_2(R_2Z)=3 C=1 Inequality

m=33 c=5 T=[2] v_2(T)=1 v_2(R_2Z)=1 C=1 Equality

m=34 c=7 T=[2] v_2(T)=1 v_2(R_2Z)=1 C=0 Inequality

m=35 c=3 T=[2] v_2(T)=1 v_2(R_2Z)=1 C=1 Equality

m=39 c=11 T=[4] v_2(T)=2 v_2(R_2Z)=2 C=2 Equality

m=41 c=3 T=[16] v_2(T)=4 v_2(R_2Z)=3 C=0 Inequality

(...)

m=1001 c=3 T=[2,2] v_2(T)=2 v_2(R_2Z)=2 C=2 Equality

m=1002 c=5 T=[16] v_2(T)=4 v_2(R_2Z)=5 C=1 Inequality

m=1003 c=5 T=[4] v_2(T)=2 v_2(R_2Z)=2 C=1 Inequality

m=1005 c=29 T=[2,8] v_2(T)=4 v_2(R_2Z)=5 C=2 Inequality

m=1006 c=7 T=[2] v_2(T)=1 v_2(R_2Z)=1 C=0 Inequality

m=1007 c=3 T=[4] v_2(T)=2 v_2(R_2Z)=2 C=2 Equality

m=1009 c=11 T=[2] v_2(T)=1 v_2(R_2Z)=1 C=0 Inequality

m=1010 c=3 T=[2] v_2(T)=1 v_2(R_2Z)=1 C=1 Equality

m=1011 c=7 T=[4] v_2(T)=2 v_2(R_2Z)=2 C=1 Inequality

m=1015 c=17 T=[2,4] v_2(T)=3 v_2(R_2Z)=3 C=3 Equality

m=1022 c=3 T=[2,16] v_2(T)=5 v_2(R_2Z)=9 C=1 Inequality

m=1023 c=5 T=[2,64] v_2(T)=7 v_2(R_2Z)=7 C=3 Inequality

The equality v2(#TK,2) = C often occur and when v2(#TK,2) > C,
then v2(#R2(ZK)[2∞] > C, with some cases of distinct valuations
(m = 41, 65, 66, 114, . . .).

Numerical examples given in [DeLi2023, Table], yield equalities
with C = D + v2(4s) − 2ǫ = 4 for s = −1, since 2 splits in M =
Q(
√−m) (Theorem 4.4 (iii2) and Corollary 4.6).

B.2. Computation of H̃K,2. We give a program of computation
of the logarithmic class group to compare with the invariants HK,2,
TK,2. There are many structures, but the relation between HK,2 and
TK,2 being well-known, we give only an excerpt of interesting exam-

ples concerning H̃K,2. For p = 2, the first component of bnflog(K, 2)

gives H̃ 0
K,2 of index 1 or 2 in H̃K,2 [BeJa2016, § 3, Remark 3.1]:

{bf=10^4;Bf=10^4+10^3;for(m=bf,Bf,if(core(m)!=m,next);PK=x^2-m;

F=component(factor(m),1);nu=12;K=bnfinit(PK,1);HK=K.clgp;

Kpn=bnrinit(K,2^nu);HKn=Kpn.cyc;T=List;w=0;e=matsize(HKn)[2];

for(k=1,e-1,CK=HKn[e-k+1];v=valuation(CK,2);if(v>0,w=w+v;

listput(T,2^v)));K=bnfinit(PK,1);HK=K.clgp;Kpn=bnrinit(K,2^nu);

HKn=Kpn.cyc;T=List;w=0;e=matsize(HKn)[2];for(k=1,e-1,CK=HKn[k+1];

v=valuation(CK,2);if(v>0,w=w+v;listput(T,2^v)));CLK=bnflog(K,2);

print("m=",F," P=",PK," H=",HK[2]," T=",T," CLog=",CLK))}

m=[3,5,23,29] x^2-10005 H=[2,2] T=[4,2,2] CLog=[[2,2],[],[2,2]]

m=[3,47,71] x^2-10011 H=[4,2] T=[4,2] CLog=[[4],[],[4]]

m=[3,5,11,61] x^2-10065 H=[2,2] T=[16,2,2]CLog=[[4],[2],[2]]

m=[2,3,23,73] x^2-10074 H=[8,2] T=[32,4] CLog=[[8],[],[8]]

m=[2,3,19,89] x^2-10146 H=[4,2] T=[8,2] CLog=[[4],[],[4,2]]

m=[7,31,47] x^2-10199 H=[4,2] T=[4,4,2] CLog=[[4,2],[],[4,2]]

m=[10337] x^2-10337 H=[] T=[8] CLog=[[4],[4],[]]

m=[2,5297] x^2-10594 H=[8] T=[32] CLog=[[4],[],[8]]

m=[3,11,17,19]x^2-10659 H=[2,2,2]T=[2,2,2] CLog=[[2,2,2],[],[2,2,2]]

m=[17,641] x^2-10897 H=[2] T=[64,2] CLog=[[2,2],[2],[2]]

m=[3,5,17,47] x^2-11985 H=[2,2] T=[1024,2,2]

CLog=[[128],[64],[2]]

m=[12161] x^2-12161 H=[11] T=[512] CLog=[[16],[16],[]]

m=[2,3,13,167]x^2-13026 H=[2,2] T=[128,2] CLog=[[],[],[2]]

B.3. Computation of TK,3 and #K2(ZK)[3∞]. For p = 3, genus
theory does not apply; we only give the valuation of #K2(ZK)[3∞]
and the structure of TK,3; trivial cases are not written:
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{p=3;nu=5;n=6;for(m=2,10^2,if(core(m)!=m,next);P=x^2-m;

K=bnfinit(P,1);Kpn=bnrinit(K,p^nu);H=Kpn.cyc;T=List;e=matsize(H)[2];

for(k=1,e-1,C=H[e-k+1];v=valuation(C,p);if(v>0,listput(T,p^v)));

f=quaddisc(m);fn=p^(n+1)*f;c=1;while(Mod(c,p)==0 ||

kronecker(f,c)!=-1,c=c+1);S=0;forstep(a=1,fn/2,[1,2],

if(gcd(a,f)!=1,next);aa=lift(Mod(a/c,fn));la=(aa*c-a)/fn;

eps=kronecker(f,a);S=S+a*eps*(la+(1-c)/2));print

("m=",m," v_3(K_2Z)=",valuation(S,3)," T=",T))}

m=6 v_3(K_2Z)=1 T=[3] m=69 v_3(K_2Z)=1 T=[3]

m=15 v_3(K_2Z)=1 T=[3] m=74 v_3(K_2Z)=1 T=[9]

m=29 v_3(K_2Z)=1 T=[9] m=77 v_3(K_2Z)=1 T=[3]

m=33 v_3(K_2Z)=1 T=[3] m=78 v_3(K_2Z)=1 T=[3]

m=42 v_3(K_2Z)=3 T=[9] m=79 v_3(K_2Z)=1 T=[9]

m=43 v_3(K_2Z)=2 T=[3] m=82 v_3(K_2Z)=4 T=[3]

m=51 v_3(K_2Z)=1 T=[3] m=83 v_3(K_2Z)=1 T=[3]

(...)

m=10187 v_3(K_2Z)=2 T=[81] m=10673 v_3(K_2Z)=4 T=[27]

m=10239 v_3(K_2Z)=2 T=[3,9] m=10771 v_3(K_2Z)=6 T=[9]

m=10281 v_3(K_2Z)=1 T=[27] m=10842 v_3(K_2Z)=4 T=[3,3]

m=10297 v_3(K_2Z)=4 T=[3] m=10942 v_3(K_2Z)=2 T=[3,243]

m=10351 v_3(K_2Z)=1 T=[243] m=11062 v_3(K_2Z)=3 T=[27]

Appendix C. Cyclic cubic fields

C.1. Computation of #K2(ZK)[3∞], TK,3 and C. We consider all
cyclic cubic fields, which requires calculating the Artin group giving
Gal(Q(µf )/K); indeed, a composite conductor f gives rise to several
fields, so that we must work from the defining polynomial depending

on suitable integers a, b such that f = a2+27 b2

4 (another method
would be to work in the group (Z/fZ)×, giving other difficulties).
We compare vm

(
#K2(ZK)[3∞]

)
to C to see if we are, or not, in case

of equality vm
(
L3(s, χ)

)
= C, ∀ s ∈ Z3.

C.1.1. General program. The program gives at first the list of all
cyclic cubic fields, of conductor f (in f, f ∈ [bf,Bf]), with a defining
polynomial PK (in PK). We compute for p = 3 the structures of the 3-
class group (in H) that of the 3-torsion group (in T) and #K2(ZK)[3∞]
(in #K 2Z).

Except if the first layer of the cyclotomic Z3-extension of K is non-
ramified (e.g., f = 657, P = x3 − 219 ∗ x+ 730, HK = [3, 3], T = [3]),
then TK,3 = 1 implies HK,3 = RK,3 = 1 since WK,3 = 1:

{bf=7;Bf=10^3;Q=y^2+y+1;Y=Mod(y,Q);for(f=bf,Bf,

if(isprime(f)==1,next);h=valuation(f,3);if(h!=0 & h!=2,next);

F=f/3^h;if(core(F)!=F,next);F=factor(F);Div=component(F,1);

d=matsize(F)[1];for(j=1,d,D=Div[j];if(Mod(D,3)!=1,break));

Df=component(factor(f),1);for(b=1,sqrt(4*f/27),

if(h==2 & Mod(b,3)==0,next);A=4*f-27*b^2;if(issquare(A,&a)==1,

if(h==0,if(Mod(a,3)==1,a=-a);PK=x^3+x^2+(1-f)/3*x+(f*(a-3)+1)/27);

if(h==2,if(Mod(a,9)==3,a=-a);PK=x^3-f/3*x-f*a/27);

nu=8;K=bnfinit(PK,1);HK=K.clgp;Kpn=bnrinit(K,3^nu);HKn=Kpn.cyc;

T=List;w=0;e=matsize(HKn)[2];for(k=1,e-1,CK=HKn[e-k+1];

v=valuation(CK,3);if(v>0,w=w+v;listput(T,3^v)));

C=omega(f)-1;if(Mod(f,3)==0,C=C-1);forprime(q=2,10^2*f,

if(Mod(3*f,q)!=0 & polisirreducible(PK+O(q))==1,q0=q;break));

A0=List;A1=List;A2=List;c=q0;n=3;fn=3^n*f;N=eulerphi(fn)/(2*3);

for(s=1,fn/2,if(gcd(s,f*3)!=1,next);for(k=0,fn,r=s+k*fn;

if(isprime(r)==0,next);if(polisirreducible(PK+O(r))==0,

listput(A0,s);break)));S0=0;S1=0;S2=0;g=(1-c)/2;

for(j=1,N,s=A0[j];listput(A1,lift(Mod(s*q0,fn))));
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for(j=1,N,s=A1[j];listput(A2,lift(Mod(s*q0,fn))));

for(j=1,N,s=A0[j];t=lift(Mod(s/c,fn));ls=(t*c-s)/fn;S0=S0+s*(ls+g));

for(j=1,N,s=A1[j];t=lift(Mod(s/c,fn));ls=(t*c-s)/fn;S1=S1+s*(ls+g));

for(j=1,N,s=A2[j];t=lift(Mod(s/c,fn));ls=(t*c-s)/fn;S2=S2+s*(ls+g));

S=S0+Y*S1+Y^2*S2;K2=norm(S)/3;v=valuation(K2,3);

if(v==C,print("f=",Df," P=",PK," H=",HK[2],

" T=",T," #K_2Z=",3^v," C(s)=",C," Equality"));

if(v>C,print("f=",Df," P=",PK," H=",HK[2],

" T=",T," #K_2Z=",3^v," C(s)=",C," Inequality")))))}

C.1.2. Numerical results. We only write an excerpt of the results:

f=[9,7] P=x^3-21*x-35 H=[3] T=[] #K_2Z=1 C(s)=0 Equality

f=[9,7] P=x^3-21*x+28 H=[3] T=[] #K_2Z=1 C(s)=0 Equality

f=[7,13] P=x^3+x^2-30*x-64 H=[3] T=[3] #K_2Z=3 C(s)=1 Equality

f=[7,13] P=x^3+x^2-30*x+27 H=[3] T=[3] #K_2Z=3 C(s)=1 Equality

f=[9,19] P=x^3-57*x-152 H=[3] T=[3] #K_2Z=3 C(s)=0 Inequality

f=[9,19] P=x^3-57*x+19 H=[3] T=[3] #K_2Z=3 C(s)=0 Inequality

f=[7,31] P=x^3+x^2-72*x+209 H=[3] T=[3,3]#K_2Z=9 C(s)=1 Inequality

f=[7,31] P=x^3+x^2-72*x-225 H=[3] T=[3] #K_2Z=3 C(s)=1 Equality

f=[9,37] P=x^3-111*x+370 H=[3] T=[3] #K_2Z=3 C(s)=0 Inequality

f=[9,37] P=x^3-111*x+37 H=[3] T=[3] #K_2Z=3 C(s)=0 Inequality

f=[13,31]P=x^3+x^2-134*x-597 H=[3] T=[3] #K_2Z=3 C(s)=1 Equality

f=[13,31]P=x^3+x^2-134*x+209 H=[3] T=[3] #K_2Z=3 C(s)=1 Equality

f=[7,61] P=x^3+x^2-142*x+601 H=[3] T=[3] #K_2Z=3 C(s)=1 Equality

f=[7,61] P=x^3+x^2-142*x-680 H=[3] T=[9,9]#K_2Z=9 C(s)=1 Inequality

f=[7,67] P=x^3+x^2-156*x-799 H=[3] T=[3,3]#K_2Z=27 C(s)=1 Inequality

f=[7,67] P=x^3+x^2-156*x+608 H=[3] T=[3] #K_2Z=3 C(s)=1 Equality

(...)

f=[9,73] P=x^3-219*x-1241 H=[3,3] T=[3] #K_2Z=3 C(s)=0 Inequality

C.2. Computation of H̃K,3. We use a part of the previous pro-
gram, adding the computation of the logarithmic class group and we
write some data obtained up to conductors ≤ 103, then for larger

conductors. The first component of bnflog(K, 3) gives H̃K,3, the

second one (often trivial) is the sub-group c̃l(〈S3〉) generated by

S3 and the third component is H
S3

K,3 = HK,3/cl(〈S3〉); we have

H̃K,3/c̃l(〈S3〉) ≃H
S3

K,3 [BeJa2016].

f=[19] x^3+x^2-6*x-7 H=[] T=[3] CLog=[[],[],[]]

f=[7,13] x^3+x^2-30*x-64 H=[3] T=[3] CLog=[[3],[],[3]]

f=[9,61] x^3-183*x-854 H=[3] T=[] CLog=[[],[],[3]]

f=[19,37] x^3+x^2-234*x-729 H=[2,6] T=[3,3] CLog=[[3],[3],[]]

f=[7,181] x^3+x^2-422*x+3191 H=[3,3] T=[3,3] CLog=[[3,3],[],[3,3]]

(...)

f=[7,19,73,103] P=x^3+x^2-333342*x+73964960

H=[3,3,3,3] T=[3,3,3,3] CLog=[[3,3,3,3],[],[3,3,3,3]]

f=[7,19,73,103] P=x^3+x^2-333342*x-69038901

H=[6,6,3] T=[3,3,3,3] CLog=[[3,3,3],[3],[3,3]]

f=[7,19,73,103] P=x^3+x^2-333342*x-49038361

H=[3,3,3] T=[3,3,3] CLog=[[3,3,3],[],[3,3,3]]

f=[397,251893] P=x^3+x^2-33333840*x+41296924413

H=[3] T=[9,3,3] CLog=[[3,3],[3,3],[]]

f=[7,14286007] P=x^3+x^2-33334016*x-56482638787

H=[54,18] T=[27,27] CLog=[[27,9],[],[27,9]]

f=[7,163,87643] P=x^3+x^2-33333554*x-214816239

H=[3,3] T=List([3,3,3]) CLog=[[3,3],[3],[3]]

f=[100001053] P=x^3+x^2-33333684*x-17437220649

H=[] T=List([9,3]) CLog=[[9,3],[9,3],[]]

f=[31,103,31321] P=x^3+x^2-33335984*x+68190607953

H=[6,6,3] T=List([9,9,3]) CLog=[[9,3],[3],[3,3]]
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C.3. Computation of #K2(ZK)[2∞] and TK,2. We still compute
#R2(ZK)[2∞] ∼ 1

2 ·L2(−1, χ)× 1
2 ·L2(−1, χ2), for prime conductors,

noting that genus theory does not apply for cyclic cubic fields with
p = 2. We compute TK,2, at first with the classical program using
ray class groups, then we use formula of Theorem 4.1 in the follow-
ing complete program (we only print an example of the six cases of
structures that occur up to f = 3500):

{p=2;Q=y^2+y+1;Y=Mod(y,Q);forprime(f=7,5*10^5,

if(Mod(f,3)!=1,next);for(b=1,sqrt(4*f/27),A=4*f-27*b^2;

if(issquare(A,&a)==1,if(Mod(a,3)==1,a=-a);

P=x^3+x^2+(1-f)/3*x+(f*(a-3)+1)/27;K=bnfinit(P,1);nu=8;

Kpn=bnrinit(K,p^nu);HKn=Kpn.cyc;T=List;e=matsize(HKn)[2];

for(k=1,e-1,CK=HKn[e-k+1];v=valuation(CK,p);if(v>0,listput(T,p^v)));

g=znprimroot(f);c=lift(g);if(Mod(c,p)==0,c=c+f);n=8;ex=(f-1)/3;

cex=Mod(c,f)^ex;R0=0;R1=0;R2=0;T0=0;T1=0;T2=0;fn=p^(n+2)*f;

forstep(a=1,fn/2,2,if(Mod(a,f)==0,next);aa=lift(Mod(a/c,fn));

am=lift(Mod(a,fn)^-1);la=(aa*c-a)/fn;XR=a*(la+(1-c)/2);XT=am*la;

aex=Mod(a,f)^ex;if(aex==1,R0=R0+XR;T0=T0+XT);if(aex==cex,

R1=R1+XR;T1=T1+XT);if(aex==cex^2,R2=R2+XR;T2=T2+XT));

AR=lift(Mod(R0-R2,fn));BR=lift(Mod(R1-R2,fn));

AT=lift(Mod(T0-T2,fn));BT=lift(Mod(T1-T2,fn));

NR=norm(AR+Y*BR);wR=valuation(NR,p);

NT=norm(AT+Y*BT);wT=valuation(NT,p);print();print("f=",f," P=",P);

print("AR=",AR," BR=",BR," #R_2Z=",p^wR);print("T=",T);

print("AT=",AT," BT=",BT," #T=",p^wT))))}

f=7 P=x^3+x^2-2*x-1 f=739 P=x^3+x^2-246*x-520

AR=114683 BR=6 #R_2Z=1 AR=7232 BR=4072 #R_2Z=64

T=[] T=[8,8]

AT=45707 BT=57070 #T=1 AT=2395776 BT=8911992 #T=64

f=31 P=x^3+x^2-10*x-8 f=2689 P=x^3+x^2-896*x+5876

AR=24 BR=507870 #R_2Z=4 AR=1733440 BR=461096 #R_2Z=64

T=[2,2] T=[16,16]

AT=82976 BT=73118 #T=4 AT=29791312 BT=37866256 #T=256

f=277 P=x^3+x^2-92*x+236 f=3163 P=x^3+x^2-1054*x-13472

AR=3256 BR=4537692 #R_2Z=16 AR=432 BR=51769200 #R_2Z=256

T=[4,4] T=[16,16]

AT=718480 BT=1119412 #T=16 AT=11946416 BT=40520656 #T=256

f=3457 P=x^3+x^2-1152*x+13700 f=6163 P=x^3+x^2-2054*x+17576

AR=286536 BR=3460600 #R_2Z=64 AR=6140160 BR=6195120 #R_2Z=256

T=List([16,16]) T=List([8,8])

AT=2216784 BT=1012224 #T=256 AT=2754032 BT=3116408 #T=64

We know from (1.6) that R2(ZK)[2∞] and TK,2 have same 2-rank,
but we see that most often the whole structures coincide (first excep-
tions f = 2689, 3457 and f = 6163 giving an interesting case).

C.4. Zeroes of p-adic L-functions and C(s). A method, to study
the influence of the zeroes, close to s = 1, of p-adic L-functions, is
to construct families of degree-p cyclic fields Kn such that the p-adic
regulator tends to 0 as n → ∞, so Lp(1, χn) → 0 and #TKn,p → 0
from (1.3); thus, invariants given by some Lp(s0, χn), s0 ∈ Z×

p , have

the same behavior because of the role of C(s) = C when s ∈ Z×
p

(Theorem4.4).

C.4.1. The Lecacheux–Washington cyclic cubic fields. The following
family of cyclic cubic fields K illustrates, for p = 3, the fact that, in
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a genus theory context, the strict inequality (Theorem 4.4 (b)):

vm
(1
2
L3(s, χ)

)
> C, ∀ s ∈ Z3,

can be largely exceeded because of L3(1, χ) very close to 0:

Using the family of cubic polynomials [Lec1993, Wa1996]:

Pn = x3 − (n3 − 2n2 + 3n− 3)x2 − n2x− 1,

for some values of n→ 1 in Z3, one obtains 3-adic L-functions having
a zero near s = 1, which of course gives large modules TKn,3. The
required conditions are given in [Wa1996, Theorem 3].

C.4.2. Numerical examples. The constantC associated to these fields
is always 2, so that we must obtain v3(TK,3) > 2 as soon as n is close
to 1 in Z3. We give the program and some examples suggesting that
#TKn,3 is unbounded in such families, as n→∞; but these fields have

an huge discriminant Dn and the function Cp(Kn) :=
log(#TKn,p)

log(
√
Dn)

,

that we have introduced in [Gra2019b], is rather small and fulfills the
various conjectures given in this article:

{M=3^5;forstep(n=1,10^6,M,if(isprime(n^2+3)==0,next);

A=n^2-3*n+3;if(numdiv(A)!=4,next);F=factor(A);

p=component(F,1)[1];q=component(F,1)[2];

if(Mod(p^2,9)==1 || Mod(q^2,9)==1,next);

P=x^3-(n^3-2*n^2+3*n-3)*x^2-n^2*x-1;K=bnfinit(P,1);

nu=18;HK=K.clgp;Kpn=bnrinit(K,3^nu);HKn=Kpn.cyc;

T=List;w=0;e=matsize(HKn)[2];for(k=1,e-1,CK=HKn[e-k+1];

v=valuation(CK,3);if(v>0,w=w+v;listput(T,3^v)));

print("n=",n," p=",p," q=",q," T=",T," v_3(T)=",w))}

n=2674 p=43 q=166099 T=[3,81,243] v_3(T)=10

n=40096 p=3271 q=491461 T=[3,729,729] v_3(T)=13

n=43498 p=6547 q=288979 T=[3,81,243] v_3(T)=10

n=50788 p=28111 q=91753 T=[3,243,243] v_3(T)=11

n=56134 p=3613 q=872089 T=[3,729,2187] v_3(T)=14

n=76546 p=31 q=189001951 T=[3,2187,2187] v_3(T)=15

n=78490 p=7 q=880063519 T=[3,81,243] v_3(T)=10

n=96958 p=79 q=118994467 T=[3,9,243,729] v_3(T)=14

n=124660 p=7 q=2219963089 T=[3,6561,6561] v_3(T)=17

n=158194 p=135301 q=184957 T=[3,243,729] v_3(T)=12

(...)

n=570808 p=643 q=506718601 T=[3,6561,19683] v_3(T)=18

n=649540 p=229 q=1842359227 T=[3,3,19683,59049]v_3(T)=21

Note that n = 570808 ≡ 1 (mod 39) and n = 649540 ≡ 1 (mod 310).

For M = 3, only giving n ≡ 1 (mod 3), we obtain many equalities:

n=340 p=7 q=16369 T=[3,3] v_3(T)=2

n=736 p=79 q=6829 T=[3,3] v_3(T)=2

n=970 p=7 q=133999 T=[3,3] v_3(T)=2

(...)

For M = 9, giving n ≡ 1 (mod 9), we never obtain a valuation 2,
but minimal valuations are 4:

n=874 p=7 q=108751 T=[3,3,9] v_3(T)=4

n=2926 p=1777 q=4813 T=[3,3,9] v_3(T)=4

n=4042 p=3067 q=5323 T=[3,3,9] v_3(T)=4

(...)

More generally, the minimal valuations are 2 v3(M).
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Appendix D. Numerical results for p ≥ 5

When p ≥ 5 and for a cyclic p-extensionK/Q, the trick used for p ∈
{2, 3} does not exist and we only have available the complex analytic
formulas of #K2(ZK) and the rank formula (1.4) giving Theorem 6.1.

D.1. Computation of #K2(ZK)[p∞]. The computation of the or-
der of K2(ZK) uses Bernoulli polynomials [Wa1997, Theorem 4.2
using Proposition 4.1].

The following program computes the p-valuation of the product∏
χ 6=χ0

L(−1, χ) for the p − 1 characters χ of order p and prime

conductorℓ with the formula L(−1, χ) ∼∑ℓ−1
a=1 χ(a) (a

2 − ℓa), where
χ(a) is computed from χ(g) := ζp, where g is a primitive root modulo

ℓ and from the writing a ≡ gk (mod ℓ) for k ∈ [1, ℓ − 1]; by compar-
ison we compute the structure of TK,p. The case p = 3 is included
to recall that it is particular and may give trivial modules; moreover,
for p > 3, equality (1.6) does not apply in general:

{forprime(p=3,100,Q=polcyclo(p);X=Mod(x,Q);print();

forprime(ell=1,10^4,if(Mod(ell,p)!=1,next);g=znprimroot(ell);

L=0;for(k=1,ell-1,a=lift(g^k);E=a^2-a*ell;L=L+E*X^k);

w=valuation(norm(L),p);P=polsubcyclo(ell,p);K=bnfinit(P,1);

nu=8;Kpn=bnrinit(K,p^nu);HKn=Kpn.cyc;T=List;e=matsize(HKn)[2];

for(k=1,e-1,c=HKn[e-k+1];v=valuation(c,p);if(v>0,listput(T,p^v)));

print("p=",p," ell=",ell," T=",T," v(K_2Z)=",w)))}

p=3 ell=7 T=[] v(K_2Z)=0 p=11 ell=23 T=[] v(K_2Z)=1

p=3 ell=19 T=[3] v(K_2Z)=1 p=11 ell=727 T=[11] v(K_2Z)=1

p=3 ell=199 T=[3,3] v(K_2Z)=2 p=11 ell=1321 T=[] v(K_2Z)=3

p=3 ell=4177 T=[9,9] v(K_2Z)=3 p=11 ell=1453 T=[11] v(K_2Z)=1

p=3 ell=2593 T=[3,9] v(K_2Z)=6 p=11 ell=3631 T=[11] v(K_2Z)=2

p=3 ell=21997 T=[27,81]v(K_2Z)=7 p=11 ell=4357 T=[11,11]v(K_2Z)=1

p=5 ell=11 T=[] v(K_2Z)=1 p=13 ell=53 T=[] v(K_2Z)=1

p=5 ell=101 T=[5,5] v(K_2Z)=1 p=13 ell=677 T=[13] v(K_2Z)=1

p=5 ell=181 T=[] v(K_2Z)=3 p=13 ell=1483 T=[] v(K_2Z)=2

p=5 ell=401 T=[5,5] v(K_2Z)=2 p=13 ell=2029 T=[13] v(K_2Z)=1

p=5 ell=3001 T=[5] v(K_2Z)=7 p=13 ell=6761 T=[13] v(K_2Z)=4

p=5 ell=5351 T=[5,5,5]v(K_2Z)=1 p=13 ell=11831T=[13] v(K_2Z)=2

p=7 ell=29 T=[] v(K_2Z)=1 p=17 ell=103 T=[] v(K_2Z)=2

p=7 ell=127 T=[] v(K_2Z)=2 p=17 ell=137 T=[] v(K_2Z)=1

p=7 ell=197 T=[7,7] v(K_2Z)=1 p=17 ell=3469 T=[17] v(K_2Z)=1

p=7 ell=491 T=[7] v(K_2Z)=1 p=17 ell=3571 T=[] v(K_2Z)=1

p=7 ell=4159 T=[] v(K_2Z)=3 p=17 ell=3673 T=[] v(K_2Z)=1

p=7 ell=4229 T=[] v(K_2Z)=4 p=17 ell=3911 T=[] v(K_2Z)=1

For p large, the p-valuation is almost often 1 with a trivial TK,p.

D.2. Computations of rk5(K2(ZK)). The next programs compute
the ω−1-component of the 5-class group HK2

of K2 := K(µ5), for
degree-5 cyclic fields K, of prime conductor in the first section, then
with f = 11 · 31 in the second section, thus giving the 5-rank of
K2ZK [5∞] (formula (1.4), where 〈S5(K ′)〉 is of character χ0).

The program computes the 5-class group HK1
of K1 := K(

√
5),

so that HK2
= HK1

⊕
(HK2

)ω−1

⊕
(HK2

)ω, where rk5(HK2
)ω =

rk5(TK,5) (formula (1.5)), where the structure of TK,5 is computed
as usual via the program of Section A.1. Whence:

rk5(K2(ZK)) = rk5(HK2
)− rk5(HK1

)− rk5(TK,5).
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D.2.1. Case of prime conductors. So, f is a prime number ℓ ≡ 1
(mod 5); thus, HK = 1. We write an excerpt of each structures
obtained:

{p=5;forprime(ell=11,10^5,if(Mod(ell,p)!=1,next);

P=polsubcyclo(ell,p);print("conductor ell=",ell," P=",P);nu=8;

K=bnfinit(P,1);HK=K.clgp[2];Kpn=bnrinit(K,p^nu);HKn=Kpn.cyc;

TK=List;w=0;e=matsize(HKn)[2];for(k=1,e-1,Ck=HKn[e-k+1];

v=valuation(Ck,p);if(v>0,listput(TK,p^v)));

R1=polcompositum(P,polsubcyclo(p,2))[1];LK1=bnfinit(R1,1);

R2=polcompositum(P,polcyclo(p))[1];LK2=bnfinit(R2,1);

print("TK=",TK," HK1=",LK1.clgp[2]," HK2=",LK2.clgp[2])}

conductor ell=11 P=x^5+x^4-4*x^3-3*x^2+3*x+1

TK=[] HK1=[] HK2=[5]

conductor ell=31 P=x^5+x^4-12*x^3-21*x^2+x+5

TK=[] HK1=[] HK2=[10,10,2,2]

conductor ell=101 P=x^5+x^4-40*x^3+93*x^2-21*x-17

TK=[5,5] HK1=[] HK2=[2005,5,5]

conductor ell=151 P=x^5+x^4-60*x^3-12*x^2+784*x+128

TK=[5] HK1=[] HK2=[5305,5]

conductor ell=251 P=x^5+x^4-100*x^3-20*x^2+1504*x+1024

TK=[5] HK1=[] HK2=[11810,10,2,2]

conductor ell=281 P=x^5+x^4-112*x^3-191*x^2+2257*x+967

TK=[] HK1=[5] HK2=[261005,5,5]

conductor ell=401 P=x^5+x^4-160*x^3+369*x^2+879*x-29

TK=[5,5] HK1=[] HK2=[42505,5,5,5]

conductor ell=421 P=x^5+x^4-168*x^3+219*x^2+3853*x-3517

TK=[] HK1=[5] HK2=[225915,15,3,3]

The rank 2 is obtained for ℓ = 31, 281, 401.

D.2.2. An example of composite conductor. The next program com-
putes the ω−1-component for the four degree-5 cyclic fields K of con-
ductor f = 11 · 31 (for which TK,5 = 1). One may replace f = 11 ∗ 31
by any product of primes ℓ1 ≡ ℓ2 ≡ 1 (mod 5)):

{p=5;f=11*31;LP=polsubcyclo(f,p);d=matsize(LP)[2];

for(i=1,d,P=LP[i];D=nfdisc(P);if(D!=f^(p-1),next);

print();print(P);K=bnfinit(P,1);HK=K.clgp[2];

nu=8;Kpn=bnrinit(K,p^nu);HKn=Kpn.cyc;

TK=List;w=0;e=matsize(HKn)[2];for(k=1,e-1,Ck=HKn[e-k+1];

v=valuation(Ck,p);if(v>0,listput(TK,p^v)));

R1=polcompositum(P,polsubcyclo(p,2))[1];LK1=bnfinit(R1,1);

R2=polcompositum(P,polcyclo(p))[1];LK2=bnfinit(R2,1);

print("HK=",HK," TK=",TK," HK1=",LK1.clgp[2]," HK2=",LK2.clgp[2])}

x^5-x^4-136*x^3+641*x^2-371*x-67

HK=[5] TK=[] HK1=[5,5] HK2=[218305,5,5,5,5]

x^5-x^4-136*x^3-723*x^2-1053*x-67

HK=[5] TK=[] HK1=[5,5] HK2=[145505,5,5,5,5]

x^5-x^4-136*x^3-41*x^2+3039*x-1431

HK=[5] TK=[] HK1=[5,5] HK2=[3805,5,5,5,5,5,5]

x^5-x^4-136*x^3+300*x^2+2016*x-3136

HK=[5] TK=[] HK1=[5,5] HK2=[12605,5,5,5,5,5]

The third case gives rk5((K2ZK [5∞]ω−1) = 4 and the last one gives
the rank 3. With f = 11 · 101, one obtains interesting structures,
giving the ranks 2, 2, 4, 3, respectively:

x^5-x^4-444*x^3+3644*x^2+80*x-32000

HK=[5] TK=[5] HK1=[5,5] HK2=[1196410,10,10,10,5]

x^5-x^4-444*x^3+311*x^2+32299*x+26883

HK=[5] TK=[5] HK1=[5,5] HK2=[15020305,5,5,5,5]

x^5-x^4-444*x^3-1911*x^2+12301*x-8669
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HK=[5] TK=[5] HK1=[5,5] HK2=[1405,1405,5,5,5,5,5]

x^5-x^4-444*x^3+311*x^2+43409*x+4663

HK=[5] TK=[5] HK1=[5,5] HK2=[5559605,5,5,5,5,5]

These ranks may indeed be larger than the number of tame rami-
fied primes; this illustrates Theorem 6.1.

D.3. Computation of L(−1−(p−3) pn, χ). Let K/Q be a degree-p
cyclic extension. For p ≥ 5 the conditions (2.1) (m > 1 and m ≡ 0
(mod p − 1)) are not fulfilled for m = 2, which does not allow to
express L(−1, χ) by means of Lp-function at s = −1. But we may
compute, with:

m := 2 + (p− 3)pn > 1 and (−1)n := 1−m = −1− (p− 3)pn,

the following expression:
{
Lp(−1− (p− 3) pn, χ) = (1− p1+(p−3) pn)L((−1)n, χ))

∼ Lp(−1, χ), for n large enough.

This does not give #K2(ZK)[p∞] but is related to #K2m−2(ZK)[p∞]
of higher K-theory, from Quillen–Lichtenbaum conjecture, via the
L((−1)n, χ)’s [Kol2002, Ng1992]:

ζK((−1)n) = ζK(1−m) = ±#K2m−2(ZK)

wm(K)
,

where wm(K) is the largest integer N such that [K(ζN ) : K] | m.
One computes that for a degree-p cyclic extension K/Q for p 6= 2,
wm(K) ∼ p, which will give vp(#K2(ZK)[p∞] = vp(ζK(1−m)) + 1.

Indeed, the condition m ≡ 0 (mod (p − 1)) of definition (2.1) is
fulfilled for m = 2 + (p − 3)pn, so that relation between p-adic and
complex L-functions does exist and leads, for n large enough, by
continuity of Lp(s, χ), to

∏
χ 6=χ0

L((−1)n, χ) ∼
∏

χ 6=χ0
Lp(−1, χ),

since the Euler factors 1− pm−1χ(p) are p-adic units.

Thus, formula of Theorem 4.1 for s = (−1)n makes sense for com-
puting L((−1)n, χ), of constant valuation for n ≥ n0, and only de-
pending on the computation of Lp(−1, χ) related to #K2(ZK)[p∞]
and, in some sense, to #TK,p.

The complex analytic computation of L((−1)n, χ) is done by the
following program, with m = 2 + (p − 3)pn, but with less immediate
Bernoulli polynomials; so we use their definition with series; we give
also the computation of the structure of TK,p:

{n=2;forprime(p=5,50,m=2+(p-3)*p^n;print();forprime(ell=1,60000,

if(Mod(ell,p)!=1,next);Q=polcyclo(p);X=Mod(x,Q);g=znprimroot(ell);

P=polsubcyclo(ell,p);K=bnfinit(P,1);nu=8;Kpn=bnrinit(K,p^nu);

HKn=Kpn.cyc;TK=List;w=0;e=matsize(HKn)[2];for(k=1,e-1,

Ck=HKn[e-k+1];v=valuation(Ck,p);if(v>0,listput(TK,p^v)));

Factm=1;for(i=1,m,Factm=i*Factm);

B=(x+O(x^(m+2)))*exp(x*y/ell+O(x^(m+2)))/(exp(x+O(x^(m+2)))-1);

Bm=ell^(m-1)/m*Factm*polcoeff(B,m);L=0;dm=poldegree(Bm);

for(k=1,ell-1,a=lift(g^k);E=0;for(j=0,dm,cm=polcoeff(Bm,j);

E=E+cm*a^j);L=L+E*X^k);vm=valuation(norm(L),p);

print("p=",p," ell=",ell," T=",TK," v(K_(2m-2)Z)=",vm+1)))}

For instance, for p = 5 and cyclic quintic fields of prime conductorℓ,
this gives the following examples where m = 52:

ell=101 T=[5,5] v(K_(2m-2)Z)=3 ell=401 T=[5,5] v(K_(2m-2)Z)=3

ell=151 T=[5] v(K_(2m-2)Z)=2 ell=5351 T=[5,5,5] v(K_(2m-2)Z)=4

ell=251 T=[5] v(K_(2m-2)Z)=2 ell=29251T=[5,5,5,5] v(K_(2m-2)Z)=5
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In the selected interval, #TK,5 and
∏

χ 6=χ0
L5(−1, χ) have same

valuation, giving v5(#K2(ZK)) = v5(#TK,5) + 1, whereas #TK,5

is also obtained p-adically, replacing 〈a〉 · θ−1χ(a) by a−1 χ(a) =
〈a〉−1θ−1χ(a) in formula of Theorem 4.1. However, the minimal ℓ
giving distinct 5-valuations is given by the following data:

ell=56401 T=[5,5,5,25] v(T)=5 v(K_(2m-2)Z)=7

S0=173625530 S1=5807338145*Y S2=-7744983390*Y^2 S3=-4753111575/2*Y^3

S4=-8281263805/2*Y^3-8281263805/2*Y^2-8281263805/2*Y-8281263805/2

S=-6517187690*Y^3-23771230585/2*Y^2+3333412485/2*Y-7934012745/2

=5*(-1303437538*Y^3-4754246117/2*Y^2+666682497/2*Y-1586802549/2)

norm(S)=5^4*539252420555567630791570203161974917625/16=5^7*u

R=norm(S)/p=5^6*u

Computing L5((−1)n, χ) by means of the formula of Theorem 4.1
gives again the results:

{n=2;p=5;m=2+(p-3)*p^n;Q=polcyclo(p);X=Mod(x,Q);

forprime(ell=1,5351,if(Mod(ell,p)!=1,next);fn=p*p^n*ell;

g=znprimroot(ell);c=lift(g);if(Mod(c,p)==0,c=c+ell);S=0;

for(a=1,fn/2,if(gcd(a,p*ell)!=1,next);aa=lift(Mod(a/c,fn));

la=(aa*c-a)/fn;A=lift(Mod(a,fn)^(m-1));u=znlog(Mod(a,ell),g);

S=S+(la+(1-c)/2)*A*X^u);NS=norm(S);vm=valuation(NS,p)-1;

print("p=",p," ell=",ell," v(K_(2m-2)Z)=",vm+1))}

ell=101 v(K_(2m-2)Z)=3 ell=401 v(K_(2m-2)Z)=3

ell=151 v(K_(2m-2)Z)=2 ell=601 v(K_(2m-2)Z)=2

ell=251 v(K_(2m-2)Z)=2 ell=701 v(K_(2m-2)Z)=3

References

[AAM2021] J. Assim, H. Asensouyis, Y. Mazigh A genus formula for the positive
étale wild kernel, J. Number Theory 218 (2021), 161–179.
https://doi.org/10.1016/j.jnt.2020.07.013 6, 19

[AF1972] Y. Amice, J. Fresnel, Fonctions zêta p-adiques des corps de nombres
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Publ. Math. Fac. Sci. Besançon (Théorie des Nombres), Années
1991/92 (1992), 1–5.. https://doi.org/10.5802/pmb.a-67 5

[BN2005] J-R. Belliard, T. Nguyen Quang Do, On modified circular units and
annihilation of real classes, Nagoya Math. J. 177 (2005), 77–115.
https://doi.org/10.1017/S0027763000009065 6

[BP1972] F. Bertrandias, J-J. Payan, Γ-extensions et invariants cyclotomiques,
Ann. Sci. Ec. Norm. Sup. 4(5) (1972), 517–548.
https://doi.org/10.24033/asens.1236 3, 4

[Br1992] J. Browkin, On the p-rank of the tame kernel of algebraic number
fields, J. Reine Angew. Math. 432 (1992), 135–149.
https://doi.org/10.1515/crll.1992.432.135 5

[Br2005] J. Browkin, Tame kernels of cubic cyclic fields, Math. Comp. 74
(2005), 967–999.
https://doi.org/10.1090/S0025-5718-04-01726-0 5, 18

[BS1982] J. Browkin, A. Schinzel, On Sylow 2-subgroups of K2OF for quadratic
number fields F , J. Reine Angew. Math. 331 (1982), 104–113.
https://eudml.org/doc/152417 5

https://doi.org/10.1016/j.jnt.2020.07.013
https://doi.org/10.24033/msmf.37
https://www.maths.ed.ac.uk/v1ranick/papers/bass.pdf
https://doi.org/10.5802/pmb.o-1
https://doi.org/10.1016/0022-314X(90)90138-H
https://doi.org/10.5802/pmb.a-67
https://doi.org/10.1017/S0027763000009065
https://doi.org/10.24033/asens.1236
https://doi.org/10.1515/crll.1992.432.135
https://doi.org/10.1090/S0025-5718-04-01726-0
https://eudml.org/doc/152417


32 GEORGES GRAS
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des Nombres de Bordeaux (1980-1981), 1–4.
http://www.jstor.org/stable/44166382 11

[Wa1995] L.C. Washington, Siegel zeros for 2-adic L-functions, Number The-
ory, Halifax, NS (1994), CMS Conf. Proc., American Mathematical
Society, Providence, RI, 1995, 393–396.
https://books.google.fr/books?id=gzRti1o1bXkC 11

[Wa1996] L.C. Washington, A Family of Cubic Fields and Zeros of 3-adic L-
Functions, Journal of Number Theory 63 (1996), 408–417.
https://doi.org/10.1006/jnth.1997.2096 11, 27

[Wa1997] L.C. Washington, Introduction to cyclotomic fields, Graduate Texts
in Math. 83, Springer enlarged second edition 1997.
https://doi.org/10.1007/978-1-4612-1934-7 6, 11, 16, 28

Villa la Gardette, 4 chemin Château Gagnière, 38520 Le Bourg d’Oisans

http://orcid.org/0000-0002-1318-4414
Email address: g.mn.gras@wanadoo.fr

https://doi.org/10.1006/jnth.2002.2808
https://doi.org/10.1016/j.jalgebra.2004.10.030
https://books.google.fr/books?id=pjoBwwEACAAJ
http://www.jstor.org/stable/44166382
https://books.google.fr/books?id=gzRti1o1bXkC
https://doi.org/10.1006/jnth.1997.2096
https://doi.org/10.1007/978-1-4612-1934-7
http://orcid.org/0000-0002-1318-4414

	1. Introduction and prerequisites
	1.1. Notations
	1.2. Overview of the method
	1.3. Torsion group of abelian Lg-ramification
	1.4. Tame and regular Hilbert's kernels
	1.5. Arithmetic v.s. analytic properties
	1.6. Main results of the article

	2. Computation of Lg
	2.1. Birch-Tate formula and Lg-functions
	2.2. Formulas for quadratic and cubic fields

	3. Definition of a Lg-adic pseudo-measure Lg
	3.1. The Stickelberger elements
	3.2. Norms of the Stickelberger elements
	3.3. Twists of the Stickelberger elements

	4. The measure Lg defining Lg
	4.1. Approximations modulo Lg of Lg
	4.2. Genus theory of Lg-adic pseudo-measures
	4.3. Modulus of continuity of Lg

	5. Proof of the Deng–Li conjecture Lg
	5.1. Proof of Lg
	5.2. The non-trivial relation for Lg even
	5.3. Structure of Lg and triviality of Lg

	6. Lg when Lg
	7. Conclusion
	Acknowledgements

	Appendix A. Data relating to the Deng–Li family
	A.1. Computation of Lg, Lg and Lg
	A.2. The canonical non-trivial relation

	Appendix B. Quadratic fields
	B.1. Computation of Lg
	B.2. Computation of Lg
	B.3. Computation of Lg

	Appendix C. Cyclic cubic fields
	C.1. Computation of Lg Lg and Lg
	C.2. Computation of Lg
	C.3. Computation of Lg
	C.4. Zeroes of Lg-adic Lg-functions and Lg

	Appendix D. Numerical results for Lg
	D.1. Computation of Lg
	D.2. Computations of Lg
	D.3. Computation of Lg

	References

