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Formation of glassy skins in drying polymer solutions:
Approximate analytical solutions †

Laurence Talini,∗a and François Lequeuxb

We study the formation of a glassy skin at the air interface of drying polymer solutions. We introduce
a simple approximation, which is valid for most diffusion problems, and which allows us to derive
analytical relationships for the polymer concentration as a function of time. We show that the
approximate results differ by less than 15% from those obtained by numerically solving the diffusion
equation. We use the approximation to study skin formation in evaporating solutions. We focus
on the influence of variations of the mutual diffusion coefficient with concentration, when the latter
decreases sharply at high concentrations, as observed in the vicinity of the glass transition. We show
that the skin thickness depends very strongly on the exponent characterising the decrease of the
diffusion coefficient, in contrast to the polymer volume fraction at the interface, which varies only
slightly with the exponent.

1 Introduction
When solvent or suspending fluid is evaporated from a solution
or a suspension, a concentration gradient of the respectively dis-
solved or dispersed phase may build up from the interface with
air. This is the case if diffusion does not efficiently scatter the so-
lute that is advected by the flow of solvent toward the interface.
A measurement of this effect is given by the Péclet number that
compares a characteristic diffusion with a characteristic drying
time, Pe = tdi f f usion/tdrying. At large Péclet numbers, the interface
gets richer in solute as drying proceeds, which may result in the
formation of a solid crust or skin. Skin formation is currently
observed with large molecules or suspended particles, that have
relatively small diffusion coefficients and for which large Péclet
numbers can be reached even in conditions of spontaneous sol-
vent evaporation. For instance, it is frequently reported in poly-
mer solutions1–7 and colloidal suspensions2,8,9. Nevertheless, a
skin can also form when the solute is constituted of smaller ob-
jects such as surfactants, provided the drying velocity is large10.
The consequences of crust formation can be dramatic since the
crust encloses a still liquid suspension or solution, which volume
decreases because of ongoing evaporation whereas the skin sur-
face area remains constant. As a result, the skin may wrinkle5,
buckle1,9,11 or fracture and delaminate7,12. In addition, the skin
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may also modify the drying kinetics, as occurs if the mutual diffu-
sion of solvent and solute is concentration-dependent13. For in-
stance, the diffusion coefficients of amorphous polymers and their
solvents strongly vary with concentration. As a polymer solution
gets more concentrated, its coefficient first slightly increases be-
cause of the elastic contribution of the polymer network and fur-
ther decreases by several orders of magnitude in the vicinity of
the glass transition in solvent content14,15. This dramatic slowing
down of diffusion is combined with the non linear decrease of the
activity of solvent as the solvent content vanishes16. In addition,
hysteretic effects in the relationship between solvent activity and
concentration in solution lead to further complexity of the drying
behaviour17,18. As a result, the full drying of films of polymer
solutions can require times up to several weeks.

It is thus crucial in applications to determine whether a skin
builds up in order to predict the drying time, or adapt the dry-
ing conditions to prevent the formation of defaults of the dried
film. Even if the skin can be so thin that it requires specially de-
signed experiments to be evidenced3,5,7,19, its presence may have
a significant impact on the dry deposit. Using a scaling law anal-
ysis, de Gennes20 showed that a skin of thickness smaller than
100nm could form at the interface of a drying polymer solution
and, by its subsequent rupture, induce large surface roughness of
dried polymer films. More recently, a model based on the analy-
sis of asymptotic behaviours demonstrated that the onset of skin
formation can be inferred from the variations of film thickness
as a function of time13. The latter model allows a description
of the different stages involved in the drying of a polymer solu-
tion, and gives the conditions for skin formation when the diffu-
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sion coefficient linearly increases with concentration. However,
it does not provide quantitative information on the concentration
gradient and skin thickness as drying proceeds, for which a full
resolution of the diffusion equation is required. Actually, fully
analytical approaches are made difficult by the complexity of the
diffusion equation; in addition to the non-linearity resulting from
the concentration dependence of the diffusion coefficient, a mov-
ing boundary condition is involved since the interface with air
is displaced during drying. As a result, the problem is generally
solved numerically21–25. In the last decade, it was shown that a
solute Lagrangian scheme could simplify the problem26,27. In this
frame, the problem reduces to a diffusion equation that accounts
for the moving boundary condition. The latter equation - that in-
volves a concentration-dependent diffusion coefficient - could be
solved numerically and new insight was provided on skin forma-
tion. However, as in other works13, only a linear increase with
concentration of the mutual diffusion coefficient of solvent and
polymer was considered, which captures what happens at inter-
mediate polymer concentrations when a gel phase is formed, but
not the behaviour close to glass transition. The large variations
and singularities of the diffusion coefficient associated with glass
transition are indeed difficult to handle numerically.

Here, we focus on the effect of the vicinity of glass transitions
on drying of polymer solutions. We use a similar Lagrangian
scheme as the one already suggested27 in order to establish a
diffusion equation, which is verified by an effective concentra-
tion. In addition, we introduce an approximation that allows a
straightforward resolution of any diffusion equation provided its
associated boundary conditions varies slowly with time. We use
the latter approximation to derive analytical expressions of the
skin thickness and surface concentration. The approximated re-
sults, that are shown to be very close to numerical findings, are
further used to examine the effects of large variations and possi-
ble singularity of the diffusion coefficient with concentration.

The paper is organised as follows: in section 2, we show how
the problem can be reduced to a diffusion problem with a non
constant diffusion coefficient by considering the relative amount
of solvent in the drying solution instead of a volume fraction. In
section 3, we provide a very simple approximation of the solu-
tion to a diffusion equation, and show for pedagogical purposes
how it can be used in diffusion problems with a constant diffusion
coefficient, and with a boundary condition of either a constant
concentration or a constant flux. In section 4, we extend the ap-
proximation to situations in which the diffusion coefficient may
vary by several orders of magnitude as drying proceeds. Finally
in section 5, we solve the commonly encountered case of solvent
evaporation from a polymer solution.

2 Diffusion equations
We consider a unidimensional problem. As schematised in figure
1, the polymer solution is located at z > 0, and evaporation occurs
at its interface with air, which is initially at z = 0. We consider a
non confined solution and we assume that, far from the interface,
in the limit where z → ∞, the solvent volume fraction is not af-
fected by evaporation. Therefore, during drying, the interface as
well as the solute are displaced toward the positive values of z.

Fig. 1 Scheme of the considereddrying geometry. The solution is initially
in the region z > 0. Solvent evaporation results in a displacement of the
solute u(z, t). At time t, the layer initially located between z and z+dz is
between z+u(z, t) and z+dz+u(z+dz, t) .

We denote as u(z, t) the displacement - with respect to the labo-
ratory frame - of the solute at position z at time t = 0. For the
sake of simplicity, we assume volume additivity of solvent and so-
lute. The initial volume fraction of solute is uniform and denoted
φ0. We consider the volume of solute φ0dz located between z and
z+dz at time t = 0. At time t, it has moved between z+u(z, t) and
z+dz+u(z+dz, t) = z+u(z, t)+(1+uz(z, t))dz where uz(z, t) is the
derivative of u with respect to z. Note that both u(z) and uz(z)
go to zero for z → ∞. Therefore, the volume fraction of solute at
position z′ = z+u(z, t) and at time t is

φ(z′, t) =
φ0

1+uz
(1)

In the frame of the laboratory, the flux of solute j and solvent
jliq oppose at any given position z′ and are given by Fick’s law

j(z′) =− jliq(z
′) =−Dmut

∂φ

∂ z′
(2)

where Dmut is the mutual diffusion coefficient of the solvent and
polymer which depends on φ . The flux of solute at position z′ is

j(z′) = φ
∂u(z)

∂ t
(3)

The transport equation is obtained by combining equations 2 and
3

∂u(z)
∂ t

=−Dmut

φ(z′)
∂φ

∂ z′
(4)

which can be written using equation 1 and the relation dz′ =
(1+uz)dz

∂u
∂ t

=
Dmut

(1+uz)2
∂uz

∂ z
(5)

in which we have omitted the variable z for the sake of simplicity
as now all variables depend on z only. Further derivating equation
5 with respect to z yields

∂uz

∂ t
=

∂

∂ z

(
Dmut

(1+uz)2
∂uz

∂ z

)
(6)
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Fig. 2 Normalised solvent uptake Ψ as a function of solute volume
fraction φ for various initial values φ0 of solute volume fraction.

The latter equation is a non-linear diffusion equation. As al-
ready demonstrated27, the moving boundary condition - intrinsic
to drying problem - can be circumvented by changing the variable
of interest. In order to solve equation 6, we introduce a more con-
venient variable corresponding to the relative amount of solvent
in the system, which we denote as Ψ and define as

Ψ = 1+
uz

1−φ0
(7)

At time t = 0, Ψ= 1 and when solvent has fully evaporated, Ψ= 0.
1−Ψ(z) corresponds to the fraction of solvent evaporated from
a slice of solution located at position z. In particular, the total
volume of solvent evaporated from the solution and normalised
by the initial volume fraction of solvent is obtained by integration
of 1−Ψ, i.e. ∫

∞

0
(1−Ψ)dz =

u(0, t)
1−φ0

(8)

Using equation 1, Ψ can also be expressed as a function of φ ,
which yields

Ψ =
φ0

(1−φ0)

(1−φ)

φ
(9)

The variations of Ψ as a function of φ are shown in figure 2 for
different initial volume fractions in solute. For a given value of
φ , Ψ increases with increasing initial volume fraction φ0 since
a dilute solution shrinks more than a concentrated one during
drying.

Equation 6 that is verified by Ψ can be written as

∂Ψ

∂ t
=

∂

∂ z

(
D(Ψ)

∂Ψ

∂ z

)
(10)

where the apparent diffusion coefficient is given by

D(Ψ) =
Dmut(φ)

(Ψ(1−φ0)+φ0)
2 (11)

Fig. 3 Ratio of the apparent and mutual diffusion coefficients as a func-
tion of Ψ for different initial values φ0 of solute volume fraction.

The variations with volume fraction of the ratio of the appar-
ent and mutual diffusion coefficients are shown in figure 3. The
less concentrated in solute the initial solution, the larger the con-
traction of the solution during drying, which is accounted for by
larger values of D(Ψ)/Dmut(φ) for small initial volume fractions.

We now examine the boundary condition that is associated with
equation 10. Integrating the latter equation with respect to to z
and using equation 8 yields(

D(Ψ)
∂Ψ

∂ z

)
z=0

− Jev = 0 (12)

where Jev is the positive quantity of solvent evaporated from the
solution per time unit and normalised by the initial volume frac-
tion of solvent. Jev is expressed as an evaporation velocity and is
given by

Jev =
1

1−φ0

∂u(0, t)
∂ t

(13)

In summary, we have shown that the moving boundary condition
involved during drying can be accounted for by a non-linear dif-
fusion equation with a fixed boundary condition. A Lagrangian
description is thus used, as suggested in previous works26,27.
Here, we introduce a convenient variable, Ψ, which is the relative
amount of solvent with respect to the initial one, and the equation
verified by Ψ is written with respect to the initial space variable, z.
The associated diffusion coefficient is given by the mutual diffu-
sion coefficient of polymer and solvent, and a Ψ-dependent term
that accounts for the contraction of the solution during drying.
Actually, the diffusion coefficient increases as the solution dries
because the latter shrinks as solvent evaporates.

Hence, the problem is strictly equivalent to diffusion with a
concentration-dependent diffusion coefficient. This problem has
been addressed in the past28, but an analytical solution can be
found only for a constant concentration at the boundary. In the
following section, we show how equations having the general
form of equation 10 can be solved analytically by mean of an
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approximation.
For pedagogical purposes, we first introduce the approximation

in simple situations and compare its predictions to exact resolu-
tions. We further use it in a more general case.

3 Approximation for the resolution of diffusion
equations with constant diffusion coefficients

First, we introduce an approximation to solve linear diffusion
equations, i.e. for a constant diffusion coefficient D. Consider-
ation of this simple situation allows a comparison of the approxi-
mate solutions to the exact ones, since the latter can be obtained
analytically. The approximation is valid for slowly varying con-
centration fields, which is in general observed since the diffusion
equation involves a second derivative with respect to the space
coordinate. As a result, the fluctuation mode of wave vector q
has a damping rate given by Dq2, which quickly increases with
decreasing wavelength. Therefore, fluctuation modes of large
wavelengths are favored and smooth concentration fields are ex-
pected; in addition, if the boundary conditions, or any other con-
trol parameters, evolve slowly compared to the spontaneous evo-
lution under diffusion, they do not introduce short length distur-
bance. For these reasons, small wavelength effects can generally
be neglected in diffusion problems. Hence, we suggest a long
wavelength approximation that consists in replacing the solution
Ψ(z, t) by an approximate concentration Ψap(z, t) varying linearly
in space. Actually, in the non confined solution we consider, Ψ is
expected to increase from a finite value at z = 0 to reach Ψ = 1 for
z → ∞. Therefore, we suggest the following approximation for Ψ

Ψ
ap =

1−Ψs

ξ (t)
z+Ψs(t) (14)

for 0 < z < ξ (t) and Ψap = 1 for z > ξ (t). Ψs(t) and ξ (t) are two
time-dependent parameters that are respectively the value of Ψ

at z = 0 and the characteristic length over which Ψ varies. In the
following, we consider two different boundary conditions at z = 0
and we examine the approximate and exact solutions to equation
10.

3.1 Exact and approximate solution for a constant value at
the boundary

We assume that Ψ = 1 in the whole solution at time t = 0 and that
Ψ further takes a constant value at z = 0, i.e. Ψ(0, t) = Ψs. The
situation is equivalent to the classical problem of heat diffusion
in a semi-infinite medium with an initially homogeneous temper-
ature, and an imposed constant temperature at the boundary. Its
exact solution is

Ψ(z, t) = Ψs +(1−Ψs)er f
(

z
2
√

Dt

)
(15)

We now approximate Ψ by equation 14. Since Ψs is held con-
stant, the only time dependent parameter is ξ (t). A flux - anal-
ogous to a heat flux in the the heat problem - can be associated
with Ψ: it is given by D(1−Ψs)/ξ (t).The region in which Ψ has
diffused at time t (corresponding to the region in which the tem-
perature has changed in the heat problem) has a surface area

(1−Ψs)ξ (t)/2. The time derivative of the latter must be equal to
the flux, yielding

D(1−Ψs)

ξ (t)
=

∂

∂ t

(
ξ (t)(1−Ψs)

2

)
(16)

the solution to which is ξ (t) = 2
√

Dt, which is the same character-
istic diffusion length as the one in equation 15. Both approximate
and exact solutions, respectively given by equations 14 and 15,
are shown in figure 4. Their variations are very close to one an-
other in the vicinity of the interface with air at which the value of
Ψ is given. The discrepancy exhibited close to the bottom inter-
face (with the region non affected by drying) results from a poor
prediction of the flux in the frame of the approximation. How-
ever, space and time variations remain close and the approximate

flux at the interface, given by 0.5(1−Ψs)
√

D
t , is only about 10%

smaller than the exact one, J(0, t)≃ 0.56(1−Ψs)
√

D
t .

3.2 Exact and approximate solution for a constant flux at
the boundary

We now apply the above approximation to solve the diffusion
equation with a constant flux Jev at z = 0 imposed at t = 0. The
problem is then analogous to a heat problem with an imposed
constant heat flux. We use the same linear expression Ψap as in
the former subsection but with Ψs and ξ both depending on time.
The condition of constant flux is

Jev =
D(1−Ψs(t))

ξ (t)
(17)

The same balance as in equation 16 can be used with a time
dependent value of Ψs, which yields after integration with respect
to time

Jevt =
ξ (t)(1−Ψs(t))

2
(18)

Combining equations 17 and 18, we obtain Ψs(t) = 1− Jev

√
2t
D

and ξ (t) =
√

2Dt. The exact solution to equation 10 with a con-
stant flux at z = 0 is28

Ψ(z, t) = 1+
Jev

D

[
z
(

1− er f
(

z
2
√

Dt

))
−2

√
Dt
π

e−
z2

4Dt

]
(19)

Both exact and approximate solutions are shown in figure 4.
Since the value of the flux is given, the slope is well predicted
but discrepancies are observed for the values of Ψ close to the
interfaces.

The value of Ψs inferred from equation 19 is

Ψs(t) = 1− Jev
2√
π

√
t
D

(20)

whereas the approximate one is

Ψ
ap
s (t) = 1− Jev

√
2

√
t
D

(21)

The expressions for Ψs only differ by a numerical factor, and Ψs

is underestimated by about 25% in the approximation.
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Fig. 4 Exact (full line) and approximated (dashed line) solutions of the
linear diffusion equation for a boundary condition at z = 0 of constant Ψ

(a) and constant flux (b). The values of the parameters are Ψs = 0.2 in
(a) and t = 1

4 , D = 1 and Jev = 1 in (b).

In summary, we have introduced an approximation to solve dif-
fusion equations with constant diffusion coefficients. We have
shown that it provides simple analytical expressions and predicts
the same variation laws with the different parameters as the ex-
act solutions. Now that the basis of the approximation is laid,
we demonstrate in the following how it can be used in the case
of interest herein, i.e. a diffusion equation with a non-constant
diffusion coefficient.

4 Extension of the approximation to concentration-
dependent diffusion coefficients

The approximation we have introduced above consists in assum-
ing a linear variation of Ψ with z, i.e. a space-independent value
of D ∂Ψ

∂ z over the diffusion length ξ . We have shown that solutions
based on the latter assumption provide a good approximation of
the profiles with constant diffusion coefficients. In the following,
we make the same approximation with concentration-dependent
diffusion coefficients, i.e. that the flux given by

J = D(Ψ)
∂Ψ

∂ z
(22)

is constant between z = 0 and z = ξ , and that Ψ = 1 for z > ξ . The
same assumption was made by de Gennes20. As detailed below, if
D vanishes as in the vicinity of glass transition, the concentration
gradient becomes very large, consistently with the formation of
thin glassy skins at the free surface of solution or gels that are
observed in experiments5.

In the following, we first justify the assumption of a constant
flux in a case in which analytical expressions can be found.

4.1 Justification of the constant-flux approximation in the
diffusion layer

The aim of this subsection is to compute the flux within the dif-
fusion length ξ and show that it is sensible to approximate it as
a constant. For the sake of clarity, we consider a boundary condi-
tion of constant Ψ=Ψs a the interface, for which an analytical so-
lution to equation 10 can be found. Actually, in this condition, the
solution can be written under the form Ψ= g(ẑ) where ẑ= z/

√
D0t

and D0 = D(Ψ = 1)28. We further introduce the function f

f (Ψ) = D(Ψ)/D0 (23)

Fig. 5 Ratio of the mutual diffusion coefficient Dmut and D0 as a function
of solute volume fraction corresponding to power law variations of D(Ψ)

according to equations 11 and 25, for different values of the exponent n.

Equation 10 then leads to

g′(ẑ)2 f ′(g(ẑ))+ f (g(ẑ))g′′(ẑ)+
1
2

ẑg′(ẑ) = 0 (24)

and the boundary conditions correspond to g(0) = Ψs and
g(+∞) = 1. Since we want to investigate the effect of a singu-
lar diffusion coefficient resulting e.g. from glass transition, we
adopt the following form for function f

f = Ψ
n (25)

where n is a positive exponent. Such a power law variation of
D(Ψ) corresponds to a mutual diffusion coefficient that follows
Dmut ∝ (1 − φ)n/φ n+2, i.e. strongly decreasing as the solution
dries, similarly to amorphous polymers and their solvents close to
their glass transition15. The variations of Dmut are show in figure
5 for values of the exponent ranging from n = 0 to n = 4 for which
the decrease is increasingly steeper. In contrast to other works
in the literature23,25, the increase of the mutual diffusion coef-
ficient with volume fraction reported in polymer solutions well
below the glass transition in solvent content is not reproduced by
the chosen variation law. However, the increase remains moder-
ate compared to the decrease close to glass transition15, and it is
expected to have a small effect on skin formation. We emphasise
that it could easily be taken into account with the approximation
we introduce but would lead to more complex expressions. The
simple power law we consider has therefore the advantage of be-
ing easily tractable and allows one to capture the physical trends.

With the chosen form of function f , equation 24 becomes

g(ẑ)ng′′(ẑ)+ng(ẑ)n−1g′(ẑ)2 +
1
2

ẑg′(ẑ) = 0 (26)

We assume that Ψs → 0, expansion of equation 26 near ẑ = 0 then
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yields
g(ẑ) = Aẑ

1
n+1 +0

(
ẑ

n+2
n+1

)
(27)

where A depends on n and is of order one. The flux is readily
obtained from equation 27

J =
An+1

(n+1)

√
D0

t
+0(z) (28)

We emphasise that the flux given by equation 28 exhibits no sin-
gularity and does not depend on z at the leading order, whatever
the variations of the diffusion coefficient. The approximation of
a constant flux within the diffusion length ξ is therefore fully jus-
tified. As already assumed in20, we will therefore consider that
the flux is constant at any time in the region affected by drying
(where Ψ < 1). Obviously, this approximation is valid provided
the evaporation rate varies more slowly than the spontaneous
evolution of the concentration profile in the solution. In the next
subsection, we give the relations obtained in the frame of the con-
stant flux approximation, which are valid whatever the boundary
condition at the interface.

4.2 Approximate solution to the diffusion equation in the
general case:

Except in the specific case discussed above, there is no exact ana-
lytical solution to equation 10. In particular, the reduced variable
ẑ is not compatible with a boundary condition of fixed flux at the
interface. We show in what follows that the approximation we
have introduced nonetheless provides an analytical expression of
the solution in that case. As explained above, we assume a con-
stant flux J = Jev for 0 < z < ξ , whereas Ψ(z) = 1 for z ≥ ξ .

The expression for ξ is obtained by integration over z of equa-
tion 22 between Ψs(t) and 1, where Ψs(t) is the time-dependent
concentration at the interface. Using equation 23, it yields

ξ (t) =
D0

Jev

∫ 1

Ψs(t)
f (w)dw (29)

Equation 29 is equivalent to equation 17 in the non-linear case.
Similarly, the Ψ profile is given by integration of equation 22 be-
tween z = 0 and z, yielding an implicit relation verified by the
approximate solution Ψ(z, t). Therefore, between z = 0 and z = ξ ,
the approximate solution follows

z = ξ

∫Ψ(z,t)
Ψs(t)

f (w)dw∫ 1
Ψs(t) f (w)dw

(30)

and by Ψ = 1 for z > ξ . In order to close the problem, the time
evolution of Ψs must be derived. As established in section 2, the
total volume of evaporated solvent per surface unit is given by the
integral of 1−Ψ between z = 0 to z = ξ . Changing the integration
variable using dz = dz

dΨ
dΨ together with equation 22 yields the

following expression of the evaporated volume

∫
ξ

0
(1−Ψ(z, t))dz = ξ (t)

∫ 1
Ψs(t)(1−w) f (w)dw∫ 1

Ψs(t) f (w)dw
(31)

Lastly, the derivative with respect to time of the evaporated

volume must be equal to the drying velocity, yielding the relation

Jev =
d
dt

[∫
ξ

0
(1−Ψ(z, t))dz

]
(32)

Equations 29 and 32 allow the determination of both Ψs and ξ

as a function of time during drying. In the case of a constant
diffusion coefficient (corresponding to f = 1), equations 17 and
18 established in section 3 are recovered.

In the next section, we focus on realistic conditions of evapo-
ration of a polymer solution, and we show how the spatial vari-
ations of the polymer volume fraction can be approximated in
these conditions.

5 Evaporation conditions

We assume now that the solvent evaporates and that its vapour
diffuses over a boundary layer of thickness Λ above which the
concentration of vapour is zero. We denote Dgas the diffusion
coefficient of the vapour in the atmosphere. With the notation
adopted above, the evaporation velocity is ∂u

∂ t . It depends on the
activity of the solvent, γ(1−φs) where γ is the activity coefficient
of the solvent, equal to 1 for an ideal solution and φs the poly-
mer volume fraction at the interface. Since the concentration in
solvent vapor is the saturation concentration csat at the interface
with the solution and zero at a distance Λ, the evaporation veloc-
ity is Dgascsatγ(1−φs(t))/Λρ with ρ is the density of solvent in the
liquid state. The velocity Jev defined in equation 13 is then given
by

Jev =
Dgascsatγ

Λρ

1−φs(t)
1−φ0

(33)

We consider a constant activity coefficient which does not repro-
duce the non-linearity of the sorption isotherm of polymers16–18

but nonetheless captures the decrease of the evaporation flux as
the solution dries20. In addition, it has the advantage of provid-
ing simpler analytical relations. Our results could nevertheless be
extended to more complex variations of the solvent activity.

In the limit φs → 1, equation 33 yields

Jev ≃
Dgascsatγ

Λρ

Ψs

φ0
(34)

The evaporation kinetics is determined by equations 29 and 32.
A characteristic length λ and characteristic time τ can be defined
respectively as

λ =
D0Λρφ0

Dgascsatγ
(35)

and

τ = D0

(
Λρφ0

Dgascsatγ

)2
(36)

For numerical values that are typical of evaporating aqueous solu-
tions, D0 = 10−10 m2.s−1, Dgas = 10−5 m2.s−1, csat = 10−2 kg.m−3,
ρ = 103 kg.m−3, Λ= 5 mm. With, in addition, φ0 = 0.1 and γ = 0.5,
the length and time scales are λ ≃ 1 mm and τ ≃ 104 s. In the fol-
lowing, we determine the variations with time of the value of Ψ

at the interface.
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5.1 Time variations of surface concentration

The relation between ξ and Ψs is given by equation 29, which
becomes

ξ (t) =
λ

Ψs(t)

∫ 1

Ψs

f (w)dw (37)

and the time evolution of Ψs is given by equation 32 that writes
now

Ψs(t) = τ
d
dt

(
1

Ψs

∫ 1

Ψs

(1−w) f (w)dw
)

(38)

The latter equation is an implicit equation, which for Ψs → 0,
yields at the leading order in Ψs

dΨs

Ψ3
s

(∫ 1

0
(1−w) f (w)dw+O(Ψs)

)
=−dt

τ
(39)

The solutions to respectively equation 38 and equation 10 are
shown in figure 6. The solution to equation 10 was obtained by
numerical resolution following the procedure detailed in the Sup-
plemental Information. The variations with time of of both the
exact and approximated surface volume fraction φs are displayed
in the same figure. They were inferred from the obtained values
of Ψs using equation 9 and for φ0 = 0.1. For both Ψs and φs, so-
lutions to the simple differential equation 38 successfully approx-
imate the exact solutions since they underestimate them by less
than 15%. At the maximal chosen time t = 100τ, the solution is
not dry. Its volume fraction at the interface remains smaller than
unity, in agreement with the very long drying times. Interestingly,
the asymptotic behaviours of Ψs and φs only weakly depend on
the behaviour of the diffusion coefficient D(Ψ) - i.e. on f (Ψ)-
close to Ψ = 0. For instance, at the final chose time t = 100τ, φs is
larger by less than 20% for n= 4 corresponding to a large singular-
ity of Dmut than for n = 0 for which Dmut more smoothly decreases
with increasing volume fractions (see figure 5). Actually, the de-
pendence of D with Ψ is accounted for in the integrals of f (Ψ)

and respectively (1-Ψ) f (Ψ) in the numerator of equations 37 and
38, which do not exhibit any singularity when Ψs → 0. The only
singular term is the Ψ−1

s term in the r.h.s. of equations 37 and 38,
and results from the vanishing drying velocity when the surface
of the solution is nearly completely dry. Obviously, from equation
37, the same weak dependence on the value of the exponent n is
expected for ξ .

When t → ∞, the asymptotic behavior of Ψs, can be deduced
from equation 38 and is

Ψs(t)≃
(

1+
t
τ̄

)− 1
2

(40)

where τ̄ = τ
∫ 1

0 f (w)(1−w)dw. The asymptotic limits are shown
for two values of the exponent n in figure 6. They slightly overes-
timate Ψs. We will use equation 40 to determine the thickness of
the skin that forms at the interface. Moreover, the total thickness
of the layer depleted in solvent can be deduced from equations
40 and 37 in the limit t >> τ

ξ (t) = λ
t1/2

τ1/2

∫ 1
0 f (w)dw∫ 1

0 f (w)(1−w)dw
(41)

Therefore, the simple result ξ ∝
√

D0t is obtained. The prefactor,

Fig. 6 (a) Surface value of Ψ, Ψs, and (b) corresponding surface vol-
ume fraction φs as functions of the reduced time for different values of
the exponent n in evaporation conditions. Full integration of equation
10 (full lines) is shown together with the approximated solutions given
by equation 38 (dashed lines). In (a), the asymptotic limits given by
equation 40 are shown for n = 0 and and n = 4 (dotted lines). In (b), the
initial volume fraction is φ0 = 0.4.
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which is the ratio of the two integrals of f in the r.h.s. of equation
41, is of order one. We emphasise that the Peclet number defined
with length ξ , Peξ = D0

Jevξ
≃ 1 is of order unity. We will see in

section 5.3 that a different analysis can be made in terms of Peclet
number for the onset of skin formation.

In the following subsection, we show that, in contrast to what
is observed for the values at the interface, the spatial profiles are
significantly affected by the behaviour of D(Ψ).

5.2 Spatial profiles

First, we establish an approximate expression of the spatial vari-
ations of Ψ. Combining equations 29 and 37 yields

z =
λ

Ψs

∫
Ψ

Ψs

f (w)dw (42)

We recall that z is the spatial coordinate of the solution in its initial
state.

Using a function f that has a form given by equation 25, equa-
tion 42 becomes

z(Ψ) = λ
Ψn+1 −Ψn+1

s
(n+1)Ψs

(43)

The corresponding spatial variations of Ψ are shown in figure 7
where the value of Ψs is the one at t/τ = 100 obtained by numer-
ical integration of equation 38.The profiles are very close to the
ones obtained from numerical resolution of equation 10, which
once again confirms the efficiency of the approximation.

The variations of the volume fraction in solute in the drying
solution, i.e. φ(z′) can be inferred from the Ψ(z) profiles estab-
lished above. We recall that the spatial coordinate in the drying
solution is z′ = z+u(z). We denote z′s the position of the interface.
We define h as the distance to the interface during drying. Thus
h(z) = z+u(z)−u(0) = z′− z′s. Notations are indicated in figure 8

The depth in the drying solution at which a given value Ψ is
found, i.e. h(Ψ) = z′− z′s, is found by integration of uz

h(Ψ) = z(Ψ)+
∫ z(Ψ)

0
uz(x)dx =

∫ z(Ψ)

0
(Ψ(x)(1−φ0)+φ0)dx (44)

After change of variables following equation 42, the depth can be
written as

h(Ψ) = λ

∫
Ψ

Ψs

(w(1−φ0)+φ0)
f (w)
Ψs

dw (45)

Using the definition of Ψ given by equation 9, it is possible to
compute respectively the exact and approximated volume frac-
tions as a function of the distance to the interface given by equa-
tion 45. Their variations are shown in figure 7b. The exact and
approximated solutions for φ are very close. They significantly de-
pend on the variations of the diffusion coefficient. As already re-
ported above, the value of φ at the interface moderatly increases
with n. In contrast, the value of φ at large enough distance from
the interface (for instance at z = λ) decreases with increasing val-
ues of n and, for n = 4, it is almost half the value for n = 0. The
smaller concentrations for large n result from the smaller average
value of the diffusion coefficient.

Fig. 7 (a) Ψ and (b) corresponding volume fraction φ as functions of
the normalised distance from the interface, respectively with respect to
the initial coordinate z in (a) and to the distance to the interface in
the drying solution, h in (b). The values have been computed at time
t = 100τ in the evaporation conditions we consider and for an initial
volume fraction φ0 = 0.4. Integration of equation 10 (full lines) is shown
together with the approximate solutions (dashed lines) given by equation
43 after numerical integration of equation 38. The curves in (b) are
inferred from the ones in (a) using respectively equation 9 and 45. The
dashed-dotted lines respectively indicate the arbitrarily chosen value of
Ψg = 0.1 in (a) and the corresponding value of φg = 0.87 in (b) that have
been used to compute the skin thickness, as well as the corresponding
values of zg/λ and hskin/λ for n = 0.
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Fig. 8 Scheme of the drying sample in the laboratory frame and schematic
variations of the ratio of solvent fraction and its initial value, Ψ and of
the polymer volume fraction, φ . During drying, the solution shrinks, the
position of the solute in the laboratory frame is denoted z′, and the solute
volume fraction at the surface Φs increases with time. It reaches a value
above Φg at time tskin. Hence, a glassy layer appears and further expands
with time. Its thickness is denoted hskin.

5.3 Skin thickness

The thickness of the skin that forms at the interface can be com-
puted in the frame of the hypotheses made above. We arbitrarily
define the thickness zg as the distance at which Ψ reaches the
value Ψg = 0.1. As indicated in figure 7, it corresponds to a vol-
ume fraction φg = 0.56. The skin thickness zg = z(Ψg) has been
computed using either the complete numerical resolution of the
problem, or equation 43, in which the values of Ψs(t) were de-
duced from integration of equation 38.The skin thickness with
respect to the drying solution,hskin, is obtained by integration of
equation 45, yielding

hskin =
λ

Ψs

(
Ψn+2

g −Ψn+2
s

n+2
(1−φ0)+

Ψn+1
g −Ψn+1

s

n+1
φ0

)
(46)

Figure 9 displays the variation with the normalised time of both
the thickness with respect to the initial solution and the real thick-
ness hskin. The approximation underestimates the formation time
tskin by about 20% but, at later times, the approximated thickness
is very close to the exact one.

Noticeably, the skin forms at a finite time and both its thickness
and apparition time depend on the variations with concentration
of the diffusion coefficient. More precisely, the sharper the de-
crease of the diffusion coefficient, the earlier the apparition of
the skin and the smaller its thickness. The time at which skin
formation occurs rather weakly depends on exponent n since it
decreases by one order of magnitude as the exponent n increases
from 0 to 4. In contrast, the thickness value varies by about four
orders of magnitude in the same exponent range. With the typical
numerical values we have given in what precedes, the initial value
of the skin thickness ranges from a few nanometers for n = 4 to a
few hundreds of microns for n = 0. Consistently, glassy crusts of
very different thicknesses have been evidenced experimentally5,7.

The time tskin at which the skin appears is simply given by the
equation Ψs(tskin) = Ψg, that yields, using equation40 and assum-
ing that Ψ2

g << 1

tskin ≃
τ̄

Ψ2
g

(47)

An estimate of the skin thickness just after its formation is ob-
tained from equation 46 by considering that Ψs = Ψg/2. It can be
approximated as

hskin(tskin)≃ 2λΨ
n
g

(
(1−φ0)Ψg

n+2
+

φ0

n+1

)
(48)

The skin thickness when it forms therefore verifies hskin ∝
D(Ψg)

Jev
.

The same scaling law was established by de Gennes20, even
though he adopted a different definition of skin thickness that
yielded a dependency on volume fraction different from the one
of equation 48.

In the present analysis, in addition to its value when it forms,
the time variations of skin thickness can also be examined. Using
equation 43, for large time when Ψs ≃

√
τ̄/t,the skin thickness

Journal Name, [year], [vol.],1–12 | 9



Fig. 9 (a) Thickness of the skin zg normalised by the characteristic
length λ and as a function of the normalised time t/τ in the considered
evaporation conditions. zg is arbitrarily defined as the distance at which
Ψ = Ψg = 0.1 with respect to the initial solution, and is obtained both
by integration of equation 10 (full lines) and using the approximate so-
lution (dashed lines) given by equations 37 and 38. (b) Corresponding
skin thickness in the drying solution as a function of time given by the
approximated expression of equation 45 with φ0 = 0.4.

has the following asymptotic limit

hskin = λ

(
Ψn+2

g

n+2
(1−φ0)+

Ψn+1
g

n+1
φ0

)√
t
τ̄

(49)

The predicted behaviour hskin ∝ t1/2, which, remarkably, does
not depend on n, is observed in figure 9. The skin growth velocity
therefore decreases with time. Even if a skin forms earlier when
the diffusion coefficient strongly decreases in the vicinity of glass
transition, it can nonetheless remain very thin. Therefore, it may
have less dramatic consequences on the final state of the dry layer
than the thicker skin formed at later times for more moderate
decreases of the diffusion coefficient with concentration.

In the literature, a criterion on the Péclet number has been sug-
gested to determine the formation of a skin26,29. However, it was
established for gel phases in which the diffusion coefficient lin-
early increases with polymer concentration. Actually, the scaling
law we have found for hskin does correspond to a Péclet num-
ber defined with the value of the mutual diffusion coefficient in
the skin, yielding Peskin =

D(Ψg)
Jevhskin

≃ 1. Finally, we emphasise that,
even if the diffusion coefficient in the skin is vanishingly small,
the evaporation is never limited by solvent diffusion through the
skin. Actually, the solvent activity at the surface of the solution
decreases with increasing polymer volume fraction. Therefore,
the formation of a glassy skin is associated with a decrease of
the evaporation flux and this decrease governs the drying kinet-
ics. Hence, it is necessary to consider a non constant evaporation
flux in order to fully account for the behaviours of drying polymer
solutions.

6 Conclusions

In conclusion, in this work we describe a way to establish ap-
proximate analytical solutions to non-linear diffusion equations.
The method combines a Lagrangian description with an approx-
imation based on simple considerations of matter conservation.
We apply it to the drying of amorphous polymer solutions and
we investigate the formation of a crust at the interface with air
during drying when the mutual diffusion coefficient strongly de-
creases with increasing polymer concentration, as observed near
the glass transition. We show that the difference between the
approximated and concentration profiles is less than 15%. Our
analytical results provide new insight on the skin formation when
glass transition is at stake. In particular, we show that i) the time
at which the skin appears only weakly depends on the precise
variations of the mutual diffusion coefficient with volume frac-
tion, ii) in contrast when it forms, the skin has a thickness that
varies by several orders of magnitude according to the variations
of the diffusion coefficient, and may be very small (nanometric),
iii) after its formation, the skin thickness always increases with
the square root of time. The concentration gradient varies as the
inverse of the mutual diffusion coefficient and, can be so large
that the skin thickness goes down to molecular sizes.
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