
HAL Id: hal-04237240
https://hal.science/hal-04237240v1

Submitted on 11 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Relativized Adjacency
Dakotah Lambert

To cite this version:
Dakotah Lambert. Relativized Adjacency. Journal of Logic, Language and Information, 2023, 32 (4),
pp.707-731. �10.1007/s10849-023-09398-x�. �hal-04237240�

https://hal.science/hal-04237240v1
https://hal.archives-ouvertes.fr

Journal of Logic, Language and Information manuscript No.
JLLI-D-20-00037R1

Relativized adjacency

Dakotah Lambert

Received: 13 Sep 2020 / Accepted: 05 Apr 2023

Abstract For each class in the piecewise-local subregular hierarchy, a relativized
(tier-based) variant is defined. Algebraic as well as automata-, language-, and model-
theoretic characterizations are provided for each of these relativized classes, except
in cases where this is provably impossible. These various characterizations are nec-
essarily intertwined due to the well-studied logic-automaton connection and the rela-
tionship between finite-state automata and (syntactic) semigroups. Closure properties
of each class are demonstrated by using automata-theoretic methods to provide con-
structive proofs for the closures that do hold and giving language-theoretic counterex-
amples for those that do not. The net result of all of this is that, rather than merely
existing as an operationally-defined parallel set of classes, these relativized variants
integrate cleanly with the other members of the piecewise-local subregular hierarchy
from every perspective. Relativization may even prove useful in the characterization
of star-free, as every star-free stringset is the preprojection of another (also star-free)
stringset whose syntactic semigroup is not a monoid.

Keywords characterization · finite-state automata · formal language theory · model
theory · subregular hierarchy · syntactic semigroups

Mathematics Subject Classification (2010) 68Q19 · 68Q45 · 68Q70 · 20M35

1 Introduction

The piecewise-local subregular hierarchy, henceforth referred to as simply the sub-
regular hierarchy, has been extensively studied for decades, with the local branch

D. Lambert
Université Jean Monnet Saint-Etienne, CNRS, Institut d Optique Graduate School, Laboratoire Hubert
Curien UMR 5516, 42023 Saint-Etienne, France ORCiD: 0000-0002-7056-5950
E-mail: dakotahlambert@acm.org
This version of the article has been accepted for publication, after peer review (when applicable) and
is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect
post-acceptance improvements, or any corrections. The Version of Record is available online at: https:
//doi.org/10.1007/s10849-023-09398-x

https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://doi.org/10.1007/s10849-023-09398-x
https://doi.org/10.1007/s10849-023-09398-x

2 Dakotah Lambert

introduced by McNaughton and Papert (1971) and the piecewise branch stemming
from Simon (1975). Local constraints are, as the name implies, good at capturing
dependencies based on adjacent events, and can do so with even the simplest logics.
Even some long-distance dependencies can be captured, such as “A and B do not
occur in the same word”, but there is no notion of directionality here. Piecewise con-
straints fall on the other extreme, easily representing certain types of long-distance
dependencies but requiring at least first-order logic to be able to refer to adjacent
events at all.

In order to more simply state some types of long-distance dependencies, and to
account for some that piecewise constraints cannot, a third branch came into existence
with the tier-based strictly local (TSL) class imposing adjacency on distant parts of
a string (Heinz et al. 2011). A TSL description works by relativizing the concept of
adjacency over some subset of the alphabet, referred to as the tier alphabet. Symbols
outside this subset are ignored entirely.

Linguistic interest in the TSL class stems from its usefulness in describing long-
distance dependencies, especially those that strictly piecewise constraints cannot han-
dle such as blocked harmony patterns (Heinz et al. 2011; McMullin 2016). For exam-
ple, the liquid dissimilation pattern of Latin (Cser 2010) is a sort of blocked harmony
pattern, shown to be 2-TSL by McMullin (2016). This pattern can be shown to be
strictly star-free when restricted to the local or piecewise branches of the subregu-
lar hierarchy. However, another important consideration for linguistics is learnability,
and the star-free class is not learnable (Gold 1967). On the other hand, 2-TSL has been
shown to be effectively learnable both by humans (McMullin 2016) and by machines
(Jardine and Heinz 2016), and k-TSL for arbitrary k has been shown to be learnable
as well (Jardine and McMullin 2017).

The main formal result of Heinz et al. (2011) was a language-theoretic proof that
TSL is a subclass of star-free. Originally TSL was defined by applying an erasing
homomorphism to a string(set), projecting it to strings formed from the tier alpha-
bet, then applying a strictly local filter to the result. This operational perspective is
useful in describing the solution, but it can mask some insights. To provide more
clarity, Lambert and Rogers (2020) provide an equivalent alternative definition based
on model theory and a new class of ordering relations, and from this they develop
language- and automata-theoretic characterizations of the class. A characterization
of a class is a property such that all and only those sets that have this property are in
the class.

The present work extends this further, characterizing not only the TSL class but
also relativized variants (introduced here) of the other classes in the subregular hierar-
chy. These characterizations also go further, including algebraic as well as automata-,
language-, and model-theoretic results.

We begin in section 2 with an overview of the model-theoretic concepts that will
be used, then section 3 provides definitions as well as model- and language-theoretic
characterizations for all of the relativized classes. Section 4 provides automata-theoretic
characterizations for some of the classes, deferring the rest to section 6 in which au-
tomata are converted to an algebraic structure. In this latter section, algebraic charac-
terizations are given for each new class, primarily synthesizing classical results and
applying them to the new structures. Closure properties are proved in section 5, using

Relativized adjacency 3

properties of automata to prove that some closures do hold, while using the language-
theoretic characterizations provided earlier to demonstrate that some other potential
properties do not.

2 Model theory

Concepts from finite model theory provide a uniform way to describe relational struc-
tures and their parts in logical terms (see Libkin 2004 for a thorough introduction).
Applying these concepts to linguistic structure is not a new idea, with applications to
syntax by Rogers (1996, 1998) beginning to popularize the approach. In this section
we discuss a model-theoretic treatment of relativized adjacency. The relation defined
here is then used to define variants of each class of the subregular hierarchy, where
the relativized variant of the strictly local class is identical to the tier-based strictly
local class of Heinz et al. (2011).

A relational word model consists of a domain, D , which is isomorphic to an
initial segment {1, . . . ,n} of the nonzero natural numbers and represents positions in
the word, as well as a collection of relations, Ri ⊆ Dai , each of which has its own
arity ai.

M (w) = ⟨D ;Ri⟩.

Generally we assume that a model consists of at least one ordering relation, as well as
one or more unary labeling relations that partition the domain. Additional relations of
any arity are of course permitted. The assumption of a partition is nonrestrictive; one
can convert a model whose labeling relations do not form a partition of the domain
into a partitioned normal form by using the powerset of these relations instead. One
simple example of an ordering relation is that of general precedence (<), where a< b
if and only if (iff) the domain element a occurs anywhere before b.

The immediate successor relation that defines the local branch of the subregular
hierarchy can be derived in first order logic from general precedence.

x◁ y def
= (x< y)∧¬(∃z)[x< z< y].

This is simply the transitive reduction of this general precedence relation. Instead of
reduction, we might consider restricting the domain to all and only those elements
that satisfy a certain predicate ϕ .

x<ϕ y def
= ϕ(x)∧ϕ(y)∧ (x< y).

This is essentially the general precedence relation on the model’s projection to those
elements that satisfy ϕ . We can of course combine these to obtain the reduction of
this restriction,

x◁ϕ y def
= (x<ϕ y)∧¬(∃z)[x<ϕ z<ϕ y],

which defines a relativized successor relation. Given some alphabet Σ and some set
of salient symbols T ⊆ Σ , the predicate ϕ(x) = T (x) =

∨
τ∈T τ(x) results in a relation

4 Dakotah Lambert

a a

a b a b c b b c

a b a b c b b c

a a

<

◁

<{b,c}

◁{b,c}

reduce reduce

restrict

relativize

Fig. 1 Word models for “ababc” using general precedence, immediate successor, and relativized variants
of each, showing the relationships among these relations. Domain elements that are not ordered are pulled
aside from the structure. In these examples, the alphabet is Σ = {a,b,c}, and the salient symbols for the
relativized relations are T = {b,c}

that acts as if it were the successor relation on the model’s projection to T , remi-
niscent of the original definition of the TSLT class. We refer to this specific kind of
relativization as projective relativization.

Figure 1 shows how the general precedence and immediate successor relations,
as well as their relativized variants, relate to one another. These relationships do not
only hold for these relations. In fact any binary relation whose transitive closure is
antisymmetric may be relativized by taking the transitive reduction of a restriction of
its transitive closure. The antisymmetry requirement ensures uniqueness of the result
(Aho et al. 1972). Throughout this text we will consider only projective relativiza-
tion, though with appropriate choice of ϕ the more general treatment can be shown
to capture the structure-sensitive tier-based strictly local class of De Santo and Graf
(2019) or the domain- and interval-based strictly piecewise classes of Graf (2017).
One important property specific to projective relativization is that the unordered ele-
ments truly have no effect on the ordered ones. Whether a domain element is included
in the restriction is decided entirely by the unary relation that labels that point, and
so the unordered elements can be freely removed, shuffled, or inserted at any point.

Now that we have a notion of a structure, we turn to discussion of contained
structures.1 Following Lambert and Rogers (2020), we distinguish two concepts: a
factor, which is a connected structure contained within a model, and a window, which
is a structured collection of domain elements from which a factor may be derived. We
begin by defining a window.

Given a (homogeneous) relation R of arity a ≥ 2, i.e. R : Da, its a-windows are
defined by the set

W R
a

def
=
{{

⟨ i
xi,

i+1
xi+1⟩ : 1 ≤ i < a

}
: ⟨x1, . . . ,xa⟩ ∈ R

}
.

This effectively turns each tuple in the relation into a sequence of overlapping pairs
that represent the edges of a (linear) directed graph version of that tuple. Each node

1 Because our notion of structural containment is distinct from the standard model-theoretic notion of
substructures, we are careful to avoid that term.

Relativized adjacency 5

in this graph is labeled by not only the domain element itself, but also an index so that
cycles in the structure do not translate into cycles in the window. For instance, if 1 is
a domain element and ⟨1,1⟩ appears in R, the only 2-window in the set of 2-windows
that corresponds to this relation is

{
⟨

1
1,

2
1⟩
}

.

Discussing smaller windows is simple. Any connected subgraph of an a-window
is also a window, of size equal to the number of nodes it contains.

For windows of size larger than the arity of the relation from which they are
defined, we can use an inductive definition:

W R
k+1

def
=
{

A∪⟨
ja−1xa−1,

k+1
xa ⟩ : A ∈ W R

k and ⟨x1, . . . ,xa⟩ ∈ R

and { j1, . . . , ja−1} ⊆ {1, . . . ,k}

and {⟨
jixi,

ji+1xi+1⟩ : 1 ≤ i < a−1} ⊆ A

and (∃y, ℓ)[⟨
ja−1xa−1,

ℓ
y⟩ ∈ A or ⟨ℓy,

ja−1xa−1⟩ ∈ A]

and
(
∀ ja ∈ {1, . . . ,k}

)[
⟨

ja−1xa−1,
jaxa⟩ ̸∈ A

]}
.

The conditions on the first line select a k-window and an element of the relation. The
second line selects a−1 indices. The third line, which is never relevant for a binary
relation, ensures that these indices form a path from the first to the last, and that this
path is labeled by the appropriate domain elements. The fourth line accounts for bi-
nary relations, simply asserting that the selected index corresponds to an appropriate
domain element. And finally the fifth ensures that edges in the model may only be
repeated in the case of cycles.

In short, for each k-window, we find a linear subgraph (a path) that maps to the
first a−1 elements of a tuple in R, then add an edge from the final node of this path
to a newly constructed node representing the final domain element from that tuple.

The conditions assert that adding this new node does not simply repeat the con-
struction of an already-existing path, while still allowing cycles to be iterated with-
out bound. For example, given the 2-window described previously, the only valid
3-window formed from the same ⟨1,1⟩ tuple is

{
⟨

1
1,

2
1⟩,⟨

2
1,

3
1⟩
}

.

Both index 1 and index 2 provide valid attachment points for a ⟨1,1⟩ edge, but this
edge has already been followed from index 1, so that attachment is ruled out by the
condition on the fifth line. The result of this induction is that a window is a rooted,
connected, acyclic graph of indexed domain elements, where the root is the unique
node of in-degree zero.

Although only binary relations will be discussed in this article, this definition
applies more generally. Consider R3 = ⟨1,2,3⟩,⟨1,2,4⟩,⟨2,4,5⟩,⟨3,4,5⟩. Two pairs

6 Dakotah Lambert

can be chained: ⟨2,4,5⟩ can overlay the right of ⟨1,2,4⟩, or ⟨1,2,4⟩ and ⟨1,2,3⟩ can
be overlaid at their left portions. So the only 4-windows of R3 are{

⟨
1
1,

2
2⟩,⟨

2
2,

3
4⟩,⟨

3
4,

4
5⟩
}

and
{
⟨

1
1,

2
2⟩,⟨

2
2,

3
4⟩,⟨

2
2,

4
3⟩
}

and
{
⟨

1
1,

2
2⟩,⟨

2
2,

3
3⟩,⟨

2
2,

4
4⟩
}

.

It is possible that an alternative definition requiring less overlap might be preferred.
Notice though that the latter two windows are identical graphs when the indices are
ignored.

In general, there can be several windows that correspond to the same contained
structure. Looking only at the domain elements represented unifies these multiple
representations: the factor at a window x in the word model m (written JxKm) is the
restriction of m to the domain elements in x. For instance, consider the signature

M◁{b,c}
= ⟨D ;◁{b,c}, a,b,c⟩

and a word model over this signature

m =
〈{

1,2,3,4,5
}

;
{
⟨2,4⟩,⟨4,5⟩

}
,
{

1,3
}
,
{

2,4
}
,
{

5
}〉

,

which corresponds to the “ababc” example on the {b,c} tier shown as the relativized
successor model in Figure 1. If we have a window x such that the domain elements
included in x are all and only 2, 4, and 5, then the factor at x is the corresponding
restriction

JxKm = m ↾ x =
〈{

2,4,5
}

;
{
⟨2,4⟩,⟨4,5⟩

}
, /0,

{
2,4

}
,
{

5
}〉

.

This is the widest possible factor in that example, as the other elements are discon-
nected from this structure.

The set of all k-factors of a model m is the set

Fk(m)
def
=
{
JxKm : x ∈ Wk

}
.

where the windows are built over the ordering relations of m.
The word models shown to this point have been without explicit indication of

domain boundaries. Often, however, we wish to consider models in which these
boundaries are explicit, which we call anchored models. These can be formed by
augmenting a model with new positions, self-related under all ordering relations, that
are labeled “⋊” and “⋉” for head and tail boundaries, respectively. This self-relation
allows words shorter than k to be captured by k-windows without special treatment.
For any projectively relativized relation, we assume for notational convenience that
these boundary symbols are considered salient if they are present. So rather than
writing ◁{⋊,b,c,⋉} we simply write ◁{b,c} instead. Figure 2 shows an anchored word
model for “ababc” under the ◁{b,c} relation along with all of its nonempty 3-factors.
Because the domain boundaries are self-related, assuming the domain elements of
“⋊ababc⋉” are 1 through 7 in order, the windows{

⟨
1
1,

2
1⟩,⟨

2
1,

3
3⟩
}

and
{
⟨

1
1,

2
1⟩,⟨

1
1,

3
3⟩
}

Relativized adjacency 7

a a

⋊ b b c ⋉

⋊

⋊ b

⋊ b b

b b c

b c ⋉

c ⋉

⋉

Fig. 2 All 3-factors of “⋊ababc⋉” under the ◁{b,c} relation. Factors that appear shorter than this are
formed from windows that repeat the boundary symbols.

both refer to the relativized prefix “⋊b” of this string. (Again, either instance of do-
main element 1 is a valid attachment point for a ⟨1,3⟩ edge.) The “a” elements are
unordered and do not occur in any factor.

One might notice that a model that has a smaller number of domain elements
than the arity of its ordering relation might have no factors at all by these definitions.
While this is never a problem for anchored models, one might consider alternative
constructions when using nonanchored models. The simplest is to construct the fac-
tors of the anchored models and then strip away the domain boundaries from the
result. In any case, the use of anchored word models will be assumed throughout this
text, and the particular definitions used here guarantee that the factors of a model
under a relativized relation are exactly those under the corresponding nonrelativized
one of the model’s projection.

3 Language-theoretic characterizations

A grammar is some representation of a mechanism by which the membership of
a string in a stringset may be decided. A class of grammars is denoted by G. The
characteristic function 1 : G×M → B is

1G(m)
def
=

{
⊤ if m satisfies G,
⊥ otherwise.

Here, B represents the binary Boolean ring, ⊤ is true, ⊥ is false. Functions of more
than one argument are sometimes written with their first argument as a subscript; 1G

8 Dakotah Lambert

can be thought of as the partial application of the curried form of 1. The stringset
represented by G is the set of all and only those strings whose models satisfy it:

L (G)
def
=
{

w : 1G
(
M (w)

)}
.

Two grammars G1 and G2 are equivalent iff they are extensionally equal, that is,
L (G1) = L (G2).

3.1 Strict locality

The original definition of the TSL class from Heinz et al. (2011) was operational. A
stringset L is k-TSLT iff there exists a k-SL grammar such that L contains all and only
those strings whose projection to T satisfy this grammar.

A grammar for a k-SL stringset is simply a subset of Fk(Σ
∗), that is, a set of

k-factors, where an anchored model m satisfies G iff each of its k-factors occurs in G
(McNaughton and Papert 1971):

1G(m) = F
◁
k (m)⊆ G.

Because the symbols not in T never appear in any factors under <T or ◁T , any two
strings with the same projection to T will have the same set of factors under these
relations. Specifically, if πT (m) represents the projection of m to T , it holds that m and
πT (m) have exactly the same set of factors under these relations. Moreover, if T = Σ

it follows by definition that these are equivalent to their nonrelativized analogues.
Therefore the only difference between a k-SL grammar and a corresponding k-TSL
one is interpretation:

1G(m) = F
◁T

k (m)⊆ G.

We will see that this is indeed always the case, so from this point on characteristic
functions will be given without the relation specified. Using ◁ yields the local class,
◁T its relativization.

With this in mind, we turn to the language-theoretic characterization of the SL
class: closure under substitution of suffixes (Rogers and Pullum 2011, see also De Luca
and Restivo 1980). A stringset satisfies suffix substitution closure iff there is some k
such that for any two strings w1 = u1xv1 and w2 = u2xv2 where |x| ≥ k− 1, if both
w1 and w2 are in the set, then so is w3 = u1xv2. Lambert and Rogers (2020) provide
a similar characterization for the TSL class.

Definition 1 (Preprojective suffix substitution closure: PSSC) A stringset L over
the alphabet Σ is closed under T -preprojective suffix substitution (T -PSSC) iff there
is some natural number k such that for any two strings w1 = u1x1v1 and w2 = u2x2v2
where πT (x1) = πT (x2) and |πT (x1)| ≥ k− 1, if both w1 and w2 are in L, then so is
w3 = u1x1v2.

Notice that Σ -PSSC is equivalent to standard suffix substitution closure, as the
strings are necessarily equal to their projections. On its own though, T -PSSC is not
sufficient to characterize TSL. The other necessary condition is that symbols not in T
be freely insertable and deletable, as previously discussed for the relativized relations.

Relativized adjacency 9

Theorem 1 A stringset L over an alphabet Σ is TSL iff there is some subset T ⊆ Σ

such that symbols not in T are freely insertable and deletable and L is closed under
T -PSSC.

Proof To prove that such a stringset is TSL, suppose there exists such a T . Then by
T -PSSC, the projection of L to T is SL. Further, by insertion and deletion closure of
non-T symbols we guarantee that w is in L iff its projection to T is. Together, these
facts show that L is TSL.

To prove the reverse implication, suppose that L is TSL. Then it is k-TSLT for
some k and T . By definition of TSL, w is in L iff its projection to T is, and so symbols
not in T are freely insertable and deletable. Because L is TSLT , its projection to T
is SL and thus satisfies suffix substitution closure. Further since L is closed under
insertion of symbols not in T , it is then also closed under T -PSSC. ⊓⊔

In order to prove that a stringset is TSL, it suffices to provide a grammar. To prove
that a stringset cannot be TSL, one can find some set of symbols that are not freely
both insertable and deletable, then form strings from those symbols alone that violate
PSSC. For instance, a constraint that forbids sequential (not necessarily adjacent) oc-
currences of “a . .b . .a” is not TSL because neither “a” nor “b” is freely insertable (so
they are necessarily in T) and PSSC is violated by the following words:

a

k−1︷︸︸︷
b . .b b (∈)

b b . .b a (∈)

a b . .b a (/∈).

3.2 Complements

If an SL stringset contains all strings that satisfy a grammar G, the complement of this
set is all strings that do not satisfy G. Since a model satisfies G iff all of its factors
are in G, it follows that the model does not satisfy G iff it has at least one factor not
in G. We can use the grammar of the complemented SL stringset as the grammar for
a coSL stringset. The result is a collection of factors, at least one of which is required
to appear in every word. The resulting characteristic function then is

1G(m) = G∩Fk(m) ̸= /0.

Definition 2 (Ideal containment: IC) A stringset L is k-coSL iff L contains all and
only those strings w that themselves contain at least one factor f ∈ F

◁
k (w) such that

every string x that contains that factor is also in L:{
x : f ∈ F

◁
k (x)

}
⊆ L.

If there exists some k for which L is k-coSL, then L is coSL.

In IC, the factor f is the (not necessarily unique) factor that caused dissatisfac-
tion of the corresponding SL grammar. Then in order to show that a stringset is not

10 Dakotah Lambert

k-coSL, it suffices to find a (preferably small) word w ∈ L and a set of words S such
that Fk(w)⊆Fk(S), yet no member of S is in L. For instance we can show that a con-
straint that bans occurrence of the substring “ab” is not coSL because IC is violated
by the following:

w = a . .a (∈)
S =

{
a . .a︸︷︷︸
k−1

b a . .a︸︷︷︸
k−1

}
(/∈).

The factors of w are {⋊ai,ai⋉ : 0 ≤ i < k}. Each of these factors occurs in the sin-
gle word in S, and so the presence of any given factor is not sufficient to guarantee
acceptance. This extends trivially to preprojective ideal containment.

Definition 3 (Preprojective ideal containment: PIC) A stringset L is k-coTSL iff
there exists some T ⊆ Σ such that L contains all and only those strings w that them-
selves contain at least one factor f ∈ F

◁T

k (w) such that every string x that contains
that factor is also in L: {

x : f ∈ F
◁T

k (x)
}

.

And L is coTSL iff it is k-coTSL for some k.

Since the factors of w under ◁T are the same as those of its T -projection under
◁, this is equivalent in every way to stating that L is k-coTSLT iff its T -projection
is k-coSL and it is closed under insertion and deletion of symbols not in T . Further
the order of complementation and relativization is immaterial, as will become clear
in section 4.

3.3 Local testability

Much as the SL stringsets consist of words containing only permitted factors, the
locally testable (LT) ones consist of words whose set of factors is permitted (Mc-
Naughton and Papert 1971). This allows a mechanism to reject “ab” even in the case
of accepting “abab”, whose 2-factors are {⋊a,ab,b⋉} and {⋊a,ab,ba,b⋉}, respec-
tively. Due to their subset relationship, a mechanism capable only of 2-SL distinctions
could not do this, though each of the three other possible combinations of acceptance
and rejection of these two strings is possible under 2-SL. For testable stringsets, a
grammar is a set of permitted sets of factors, and its characteristic function is

1G(m) = Fk(m) ∈ G.

Rogers and Pullum (2011) state that a stringset is LT iff it is closed under local
test invariance, where given two strings w1 and w2 such that F

◁
k (w1) = F

◁
k (w2),

the first is in the set iff the second is as well. This extends trivially to preprojective
local test invariance.

Definition 4 (Preprojective local test invariance: PLTI) A stringset L is TLT iff
there exists some T ⊆ Σ and some k such that given two strings w1 and w2 such that
F

◁T

k (w1) = F
◁T

k (w2), the first is in L iff the second is as well.

Relativized adjacency 11

By the same reasoning employed in discussion of coTSL, this is equivalent in
every way to stating that L is k-TLTT iff its T -projection is k-LT and it is closed under
insertion and deletion of symbols not in T .

3.4 Threshold testability

The LT class is characterized by sets of factors. But a set is merely a structure that
describes each possible element by a Boolean value, whether or not that element is
included. One might consider a natural extension of this structure which saturates
its count of occurrences not at 1 but at some arbitrary value t. This is exactly what
Beauquier and Pin did when defining the locally threshold testable (LTT) stringsets
in 1989. We denote this generalized structure by

Fk,t(m)
def
= HJxKm : x ∈ WkIt .

For threshold testable stringsets, a grammar is a set of permitted multisets whose
characteristic function is

1G(m) = Fk,t(m) ∈ G.

The characterization of LTT of course is local threshold test invariance, where
given two strings w1 and w2 such that F

◁
k,t(w1) = F

◁
k,t(w2), the first is in the set

iff the second is as well. This extends trivially to preprojective local threshold test
invariance.

Definition 5 (Preprojective local threshold test invariance: PLTTI) A stringset L
is TLTT iff there exists some T ⊆ Σ and some k and t such that given two strings w1

and w2 such that F
◁T

k,t(w1) = F
◁T

k,t(w2), the first is in L iff the second is as well.

By the same reasoning employed in discussion of coTSL and TLT, this is equiva-
lent in every way to stating that L is k, t-TLTTT iff its T -projection is k, t-LTT and it is
closed under insertion and deletion of symbols not in T .

Under the definitions of windows and factors used in this text, this actually counts
prefixes and suffixes of length less than k more than once, since several windows
might correspond to the same factor. Importantly, for fixed k the count is consistent
for prefixes (suffixes) of a given length, and since there is at most one length-n pre-
fix (suffix) in any valid word model, this overcounting does not affect the possible
distinctions.

3.5 Piecewise relativizations

Using general precedence instead of successor in the definition of the SL class yields
the strictly piecewise (SP) class. Characterized by Rogers et al. (2010) as those stringsets
closed under deletion (see also Haines 1969 for an earlier treatment of stringsets
closed under deletion), we can show that a stringset is TSP iff it is SP. In fact,
unlike reduction, relativization provides neither more nor less expressive power in
precedence-based models.

12 Dakotah Lambert

By definition <Σ is equivalent to <, thus all nonrelativized stringsets are also
trivially relativized ones. More interesting is the reverse. Recall from Figure 1 that
the relativization of the < relation is in fact merely a restriction, and so F

<T

k (m) ⊆
F

<
k (m). If a factor occurs on the restriction, then it also occurs in the nonrestricted

model. Therefore a full piecewise model must be at least as powerful as its relativiza-
tion, but since T can be equal to Σ they are in fact equivalent.

For this same reason, when the factor width is fixed at k = 1 all of the projectively
relativized classes are equivalent to their nonrelativized analogues.

4 Automata

In this section we discuss characterizations of the relativized classes and construc-
tions of their constituent stringsets in terms of deterministic finite-state automata
(DFAs).

A DFA is a directed graph that represents a machine that computes the well-
formedness of a string with respect to some regular stringset. It is represented by
a triple ⟨δ ,q0,F⟩, where Q is a set of states, Σ an alphabet, δ : Σ ×Q → Q a transi-
tion function which represents edges in the graph, q0 ∈ Q an initial state, and F ⊆ Q a
set of accepting states.2 A DFA is complete iff δ is total. A word w is accepted by the
DFA iff there is some path q0 → ··· → qf for some qf ∈ F (an accepting path from
q0) whose labels spell out w.

Let ∼ represent the equivalence relation over states in Q under which q1 ∼ q2 iff
for all u ∈ Σ ∗ there is an accepting path from q1 labeled u whenever such a path exists
from q2 and vice-versa. This is Nerode equivalence. By the Myhill-Nerode theorem
(Nerode 1958), one can construct a minimal DFA from a given one by replacing each
state in Q by its Nerode-equivalence class, the element of Q⧸∼ that contains it. A
minimal DFA might have a unique nonaccepting sink, a state q from which there are
no accepting paths for any string. A canonical DFA is one that is minimal and has had
its nonaccepting sink (if any) removed.

4.1 Characterizations

Every relativized class discussed in this text is closed under insertion and deletion
of symbols not in T . In other words, such symbols provide no information regarding
the well-formedness of a word. It follows then that from a given state q, the state
reached by following an edge labeled by such a symbol must be in the same Nerode-
equivalence class as q itself. Thus in a canonical DFA, the nonsalient symbols are
exactly those that form self-loops on all states simultaneously.

∁T =
⋂

q∈Q

{σ ∈ Σ : δσ (q) = q}.

2 The values of Q and Σ are implied by the signature of δ . Some prefer to specify them explicitly, which
would result in automata being 5-tuples.

Relativized adjacency 13

21 3

c,d

a
bc

a,d

c

b,d

∁T =
⋂{

{a,d},{c,d},{b,d}
}
= {d}

Fig. 3 A canonical DFA for which d is a nonsalient symbol.

In other words, these are exactly the symbols σ such that the set of fixed points of δσ

is the entirety of Q. Figure 3 shows a canonical DFA that represents a TSL stringset in
which d is not a salient symbol. The fixed points for a, b, c, and d are {1}, {3}, {2},
and {1,2,3}, respectively.

Given a canonical automaton for a language L, the automaton for its T -projection
is formed by restricting δ to Σ \ ∁T . As discussed previously, with this choice of T
a stringset is in the relativized variant of a given class iff its T -projection is in that
class. The T found this way is in fact the smallest set for which this holds, though
some stringsets might permit several possible values for T . For example, the stringset
Σ ∗ is TSLP for every P ⊆ Σ .

Once the projection has been found, any of the numerous existing methods for
determining class membership can be used. Most of these tests are based on the alge-
braic interpretation of the syntactic semigroup corresponding to the automaton, which
will be discussed further in section 6. However, for the SL class we can use a result
of Edlefsen et al. (2008, see also Caron 1998). Given a canonical DFA A = ⟨δ ,q0,F⟩,
construct its powerset graph by defining δP : Σ ×P(Q)→ P(Q):

δ
P
σ (S) def

= {δσ (s) : s ∈ S}.

The stringset represented by A is SL iff the graph formed by δP contains no cycles
that iterate a node whose label contains two or more elements. A powerset graph of a
non-SL stringset is shown in Figure 4 with the offending path marked.

Edlefsen et al. (2008) also provide a more efficient algorithm in terms of pairs of
states. However, the powerset graph construction also allows extraction of a grammar
for the target stringset from the automaton itself (Rogers and Lambert 2019a). Since a
stringset is coSL iff its complement is SL, this serves as an automata-theoretic method
to decide membership in that class as well. Thus by projecting an automaton to the
appropriate tier alphabet, not only can we show that the target stringset is TSL or
coTSL, but we can also obtain a canonical grammar for this stringset if it is.

4.2 Constructions

The projection mechanism of section 4.1 is invertible. Given a DFA representing a
stringset L whose alphabet is some T ⊆ Σ , the preprojection of L to Σ is given by
adding self-edges on each symbol σ ∈ Σ \T to every state. If the subregular class of
L is known, then the result lies in the corresponding relativized class.

14 Dakotah Lambert

{1,2,3} {2}

{1}

{3}

/0

a

b

c

d

a,d

b
ca

b

c,d

a

b,d

c

a,b,c,d

Fig. 4 The powerset graph that corresponds to the DFA of Figure 3, with the cycle marked that proves this
stringset is not SL. Notice that if d is removed, there is no such cycle.

However, the purpose of these projectively relativized classes is to represent those
stringsets in which only certain symbols are salient. It would be meaningful then to
employ alphabet-agnostic automata (AAA). Such automata test for the occurrence of
a factor within a target string of unknown or unspecified alphabet by augmenting the
set of symbols relevant to the factor with a wildcard symbol ⃝? , much like Beesley
and Karttunen (2003). For our purposes, we consider a wildcard that matches all and
only those symbols not already listed in the alphabet, like the @ of Hulden (2009).
The empty language is represented by a single state which is non-accepting, bear-
ing a self-loop labeled ⃝? , which is the only member of the alphabet. The universal
acceptor is identical, except its single state is accepting.

Factors under < (piecewise factors) are the simplest to construct. Given a factor
f = σ1 . . .σn under this relation, the AAA is defined in essentially the same way that
Rogers et al. (2010) form a DFA:

Q = {0, . . . ,n}
Σ = {σ1, . . . ,σn,⃝? }
q0 = 0
F = {n}

δ (σ ,q) =

{
q+1 if q < n and σ = σq+1,
q otherwise.

An example is shown in Figure 5. Note that since ⃝? is by definition never included
in the factor, edges on this symbol are always self-loops. In other words, this con-
struction provides a clear picture as to why SP (and extensions thereof) and TSP (and
extensions) should be identical.

For factors under ◁ (local factors), any of the common approaches to substring-
matching suffice, including that of Knuth et al. (1977). However, a naı̈ve method

Relativized adjacency 15

0 1 2 3

y,⃝?

x

x,⃝?

y

y,⃝?

x

x,y,⃝?

Fig. 5 Canonical AAA for the factor “xyx” under <.

0 1 2 3x y x

⋊xyx⋉

0 1 2 3x y x

x,y,⃝?⋊xyx

Fig. 6 Canonical automata for head-anchored factors.

0

x,y ,⃝?

• 0 1 2 3x y x

x,y,⃝?

= 0 1 2 3
x

y,⃝?

⃝?

x

y x

y,⃝?

x,y,⃝?

Fig. 7 Canonical AAA for the free factor “xyx” under ◁ constructed via concatenation. The boxed x,y
in the first operand are symbols that needed to be added for compatibility.

shown here demonstrates some properties of AAA. Fully-anchored factors of the form
f =⋊σ1 . . .σn⋉ look like piecewise factors, except edges to a non-accepting sink ⊥
replace the self-loops:

Q = {⊥,0, . . . ,n}

δ (σ ,q) =

{
q+1 if q < n and σ = σq+1

⊥ otherwise.

For head-anchored but not tail-anchored factors, the difference is that δ (σ ,n) = n
rather than ⊥. Figure 6 shows a canonical (trimmed) AAA constructed for each of
“⋊xyx⋉” and “⋊xyx”.

These automata can then be concatenated after a universal acceptor to represent
tail-anchored and free factors, as in Figure 7, but this concatenation requires an extra
step compared to standard DFA operations: the two inputs to any binary operation
must be made compatible. Two AAA are compatible iff they have the same alphabet.
Since ⃝? represents any symbol not already in the alphabet, a symbol σ is added by
placing new edges labeled by σ in parallel with any existing ⃝? edges. Thus to make
two AAA compatible, their alphabets should be extended in this way to the union of
their individual alphabets. Two compatible automata can be combined using standard
DFA operations, treating ⃝? as just another symbol.

To fix the alphabet of an AAA to a specific set Σ , simply extend it as necessary
and then remove any ⃝? edges. Relativizing an automaton over some tier alphabet T
is a process of fixing its alphabet to T , then adding ⃝? edges back in as self-loops
on every state. For example, Figure 8 shows how this process modifies the factor of
Figure 7 to consider only ‘x’, ‘y’, and ‘z’ salient.

16 Dakotah Lambert

0 1 2 3
x

y,⃝?

⃝?

x

y x

y,⃝?

x,y,⃝?

7→ 0 1 2 3
x

y,z,⃝?

z

x,⃝?

y x

y,z

⃝? x,y,z,⃝?

Fig. 8 Relativizing “xyx” to T = {x,y,z}: Add ‘z’ in parallel to any existing ⃝? edges, remove those ⃝?
edges, then add new ⃝? edges as self-loops everywhere.

5 Closure properties

In this section we constructively prove some closure properties of relativized classes
via their automata-theoretic characterizations, and use the language-theoretic ones to
provide counter-examples to other closure properties.

5.1 Products

The intersections and unions of automata are both formed from the product con-
struction. Given two automata A = ⟨δ ,q0,F⟩ and A′ = ⟨δ ′,q′0,F

′⟩, one constructs the
product

A⊗op A′ def
=
〈
δ
⊗,⟨q0,q′0⟩,Fop〉,

where the new transition function is defined pointwise:

δ
⊗
σ

(
⟨q,q′⟩

) def
=
〈
δσ (q),δ ′

σ (q
′)
〉
.

The set of accepting states is

Fop def
=
{
⟨q,q′⟩ : q ∈ F op q′ ∈ F ′},

where op is “and” for intersection or “or” for union. If σ labels a self-loop on every
state of both operands, then this product construction guarantees that the same will
hold in the result. By construction then, if ∁T is the set of nonsalient symbols for A
and ∁T ′ for A′, then ∁T⊗ ⊆ ∁T ∩ ∁T ′ is a set for this product.3 Notably, if A and A′

represent stringsets in a relativized class where T = T ′ and the underlying class is
closed under union (intersection), the result of the union (intersection) of A and A′

remains in the same relativized class with the same set of salient symbols.

Theorem 2 The TLTT and TLTTT classes for fixed T are closed under both union and
intersection.

Proof Because LT and LTT are each closed under both union and intersection, the
product construction guarantees that TLTT and TLTTT for fixed T are as well.

3 Since the result is not necessarily canonical, a larger ∁T⊗ (thus a smaller T) may also exist.

Relativized adjacency 17

For the same reasons, the same holds for TSLT under intersection and coTSLT under
union.

Note that these closures rely on equality of the sets of salient symbols. Consider
the TSL stringset whose projection to {a,b} contains no “ab” factor and the TSL
stringset whose projection to {a,c} contains no “aca” factor. In the intersection, none
of “a”, “b”, or “c” is freely insertable, so each must be salient no matter what Σ is.
Then even though the two strings

k︷︸︸︷
c . .c b

k︷︸︸︷
c . .c a

k︷︸︸︷
c . .c (∈)

c . .c a c . .c b c . .c (/∈)

have exactly the same k-factors and exactly the same counts for each, the first is in
the intersection while the second is not. This is a violation of PLTTI (see page 11).
Thus the intersection of these two stringsets is not even TLTT, and so by containment
it cannot be TLT or TSL. For a more direct proof that this intersection is not TSL,
consider the following violation of PSSC:

ac
k−1︷︸︸︷
c . .c ca (∈)

b c . .c b (∈)

ac c . .c b (/∈).

In this example, the result of PSSC is a string whose projection to {a,b} contains an
ab factor, which should be forbidden.

5.2 Complements of automata

To find the complement of a complete minimal DFA, simply invert the notion of ac-
ceptance. That is, map ⟨δ ,q0,F⟩ to ⟨δ ,q0,Q\F⟩.

Theorem 3 A regular stringset L and its complement can be defined by expressions
over the same tier of salient symbols as one another.

Proof Because L is regular, it can be represented as a complete minimal DFA, and this
DFA will be associated with some set of salient symbols. The complement operation
does not affect the transition function δ , so the set of self-loops in the result is exactly
the same as that in the input. It follows then that the complement of L has the same
set of salient symbols as L itself.

Then if the underlying class is closed under complementation (as is the case for LT
and LTT) the corresponding relativized variant is so closed as well. Moreover, since
a relativization is formed by merely adding self-loops everywhere, the order of rel-
ativization and complementation is immaterial. The two operations cannot interfere
with one another.

18 Dakotah Lambert

5.3 Some non-closures

Having shown that, for fixed T , TLTT and TLTTT are closed under all Boolean opera-
tions and TSLT and coTSLT are closed under intersection and union, respectively, we
now show that TSLT is not closed under union or complement, and that coTSLT is not
closed under intersection or complement.

Consider two TSL{a,b} stringsets: one which bans the occurrence of “ab” on the
projection to {a,b}, and another which bans the occurrence of “ba” on this projection.
The union of these two stringsets allows the occurrence of either “ab” or “ba”, but
not both. Then the following is a violation of PSSC:

ab

k−1︷︸︸︷
b . .b (∈)
b . .b ba (∈)

ab b . .b ba (/∈).

The complement of the first of these, that “ab” must occur on the projection to
{a,b}, is also not TSL. The following is a violation of PSSC:

k−1︷︸︸︷
a . .a ab (∈)

ab a . .a (∈)

a . .a (/∈).

Now consider two coTSL{a,b} stringsets, one which requires that some “ab” occurs
on the projection to {a,b}, and another that requires that some “ba” occurs on this
projection. Their intersection (requiring both to occur) is not coTSL, as the following
violates PIC:

w = a

k−1︷︸︸︷
b . .b a (∈)

S =
{

a b . .b,
b . .b a

}
(each /∈),

since the collective factorset of S is a superset of the factors of w. And of course,
the complement of the first of these stringsets, banning occurrences of “ab” on the
{a,b}-projection, is also not coTSL, because, as shown in section 3.2, the stringset of
the projection is not coSL.

From this we have shown that TLTTT and TLTT are closed under all Boolean oper-
ations, while TSLT and coTSLT are closed only under intersection and union, respec-
tively. We have also shown that intersection and union closures hold only when both
stringsets have the same set of salient symbols.

6 Algebra

Many of the algorithms that decide whether a given DFA represents a stringset from
a particular class actually make use of the syntactic semigroup associated with the

Relativized adjacency 19

DFA. Given a complete minimal DFA A = ⟨δ ,q0,F⟩, recall that δ : Σ ×Q → Q can be
viewed as δ̂ : Σ → (Q → Q) and define γ : Σ ∗ → (Q → Q) as follows:

γ(w) def
=

{
γ(v)◦ δ̂ (σ) if w = σv for some σ ∈ Σ and v ∈ Σ ∗

id otherwise.

Here, ‘id’ refers to the identity function. The syntactic semigroup is then the semi-
group under flipped composition of the following functions:

S(A) def
=
{

γ(w) : w ∈ Σ
+
}

.

Then if a = γ(u) and b = γ(v), we have ab = b ◦ a = γ(v) ◦ γ(u) = γ(uv). Since
γ(u)γ(v) = γ(uv), the semigroup operation is a homomorphism.

The star-free stringsets are those whose syntactic semigroup is finite and has no
nontrivial subgroups (Pin 1997).

Recall from section 4 that the set of nonsalient symbols, ∁T , is the set of symbols
that form self-loops on every state of a DFA. Translated to the algebraic domain, these
are all and only those symbols σ for which γ(σ) = id. Sometimes we denote id by 1.
If 1 ∈ S, then we also say S is a monoid.

Lemma 1 If S is the syntactic semigroup of a star-free stringset and a,b ∈ S are
elements such that ab = 1, then a = b = 1.

Proof Suppose a and b are elements of S such that ab = 1, and that S is the syntactic
semigroup of a star-free stringset. Then 1 = ab = (a(ab))b, and by continuing this
process we see that anbn = 1 for all n. Schützenberger (1965) proves that because
S is star-free, there exists some m such that am = am+1. Then we have 1 = ambm =
am+1bm = aambm = a1 = a, and by a similar argument we see that b = 1 as well.
Therefore a = b = 1. ⊓⊔

This means that if S corresponds to a star-free stringset, then every w such that
γ(w) = id is composed entirely of symbols from ∁T . We now define the projected
subsemigroup as

X(A) def
=
{

γ(w) : w ∈ T+
}

.

Theorem 4 If S corresponds to a star-free stringset, then the projected subsemigroup
X of S is equal to S\{1}.

Proof Suppose s ∈ S. Then s = γ(w) for some w ∈ Σ ∗, and by definition if w is the
string σ1 . . .σn then s = γ(σn)◦ · · · ◦ γ(σ1).

Suppose s ̸= 1. Because whenever σ ∈ ∁T it holds that γ(σ) = 1, it follows that
γ(w) = γ

(
πT (w)

)
. By definition, if |πT (w)| ̸= 0 then s ∈ X as well. If the length of

this projection were 0, then s = γ
(
πT (w)

)
would be 1, and since by assumption s ̸= 1,

this cannot be. Therefore, s ∈ X .
On the other hand, suppose s = 1. Then by Lemma 1, we have {σ1, . . . ,σn} ⊆ ∁T .

Then w = σ1 . . .σn is not in T ∗ and by definition is excluded from X .
Thus if S is star-free, X contains all and only the nonidentity elements of S. ⊓⊔

20 Dakotah Lambert

⟨1,2,3⟩

⟨2,2,2⟩⟨1,1,1⟩⟨1,1,0⟩ ⟨3,3,3⟩ ⟨0,3,3⟩

⟨2,2,0⟩ ⟨3,3,0⟩ ⟨0,0,0⟩ ⟨0,1,1⟩ ⟨0,2,2⟩

a,b,c,d a,d

b
c

a

b

c,d

a

b,d

c

a,d

bc

a,d

b

c

a bc

d

a

b

c,d

a

b

c,d

a

b,d

c

a

b,d
c

Fig. 9 The syntactic semigroup corresponding to the DFA of Figure 3. Each function is represented by the
image of ⟨1,2,3⟩. (Each tuple additionally has a fourth entry that is always labeled 0 and is omitted here
for brevity.) The corresponding projected subsemigroup lacks the identity as well as every edge labeled d.

Because S and X are finite and generated by Σ or T , respectively, we can visualize
them as edge-labeled directed graphs just like a DFA. If A is the DFA shown in Figure 3
on page 13 augmented with a nonaccepting sink labeled 0, then S is the semigroup
shown in Figure 9.

6.1 Strictly local stringsets and their complements

The SL and coSL classes (and their relativizations) cannot be characterized alge-
braically solely on the basis of their syntactic semigroups. Because the syntactic
semigroup is generated exclusively from the transition function δ of a DFA, an au-
tomaton and its complement are associated with the same semigroup. This fact has
been noted previously by McNaughton (1974). However, if information describing
whether each state is accepting or rejecting (state parity) is retained then an algebraic
characterization is possible.

De Luca and Restivo (1980) provide a characterization based on Schützenberger’s
(1975) concept of a constant. Let A be a subset of some semigroup S, and let c ∈ S.
Then c is a constant for A if for all p,q,r,s ∈ S∪ 1 it holds that whenever pcq ∈ A
and rcs ∈ A it follows that pcs ∈ A. If S is freely generated from some finite alphabet,
De Luca and Restivo prove that A is SL iff all sufficiently long words of S are constants
for A. This is equivalent to the suffix-substitution closure discussed in section 3.1. Of
course if all such words are instead constants for the complement of A, then A is coSL
rather than SL.

In this case, A is the stringset being tested, the language generated by the syntactic
semigroup under observation. If instead these properties hold for the projected sub-
semigroup, then the stringset is TSL or coTSL, respectively. But again, no algorithm

Relativized adjacency 21

can distinguish a stringset and its complement given only an unadorned syntactic
semigroup.

6.2 Locally testable stringsets

The characterization for LT and therefore TLT is due to Brzozowski and Simon (1973).
First, note that an element x of a semigroup S is called idempotent iff x = xx. An
idempotent semigroup is a semigroup such that all of its elements are idempotent.
Given the syntactic semigroup S of a stringset L, Brzozowski and Simon proved that
L is LT iff for all idempotent elements e of S it holds that the subsemigroup eSe is
a commutative idempotent monoid. Note that the monoid requirement is immaterial,
as eSe will always be a semigroup with identity. Namely, for any s ∈ S, we see that
eee ·ese= (ee)(ee)se= eese= ese and similarly ese ·eee= ese, so eee (which is itself
simply e) is the identity.

Theorem 5 A stringset L is TLT iff for all idempotent elements e of X, the projected
subsemigroup of its syntactic semigroup, it is the case that eXe is a commutative
idempotent semigroup.

This holds because the projected subsemigroup is equivalent to the syntactic
semigroup of the projection, and a stringset is TLT iff its projection is LT by defi-
nition.

6.3 Locally threshold testable stringsets

The characterization for LTT and therefore TLTT is due to Beauquier and Pin (1989).
They define a variety (collection) of semigroups V to contain all and only those ape-
riodic semigroups S such that if e and f are idempotent, p = es1 f , q = f s2e, and
r = es3 f , it holds that pqr = rqp. They then prove that a language L is LTT iff its
syntactic semigroup S is a member of V. By expansion, this means that for all idem-
potents e, f of S and for all s1,s2,s3 ∈ S, it holds that es1 f s2es3 f = es3 f s2es1 f .

The aperiodicity requirement is meaningful, as there do exist stringsets that sat-
isfy the latter requirement without even being star-free. Consider the set of strings of
even length over a unary alphabet, (aa)∗. Its syntactic semigroup consists of two el-
ements, 1 and a, such that aa = 1. It necessarily holds that es1 f s2es3 f = es3 f s2es1 f
under any instantiation of these variables, because this is a commutative monoid.

Theorem 6 Let L be a stringset and X be the projected subsemigroup of its syntac-
tic semigroup. Then L is TLTT iff for all idempotent elements e, f of X, and for all
s1,s2,s3 in X, it holds that es1 f s2es3 f = es3 f s2es1 f .

This holds because the projected subsemigroup is equivalent to the syntactic
semigroup of the projection, and a stringset is TLTT iff its projection is LTT by defi-
nition.

22 Dakotah Lambert

7 Conclusion

We introduced several new classes to the piecewise-local subregular hierarchy build-
ing from the model-theoretic characterization of TSL by Lambert and Rogers (2020)
and noting that projective relativization does not affect the expressivity of classes
based on general precedence. We provided model-, language-, and automata-theoretic
as well as algebraic characterizations for each new class. This establishes a clearer
notion of relativized adjacency based on the salience of individual symbols, and in-
forms linguistic theory as it pertains to long-distance dependencies in phonology.

The topic of learning is not covered in this work. But we would be remiss to
ignore that the unifying concept of relativized adjacency provides a straightforward
mechanism to extend known learning results for the TSL class to TLT and TLTT (see
McMullin 2016; Jardine and Heinz 2016; Jardine and McMullin 2017).

A Haskell library4 containing the automata-theoretic and algebraic decision algo-
rithms has been created. With this one can construct regular and subregular stringsets
from factors, or import OpenFST-format automata, and determine which, if any, sub-
regular classes the result occupies. The factor-based constructors make use of the
alphabet-agnostic automata described in section 4.2.

The class formed by intersecting multiple TSL constraints over different tier al-
phabets, MTSL (De Santo and Graf 2019), is not explored here. Under this model-
theoretic view, the relativized successor relation ◁T is parameterized by the alphabet
over which it is relativized, so different instantiations of this relation are as differ-
ent as the ◁ and < relations. With this in mind, future work in understanding these
interactions will shed light on the strictly piecewise-local class discussed in Rogers
and Lambert (2019b), and vice-versa. Moreover, Aksënova and Deshmukh (2018)
discuss attested interactions of multiple tiers; one might ask which kinds of combi-
nations (if any) allow intersection-closure to be maintained. Counterexamples exist
for each type of interaction (disjoint, overlapping, and subset configurations), but
perhaps some smaller portion of the constraint space may combine more readily.

The characterizations provided here of the relativized variants of the subregular
classes rely heavily on the fact that ◁T and <T are the results of a projective rela-
tivization. Another direction for future work then would be accounting for arbitrary
nonprojective relations, which would improve our understanding of De Santo and
Graf’s structure-sensitive TSL class and its (threshold) testable extensions, or Graf’s
(2017) domain- and interval-based strictly piecewise classes.

Finally, some of the subregular classes have been explored in application to trees
(Rogers 1997), and some extended to transducers (Chandlee 2014; Ji and Heinz
2020). It would be interesting to see how relativization applies to these cases as well.

Conflict of interest

The author has no conflicts of interest to declare that are relevant to the content of
this article.

4 Software available at https://github.com/vvulpes0/Language-Toolkit-2

Relativized adjacency 23

References

Aho, A. V., Garey, M. R., Ullman, J. D. (1972). The transitive reduction of a directed graph. SIAM Journal
on Computing 1(2):131–137, https://doi.org/10.1137/0201008

Aksënova, A., Deshmukh, S. (2018). Formal restrictions on multiple tiers. In Proceedings of the Soci-
ety for Computation in Linguistics, Salt Lake City, Utah, vol 1, (pp. 64–73), https://doi.org/10.7275/
R5K64G8S

Beauquier, D., Pin, J.-E. (1989). Factors of words. In G. Ausiello, M. Dezani-Ciancaglini, S. Ronchi
Della Rocca (Eds.) Automata, Languages and Programming: 16th International Colloquium, Lec-
ture Notes in Computer Science, vol 372, Springer Berlin / Heidelberg (pp. 63–79), https://doi.org/
10.1007/BFb0035752

Beesley, K. R., Karttunen, L. (2003). Finite State Morphology. CSLI Publications
Brzozowski, J. A., Simon, I. (1973). Characterizations of locally testable events. Discrete Mathematics

4(3):243–271, https://doi.org/10.1016/S0012-365X(73)80005-6
Caron, P. (1998). LANGAGE: A Maple package for automaton characterization of regular languages. In

D. Wood, S. Yu (Eds.) Automata Implementation, Lecture Notes in Computer Science, vol 1436,
Springer Berlin / Heidelberg (pp. 46–55), https://doi.org/10.1007/BFb0031380

Chandlee, J. (2014). Strictly local phonological processes. PhD thesis, University of Delaware, https://
chandlee.sites.haverford.edu/wp-content/uploads/2015/05/Chandlee dissertation 2014.pdf

Cser, A. (2010). The -alis/-aris allomorphy revisited. In F. Rainer, W. Dressler, D. Kastovsky, H. C.
Luschützky (Eds.) Variation and Change in Morphology: Selected Papers from the 13th Interna-
tional Morphology Meeting, John Benjamins Publishing Company, Vienna, Austria (pp. 33–52),
https://doi.org/10.1075/cilt.310.02cse

De Luca, A., Restivo, A. (1980). A characterization of strictly locally testable languages and its application
to subsemigroups of a free semigroup. Information and Control 44(3):300–319, https://doi.org/10.
1016/S0019-9958(80)90180-1

De Santo, A., Graf, T. (2019). Structure sensitive tier projection: Applications and formal properties. In
R. Bernardi, G. Kobele, S. Pogodalla (Eds.) Formal Grammar 2019, Lecture Notes in Computer
Science, vol 11668, Springer Verlag (pp. 35–50), https://doi.org/10.1007/978-3-662-59648-7 3

Edlefsen, M., Leeman, D., Myers, N., Smith, N., Visscher, M., Wellcome, D. (2008). Deciding strictly
local (SL) languages. In J. Breitenbucher (Ed.) Proceedings of the 2008 Midstates Conference for
Undergraduate Research in Computer Science and Mathematics, (pp. 66–73)

Gold, E. M. (1967). Language identification in the limit. Information and Control 10(5):447–474, https:
//doi.org/10.1016/S0019-9958(67)91165-5

Graf, T. (2017). The power of locality domains in phonology. Phonology 34(2):385–405, https://doi.org/
10.1017/S0952675717000197

Haines, L. H. (1969). On free monoids partially ordered by embedding. Journal of Combinatorial Theory
6(1):94–98, https://doi.org/10.1016/s0021-9800(69)80111-0

Heinz, J., Rawal, C., Tanner, H. G. (2011). Tier-based strictly local constraints for phonology. In Pro-
ceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Short Papers,
Association for Computational Linguistics, Portland, Oregon, vol 2, (pp. 58–64), https://aclweb.org/
anthology/P11-2011

Hulden, M. (2009). Finite-state machine construction methods and algorithms for phonology and mor-
phology. PhD thesis, The University of Arizona

Jardine, A., Heinz, J. (2016). Learning tier-based strictly 2-local languages. Transactions of the Association
for Computation in Linguistics 4:87–98, https://doi.org/10.1162/tacl a 00085

Jardine, A., McMullin, K. (2017). Efficient learning of tier-based strictly k-local languages. In F. Drewes,
C. Martı́n-Vide, B. Truthe (Eds.) Language and Automata Theory and Applications: 11th Interna-
tional Conference, Lecture Notes in Computer Science, vol 10168, Springer, Cham (pp. 64–76),
https://doi.org/10.1007/978-3-319-53733-7 4

Ji, J., Heinz, J. (2020). Input strictly local tree transducers. In A. Leporati, C. Martı́n-Vide, D. Shapira,
C. Zandron (Eds.) Language and Automata Theory and Applications: Proceedings of the 14th In-
ternational Conference, LATA 2020, Springer International Publishing, Cham, Switzerland, The-
oretical Computer Science and General Issues, vol 12038, (pp. 369–381), https://doi.org/10.1007/
978-3-030-40608-0 26

Knuth, D. E., Morris, J. H., Pratt, V. R. (1977). Fast pattern matching in strings. SIAM Journal on Com-
puting 6(2):323–350, https://doi.org/10.1137/0206024

https://doi.org/10.1137/0201008
https://doi.org/10.7275/R5K64G8S
https://doi.org/10.7275/R5K64G8S
https://doi.org/10.1007/BFb0035752
https://doi.org/10.1007/BFb0035752
https://doi.org/10.1016/S0012-365X(73)80005-6
https://doi.org/10.1007/BFb0031380
https://chandlee.sites.haverford.edu/wp-content/uploads/2015/05/Chandlee_dissertation_2014.pdf
https://chandlee.sites.haverford.edu/wp-content/uploads/2015/05/Chandlee_dissertation_2014.pdf
https://doi.org/10.1075/cilt.310.02cse
https://doi.org/10.1016/S0019-9958(80)90180-1
https://doi.org/10.1016/S0019-9958(80)90180-1
https://doi.org/10.1007/978-3-662-59648-7_3
https://doi.org/10.1016/S0019-9958(67)91165-5
https://doi.org/10.1016/S0019-9958(67)91165-5
https://doi.org/10.1017/S0952675717000197
https://doi.org/10.1017/S0952675717000197
https://doi.org/10.1016/s0021-9800(69)80111-0
https://aclweb.org/anthology/P11-2011
https://aclweb.org/anthology/P11-2011
https://doi.org/10.1162/tacl_a_00085
https://doi.org/10.1007/978-3-319-53733-7_4
https://doi.org/10.1007/978-3-030-40608-0_26
https://doi.org/10.1007/978-3-030-40608-0_26
https://doi.org/10.1137/0206024

24 Dakotah Lambert

Lambert, D., Rogers, J. (2020). Tier-based strictly local stringsets: Perspectives from model and automata
theory. In Proceedings of the Society for Computation in Linguistics, New Orleans, Louisiana, vol 3,
(pp. 330–337), https://doi.org/10.7275/2n1j-pj39

Libkin, L. (2004). Elements of Finite Model Theory. Texts in Theoretical Computer Science, Springer
Berlin / Heidelberg, https://doi.org/10.1007/978-3-662-07003-1

McMullin, K. (2016). Tier-based locality in long-distance phonotactics: Learnability and typology. PhD
thesis, University of British Columbia

McNaughton, R. (1974). Algebraic decision procedures for local testability. Mathematical Systems Theory
8(1):60–76, https://doi.org/10.1007/bf01761708

McNaughton, R., Papert, S. A. (1971). Counter-Free Automata. MIT Press
Nerode, A. (1958). Linear automaton transformations. In Proceedings of the American Mathematical So-

ciety, American Mathematical Society, vol 9, (pp. 541–544), https://doi.org/https://doi.org/10.1090/
s0002-9939-1958-0135681-9

Pin, J.-E. (1997). Syntactic semigroups. In G. Rozenberg, A. Salomaa (Eds.) Handbook of Formal
Languages: Volume 1 Word, Language, Grammar, Springer-Verlag, Berlin (pp. 679–746), https:
//doi.org/10.1007/978-3-642-59136-5 10

Rogers, J. (1996). A model-theoretic framework for theories of syntax. In Proceedings of the 34th Annual
Meeting of the Association for Computational Linguistics, Association for Computational Linguistics,
Santa Cruz, CA, (pp. 10–16), https://doi.org/10.3115/981863.981865

Rogers, J. (1997). Strict LT2 : regular :: local : recognizable. In C. Retoré (Ed.) Logical Aspects of
Computational Linguistics: First International Conference, LACL ’96 (Selected Papers), Springer-
Verlag, Berlin, Lecture Notes in Computer Science, vol 1328, (pp. 366–385), https://doi.org/10.1007/
BFb0052167

Rogers, J. (1998). A Descriptive Approach to Language-Theoretic Complexity. (Monograph.) Studies in
Logic, Language, and Information, CSLI Publications

Rogers, J., Lambert, D. (2019a). Extracting Subregular constraints from Regular stringsets. Journal of
Language Modelling 7(2):143–176, https://doi.org/10.15398/jlm.v7i2.209

Rogers, J., Lambert, D. (2019b). Some classes of sets of structures definable without quantifiers. In Pro-
ceedings of the 16th Meeting on the Mathematics of Language, Association for Computational Lin-
guistics, Toronto, Canada, (pp. 63–77), https://doi.org/10.18653/v1/W19-5706

Rogers, J., Pullum, G. K. (2011). Aural pattern recognition experiments and the subregular hierarchy. Jour-
nal of Logic, Language and Information 20(3):329–342, https://doi.org/10.1007/s10849-011-9140-2

Rogers, J., Heinz, J., Bailey, G., Edlefsen, M., Visscher, M., Wellcome, D., Wibel, S. (2010). On lan-
guages piecewise testable in the strict sense. In C. Ebert, G. Jäger, J. Michaelis (Eds.) The Math-
ematics of Language: Revised Selected Papers from the 10th and 11th Biennial Conference on the
Mathematics of Language, LNCS/LNAI, vol 6149, FoLLI/Springer (pp. 255–265), https://doi.org/10.
1007/978-3-642-14322-9 19

Schützenberger, M.-P. (1965). On finite monoids having only trivial subgroups. Information and Control
8(2):190–194, https://doi.org/10.1016/s0019-9958(65)90108-7

Schützenberger, M.-P. (1975). Sur certaines opérations de fermeture dans les langages rationnels. Symposia
Mathematica 15:245–253

Simon, I. (1975). Piecewise testable events. In H. Brakhage (Ed.) Automata Theory and Formal Languages,
Lecture Notes in Computer Science, vol 33, Springer-Verlag, Berlin (pp. 214–222), https://doi.org/10.
1007/3-540-07407-4 23

https://doi.org/10.7275/2n1j-pj39
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/bf01761708
https://doi.org/https://doi.org/10.1090/s0002-9939-1958-0135681-9
https://doi.org/https://doi.org/10.1090/s0002-9939-1958-0135681-9
https://doi.org/10.1007/978-3-642-59136-5_10
https://doi.org/10.1007/978-3-642-59136-5_10
https://doi.org/10.3115/981863.981865
https://doi.org/10.1007/BFb0052167
https://doi.org/10.1007/BFb0052167
https://doi.org/10.15398/jlm.v7i2.209
https://doi.org/10.18653/v1/W19-5706
https://doi.org/10.1007/s10849-011-9140-2
https://doi.org/10.1007/978-3-642-14322-9_19
https://doi.org/10.1007/978-3-642-14322-9_19
https://doi.org/10.1016/s0019-9958(65)90108-7
https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1007/3-540-07407-4_23

	Introduction
	Model theory
	Language-theoretic characterizations
	Automata
	Closure properties
	Algebra
	Conclusion

