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Abstract

Plant recognition is a challenging task due to the fol-
lowing elements: many classes, the variability of organs
within a species, the similarity of organs between species,
the shooting conditions, etc. There exist many mobile ap-
plications for plant recognition but most of them require an
Internet connection to send the image to a server that will
compute the recognition and, send the result back. How-
ever, in nature, in the mountains or in the forest, Internet
connections are very often poor or non-existent. The only
embedded plant recognition application is InterFolia based
on SqueezeNet network but is it the best architecture to rec-
ognize plants? In this work, we propose to compare main
existing networks that can be embedded allowing the recog-
nition of plants from their organs (leaves, flowers/fruits,
barks). The aim is to study how these networks behave in
the face of this difficult problem to highlight their advan-
tages and disadvantages in this context. The elements of
comparison are not only the performance of the networks
but also their memory impact and their inference time on
computer and smartphone. Such elements could be ex-
tended to other applications in similar contexts, such as
embedded phenotyping. We also propose a dataset with 477
plant classes that we make available to the scientific com-
munity1.

1https://kaggle.com/datasets/lauretougne/interfolia-dataset-2-0

1. Introduction

Our relationship with nature has profoundly changed in

recent decades. While less than a third of the world’s popu-

lation lived in cities in 1950, this will be the case for more

than two thirds of the population in 2050 [10]. Human is

therefore moving further and further away from nature.

Paradoxically, he has understood that he must protect his

environment to survive. But we can only protect what we

know well. In other words, environmental education is es-

sential. It is therefore essential to learn to know the plants

that surround us. This learning can be done through com-

puter tools and especially smartphones that everyone now

has in his pocket.

There exist many plant recognition applications freely

available like Pl@ntNet Identify [8], Seek [9], Pic-

tureThis [7], LeafSnap [5], Google Lens [4], etc. but all

these applications require a working Internet connection

since the classification task is processed on a remote server.

But in the nature, in the forest, in the mountains, etc. we do

not necessarily possess an Internet connection. This implies

to have embedded recognition algorithms. In this context,

trade-offs must be made between response accuracy, pro-

cessing speed and memory footprint. The only plant recog-

nition application currently available that works without an

Internet connection is InterFolia [33].

The objective of this work is precisely to compare dif-

ferent possible network models for the embedded recogni-

tion of trees and shrubs on the same dataset which contains

many species (up to 184 per organ) and for which it is pos-

sible to use different organs (leaf, bark, flower/fruit).

In the remainder of this paper, we will first briefly de-

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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scribe the state of the art that on embedded plant recogni-

tion. We will then present the dataset that we have pro-

posed to establish these performance comparisons. We will

describe the architectures of the deep neural networks we

have chosen to compare and justify this choice. The sec-

tion 5 will present the different experiments conducted and

the results obtained.

2. Related work
Automatic plant recognition is a very developed research

topic since many years [34]. It is a difficult problem for

multiple reasons: firstly, there are many plant species in

nature, which results in many classes to discriminate. It

is estimated that there are 400,000 species of plants in the

world. Second, some species are not frequent and therefore

we sometimes have very few examples per class. Third,

some species have organs that may be visually quite dif-

ferent (Figures 1 and 2). It conducts to a very important

intra-class variability. In the same way, we can have organs

of different species which are very similar to each other

(Fig. 1, right image); which has for effect also a similarity

inter-class sometimes very important. In addition to this,

the images are taken in an uncontrolled environment, which

can lead to artefacts of luminosity or cast shadows that can

disturb recognition. Figure 3 shows the large variability of

shape and color within flowers/fruits.

The methods developed in the literature were initially

based on the segmentation of the object to be recognized,

extraction of handcrafted features and classification of the

resulting feature vectors [16, 18, 29, 30]. The main problem

with this type of methods was its sensitivity to segmentation

quality. Indeed, poor segmentation implied features that did

not really correspond to the object, and consequently lead

to potential misclassification.

Then, deep learning based methods took over, as in other

application fields, and are now the only ones used [26, 17,

12, 23]. However, as deep learning methods are often com-

putationally and memory-intensive, they are still very often

deployed in remote servers.

The development of smartphone applications has given

rise to numerous applications that are either dedicated to

plants (e.g. PlantNet identify), or that allow to recognize

anything and in particular plants (e.g. Google Lens appli-

cation). Initially based on the extraction of handcrafted

characteristics, most of these applications are now based

on deep learning methods. The principle is the same for

all of them: the user classification request is sent to a re-

mote server which processes the image and sends the an-

swer back to the smartphone. This framework allows to

use “large” deep neural networks and powerful computing

servers to run the classification task. However, as in nature

we often have either very little Internet connection or no

connection at all; these applications are incompatible with

this context of use. The only existing application that does

not require an Internet connection is InterFolia [33] which

embeds SqueezeNet networks because of their small size

and fast response time [22]. More specifically, three mod-

els are on board: one for recognizing leaves, one for barks

and one for flowers and fruits. The user can take several

photos of the different organs of the same plant and ask the

application to combine the results.

But is this network architecture still the most suitable

to address the problem? Can more recent network archi-

tectures be embedded in the current smartphones? For in-

stance, there are many “small” networks architecture that

are good candidates for the task, such as MobileNet fam-

ily (V2, V3) [25, 14], EfficientNet [32], SqueezeNet [21]

or MobileViT [24]. However, given the difficulty of the

plant recognition problem, it is difficult to predict which

network would be the most suitable. Comparisons made in

other contexts, such as, manufactured objects, do not corre-

spond to the conditions we experience in the context of plant

recognition in natural environments. For these reasons, we

propose InterFolia 2.0, a novel performance benchmark for

plant recognition task.

3. Datasets

There are many datasets in the literature concerning plant

species (Table 1). Several datasets contain a single organ.

For instance, leaves [28], barks [13][1]), or flowers and

fruits ([6][2][3]). However, in [28], for example, the leaves

are shot flat against a white background, which is not repre-

sentative of real-life conditions. In [6], these are ornamen-

tal flowers that are photographed, not tree or shrub flowers.

There exist also datasets mixing organs such as [19]. How-

ever, most of these datasets do not contain many classes

and therefore do not cover all the trees and shrubs that can

be found on a territory like France for example.

The datasets used in the ImageClef challenges2 are rather

complete but do not differentiate the plant organs. Even if a

user may not be able to tell the difference between a flower

and a fruit from trees and shrubs due to its similarity for

non-experts, it is easy to tell the difference between a leaf

and a bark, a leaf and a fruit, or a leaf and a flower. Thus,

aiming at a smartphone use, we can consider recognizing

specifically these types of organs. Indeed, we can easily

ask the user to specify if the picture taken is of a leaf, a

bark or a flower/fruit. The idea is that by using a model

per plant organ, one hopes to recognize plant species more

easily. Prior work has shown that using several organs of

the same plant to recognize the plant species improves the

results [22].

For this, we require a dataset that organizes the images

of each plant species per organ. However, the only dataset

2https://www.imageclef.org/
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Figure 1. Examples of bark images from (left) the same species, (right) two different species.

Figure 2. Examples of leaf images from InterFolia dataset: the 4 images are from the same species.

Figure 3. Examples of flower/fruit images from InterFolia dataset to show variability.

Dataset # of images # of classes Barks Leaves Flowers/Fruits

Bark-101 [1] 2.5k 101 X - -

BarkNet [15] 23k 23 X - -

BarkID [31] 18k 10 X - -

Flavia [28] 1.9k 32 - X -

Leafsnap [5] 28k 184 - X -

Oxford-102 [6] 8k 102 - - X

InterFolia [33] 9k 477 X X X

Table 1. Existing plant datasets. The letter “X” denotes available information.

known to us with plant photos classified by species and or-

gans is the dataset used by the InterFolia application, that is

currently a private dataset.

3.1. InterFolia dataset

The Interfolia dataset has been used to train the deep neu-

ral network models used by the InterFolia application. It

is based on the ImageCLEF dataset in which the examples
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Organs Barks Leaves Flowers/Fruits

# Images 1,236 2,536 5,245

# Species (classes) 148 178 184

# classes with 2-10 samples 118 107 51

# classes with 11-50 samples 25 66 107

# classes with 51-311 samples 5 5 26

Table 2. Composition of the InterFolia dataset

Figure 4. Distribution of classes in InterFolia dataset 2.0.

have been classified by organ, in addition to species. Ta-

ble 2 presents the distribution of the dataset for the different

organs, as well as the number of species. We observe that

there are fewer bark classes than leaf or flower/fruit because

bark has no meaning for shrubs. We may also notice that

InterFolia dataset is very unbalanced. For some classes, we

have only 2 examples which is clearly insufficient to learn

the variability of the organs. The left image of Figure 1

shows pictures of barks of the same species. We understand

that with 2-3 photos per class (an organ of a species), a data-

driven method, such as a deep neural network, is likely to

face difficulty to learn a species model for accurate recog-

nition.

3.2. InterFolia dataset 2.0

This section describes how we extended InterFolia

dataset to obtain a richer version, for bark class recogni-

tion. The resulting dataset called InterFolia dataset 2.0 is

available to the community on Kaggle. Firstly, we removed

from the dataset the classes that contained less than 3 exam-

ples. This is done to be sure to have at least one image is

available for the training, validation, and test sets.

Bark-101 dataset [27] is also based on PlantCLEF

dataset and it contains 101 tree bark classes on which the
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authors compared different recognition methods.

We merged both datasets to create InterFolia 2.0. This

allowed us to get more classes and examples for barks. We

have removed any duplicates that we found. Additionally,

we have removed all shrub images in the Bark 101 dataset,

to focus only on bark images of older trees. Table 3 presents

the number of classes and samples per organ of the created

dataset.

Dataset # classes # samples

Leaves 167 2,514

Flowers/Fruits 181 5,239

Barks 129 2,305

Table 3. Number of images for each organ.

We can see that we have a dataset with 477 classes (167

leaves, 181 flowers/fruits, 129 barks) and 10058 examples.

This is already an interesting challenge in terms of classifi-

cation when we know the nature of the objects to recognize,

and the material constraints imposed by the smartphone.

Figure 4 shows the class distribution for each organ type.

We can see that the classes are also imbalanced, and that

this remains a major challenge to overcome to achieve good

recognition rates.

Finally, all the three new datasets were divided into train,

validation, and test sets. At first, we split the dataset into

70% of images for training and 30% for testing. Then, the

train set is divided again into 70% for training and 30% for

validation. In the following, we focus on the architectures

we compared and their training conditions.

4. Architectures and pretrained models

Using embedded networks necessarily involves trade-

offs between performance, network size and inference time.

We first chose networks that are “light” in terms of mem-

ory impact but efficient. We also considered that it was im-

portant to compare them with ”trendy” networks, like visual

Transformers. Finally, we also added in our comparison the

SqueezeNet network which is the network architecture cur-

rently used in the InterFolia application.

Table 4 compares the selected networks in terms of num-

ber of parameters, model size and efficiency on the Ima-

geNet dataset 3. Notice that the ’TOP-5’ error rate is the

fraction of test images for which the correct label is amongst

this top 5, and the ‘TOP-1’ error rate is the fraction of test

images for which the correct label is the one judged most

likely by the model.

Inference time of the four selected pre-trained models is

counted in milliseconds [20]. MobileNet V2 [25] was in-

troduced by M Sandler et al. in 2018. This architecture is

3https://pytorch.org/vision/stable/models.html

suitable for Mobile devices, or any devices with low compu-

tational power. In [14], A. Howard et al. have introduced a

new version of MobileNet, that they called MobileNet V3.

This model achieves a better accuracy on ImageNet than

MobileNet V2. We therefore propose to compare the two

architectures on our problem. In [32], T. Mingxing and Q.

Le introduced a new family of neural networks called Effi-

cientNet. EfficientNet architectures are very efficient com-

putationally and achieves state-of-the-art results on the Ima-

geNet dataset. Thus, we propose to compare the results ob-

tained with the EfficientNet-B0 architecture. Finally, we in-

clude in this study a very small network (SqueezeNet [21])

which does not give very good results on ImageNet but

which has the merit of not taking too much memory space.

It is the architecture the authors of InterFolia have adopted.

At the opposite end of the spectrum, we include a large,

trendy network, MobileViT [24].

5. Experiments and results
Note that all models are based on PyTorch framework,

and they were pre-trained on ImageNet. For the evaluation

of models on the smartphone, we converted all models using

CoreML framework [11].

5.1. Training details and evaluation criteria

For the three sub-datasets, we use the software library

Albumentations4 for data augmentation. For both leaf and

bark datasets, we train our models for 50 epochs, with a

batch size of 32, and a learning rate of 1e-4 that decreases

by 0.1 every 7 epochs. We apply categorical cross-entropy

loss function and Adam optimizer. For the Flowers/Fruits

dataset, we use the same training hyperparameters of other

organ models, except that we train models for 10 epochs,

with a batch size of 128.

We evaluate our models on several criteria. First evalu-

ation criterion is the efficiency of the network, for that, we

calculate the TOP-1 and TOP-5 accuracy. Secondly, since

the target phones are limited in hardware resources, we take

into consideration the memory size of the model, to ensure

that the 3 networks (one per organ) can be embedded in ad-

dition to the elements necessary for the proper functioning

of the application (example of images to be shown to the

user for instance). The third criterion is the inference time

of the network to ensure that the user will not have to wait

too long for the result of his request.

5.2. Results and discussion

First, we present the results obtained using PyTorch

models on a MacBook computer. The MacBook configu-

ration is not relevant because our goal here is to establish

a baseline in terms of memory size and accuracy, that will

4https://albumentations.ai/docs/
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Model #params Memory size TOP-1 TOP-5

MV2 3.5M 13.6MB 71.87% 90.28%

MV3 5.5M 21.1MB 74.04% 91.34%

EB0 5.3M 20.5MB 77.69% 93.53%

MViT 5.6M 21.6MB 78.4% 94.1%

SQ 1.2M 4.8MB 58.09% 80.42%

Table 4. Pre-trained models using ImageNet (MV2: MobileNet V2, MV3: MobileNet V3, EB0: EfficientNet-B0, MVit: MobileViT-S, SQ:

SqueezeNet).

be later compared with the embedded version of the models

running on the device.

Then, we convert those models to be compatible with

an iPhone 12 Pro. This smartphone model has an Apple

A14 Bionic processor equipped with 6 GB of RAM. The

Apple A14 Bionic has a six-core 64-bit processor imple-

menting ARMv8 ISA and incorporates a four-core @1000

MHz graphics processor designed by Apple. We convert

all trained models to ”neuralnetwork” type using CoreML-

Tools, and allow it to use all compute units available on the

target device.

The aim here is to compare the converted models in

terms of memory size, accuracy, and inference time.

5.2.1 Results on the computer

Tables 5, 6 and 7 present the models’ results, respectively,

on Leaves, Flowers/Fruits and Barks datasets. We compare

models of the following architectures: MobileNet versions

2 (MV2) and 3 (MV3), EfficientNet version B0 (EB0), Mo-

bile ViT (MViT) and SqueezeNet (SQ).

Model Memory size TOP-1 TOP-5

MV2 10.0 MB 43.58% 63.44%

MV3 17.9 MB 47.81% 66.49%

EB0 17.2 MB 48.21% 66.75%
MViT 20.5 MB 48.21% 66.89%

SQ 3.3 MB 21.85% 33.11%

Table 5. Leaves - Results using models on MacBook.

Model Memory size TOP-1 TOP-5

MV2 10.1 MB 45.10% 70.10%

MV3 17.9 MB 48.28% 71.18%

EB0 17.2 MB 53.31% 75.45%
MViT 20.6 MB 48.21% 71.82%

SQ 3.3 MB 13.36 % 27.54%

Table 6. Flowers/Fruits - Results using models on MacBook.

First, bark recognition is much more difficult than leaf or

flower/fruit recognition. This is mainly because the shape

of leaves is very characteristic. For flower/fruit, color is an

important piece of information in addition to shape. For

Model Memory size TOP-1 TOP-5

MV2 9.8 MB 34.99% 52.86%

MV3 17.7 MB 36.31% 54.17%
EB0 17.0 MB 31.19% 48.32%

MViT 20.4MB 35.29% 52.56%

SQ 3.2 MB 24.16% 37.92%

Table 7. Bark - Results using models on MacBook.

bark, color is not very discriminating, and only texture is.

Moreover, texture varies over time with the age of the plant.

On Leaves dataset, the three networks MobileNet V3,

EfficientNet-B0 and MobileViT-S are equally effective, but

MVIT is slightly larger. MobileNet V2 has a lower effi-

ciency than the other 3 architecture but it is almost half their

size. SqueezeNet achieves very low performance.

On Flowers/Fruits dataset, EfficientNet-B0 is the best

while MobileNet V3 and MobileViT-S are equivalent.

SqueezeNet’s performance is still well below other net-

works.

Finally, on Barks dataset, MobileNet V3 is the best net-

works with MobileViT-S not far away but still with a larger

size. EfficientNet-B0 has a little low performance on barks.

SqueezeNet is still well below in terms of performance.

To conclude on these first tests, EfficientNet-B0, Mo-

bileNet V3 and MobileViT-S are the best performing meth-

ods; MobileViT-S remains the largest with the most param-

eters.

5.2.2 Results on the smartphone

Tables 8, 9 and 10 show the obtained results using the mod-

els converted to CoreML and running on a smartphone. We

did not provide results for MobileViT model here because

the other architectures we tested presented a higher perfor-

mance with a smaller number of parameters.

First, we note a small overall loss of performance for

all models on the flowers/fruits and barks datasets. On the

leaves dataset, performance is slightly better on the smart-

phone, but we did not run the experiment many times. We

therefore conclude that the results are broadly equivalent to

those obtained on the computer.

Concerning the Leaves dataset, the best network is
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Model Mem size Inference time TOP-1 TOP-5

MV2 9.7MB 2.04ms 46.88% 66.22%

MV3 17.6MB 21.42ms 50.99% 69.66%

EB0 16.8MB 2.62ms 50.59% 67.68%
SQ 3.3MB 1.24ms 12.31% 23.97%

Table 8. Leaves - Results using models on iPhone 12 Pro.

Model Mem size Inference time TOP-1 TOP-5

MV2 9.8MB 2.03ms 42.74% 68.23%

MV3 17.7MB 21.65ms 46.47% 70.26%

EB0 16.9MB 2.67ms 51.50% 75.49%
SQ 3.3MB 1.23ms 12.81% 27.97%

Table 9. Flowers/Fruits - Results using models on iPhone 12 Pro.

Model Mem size Inference time TOP-1 TOP-5

MV2 9.5MB 1.86ms 29.57% 48.02%
MV3 17.4MB 21.56ms 30.16% 48.16%

EB0 16.6MB 2.66ms 26.20% 45.53%

SQ 3.2MB 1.23ms 16.25% 29.06%

Table 10. Bark - Results using models on iPhone 12 Pro.

clearly EfficientNet-B0 both in terms of performance and

inference time. MobileNet V3 has a much higher inference

time. MobileNet V2 has an interesting inference time, and a

lower memory impact but it achieves a lower performance.

On flowers/fruits dataset, EfficientNet-B0 remains the best

compromise, as we observed during the experiment on the

computer. Finally, it should be noted that MobileNet V2

has a very good behavior on the barks dataset which is a

difficult dataset.

To conclude from these tests, the first element that comes

out is that the bark dataset is very challenging. MobileNet

V2 is recommended in this context for its performance, its

inference time, and its memory impact.

For the other two sets (flowers/fruits and leaves),

EfficientNet-B0 is the best compromise. SqueezeNet really

does not seem to be the better solution for this problem,

since its performances are very low.

6. Conclusion and future Work
In this paper, we presented a benchmark of model com-

parisons for embedded plant recognition.

We first proposed a dataset organized by species and or-

gans that will be made available to the scientific community.

This dataset is very challenging as recognizing plants in nat-

ural environment is. It also contains lots of classes for each

organ and imbalanced classes. Efficiently combining the

results from 2 or 3 organs of the same plant remains a chal-

lenge too in this context. The effectiveness of new methods

can therefore be tested on this difficult dataset.

Secondly, we compared most interesting models of the

literature to solve the problem of embedded plant recogni-

tion. The results show that depending on the type of organ

to recognize, the same network is not always recommended.

For organs that can be discriminated by their shape and

color like leaves or flowers/fruits, EfficientNet-B0 is a good

solution. For barks, which are more difficult to discriminate

and based on texture, MobileNet V2 is interesting.

In any case, the SqueezeNet network currently used in

the InterFolia application is not the one that achieves the

best results. It might be worthwhile to change the networks

embedded in InterFolia and study the benefit in terms of

recognition.

It should be noted that these results obtained on tree and

shrub organs found in metropolitan France are exportable to

organs of other plant types. They could thus serve as a basis

for embedded phenotyping research in other contexts.

In future work, research can be undertaken on the most

efficient use of the results of the different classifiers. It will

also be necessary to work on methods to overcome the lack

of data on certain classes to improve the results.
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