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Introduction

In this paper we study the shape of minimizers of some variational problems, defined with weights of power form, and we exhibit some breaking symmetry phenomena. These questions have attracted much interest in the literature. Consider for example the Rayleigh quotient (1.1) Q p,q,γ (v) :=

B |∇v| p dx B |v| q |x| γ dx p/q , v ∈ W 1,p (B) \ {0},
where B denotes the unit ball, centered at the origin in R N , N ≥ 2, p > 1 and q ≥ p.

Variational problems of the type

(1.2) inf Q 2,q,γ (v) : v ∈ W 1,2 0 (B) \ {0} ,
with 2 < q < 2 * , have been studied in [START_REF] Byeon | On the Hénon equation: asymptotic profile of ground states. I[END_REF] and [START_REF] Smets | Non-radial ground states for the Hénon equation[END_REF]. The authors have shown that the minimizers are not radial, if the parameter γ is large enough (see also [START_REF] Mercuri | Quantitative symmetry breaking of groundstates for a class of weighted Emden-Fowler equations[END_REF], [START_REF] Alvino | Some isoperimetric inequalities in R N with respect to weights |x| α[END_REF] for a different weight). Furthermore, much interest has been devoted to the shape of sign changing minimizers of integral functionals, see for example [START_REF] Girao | The shape of extremal functions for Poincaré-Sobolev-type inequalities in a ball[END_REF], [START_REF] Weth | Symmetry of solutions to variational problems for nonlinear elliptic equations via reflection methods Jahresber[END_REF], [START_REF] Brandolini | Symmetry breaking in constrained Cheeger type isoperimetric inequality, to appear on[END_REF], [START_REF] Parini | Existence, unique continuation and symmetry of least energy nodal solutions to sublinear Neumann problems[END_REF] and [START_REF] Brock | Symmetry and asymmetry of minimizers of a class of noncoercive functionals[END_REF]. In [START_REF] Girao | The shape of extremal functions for Poincaré-Sobolev-type inequalities in a ball[END_REF], Girao and Weth studied the symmetry properties of the minimizers of the problem

(1.3) inf Q 2,q,0 (v) ≡ |∇v| 2 2 v 2 q : v ∈ W 1,2 (B) \ {0}, B v dx = 0
for 2 ≤ q < 2 * . They proved that the minimizers are foliated Schwarz symmetric. This means that they are symmetric with respect to reflection about some line Re and decreasing w.r.t. the angle arccos[ x |x| • e] ∈ (0, π). Further, another interesting phenomenon related to the shape of the minimizers was pointed out for problem (1.3): if p is close to 2, then any minimizer is antisymmetric w.r.t. reflection about the hyperplane {x • e = 0}. In contrast to this, the minimizers are not anymore antisymmetric if N = 2 and if p is sufficiently large. A similar break of symmetry was already observed in [START_REF] Alvino | Some isoperimetric inequalities in R N with respect to weights |x| α[END_REF], [START_REF] Dacorogna | Sur une généralisation de l'inégalité de Wirtinger[END_REF], [START_REF] Buslaev | On a family of extremum problems and related properties of an integral (Russian) Mat[END_REF], [START_REF] Belloni | A symmetry problem related to Wirtinger's and Poincaré's inequality[END_REF], [START_REF] Kawohl | Symmetry results for functions yielding best constants in Sobolev-type inequalities[END_REF], [START_REF] Nazarov | On exact constant in the generalized Poincaré inequality[END_REF] and [START_REF] Nazarov | On exact constant in the generalized Poincaré inequality[END_REF] for the minimizers of a one-dimensional problem, inf v ′ p v q , v ∈ W 1,p ((0, 1)) \ {0}, v(0) = v(1),

1 0 v dx = 0 .
More precisely, it has been shown that any minimizer is an antisymmetric function, if and only if q ≤ 3p (see also [START_REF] Croce | On a generalized Wirtinger inequality[END_REF] and [START_REF] Gerasimov | Best constant in a three parameter Poincaré inequality[END_REF] for a more general constraint).

In this paper we study variational problems for similar Rayleigh quotients where the enumerator and the denominator carry a weight |x| α . Let Ω be a bounded domain in R N , N ≥ 2, with Lipschitz boundary, containing the origin, and define (1.4) R p,q,α,γ (v) := Ω |∇v| p |x| α dx Ω |v| q |x| γ dx p/q , v ∈ W 1,p (Ω, |x| α , |x| α ), where (1.5) p, q ∈ [1, +∞) and the numbers α, γ ∈ R satisfy certain conditions. (The definitions of weighted function spaces, such as W 1,p (Ω, |x| α , |x| β ), will be given in Section 2). We focus on two variational problems, one with Dirichlet boundary conditions and one with a mean value condition:

(P D ) inf R p,q,α,γ (v) : v ∈ W 1,p 0 (Ω, |x| α , |x| α ) =: λ D , (1.6) (P M ) inf R 2,q,α,α (v) : v ∈ W 1,2 (Ω, |x| α , |x| α ), Ω |x| α v dx = 0 =: λ M . (1.7)
We study the shape of solutions to these problems, and in particular, we detect situations when the extremal functions lack symmetry properties such as radial symmetry and antisymmetry. In the case p = q = 2, we also prove an isoperimetric inequality for λ M , thus generalizing a famous result of Szegő and Weinberger. Let us outline the content of the paper. Some preliminary results are presented in Section 2: we obtain embedding properties for some weighted function spaces (Theorem 2.1, Corollary 2.2 and Lemma 2.3). These properties allow us to prove Theorem 2.4 which gives the existence of solutions to the variational problems (P D ) and (P M ). Then we recall the definitions of the two-point rearrangement, foliated Schwarz symmetrization and foliated Schwarz symmetry given in Definitions 2.5, 2.7 and 2.8, respectively. Moreover we give some relations between these notions in Lemma 2.6 and Theorem 2.9. Note that a function is foliated Schwarz symmetric if it is axially symmetric with respect to an axis passing through the origin and nonincreasing in the polar angle from this axis. The following four Sections 3-6 deal with the problems (P D ) and (P M ) when Ω is a ball centered at the origin. In Section 3 we prove Theorem 3.1 which shows that the solution to Problem (P D ) is not radially symmetric, if q > p and the parameter γ is sufficiently large. Next we study Problem (P M ). We prove Theorem 4.1 in Section 4, which asserts that the minimizers of (P M ) are foliated Schwarz symmetric, when q ≥ 2 . Next we study problem (P M ) for N = 2. First we deal with the case q = 2 in Section 5. We prove that any minimizer of (P M ) is, up to some rotation about the origin, symmetric (even) with respect to x 1 , and antisymmetric (odd) with respect to x 2 , as stated in Theorem 5.1 and the Remark following it. On the other hand, in Section 6 we prove Theorem 6.1 which shows that a breaking of antisymmetry occurs when α < 0 and q is sufficiently large .

Finally, we study a shape optimization problem, for q = 2 and α > 0, in Section 7. More precisely, let Ω be a bounded domain with Lipschitz boundary in R N , N ≥ 2. Under an additional assumption on Ω we provide, in Theorem 7.1, a Szegő-Weinberger type inequality for the weighted Neumann eigenvalue

µ(Ω) = inf        Ω |∇v| 2 |x| α dx Ω v 2 |x| α dx : v ∈ W 1,2 (B, |x| α , |x| α )\ {0} , Ω v |x| α dx = 0        .
Let us briefly describe how this result fits into the literature. We recall that Kornhauser and Stakgold conjectured in [START_REF] Kornhauser | A variational theorem for ∇ 2 u + λu = 0 and its applications[END_REF] that among all planar simply connected domains, with fixed Lebesgue measure, the first nonzero eigenvalue of the Neumann Laplacian, achieves its maximum value if and only if Ω is a disk. This conjecture was proved by Szegő in [START_REF] Szegő | Inequalities for certain eigenvalues of a membrane of given area[END_REF], by means of tools from complex analysis. Soon after Weinberger generalized this result to any bounded smooth domain Ω of R N (see [START_REF] Weinberger | An isoperimetric inequality for the N -dimensional free membrane problem[END_REF]). Note that Weinberger's method turned out to be rather flexible. Indeed, similar inequalities have been proved, for examples in [START_REF] Bandle | Isoperimetric inequalities and applications[END_REF], [START_REF] Ashbaugh | Sharp upper bound to the first nonzero Neumann eigenvalue for bounded domains in spaces of constant curvature[END_REF] and [START_REF] Chiacchio | Isoperimetric inequalities for the first Neumann eigenvalue in Gauss space[END_REF]). In this subsection we assume that Ω is a bounded domain with Lipschitz boundary in R N , N ≥ 2, containing the origin, α, β ∈ R and 1 ≤ p ≤ N . We denote by L p (Ω, |x| α ) the weighted Lebesgue space of all measurable functions u : Ω → R with

Preliminaries

u p,Ω,α := Ω |u| p |x| α dx 1/p < ∞.
The weighted Sobolev space W 1,p (Ω, |x| α , |x| β ) is defined as the set of all functions u ∈ L p (Ω, |x| α ) having distributional derivatives (∂u/∂x i ), i = 1, . . . , N , for which the norm

u 1,p,Ω,α,β := u p p,Ω,α + |∇u| p p,Ω,β 1/p is finite. It is well-known that, if (2.1) α < N (p -1), β < N (p -1)
, and One can find a variety of embedding theorems for weighted Sobolev spaces into weighted Lebesgue spaces or into spaces of continuous functions in the literature (see e.g. [START_REF] Kufner | Hardy-type inequalities[END_REF], [START_REF] Drabek | Quasilinear Elliptic Equations with Degenerations and Singularities[END_REF], [START_REF] Heinonen | Nonlinear Potential Theory of Degenerate Elliptic Equations[END_REF]). However, we could not find a reference to the following embedding result. It will be crucial in proving existence of solutions to our variational problems. We use the notation ֒→ for continuous embedding and ֒→֒→ for compact embedding.

(2.2) α > -N, β > -N, then W 1,p (Ω, |x| α , |x| β ) is a reflexive Banach space, and C ∞ 0 (Ω) ⊂ W
Theorem 2.1. Let 1 ≤ p ≤ N , -N < α < N (p -1) and γ ≥ α. Then (2.3) W 1,p (Ω, |x| α , |x| α ) ֒→֒→ L q (Ω, |x| γ ) for every q ∈ [1, q 0 ),
where q 0 is defined by

(2.4) q 0 :=              +∞ if N = p and -N < α ≤ 0 N p N -p if N > p and -N < α ≤ 0 (N + α)p N + α -p if 0 < α < N (p -1)
.

Proof. In view of the classical Sobolev Embedding Theorem, we may assume that α = 0. In the following, let C, C ′ , C ′′ , . . . , denote positive constants that do not depend on the functions that are involved but may vary from line to line. Our proof is in three steps.

Step 1: We claim that for every q ∈ [1, q 0 ) there exists a constant C = C(q) > 0 such that

(2.5) u 1,p,Ω,α,α ≥ C(q) • u q,Ω,α ∀u ∈ W 1,p (Ω, |x| α , |x| α ), that is, W 1,p (Ω, |x| α , |x| α ) ֒→ L q (Ω, |x| α ).
We define

y := x • |x| α/N , Ω := {y = x • |x| α/N : x ∈ Ω},
and for any measurable function u : Ω → R we set ϕ(u)(y) := u(x), (x ∈ Ω).

A short computation shows, that there are constants C ′ and C ′′ , such that, if u ∈ C 1 (Ω), then

(2.6) C ′ |y| 2α/(N +α) |∇ y ϕ(u)(y)| 2 ≤ |∇ x u(x)| 2 ≤ C ′′ |y| 2α/(N +α) |∇ y ϕ(u)(y)| 2 ∀x ∈ Ω \ {0}.
Now we split into two cases.

(i) Assume that 0 < α < N (p -1). By (2.6) we have that

C ′ ϕ(u) 1,p, Ω,0,pα/(N +α) ≤ u 1,p,Ω,α,α ≤ C ′′ ϕ(u) 1,p, Ω,0,pα/(N +α) (2.7) if u ∈ W 1,p (Ω, |x| α , |x| α ), and C ϕ(u) q, Ω,0 = u q,Ω,α if u ∈ L q (Ω, |x| α ). (2.8) so that u ∈ W 1,p (Ω, |x| α , |x| α ) ⇐⇒ ϕ(u) ∈ W 1,p ( Ω, 1, |y| pα/(N +α) ) and (2.9) u ∈ L q (Ω, |x| α ) ⇐⇒ ϕ(u) ∈ L q ( Ω, 1). (2.10)
Note that 0 ≤ pα/(N + α) < N (p -1), so that W 1,p ( Ω, 1, |y| pα/(N +α ) is a Banach space, too. Since we have

|y| -α/(N +α) ∈ L t (Ω) ∀t ∈ 1, N (N + α) pα
we may apply Lemma 2.1 of [START_REF] Leonardi | Solvability of degenerate quasilinear elliptic equations[END_REF] to conclude that W 1,p ( Ω, 1, |y| pα/(N +α) ) ֒→֒→ L q ( Ω, 1) for 1 ≤ q < p(N + α)/(N -p + α). Now (2.5) follows from this and (2.7)-(2.10).

(ii) Next let -N < α < 0. First observe that, since

|x| α ≥ C|x| α(N -p)/N ∀x ∈ Ω \ {0},
we also have

(2.11) u 1,p,Ω,α,α ≥ C u 1,p,Ω,α,α(N -p)/N . Note that W 1,p (Ω, |x| α , |x| α(N -p)/N ) is a Banach space, too, since -N < α(N -p)/N ≤ 0.
In view of (2.6) we obtain (2.12)

C ′ ϕ(u) 1,p, Ω,0,0 ≤ u 1,p,Ω,α,α(N -p)/N ≤ C ′′ ϕ(u) 1,p, Ω,0,0 , so that (2.13) u ∈ W 1,p (Ω, |x| α , |x| α(N -p)/N ) ⇐⇒ ϕ(u) ∈ W 1,p ( Ω, 1, 1).
By the classical Sobolev Embedding Theorem, for every q ∈ [1, p * ), where

p * :=      +∞ if N = p N p N -p if N > p ,
there is a constant C = C(q), such that Step 2: We claim that (2.5) implies

(2.14) v 1,p, Ω,0,0 ≥ C(q) • v q, Ω,0,0 ∀v ∈ W 1,p ( Ω,
(2.15) W 1,p (Ω, |x| α , |x| α ) ֒→֒→ L q (Ω, |x| α ) for every q ∈ [1, q 0 ).

Let r 0 and R be positive numbers such that

B r 0 ⊂ Ω ⊂ B R .
Further, fix q ∈ [1, q 0 ), and choose any number q 1 ∈ (q, q 0 ). Assume that {f n } is a bounded sequence in W 1,p (Ω, |x| α , |x| α ). Then there exists a subsequence, that we still denote by {f n }, and a function f ∈ W 1,p (Ω, |x| α , |x| α ), such that

f n ⇀ f weakly in W 1,p (Ω, |x| α , |x| α ).
Note that, by the structure of the weight and the classical Sobolev Embedding Theorem, we also may assume

f n → f a.e. in Ω.
Let r ∈ (0, r 0 ). By Hőlder's inequality and Step 1 we have

Br |f n -f | q 1 |x| α dx ≤ Br |f n -f | q |x| α dx q/q 1 Br |x| α dx (q 1 -q)/q 1 (2.16) ≤ C • r (N +α)(q 1 -q)/q 1 . Since Ω\Br (|∇f n | p + |f n | p ) dx ≤ max{r -α ; R -α } • Ω\Br (|∇f n | p + |f n | p ) |x| α dx ≤ max{r -α ; R -α } • Ω (|∇f n | p + |f n | p ) |x| α dx ≤ C • max{r -α ; R -α } ∀ n ∈ N,
the Sobolev Embedding Theorem ensures that, up to a subsequence,

Ω\Br |f n -f | q dx → 0
and hence also (2.17)

Ω\Br |f n -f | q |x| α dx ≤ max{r α ; R α } • Ω\Br |f n -f | q dx → 0.
Now, since r ∈ (0, r 0 ) was arbitrary, (2.15) follows from (2.16) and (2.17).

Step 3: It remains to show (2.3). Since Ω is bounded and γ ≥ α, there holds

|x| γ ≤ C|x| α ∀x ∈ Ω,
for some constant C > 0. Hence we have that

L q (Ω, |x| α ) ֒→ L q (Ω, |x| γ ).
Now the claim follows from this and (2.15).

Remark 2.1. The result (2)(i) of Theorem 2.1 is optimal in the sense that there is no continuous

embedding of W 1,p (Ω, |x| α , |x| α ) into L q (Ω, |x| α ) when 0 ≤ α < N (p -1) and q > p(N + α)/(N - p + α). To see this, choose B R ⊂ Ω and u ∈ C ∞ 0 (Ω) with supp u ⊂ B R . Setting u t (x) := u(t -1 • x), (0 < t ≤ 1),
we have

u t p p,Ω,α = t N +α • u t p p,Ω,α , u t q q,Ω,α = t N +α • u t q q,Ω,α and |∇u t | p p,Ω,α = t N +α-p • |∇u| p p,Ω,α .
It follows that u t 1,p,Ω,α,α u t q,Ω,α → 0 as t → 0, and in particular,

|∇u t | p,Ω,α u t q,Ω,α → 0 as t → 0.
From this the claim follows. ✷ By our assumptions, W 1,p 0 (Ω, |x| α , |x| α ) is a closed subspace of W 

(Ω, |x| α , |x| α ) in place of W 1,p (Ω, |x| α , |x| α ).
We will also need the following Poincaré-type inequalities.

Lemma 2.3. Let 1 ≤ p ≤ N and -N < α < N (p -1). Then there are positive constants C 1 , C 2 , such that |∇u| p,Ω,α ≥ C 1 u p,Ω,α ∀u ∈ W 1,p 0 (Ω, |x| α , |x| α ), and (2.18) |∇u| p,Ω,α ≥ C 2 u -u Ω p,Ω,α ∀u ∈ W 1,p (Ω, |x| α , |x| α ), (2.19)
where u Ω := Ω u|x| α dx Ω |x| α dx . Proof. Since -N < α < N (p -1)
, the weight |x| α belongs to the Muckenhoupt class A p . Hence it is also p-admissible, which means that (2.18) holds, (see [START_REF] Heinonen | Nonlinear Potential Theory of Degenerate Elliptic Equations[END_REF], Chapter 15 and formula (1.5)). The proof of (2.19) can be carried out analogously as in the unweighted case α = 0, using the compactness of the embedding of W 1,p (Ω, |x| α , |x| α ) into L p (Ω, |x| α ), (compare [START_REF] Evans | Partial Differential Equations[END_REF], § 5.8.1, proof of Theorem 1).

We conclude this subsection with the following existence result.

Theorem 2.4. Let 1 ≤ p ≤ N , -N < α < N (p -1), γ ≥ α and q ∈ [1, p 0 ).
Then the problems (P D ) and (P M ) have solutions and the corresponding minima λ D and λ M are positive.

Proof: From Theorem 2.1 and Lemma 2.3 we deduce that there are positive constants C ′ and C ′′ such that

|∇u| p,Ω,α ≥ C ′ u q,Ω,γ , ∀u ∈ W 1,p 0 (Ω, |x| α , |x| α ), |∇u| 2,Ω,α ≥ C ′′ u q,Ω,α , ∀u ∈ W 1,2 (Ω, |x| α , |x| α ) with u Ω = 0,
and the assertions follow by standard arguments. ✷

Foliated Schwarz symmetry

In this subsection we assume that Ω is a domain that is radially symmetric w.r.t. the origin. In other words, Ω is either an annulus, a ball, or the exterior of a ball in R N . If u : Ω → R is a measurable function, we will for convenience always extend u onto R N by setting u(x) = 0 for

x ∈ R N \ Ω. Definition 2.5. Let H 0 be the family of open half-spaces H in R N such that 0 ∈ ∂H. For any H ∈ H 0 , let σ H denote the reflection in ∂H. We write σ H u(x) := u(σ H x), x ∈ R N .

The two-point rearrangement w.r.t. H is given by

u H (x) := max{u(x); u(σ H x)} if x ∈ H, min{u(x); u(σ H x)} if x ∈ H. Note that one has u = u H if and only if u(x) ≥ u(σ H x) for all x ∈ H. Similarly, σ H u = u H if and only if u(x) ≤ u(σ H x) for all x ∈ H.
We will make use of the following properties of the two-point rearrangement.

Lemma 2.6. Let H ∈ H 0 .

(1

) If A ∈ C([0, +∞), R), u : Ω → R is measurable and A(|x|, u) ∈ L 1 (Ω), then A(|x|, u H ) ∈ L 1 (Ω) and Ω A(|x|, u) dx = Ω A(|x|, u H ) dx . (2) If u ∈ W 1,2 (B, |x| α ), then B |∇u| 2 |x| α dx = B |∇u H | 2 |x| α dx .
Proof. We observe that |σ H x| = |x|, we have for a.e. x ∈ H ∩ Ω. Therefore

A(|x|, u(x)) + A(|σ H x|, u(σ H x)) = A(|x|, u H (x)) + A(|σ H x|, u H (σ H x))
and

|x| α |∇u(x)| 2 + |σ H x| α |∇u(σ H x)| 2 = |x| α |∇u H (x)| 2 + |σ H x| α |∇u H (σ H x)| 2 .
It is now sufficient to integrate these two equalities on Ω ∩ H. Now we recall the definition of foliated Schwarz symmetrization of a function. Such a function is axially symmetric with respect to an axis passing through the origin and nonincreasing in the polar angle from this axis. Definition 2.7. If u : Ω → R is measurable, the foliated Schwarz symmetrization u * of u is defined as the (unique) function satisfying the following properties:

(1) there is a function w : [0, +∞) × [0, π) → R, w = w(r, θ), which is nonincreasing in θ, and

u * (x) = w (|x|, arccos(x 1 /|x|)) , (x ∈ Ω); (2) L N -1 {x : a < u(x) ≤ b, |x| = r} = L N -1 {x : a < u * (x) ≤ b, |x| = r} for all a, b ∈ R with
a < b, and r ≥ 0.

Definition 2.8. Let P N denote the point (1, 0, . . . , 0), the 'north pole' of the unit sphere S N -1 . We say that u is foliated Schwarz symmetric w.r.t. P N if u = u * -that is, u depends solely on r and on θ -the 'geographical width' -, and is nonincreasing in θ.

We also say that u is foliated Schwarz symmetric w.r.t. a point P ∈ S N -1 if there is a rotation about the origin ρ such that ρ(P N ) = P , and u(ρ

(•)) = u * (•).
In other words, a function u : Ω → R is foliated Schwarz symmetric with respect to P if, for every r > 0 and c ∈ R, the restricted superlevel set {x : |x| = r, u(x) ≥ c} is equal to {x : |x| = r} or a geodesic ball in the sphere {x : |x| = r} centered at rP . In particular, u is axially symmetric with respect to the axis RP . Moreover a measurable function u : Ω → R is foliated Schwarz symmetric w.r.t. P ∈ S N -1 iff u = u H for all H ∈ H 0 with P ∈ H.

The next result was proved in [START_REF] Brock | Symmetry and asymmetry of minimizers of a class of noncoercive functionals[END_REF]. It will be used in Section 4.

Theorem 2.9. Let u ∈ L p (Ω) for some p ∈ [1, +∞), and assume that for every H ∈ H 0 one has either u = u H , or σ H u = u H . Then u is foliated Schwarz symmetric w.r.t. some point P ∈ S N -1 .

Non-radiality for solutions to problem (P D )

In this section we study problem (P D ) when Ω =: B is the unit ball centered at the origin. Let α, p and q be fixed. For any number γ ≥ α we write for convenience

R γ (v) := R p,q,α,γ (v), v ∈ W 1,p 0 (B, |x| α , |x| α ), (P γ ) := (P D ) and λ γ := λ D .
Theorem 3.1. Assume that Ω is a ball B, centered at the origin, q ∈ (p, q 0 ), where q 0 is defined by (2.4) and 0 ≤ α < N (p -1). Then there exists a number γ * ≥ α such that the minimizer of

(P γ ) is not radially symmetric if γ > γ * . Denote (3.1) λ rad γ := inf R γ (v) : v ∈ W 1,p 0 (B, |x| α , |x| α ) \ {0}, v radial .
We merely need to show that

(3.2) λ γ < λ rad γ ,
if γ is large enough. Our approach is similar as in [START_REF] Girao | The shape of extremal functions for Poincaré-Sobolev-type inequalities in a ball[END_REF]. For the proof of (3.2) we need two lemmata.

Lemma 3.3.

There exists a number C 0 > 0, independent of γ, such that for all γ ≥ 3,

(3.3) λ γ ≤ C 0 • γ -N +p+N p/q .
Proof. Let U ∈ W 1,p 0 (B) be a positive first eigenfunction for the Dirichlet p-Laplacian in B, with eigenvalue λ, that is

(3.4)    -∆ p U ≡ -∇(|∇U | p-2 ∇U ) = λU p-1 in B, U = 0 on ∂B.
We extend U by zero outside B and set

x γ := (1 -γ -1 , 0, . . . , 0) and U γ (x) := U (γ(x -x γ )). Then U γ ∈ W 1,p 0 (B 1/γ (x γ )) and (3.5) B |∇U γ | p dx = λγ p B (U γ ) p dx.
It follows that

B |∇U γ | p |x| α dx ≤ B |∇U γ | p dx = λγ p B (U γ ) p dx. (3.6)
On the other hand, we have by the minimality property of λ γ and in view of Hőlder's inequality,

B |∇U γ | p |x| α dx ≥ λ γ B (U γ ) q |x| γ dx p/q (3.7) = λ γ B 1/γ (x γ ) (U γ ) q |x| γ dx p/q ≥ λ γ (1 -2γ -1 ) γp/q • B 1/γ (x γ ) (U γ ) q dx p/q ≥ λ γ (1 -2γ -1 ) γp/q • B 1/γ (x γ ) dx (p/q)-1 • B (U γ ) p dx = λ γ (1 -2γ -1 ) γp/q • γ N -N p/q • (ω N ) (p/q)-1 • B (U γ ) p dx,
where ω N denotes the Lebesgue measure of B. Now (3.6) and (3.7) yield

(3.8) λ γ ≤ λγ -N +p+N p/q (1 -2γ -1 ) -γp/q (ω N ) 1-p/q ≤ C 0 γ -N +p+N p/q ,
where C 0 does not depend on γ.

Lemma 3.4.

There holds for all γ ≥ α,

(3.9) λ rad γ ≥ γ + N α + N p-1+p/q
• λ rad α .

Proof. Let u ∈ W 1,p 0 (B, |x| α , |x| α ) be a radial function, such that (3.10)

λ rad γ = R γ (u).
We write u = u(r), where r = |x|. Setting z := r (γ+N )/(α+N ) and w(z) := u(r), and taking into account that α + N -p > 0 and γ ≥ α, we calculate

B |∇u| p |x| α dx = N ω N 1 0 r α+N -1 |u ′ (r)| p dr (3.11) = N ω N γ + N α + N p-1 1 0 z α+N -1-(γ-α)(N +α-p)/(γ+N ) |w ′ (z)| p dz ≥ N ω N γ + N α + N p-1 1 0 z α+N -1 |w ′ (z)| p dz, and 
B |u| q |x| γ dx = N ω N 1 0 r γ+N -1 |u| q dr = N ω N • α + N γ + N 1 0 z α+N -1 |w| q dz . (3.12)
From (3.10), (3.11) and (3.12) we obtain

λ rad γ ≥ γ + N α + N p-1+p/q N ω N 1 0 z α+N -1 |w ′ (z)| p dz N ω N 1 0 z α+N -1 |w| q dz p/q ≥ γ + N α + N p-1+p/q
• λ rad α .

Proof of Theorem 3.1. One has from the inequalities (3.3) and (3.9)

λ rad γ λ γ ≥ λ rad α • γ+N α+N p-1+p/q C 0 • γ -N +p+N p/q .
Since q > p, we have that The following result has been already obtained for the case α = 0 in [START_REF] Girao | The shape of extremal functions for Poincaré-Sobolev-type inequalities in a ball[END_REF].

p -1 + p q > -N + N p q + p.
Theorem 4.1. Assume -N < α < N and q ∈ [2, q 0 ), where q 0 is given by (2.4). Then every minimizer of (P M ) is foliated Schwarz symmetric w.r.t. some point P ∈ S N -1 .

Proof. We divide the proof into steps. We denote B any ball centered in the origin, and for convenience we write λ M = λ.

Step 1: Let H ∈ H 0 , and let u be a minimizer of (P M ). Then by assuming that u q,B,α = 1, then u satisfies the following Neumann boundary value problem for the Euler equation given by (4.1)

       -∇ (|x| α ∇u) = 2λ|x| α |u| q-2 u + µ|x| α in B ∂u ∂ν = 0 on ∂B ,
for some µ ∈ R, where ν denotes the exterior unit normal.

By the assumption on q and classical regularity theory, we deduce that u is bounded in B \ B ǫ for every ǫ > 0, and then u ∈ C 2 (B \ {0}).

On the other hand, the following equalities hold by Lemma 2.6:

u H = 0, u H ∈ W 1,2 (B, |x| α , |x| α ), Ω u H |x| α dx = 0, u H q,B,α = 1, B |u| q |x| α dx = B |u H | q |x| α dx , B u |x| α dx = B u H |x| α dx , B |∇u| 2 |x| α dx = B |∇u H | 2 |x| α dx .
and therefore we get

R 2,q,α,α (u) = R 2,q,α,α (u H ) .
Hence, u H is a minimizer, too, so that it satisfies the same Euler equation satisfied by u and boundary Neumann condition , i.e.

(4.2)

       -∇ (|x| α ∇u H ) = 2λ|x| α |u H | q-2 u H + µ|x| α in B ∂u H ∂ν = 0 on ∂B .
Moreover u H satisfies the same regularity properties of u, that is

u H ∈ C 2 (B \ {0}).
Step 2:

Define v := u -u H and note that v ≥ 0 in B ∩ H. Then v ∈ C 2 (B \ {0}
) satisfies the following linear elliptic equation

(4.3) -∇(|x| α ∇v) = 2λ|x| α m(x)v , in B \ {0}
where

m(x) :=        |u| q-2 u -|u H | q-2 u H v(x) if v(x) = 0, 0 if v(x) = 0 Since u, u H ∈ C 2 (B \ {0}), m(x) is a bounded function in B \ B ǫ for every ǫ > 0.
We claim that for every half-space H with 0 ∈ ∂H there holds one of the following:

(1)

σ H u ≡ u H on H, ( 2 
) u ≡ u H on H.
If (1) holds, we are done. Note that (1) implies that u(x) ≤ σ H u(x) on H. Hence, if (1) does not hold, then there is a point x 0 ∈ H with u(x 0 ) > σ H u(x 0 ). Since u is continuous, there is a neighborhood W of x 0 with W ⊂ H, such that u(x) > σ H u(x) on W , which also implies u(x) ≡ u H (x) in W , that is, v ≡ 0 in W . We may apply the Principle of Unique Continuation to (4.3) to conclude that v ≡ 0, that is, u ≡ u H throughout H. In other words, (2) holds. This proves the claim. Finally by Theorem 2.8 this implies that u is -up to a rotation about the origin -foliated Schwarz symmetric with respect to some point P ∈ S N -1 .

Remark 4.1. The above result holds in the case of an annulus centered at the origin, too.

5. Shape of solutions to problem (P M ) for q = 2 and N = 2

In this section we show the explicit expression of the solutions to problem (P M ) in the case q = 2 and N = 2. This will be useful to prove symmetry properties of the minimizers. First we recall some properties of Bessel functions (see, for example, [START_REF] Abramowitz | Handbook of mathematical functions[END_REF]).

A few properties of Bessel functions.

It is well-known that Bessel functions J ν , Y ν of order ν of the first and second kind, are linearly independent for any value of ν (see, for example, [START_REF] Abramowitz | Handbook of mathematical functions[END_REF] p. 358). The following relation holds true

(5.1) Y ν (r) = J ν (r) cos(νπ) -J -ν (r) sin(νπ) ,
for non integer α and where the right-hand side is replaced by its limiting value whenever ν is an integer. Moreover, J ν satisfies the following fundamental recurrence relation

(5.2) rJ ′ ν (r) -νJ ν (r) = -rJ ν+1 (r), r ∈ R.
If we denote by j ν,h , j ′ ν,h the zeros of J ν , J ′ ν , respectively, then ν ≤ j ′ ν,1 < j ν,1 < j ′ ν,2 < .... and (5.3) j ν,1 < j ν+1,1 < j ν,2 < ....

In [START_REF] Abramowitz | Handbook of mathematical functions[END_REF] (Prop. 9.1.9, p. 360), the following identities can be found (5.4)

J ν (r) = 1 2 r ν Γ(ν + 1) ∞ h=1 1 - r 2 j 2 ν,h , ν ≥ 0 J ′ ν (r) = 1 2 r ν-1 2Γ(ν) ∞ h=1 1 - r 2 (j ′ ν,h ) 2 , ν > 0.
Finally, we will deal with the equation

(5.5) - α 2 J ν (x) + xJ ′ ν (x) = 0 x ≥ 0 .
The roots of this equation have been studied in [START_REF] Landau | Ratios of Bessel Functions and Roots of αJν (x) + xJ ′ ν (x) = 0[END_REF]. We rewrite it as

(5.6) F ν (x) = α 2 ,
where (5.7)

F ν (x) = x J ′ ν (x) J ν (x) = ν -x J ν+1 (x) J ν (x) = -ν + x J ν-1 (x) J ν (x) ,
for any positive x which is not a zero for J ν . Here we used the property (5.8) zJ ′ ν (z) = νJ ν (z) -zJ ν+1 (z) . We emphasize that the positive zeros of J ν (x) are not solutions of equation (5.6).

It is proved in [START_REF] Landau | Ratios of Bessel Functions and Roots of αJν (x) + xJ ′ ν (x) = 0[END_REF] that, for any ν > -1, the function F ν (x) decreases from the value ν at x = 0 to -∞ at x = j ν,1 , the first positive zero of the function J ν (x), jumping to +∞ as x moves past j ν,1 and decreases to -∞ at x = j ν,2 and so on (see Figures 4 in [START_REF] Landau | Ratios of Bessel Functions and Roots of αJν (x) + xJ ′ ν (x) = 0[END_REF]). Let x ν,k , k = 1, 2, ..., be the positive roots of the equation

- α 2 J ν (x) + xJ ′ ν (x) = 0 ,
ordered in increasing order. In [START_REF] Landau | Ratios of Bessel Functions and Roots of αJν (x) + xJ ′ ν (x) = 0[END_REF] the behaviour of x ν,k is described as the order ν varies over the entire range of all real values. In particular, at page 196, it is proved that

d dν x ν,k > 0 whenever F ′ ν (x ν,k ) < 0 .

Explicit expression of the eigenfunctions in dimension 2

, for q = 2.

For convenience we again write λ := λ M for the infimum in problem (P M ). The main result of this section is Theorem 5.1. Let Ω =: B be the unit ball in R 2 , q = 2 and and |α| < 2. Then, if u is a minimizer of (P M ), there holds

(5.9) u(x) = ϕ 1 (r)(A 1 cos θ + B 1 sin θ) , x = (x 1 , x 2 ) = (r cos θ, r sin θ) ∈ B ,
where

ϕ 1 (r) = r -α/2 J ν 1 ( √ 2λr) , 0 ≤ r ≤ 1 .
Here ϕ 1 is a solution to the problem

   r 2 ϕ ′′ 1 (r) + (α + 1)rϕ ′ 1 (r) + (2λr 2 -1)ϕ 1 (r) = 0 , ϕ 1 (r) > 0, 0 < r ≤ 1 , ϕ ′ 1 (1) = 0 , (5.10) 
λ = x 2 ν 1 ,1 2 , ν 1 = 1 + α 2 4 ,
x ν 1 ,1 is the first positive root of the equation

- α 2 J ν 1 (x) + xJ ′ ν 1 (x) = 0 ,
and A 1 , B 1 ∈ R are arbitrary constants.

Remark 5.1. Formula (5.9) can be rewritten as

(5.11) u(x) = C • ϕ 1 (r) • cos(θ -θ 0 ), x ∈ B,
for some numbers C ∈ R and θ 0 ∈ [0, π], that is, u is foliated Schwarz symmetric.

Proof of Theorem 5.1. Let u be a minimizer to problem (P M ). Then u solves the Neumann boundary value problem for the Euler equation given by (4.1). It is easy to see that in this case µ = 0. Indeed, one can use u as test function in the Euler equation and integrate on B. The constraint on the weighted average of u on the right-hand side gives the conclusion. By using polar coordinates, we can write u as u(x 1 , x 2 ) = v(r, θ) = u(r cos θ, r sin θ) .

An easy calculation shows that v solves the following equation

(5.12) -∇ (|x| α ∇u) = -αr α-1 ∂v ∂r -r α ∂ 2 v ∂r 2 + ∂ 2 v ∂θ 2 • 1 r 2 + ∂v ∂r • 1 r = 2λr α v .
Assume that v has the following expression

v(r, θ) = ϕ(r)w(θ) , 0 ≤ r ≤ 1 , 0 ≤ θ ≤ 2π .
Equation (5.12) implies that ϕ(r) and w(θ) are solutions to the following problems respectively: 

r 2 ϕ ′′ (r) + (α + 1)rϕ ′ (r) + (2λr 2 + C)ϕ(r) = 0 , 0 < r ≤ 1 , ϕ ′ (1) = 0 , (5.13) w ′′ (θ) -Cw(θ) = 0 , 0 < θ ≤ 2π , w(0) = w(2π) . ( 5 
ϕ ′ n (r) r + 2λ - n 2 r 2 ϕ n (r) = 0 are given by ϕ n (r) = r -α/2 [c 1 J νn ( √ 2λr) + c 2 Y νn ( √ 2λr)],
where c 1 , c 2 are arbitrary constants and J νn (r), Y νn (r), with ν n = n 2 + α 2 4 , are Bessel functions of first and second kind respectively. Since the solution u must belong to the weighted space L 2 (B, |x| α ), necessarily c 2 = 0. Indeed by (5.1) and (5.4), for any fixed ν > 0 and r → 0 + , it holds that

J ν (r) ∼ c ν r ν and Y ν (r) ∼ c ν r -ν .
Therefore the integral of u n = ϕ n (r)w n (θ), that is,

B |u n | 2 |x| α dx = 2π 0 w 2 n (θ) dθ 1 0 ϕ 2 n (r)r α+1 dr ,
is finite if, and only if, -α -

2ν n + α + 1 > -1 , that is, ν n < 1 .
But such a condition is not verified if n ≥ 1. This justifies the choice of c 2 = 0 for n ≥ 1.

For n = 0, condition ν n < 1 is equivalent to |α| < 2. Moreover , since (5.16)

J ν (r) ∼ r ν , Y ν (r) ∼ r -ν , d dr J ν (r) ∼ r ν-1 , d dr Y ν (r) ∼ r -ν-1 ,
an analogous argument shows that

B |∇u 0 | 2 |x| α dx = A 0 1 0 |ϕ ′ 0 (r)| 2 r α+1 dr is finite if, and only if -α -2 -2ν 0 + α + 1 > -1 .
But such a condition is not verified. This justifies the choice of c 2 = 0 also for n = 0. We now impose the Neumann condition

ϕ ′ n (1) = 0 in the expression ϕ n (r) = c 1 r -α/2 J νn ( √ 2λr 
) .

An easy calculation gives, for any 0 < r < 1:

ϕ ′ n (r) = -c 1 α 2 r -α 2 -1 J νn ( √ 2λr) + c 1 r -α 2 √ 2λJ ′ νn ( √ 2λr) .
Therefore the Neumann condition ϕ ′ n (1) = 0 is equivalent to (5.17)

- α 2 J νn ( √ 2λ) + √ 2λJ ′ νn ( √ 2λ) = 0 .
This means that √ 2λ is a positive root of the equation

(5.18) - α 2 J νn (x) + xJ ′ νn (x) = 0 or equivalently (5.19) F νn (x) = α 2 ,
according to (5.6). Let us consider now for any fixed n ∈ N ∪ {0} the positive roots x νn,k , k = 1, 2... of the equation (5.18). For n = 0 the smaller positive root is

x ν 0 ,1 , with ν 0 = |α| 2 .
For the value ν 0 = |α| 2 and definition (5.7) of function

F νn (x), equation (5.19) becomes |α| 2 -x J ν 0 +1 (x) J ν 0 (x) = α 2 , if α > 0 , or - |α| 2 + x J ν 0 -1 (x) J ν 0 (x) = α 2 , if α < 0 .
This implies that the positive root x ν 0 ,1 of equation ( 5. [START_REF] Kawohl | Symmetry results for functions yielding best constants in Sobolev-type inequalities[END_REF]) coincides with the zero j ν 0+1 ,1 of the Bessel function J ν 0 +1 , when α > 0 and coincides with the zero j ν 0-1 ,1 of the Bessel function J ν 0 -1 , when α < 0. Assume α > 0. By previous described properties of x ν,k , we know that

x ν 1 ,1 < j ν 1 ,1
and by properties of zero's Bessel functions, since

ν 1 = 1 + α 2 4 < ν 0 + 1 = |α| 2 + 1, it results j ν 1 ,1 < j ν 0 +1,1 ≡ x ν 0 ,1 .
Assume α < 0. In such a way x ν 0 ,1 = j ν 0-1 ,1 (with ν 0 -1 > -1) is the smallest positive root of equation (5.19) and therefore √ 2λ = j ν 0-1 ,1 . But such a root cannot be considered. Indeed in this case we choose n = 0. Moreover the minimizer u(x 1 , x 2 ) = A 0 ϕ 0 (r) = A 0 r -α/2 J ν 0 (j ν 0-1 ,1 r) must have zero weighted mean value, while by the following equality (see [START_REF] Gradshteyn | Table of integrals, series and products[END_REF], p.707 n.6.556 ( 9)) we get

1 0 r 1-ν 0 J ν 0 (j ν 0-1 ,1 r) dr = (j ν 0-1 ,1 ) ν 0-2 2 ν 0-1 Γ(ν 0 ) -(j ν 0-1 ,1 ) -1 J ν 0 -1 (j ν 0-1 ,1 ) = (j ν 0-1 ,1 ) ν 0-2 2 ν 0-1 Γ(ν 0 ) = 0 .
We conclude that in both cases the smaller positive root of equation (5.19) is given by x ν 1 ,1 . This implies that (5.20)

√ 2λ = x ν 1 ,1 , ν 1 = 1 + α 2
4 and ϕ 1 (r) is the corresponding solution to problem (5.10). Finally the uniqueness (up to rotations and multiples) of the function u(x 1 , x 2 ) = v(r, θ) is a consequence of standard properties of completeness. ✷ 6. Break of anti-symmetry of solutions to problem (P M ) for N = 2 and large q

In this section we give conditions in the two-dimensional case, such that the minimizers of problem (P M ) fail to be antisymmetric. We recall that the foliated Schwarz symmetry proved in Section 4 implies that, up to a rotation about the origin, a minimizer u(x 1 , x 2 ) is symmetric (even) in the variable x 1 , for any q ≥ 2. We are now going to analyse the behaviour of u with respect to the other variable, x 2 . Note that, for q = 2, formula (5.9) implies that, if u is even in the variable x 1 , then u is antisymmetric (odd) w.r.t. x 2 . Readapting a technique of [START_REF] Girao | The shape of extremal functions for Poincaré-Sobolev-type inequalities in a ball[END_REF], we prove in this section that, for -2 < α < 0 and sufficiently large q, if u is symmetric w.r.t. the variable x 1 , then u is not antisymmetric with respect to x 2 .

In the sequel let B ⊂ R 2 denote the ball of radius 1 centered at the origin, and let λ α,q := λ M be the corresponding infimum in problem (P M ). The main result of the section is the following Theorem 6.1. Let -2 < α < 0 and N = 2. Then there is a number q > 2, such that, if q > q and u is a corresponding minimizer which is symmetric (even) w.r.t. to x 1 , then u is not antisymmetric w.r.t. x 2 .

The key point in this proof is a result by Ren and Wei (see Lemma 2.2 in [START_REF] Ren | On a two-dimensional elliptic problem with large exponent in nonlinearity[END_REF]), where it is shown that if one considers the Rayleigh quotient R 0,q in the space of W 1,2 0 (B) functions, the corresponding eigenvalue tends to 0 as the parameter q of the denominator goes to infinity. We prove that the same behaviour holds for our eigenvalue λ α,q . Lemma 6.1. Let Ω be a bounded domain in R 2 containing 0 and -2 < α < 0. Further, let

λ 0 α,q (Ω) := inf          Ω |∇v| 2 |x| α dx Ω |v| q |x| α dx 2/q : v ∈ W 1,2 0 (Ω, |x| α , |x| α ) \ {0}          , q ≥ 2.
Then λ 0 α,q (Ω) → 0 as q → ∞.

Proof. Choose R > 0 and x 0 ∈ Ω such that B 2R (x 0 ) ⊂ Ω and 0 ∈ B 2R (x 0 ). For q ≥ 1 we define w q : R 2 → R by

w q (x) =      q | 0 ≤ |x| ≤ Re -q ln R |x| | Re -q ≤ |x| ≤ R 0 | |x| ≥ R .
It has been shown in [START_REF] Ren | On a two-dimensional elliptic problem with large exponent in nonlinearity[END_REF], Lemma 2.

B R (0) |∇w q | 2 dx B R (0) |w q | q dx 2/q = 0. Now let u q ∈ W 0 (Ω, |x| α , |x| α ) be defined by u q (x) := w q (x -x 0 ), x ∈ Ω. 2, that (6.1) lim q→+∞ 
In view of our assumptions there are positive constants C 1 , C 2 such that

C 1 ≤ |x| α ≤ C 2 , ∀x ∈ B R (x 0 ).
Together with (6.1) we finally obtain

λ 0 α,q ≤ B R (x 0 ) |∇u q | 2 |x| α dx B R (x 0 ) |u q | q |x| α dx 2/q ≤ C 2 • (C 1 ) -2/q • B R (0) |∇w q | 2 dx B R (0)
|w q | q dx 2/q -→ 0 as q → +∞.

A direct consequence of the above lemma is the following result Corollary 6.1. Let -2 < α < 0 and

λ as α,q (B) := inf R α,q (v) : v ∈ W 1,2 0 (B, |x| α , |x| α ) \ {0}, v(x 1 , -x 2 ) = -v(x 1 , x 2 ) .
Then λ as α,q (B) → 0, as q → ∞.

Proof. Let u be a function realizing λ 0 α,q (B + ), where B + is the upper half part of the unit ball in the plane. We define

w(x 1 , x 2 ) = u(x 1 , x 2 ) | (x 1 , x 2 ) ∈ B + -u(x 1 , -x 2 ) | (x 1 , x 2 ) ∈ B \ B +
and use it as a test function. By Lemma 6.1 this gives

λ as α,q (B) ≤ B |∇w| 2 |x| α dx B |w| q |x| α dx
2/q = 2 1-q 2 λ 0 α,q (B + ) -→ 0 as q → +∞. Now we prove the main result of this section.

Proof of Theorem 6.1. We define a particular test function u q for λ α,q (B) to prove that λ α,q (B) < λ as α,q (B). Let v q be a function such that v q (x 1 , -x 2 ) = -v q (x 1 , x 2 ) realizing λ as α,q (B), such that B |∇v q | 2 |x| α dx = 1. We define

u q (x 1 , x 2 ) = v q , (x 1 , x 2 ) ∈ B + 0 (x 1 , x 2 ) ∈ B \ B + .
We observe that (6.2)

B |∇u q | 2 |x| α dx = 1 2 , and (6.3) 
B |u q | q |x| α dx = 1 2 B |v q | q |x| α dx = 1 2 [λ as α,q (B)] -q/2 .
We now use u q := u q -d, where d := 1

B |x| α dx B u q |x| α dx,
as a test function for λ α,q (B). We have, by (6.2),

λ α,q (B) ≤ B |∇u q | 2 |x| α dx B |u q -d| q |x| α dx 2/q .
By the triangle inequality and (6.3) we get

λ α,q (B) ≤ 1/2 B |u q | q |x| α dx 1/q -d B |x| α dx 1/q 2 (6.4) = 1/2 1 2 λ as α,q (B) -q/2 1/q - B u q |x| α dx B |x| α dx (1/q)-1 2 , = (1/2) -(2/q)+1 1 - B u q |x| α dx B |x| α dx (1/q)-1 λ as α,q (B) 1/2 2 • λ as α,q (B) .
By Lemma 2.3, (2.19), and Theorem 2.1 there exists a positive constant C, independent of q, such that

B u q |x| α , dx ≤ C ∀ q ≥ 2 .
Since λ as α,q (B) → 0 as q → ∞ by Corollary 6.1, the denominator in the last line of (6.4) tends to 1, as q → ∞. Therefore, for q sufficiently large λ α,q (B) ≤ 2 3

• λ as α,q (B) < λ as α,q (B) .

This shows the breaking of anti-symmetry. ✷

A weighted Szegő-Weinberger inequality

Throughout this section we will denote by B R the ball in R N , with N ≥ 2, centered at the origin with radius R and we will assume that α ∈ (0, N ). Note that when α lies in this interval, Theorem 2.1 ensures that W 1,2 (Ω, |x| α , |x| α ) is compactly embedded in L 2 (Ω, |x| α ), for any Lipschitz bounded domain Ω in R N . Therefore (7.1) µ(Ω) := inf

       Ω |∇ϕ| 2 |x| α dx Ω ϕ 2 |x| α dx : ϕ ∈ W 1,2 (Ω, |x| α , |x| α )\ {0} , Ω ϕ |x| α dx = 0       
coincides with the first nonzero eigenvalue of the problem (7.2)

   -∇ (|x| α ∇u) = µ(Ω) |x| α u in Ω ∂u ∂ν = 0 on ∂Ω,
where ν denotes the outer normal to ∂Ω.

In this section we prove a Szegő-Weinberger type inequality, given in Theorem 7.1 below. For any bounded domain Ω in R N we will denote by Ω ♯ the ball centered at the origin, whose radius r ♯ is such that

Ω |x| α dx = Ω ♯ |x| α dx = N ω N N + α r ♯ N +α .
In other words we are assuming that the weighted measures of Ω and Ω ♯ coincide.

Theorem 7.1. Let Ω be a bounded Lipschitz domain in R N , with N ≥ 2, symmetric with respect to the origin. Let α ∈ (0, N ) and let µ(Ω) be defined in (7.1). Then

(7.3) µ(Ω) ≤ µ(Ω ♯ ),
where equality holds if and only if Ω = Ω ♯ .

The first step in proving the above-mentioned result is to show that µ(B R ) is an N -fold degenerate eigenvalue and a corresponding set of eigenfunctions is in the form

G(|x|) x i |x| for i = 1, ..., N,
for some suitable function G. To this aim it is convenient to rewrite problem (7.2), when Ω = B R , in polar coordinates as follows (7.4)

         - 1 r N -1 ∂ ∂r r N -1 ∂u ∂r - 1 r 2 ∆ S N-1 ( u| S N -1 r ) - α r ∂u ∂r = µ(B R ) u in B R ∂u ∂r = 0 on ∂B R , where S N -1 r = ∂B r , u| S N -1 r
is the restriction of u on S N -1 r and, finally, ∆ S N-1 ( u| S N -1 r

) is the standard Laplace-Beltrami operator relative to the manifold S N -1 r .

It is well known that the solutions of the eigenvalue problem (7.4) can be found via separation of variables. Writing u(x) = Y (θ)f (r) and plugging it into the equation in (7.4)

, with θ ∈ S N -1 1 , we get - Y r N -1 r N -1 f ′ ′ - f r 2 ∆ S N-1 (Y ) - α r Y f ′ = µ(B R )Y f and in turn 1 f r N -3 r N -1 f ′ ′ + αr f ′ f + µ(B R )r 2 = - ∆ S N-1 (Y ) Y = k
Since the last equality is fulfilled if and only if

k = k(k + N -2) with k ∈ N 0 := N ∪ {0}
(see e.g. [START_REF] Műller | Spherical Harmonics[END_REF]), we have that (7.5)

f ′′ + N -1 + α r f ′ + µ(B R )f - k(k + N -2) r 2 f = 0 with k ∈ N 0 .
Hence the eigenfunctions µ i of problem (7.4) are either purely radial

(7.6) u i (r) = f 0 (µ i ; r), if k = 0, or in the form u i (r, θ) = f k (µ i ; r)Y (θ), if k ∈ N.
Denote µ := µ(B R ). Let us explicitely remark that equation (7.5) can be rewritten as (7.7)

f ′′ + β + 1 r f ′ + µ - k(k + N -2) r 2 f = 0 ,
with β = N -2 + α and k ∈ N 0 . Therefore it coincides with equation (5.15) in Section 5 when α is replaced by β, 2λ by µ and n 2 by k(k + N -2). As in Section 5 we deduce that solutions to equation (7.5) are given by

f k (r) = r -β 2 (c 1 J ν k ( √ µr) + c 2 Y ν k ( √ µr))
where c 1 , c 2 are arbitrary constants and

ν k = β 2 4 + k(k + N -2) = (N -2 + α) 2 4 + k(k + N -2) .
Moreover the solutions f k belonging to W 1,2 (B R , |x| α , |x| α ) are obtained by choosing c 2 = 0, i.e.

f k (r) = c 1 r -β 2 J ν k ( √ µr) , 0 < r < R .
In the sequel we will denote by τ n (R), with n ∈ N 0 , the sequence of eigenvalues of (7.4) whose corresponding eigenfunctions are purely radial, i.e. in the form (7.6). Clearly in this case the first eigenfunction is constant and the corresponding eigenvalue τ 0 (R) = 0. We will denote by υ n (R), with n ∈ N, the remaining eigenvalues of (7.4). We finally arrange the eigenvalues in such a way that the sequences τ n (R) and υ n (R) are increasing.

Our weighted Szegő-Weinberger inequality relies on the following Lemma 7.1. The following inequality holds for every R > 0:

υ 1 (R) < τ 1 (R).
Proof. We recall that τ 1 := τ 1 (R) is the first nonzero eigenvalue of (7.8)

       g ′′ + N -1 + α r g ′ + τ g = 0 in (0, R) g ′ (0) = g ′ (R) = 0 .
Equation in (7.8) coincides with equation (7.5) by chosing k = 0 and µ = τ . Therefore the solutions to equation in (7.8) are given by

g(r) = f 0 (r) = c 1 r -β 2 J ν 0 ( √ τ 1 r) with ν 0 = β 2 = N -2+α 2 
and moreover, as in Section 5, Neumann condition g ′ (R) = 0 is equivalent to

(7.9) - β 2 J ν 0 ( √ τ 1 R) + √ τ 1 RJ ′ ν 0 ( √ τ 1 R) = 0 .
Furthemore we recall that υ 1 := υ 1 (R) is the first eigenvalue of (7.10)

       w ′′ + N -1 + α r w ′ + υw - N -1 r 2 w = 0 in (0, R) w(0) = w ′ (R) = 0.
Equation in (7.10) coincides with equation (7.5) by chosing k = 1 and µ = υ. Therefore the solutions to equation in (7.10) are given by

w(r) = f 1 (r) = c 1 r -β 2 J ν 1 ( √ υ 1 r) with ν 1 = N -1 + β 2 4 = N -1 + (N -2+α) 2 4
and moreover, as in Section 5, Neumann condition w

′ (R) = 0 is equivalent to (7.11) - β 2 J ν 1 ( √ υ 1 R) + √ υ 1 RJ ′ ν 1 ( √ υ 1 R) = 0 .
By (7.9) and (7.11) we deduce that √ τ 1 R and √ υ 1 R are the smallest positive solution to the equations (7.12) -β 2 J ν 0 (x) + xJ ′ ν 0 (x) = 0 and (7.13) -β 2 J ν 1 (x) + xJ ′ ν 1 (x) = 0 , respectively. Therefore, arguing as in Section 5, since β > 0, the positive root x ν 0 ,1 of equation (7.12) coincides with the zero j ν 0+1 ,1 of the Bessel function J ν 0 +1 and the positive root of (7.13) coincides with x ν 1 ,1 . By properties of x ν,k , described in Section 5, we know that (7.14) x ν 1 ,1 < j ν 1 ,1 .

Moreover by properties of zero's Bessel functions (5.3), since for N ≥ 2 and α > 0, ν 1 = N -1 + β 2 4 < ν 0 + 1 = β 2 + 1, it results (7.15) j ν 1 ,1 < j ν 0 +1,1 ≡ x ν 0 ,1 .

Combining (7.14) and (7.15), we get

x ν 1 ,1 ≡ √ υ 1 R < j ν 1 ,1 < j ν 0 +1,1 ≡ x ν 0 ,1 ≡ √ τ 1 R .
This yields the conclusion.

We can now prove Thorem 7.1.

Proof. Lemma 7.1 ensures that µ(Ω ♯ ) is a N -fold degenerate eigenvalue and a corresponding set of eigenfunctions is w 1 (|x|)

x i |x| , for i = 1, ..., N,
where w 1 is the first eigenfunction of problem (7.10). As it is easy to verify we have Summing over the index i inequalities (7.17 Using the equation for w 1 we get By repeating the same arguments used for (7.20), using the monotonicity of the function N , just proved, we get (7.22)

d dr N (r) = 2w ′ 1 - N -1 + α r w ′ 1 -µ(Ω ♯ )w 1 + N -1 r 2 w 1 + 2 N -1 r 2 w 1 w ′ 1 - 2 r 3 (N -1)w 2 1 = -2µ(Ω ♯ )w ′ 1 w 1 -2 α r w ′ 1 2 -2 N -1 r w ′ 1 2 - 2 r w 1 w ′ 1 + 1 r 2 w 2 1 = -2µ(Ω ♯ )w ′ 1 w 1 -2 α r w ′
Ω G ′ (|x|) 2 + N -1 |x| 2 G 2 (|x|) |x| α dx ≤ Ω ♯ G ′ (|x|) 2 + N -1 |x| 2 G 2 (|x|) |x| α dx.
Inequalities (7.22) and (7.20), taking into account equality (7.16), yield (7.3).

Finally by the proof follows also that if (7.3) holds as an equality then Ω ≡ Ω ♯ .

Remark 7.1. Some numerics would suggest that if one drops the assumption on the sign of α, then the function N (r), in general, is no longer decreasing.
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 1 Embedding results and existence of solutions to (P D ) and (P M )

4 .

 4 +∞ as γ → +∞, and (3.2) follows if γ is large enough.✷ Foliated Schwarz symmetry of solutions to problem (P M )

. 14 )

 14 Equation (5.14) has periodic continuous solutions for C ≡ C n = -n 2 , n ∈ N ∪ {0}. Consequently the solutions to (5.14) are given by w n (θ) = A 0 , n = 0 A n cos(nθ) + B n sin(nθ), n ≥ 1 for any constant A 0 , A n , B n ∈ R. The case n = 0 corresponds to a purely radial function. Now we solve (5.13) with C ≡ C n = -n 2 . For any fixed n ∈ N ∪ {0}, the solutions ϕ n to the equation (5.15) ϕ ′′ n (r) + (α + 1)

.w 1

 1 By the assumptions on the symmetry of the set Ω, it holds thatΩ w 1 (|x|) x i |x| |x| α dx = 0 ∀i ∈ {1, ..., N } .Therefore we can use w 1 (|x|)x i |x| , ∀i = 1, ..., N,as test functions for µ(Ω), (r) if r ≤ r ♯ w 1 (r ♯ ) if r > r ♯ .

|x| 2 G 2 2 + N -1 r 2 G 2 2 .

 222222 (|x|) |x| α dx Ω G 2 (|x|) |x| α dx . Note that, since w ′ 1 (r) > 0 in (0, R) ,we have that G 2 (r) is a non decreasing function for r ≥ 0. Therefore, since(7.19)Ω |x| α dx = Ω ♯ |x| α dx,Hardy-Littlewood inequality, with respect to the measure |x| α dx, implies(7.20)Ω G 2 (|x|) |x| α dx ≥ Ω ♯ G 2 (|x|) |x| α dx. (r).Now we claim that the function N (r) is strictly decreasing in (0, +∞). Indeed we haved dr N (r) = 2G ′ G ′′ + 2Since G ′ (r) = 0 for any r > r ♯ , we have ♯ ) < 0 for any r > r ♯ .While for any r ∈ (0, r ♯ ) it holds

  ) < 0 for any r ∈ 0, r ♯ , since we are assuming that α ∈ (0, N ) and we know, by Lemma 7.1, that w ′ 1 w 1 ≥ 0 in 0, r ♯ .

  1,p (Ω, |x| α , |x| β ), (see e.g.[START_REF] Kufner | Hardy-type inequalities[END_REF], p. 240 ff., and[START_REF] Leonardi | Solvability of degenerate quasilinear elliptic equations[END_REF], p. 1054). Under the conditions (2.1) and (2.2) the space W 1,p 0 (Ω, |x| α , |x| β ) is defined as the closure of C ∞ 0 (Ω) with respect to the norm • 1,p,Ω,α,β .

  1,p (Ω, |x| α , |x| α ). Hence we have the following Corollary 2.2. The assertion of Theorem 2.1 holds with W 1,p 0
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