T Schwaiger 
  
Dominique Jault 
  
Nicolas Gillet 
  
N Schaeffer 
  
M Mandea 
  
Local estimation of quasi-geostrophic flows in Earth's core

Keywords: Core, Magnetic field variations through time, Inverse theory

published or not. The documents may come   L'archive ouverte pluridisciplinaire

INTRODUCTION

Since the theoretical basis of the geodynamo hypothesis as the generation mechanism of the Earth's magnetic field was formulated in the mid-20th century (e.g., [START_REF] Elsasser | Induction Effects in Terrestrial Magnetism Part I[END_REF][START_REF] Bullard | The magnetic field within the Earth[END_REF][START_REF] Parker | Hydromagnetic dynamo models[END_REF], there has been increasing interest in using geomagnetic data to estimate fluid motion near the top of the Earth's core. To this end, global geomagnetic field models built from measurements provided by ground surveys, observatory series and dedicated satellite missions are extrapolated to the core-mantle boundary (CMB), assuming that the Earth's mantle is electrically insulating (e.g., [START_REF] Hulot | The present and future geomagnetic field[END_REF]. This so-called downward continuation is only possible for the large scales (spherical harmonic degrees 13) of the field originating from the core, since at the Earth's surface smaller scales are masked by magnetized rocks in the lithosphere. The solid mantle provides a rigid and impenetrable boundary for the core fluid, which means that the velocity must be zero at the CMB. Hence, what is sought from the geomagnetic data is the flow directly below the hydro-magnetic boundary layers, for which it is still reasonable to suppose a vanishing radial velocity. Changes in the radial component of the magnetic field at this depth relative to the core surface are assumed negligible since the boundary layers are expected to be very thin compared to the horizontal scale of the core (e.g., [START_REF] Holme | Large-Scale Flow in the Core[END_REF]. The horizontal flow near the top of the core u = (u θ , u ϕ ) is coupled to the radial magnetic field B r and its rate-of-change ∂B r /∂t, commonly referred to as secular variation (SV), through the radial component of the induction equation

∂B r ∂t = -∇ h • (uB r ) + η r ∇ 2 (rB r ), (1) 
where ∇ h • denotes the horizontal divergence operator, η the magnetic diffusivity and (r, θ, ϕ) the spherical coordinates. Inverting the above equation for u is referred to as the core flow problem.

In their pioneering study, [START_REF] Roberts | On analysis of the Secular Variation 1. A hydrodynamic constraint: Theory[END_REF] suggested that on centennial and shorter timescales, the magnetic diffusion in Eq. ( 1) can be considered to be negligible. This is equivalent to assuming that the core fluid is a perfect electrical conductor. Under this condition, the magnetic field moves along with the motion of the fluid and can therefore be used to trace the flow. This so-called frozen-flux approximation is a widely used simplification in core flow inversions to this day, although some studies also try to take into account effects of diffusion (e.g., [START_REF] Gubbins | A formalism for the inversion of geomagnetic data for core motions with diffusion[END_REF][START_REF] Amit | Accounting for magnetic diffusion in core flow inversions from geomagnetic secular variation[END_REF][START_REF] Barrois | Contributions to the geomagnetic secular variation from a reanalysis of core surface dynamics[END_REF]. [START_REF] Roberts | On analysis of the Secular Variation 1. A hydrodynamic constraint: Theory[END_REF] noted, however, that even if the magnetic field at the CMB is fully resolved and this approximation holds, it is not possible to determine a unique flow from Eq. (1). That is because flows for which ∇ h • (uB r ) = 0

do not contribute to the secular variation and are therefore not detectable (visible) in geomagnetic observations. [START_REF] Backus | Kinematics of geomagnetic secular variation in a perfectly conducting core[END_REF] formally demonstrated that there are indeed infinitely many velocity fields that can perfectly explain the observed secular variation. He further showed that, without any additional constraints, only the velocity component perpendicular to null-flux curves (contours on which B r = 0) can be uniquely determined.

To eliminate or alleviate this theoretical non-uniqueness, additional assumptions about the core dynamics are required. Prompted by thermodynamic arguments suggesting that the Earth's core may be stably stratified near the CMB, several studies assumed a purely toroidal flow [START_REF] Whaler | Does the whole of the Earth's core convect?[END_REF][START_REF] Whaler | Geomagnetic secular variation and fluid motion at the core surface[END_REF][START_REF] Bloxham | On the consequences of strong stable stratification at the top of Earth's outer core[END_REF][START_REF] Lesur | Are geomagnetic data consistent with stably stratified flow at the core-mantle boundary?[END_REF]. However, this does not completely remove the velocity ambiguity, as it only allows the unique calculation of the flow component perpendicular to the isolines of B r . An alternative hypothesis is that the fluid motions near the top of the core are steady in time [START_REF] Gubbins | Finding core motions from magnetic observations[END_REF]. [START_REF] Voorhies | Steady flows at the top of the core from geomagnetic field models: The steady motions theorem[END_REF] demonstrated that knowledge of the time varying magnetic field then suffices to uniquely determine a velocity field. However, [START_REF] Bloxham | The steady part of the secular variation of the Earth's magnetic field[END_REF] showed early on that ground-based observatory data refute the stationary flow hypothesis (see also [START_REF] Waddington | Geomagnetic field analysis -V Determining steady coresurface flows directly from geomagnetic observations[END_REF]. A less restrictive assumption is that of tangentially geostrophic (TG) flow [START_REF] Hills | Convection in the Earth's mantle due to viscous shear at the core-mantle interface and due to large scale buoyancy[END_REF][START_REF] Mouël | Outer-core geostrophic flow and secular variation of Earth's geomagnetic field[END_REF]. In this case, it is assumed that just below the CMB, the fluid motions are governed by a balance (geostrophic equilibrium) between the horizontal components of the Coriolis and pressure forces. This hypothesis relies on the tangential component of the Lorentz force being much smaller than that of the Coriolis force. This approximation is expected to break down near the geographical equator, where the tangential Coriolis force goes to zero. Though Le [START_REF] Le Mouël | Motions at core surface in the geostrophic approximation[END_REF] argue that this is limited to a region of at most a few degrees North and South of the equator. The tangential geostrophy assumption only allows the unique determination of the velocity field in what [START_REF] Backus | The region on the core-mantle boundary where a geostrophic velocity field can be determined from frozen-flux magnetic data[END_REF] refer to as the visible belt. Within this region, which constitutes a large fraction of the core surface, all isolines of B r /cos θ are connected to the equator, which implies that it cannot contain any invisible geostrophic flow [START_REF] Chulliat | Local computation of the geostrophic pressure at the top of the core[END_REF]. In the remaining so-called ambiguous patches it is still possible to have geostrophic fluid motions that do not produce a signature in the SV. To remove this residual non-uniqueness, [START_REF] Amit | Helical core flow from geomagnetic secular variation[END_REF] combined the TG assumption with that of helical flow by prescribing a correlation between the tangential divergence of the velocity field and the radial vorticity. Another possible constraint that eliminates the velocity ambiguity is the quasi-geostrophic (QG) approximation [START_REF] Amit | Helical core flow from geomagnetic secular variation[END_REF][START_REF] Pais | Quasi-geostrophic flows responsible for the secular variation of the Earth's magnetic field[END_REF][START_REF] Gillet | Planetary gyre, time-dependent eddies, torsional waves, and equatorial jets at the Earth's core surface[END_REF][START_REF] Kloss | Time-dependent low-latitude core flow and geomagnetic field acceleration pulses[END_REF]. In this case, it is assumed that due to the rapid rotation of the Earth, the dynamics on short timescales not only near the CMB but throughout the entire core are governed by a geostrophic balance between Coriolis and pressure forces. The Proudman-Taylor theorem then dictates that the velocity field is invariant along the direction of the rotation axis z, which results in the flow being organized into axially-aligned columnar vortices. In a spherical geometry, the slope of the boundaries causes small deviations from geostrophy (e.g., Greenspan

1968), which is why the flow is referred to as quasi-geostrophic. [START_REF] Pais | Quasi-geostrophic flows responsible for the secular variation of the Earth's magnetic field[END_REF] combined the surface expression of the QG constraint with the explicit prescription of the implied equatorial mirror symmetry of the flow.

The dynamical constraints outlined above allow us to alleviate the theoretical non-uniqueness of the velocity field. Nevertheless, since only the large-scale radial magnetic field and SV at the CMB are accessible from observations, it is necessary to additionally regularise the solution of the inverse problem. This is because, theoretically, the fluid motion in the core at any scale could contribute to the observable SV. It is impossible, though, to reliably infer potential small-scale flows from the available observations, given that large-scale flows are sufficient to explain them.

For the sake of simplicity, it is therefore commonly assumed that large-scale flows in the Earth's outer core are responsible for most of the large-scale SV. This so-called large-scale approximation is usually achieved by prescribing a power law for the convergence of the velocity spectrum to ensure that the energy contained in the small scales decays rapidly (see e.g., [START_REF] Holme | Large-Scale Flow in the Core[END_REF]). Yet, [START_REF] Gillet | Planetary gyre, time-dependent eddies, torsional waves, and equatorial jets at the Earth's core surface[END_REF] and [START_REF] Baerenzung | The flow at the Earth's core-mantle boundary under weak prior constraints[END_REF] argue that the energy spectrum of the flow in the Earth's core does not decrease fast enough to justify the use of the large-scale approximation. This is supported by numerical simulations of the geodynamo (e.g., [START_REF] Aubert | Spherical convective dynamos in the rapidly rotating asymptotic regime[END_REF]).

An alternative approach to eliminate the non-uniqueness of the core flow problem is to use statistical properties derived from numerical geodynamo simulations (see e.g., [START_REF] Fournier | Inference on core surface flow from observations and 3-D dynamo modelling[END_REF][START_REF] Barrois | Contributions to the geomagnetic secular variation from a reanalysis of core surface dynamics[END_REF][START_REF] Gillet | A reduced stochastic model of core surface dynamics based on geodynamo simulations[END_REF]. This method can be used not only to constrain the velocity field at the CMB, but also in the entire outer core [START_REF] Aubert | Inferring internal properties of Earth's core dynamics and their evolution from surface observations and a numerical geodynamo model[END_REF][START_REF] Aubert | Earth's core internal dynamics 1840-2010 imaged by inverse geodynamo modelling[END_REF][START_REF] Aubert | Geomagnetic forecasts driven by thermal wind dynamics in the Earth's core[END_REF].

Diffusion-free linearized inversions of the core surface flow with statistics from a geodynamo simulation may prove to be a key intermediate step to assimilate brief time series of geomagnetic data in numerical dynamo models [START_REF] Aubert | Flow throughout the Earth's core inverted from geomagnetic observations and numerical dynamo models[END_REF]. Such a procedure has now been used to build successive IGRF candidate models from satellite data [START_REF] Fournier | A candidate secular variation model for IGRF-12 based on Swarm data and inverse geodynamo modelling[END_REF][START_REF] Minami | A candidate secular variation model for IGRF-13 based on MHD dynamo simulation and 4DEnVar data assimilation[END_REF][START_REF] Fournier | A secular variation candidate model for IGRF-13 based on Swarm data and ensemble inverse geodynamo modelling[END_REF]. Forgoing this step, a core surface flow model has also been obtained as a direct product of sequential assimilation of geomagnetic data by dynamo simulations for a long enough time interval (see [START_REF] Sanchez | Predictions of the geomagnetic secular variation based on the ensemble sequential assimilation of geomagnetic field models by dynamo simulations[END_REF] for 1840-2020). In addition, these approaches yield the contribution of the unresolved small-scale flows to the large-scale SV [START_REF] Gillet | A reduced stochastic model of core surface dynamics based on geodynamo simulations[END_REF]). Yet, a potential shortcoming of this strategy is that most numerical geodynamo models are far removed from the physical conditions of the Earth's core due to computational limitations (e.g., Christensen and Wicht 2015), which raises questions about the geophysical relevance of the statistics derived from such models.

A few local calculations of the core surface flow have been attempted to tackle the nonuniqueness problem. Theoretically, the velocity component normal to B r contours or to B r /cos θ contours can be uniquely determined if the flow is toroidal [START_REF] Whaler | Geomagnetic secular variation and fluid motion at the core surface[END_REF] or tangentially geostrophic [START_REF] Chulliat | Local computation of the geostrophic pressure at the top of the core[END_REF] respectively. It can readily be shown that the same holds for B r /cos 2 θ contours when the flow is quasi-geostrophic. In the TG case, the velocity normal to the B r /cos θ contours identifies with the pressure gradient along the contours. [START_REF] Chulliat | Local computation of the geostrophic pressure at the top of the core[END_REF] were thus able to calculate the pressure on all contours connected to the equator, where the pressure is assumed to be uniform as a consequence of geostrophy. They remarked that the method is limited by the need to know the magnetic field and its secular variation down to small scales, despite the pressure being an integral quantity of the velocity (making this issue less critical than for the flow).

The direct calculation of the pressure makes the method attractive and yet it has not flourished, possibly because a large part of the core surface is left out of the pressure calculation. It cannot be adapted to toroidal flows as the toroidal flow hypothesis does not give a special role to the equator.

Conversely, under the QG assumption, the flow is related to a stream function, which theoretically can also be calculated on all B r /cos 2 θ contours connected to the equator, where it takes a constant value. It is noteworthy that the QG assumption holds on the equator, in contrast with the TG assumption. In this study, we shall adopt another local method available for QG flows. We can exploit their symmetry with respect to the equatorial plane to obtain a unique local estimate of the velocity. We then know the flow projected on two directions that are not parallel because the B r /cos 2 θ contours in the North and South hemispheres are tangent only at isolated points.

In contrast with the former approach, this method is valid on the entire core surface outside the cylinder tangent to the inner core. The relationship between the flow and the stream function gives an additional constraint that may enter the prior information on the flow.

In addition to the non-uniqueness problem, we have two other motivations to undertake local calculations of the core surface flow. First, rapid wave-like motions have just been described preferentially in a specific region of the core surface, namely the equatorial belt [START_REF] Gillet | Satellite magnetic data reveal interannual waves in Earth's core[END_REF].

Second, the accuracy of models of the main magnetic field varies with the location at the Earth's surface since they are predominantly contaminated by external electrical currents (e.g., auroral electrojets) at high latitude. As a consequence, not all areas at the surface of the Earth, and thus of the core, are geomagnetically sampled with the same accuracy. This motivated the local studies of [START_REF] Hammer | Local averages of the core-mantle boundary magnetic field from satellite observations[END_REF] and [START_REF] Hammer | Applications for CryoSat2 satellite magnetic data in studies of Earth's core field variations[END_REF] who have mapped the secular variation of the main field at a collection of points either at satellite altitude or at the CMB. The local description of the magnetic field calls for a local description of the surface flow.

In the present paper, we propose a new method that allows a unique local estimation of the velocity field at the top of the Earth's core (to the extent that small-scale contributions cannot be reconstructed). To this end, we assume the core flow to be QG and as a consequence equatorially mirror symmetric. These assumptions permit an estimation of the velocity field at each point on a spherical grid representing the core surface. To test our method, we first consider synthetic data provided by the 71p geodynamo simulation by [START_REF] Aubert | The interplay of fast waves and slow convection in geodynamo simulations nearing Earth's core conditions[END_REF], before applying it to the recent geomagnetic field model COV-OBS.x2 [START_REF] Huder | COV-OBS.x2: 180 years of geomagnetic field evolution from ground-based and satellite observations[END_REF]. Details about the used data and methods are outlined in Sections 2 and 3. In Section 4, we present the results of our study before discussing them in Section 5.

DATA

In our study, we will consider both synthetic data from numerical geodynamo simulations and real data from a time-dependent geomagnetic field model. The purpose of the simulation data is to test and compare the proposed methods to understand how well we can recover the flow at the surface of the Earth's core when we apply them to real data.

Simulation data

Numerical dynamo models

Dynamo models can be characterized based on input and output dimensionless parameters. We recall here the most important numbers required for our purposes. The Ekman number Ek = ν/ΩD 2 measures the relative strength of the Coriolis force compared to viscous forces, with ν the kinematic viscosity, Ω the rotation rate and D the gap between the solid inner core and the outer core-mantle boundary. The magnetic Prandtl number P m = ν/η measures the ratio of the magnetic to viscous dissipation times, where η is the magnetic diffusivity. The magnetic Reynolds number R m = U D/η gives the ratio of the magnetic dissipation time to the turn-over time, where U is the typical flow strength. In the Earth's core, the rotational force dominates over viscosity (Ek ∼ 10 -14 1), while magnetic perturbations dissipate much faster than momentum (P m ∼ 10 -5 1). The flow strength is such that R m ∼ 1000.

In the following, we consider three numerical geodynamo simulations. All were computed with stress-free boundary conditions such that the flow at the simulated core surface corresponds to the top of the free stream. We primarily rely on the so-called 71p dynamo model by [START_REF] Aubert | The interplay of fast waves and slow convection in geodynamo simulations nearing Earth's core conditions[END_REF], which arguably is the most realistic numerical simulation of the geodynamo currently available. It is the latest in a series of models along a one-dimensional path in parameter space defined by [START_REF] Aubert | Spherical convective dynamos in the rapidly rotating asymptotic regime[END_REF] that aims to connect the Coupled Earth dynamo [START_REF] Aubert | Bottom-up control of geomagnetic secular variation by the Earth's inner core[END_REF]), which can be deemed a representative model of the part of the parameter space in which most dynamo models published to date reside, to the physical conditions of the Earth's core. Along this path, the control parameters of the simulations are varied as a function of a single variable , where = 1 denotes the Coupled Earth model (Ek = 3 × 10 -5 , P m = 2.5) and = 10 -7 the Earth's core conditions. The model that we consider here corresponds to = 10 -5

(Ek = 3 × 10 -10 , P m = 7.9 × 10 -3 ), i.e. it is located at 71% of the path on the logarithmic scale. Along the path, the magnetic Reynolds number is kept approximately constant, with values comparable to that of the geodynamo. Note that the path dynamos are computed with enhanced diffusion of momentum and codensity (but not of magnetic induction) at small length-scales [START_REF] Nataf | Turbulence in the core[END_REF] for spherical harmonic degrees ≥ 30. Detailed information about the set of equations, physical setup and the numerical method adopted for the computation of the 71p dynamo can be found in [START_REF] Aubert | Bottom-up control of geomagnetic secular variation by the Earth's inner core[END_REF][START_REF] Aubert | Spherical convective dynamos in the rapidly rotating asymptotic regime[END_REF] and [START_REF] Aubert | The interplay of fast waves and slow convection in geodynamo simulations nearing Earth's core conditions[END_REF]. The model data is freely available at https://4d-earth-swarm.univ-grenoble-alpes.fr/data.

Besides the 71p model, we consider two additional dynamo simulations from which we derive statistics that can be used as subjective prior information. The first model is the 50p (or midpath) dynamo by [START_REF] Aubert | Spherical convective dynamos in the rapidly rotating asymptotic regime[END_REF], run at Ek = 10 -8 , P m = 4.5 × 10 -2 . As the name suggests, this model is on the same uni-dimensional path in parameter space as the 71p dynamo. Thus, it has the same physical setup, only with less realistic control parameters. Since the kinematics of the 50p and 71p dynamos are by construction quite similar, we also consider an alternative (previously unpublished) dynamo simulation located in a different part of the parameter space.

We refer to this model as S1 † . It corresponds to the same set-up as simulation S1 in Schaeffer et al. ( 2017) but with stress-free boundary conditions and larger electric conductivity. Important parameters are Ek = 10 -6 , P m = 0.8, and R m ≈ 1800. The magnetic to kinetic energy ratio is about 14 (in comparison, this ratio is about 4 for S1). The ratio of dipolar to non-dipolar (up to degree 12) magnetic field (root mean square) at the core surface is f dip 0.5 -to be compared with f dip ≈ 0.68 for the current geomagnetic field, see [START_REF] Christensen | Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields[END_REF]. The S1 † simulation is therefore less dipolar than S1 (f dip ∼ 0.75) and has a stronger magnetic field. Despite the stress-free boundary, the energy of the zonal flow is less than 10% that of the non-zonal flow.

All of these differences are consequences of the larger P m leading to stronger magnetic field. while the potential magnetic field above the core surface is scaled to match the observed spatial spectrum of the non-dipole field.

Covariance matrices derived from numerical dynamo models

In the method section below, we use covariance matrices derived from these three dynamo models as prior information when estimating the core surface flow. Before constructing them, we write the radial induction equation (Eq. 1) for only the large-scale SV following the notation by [START_REF] Gillet | A reduced stochastic model of core surface dynamics based on geodynamo simulations[END_REF], which yields

∂B r ∂t = -∇ h • uB r + e r , (2) 
where the overlines denote large-scale fields. The term e r stands for so-called errors of representativeness, which comprise the large-scale electromotive force involving small-scale fields (subgrid induction), plus magnetic diffusion. In the spectral domain, the above equation can be expressed as

ġ = A(g) v + e. (3) 
The vectors g, v and e contain respectively the Schmidt semi-normalized spherical harmonic coefficients associated with B r , u and e r . The matrix A(g) corresponds to the Gaunt-Elsasser integrals (e.g., [START_REF] Whaler | Geomagnetic evidence for fluid upwelling at the core-mantle boundary[END_REF]). The coefficients for the errors of representativeness depend on the truncation degree max that is used for ġ, g and v in Eq. ( 3). Here, we consider max = 13 for all fields.

For any random vector x, we define the covariance matrix 

C xx = E x x T with x b = E [x]
C vv = 1 N s -1 Ns k=1 v (t k )v (t k ) T , (4) 
with an analogous expression for C ee , where N s is the number of samples of the dynamo states and t k the successive epochs. For the 71p (resp. 50p and S1 † ) dynamo simulation data, the t k span 10 kyr (resp. 20 and 12 kyr) regularly spaced every 0.2 yr (resp. 0.2 and ∼ 0.8 yr). These time series are long enough to sample many uncorrelated flow states (as the turn-over time is of the order of 100 yr for all three considered dynamos). While the series are much shorter than the magnetic diffusion time (∼ 100 kyr), these simulations have been initiated from a previous dynamo state obtained using another set of parameters, after rescaling in such a way that the initial condition matches the expected state [START_REF] Aubert | Spherical convective dynamos in the rapidly rotating asymptotic regime[END_REF]. This procedure much reduces the duration of transient states.

For the application of the method presented here to real data, we use the COV-OBS.x2 geomagnetic field model [START_REF] Huder | COV-OBS.x2: 180 years of geomagnetic field evolution from ground-based and satellite observations[END_REF], freely available at https://www.space.dtu.dk/english/ research/scientific_data_and_models/magnetic_field_models), which is the latest generation of the COV-OBS model series [START_REF] Gillet | Stochastic modeling of the Earth's magnetic field: Inversion for covariances over the observatory era[END_REF]). The model covers the time period from 1840 to 2020, and represents the core field together with slow changes in the external dipole field in dipole coordinates. For its construction, data from the POGO, DE-2, Magsat, Ørsted, CHAMP and Swarm satellite missions were taken into account. The first two only measured the field intensity, while starting with Magsat vector data were also recorded from space. The model is further constrained by maritime, land survey and ground observatory records. These latter are incorporated as annual differences of annual (resp. 4-monthly) means before (resp. after) 1997. They are the main constraint on the SV prior to the era of nearly continuous satellite monitoring, starting from 1999. The internal field (corresponding to the core field) is parameterized in terms of a spherical harmonics expansion with spectral coefficients (commonly referred to as Gauss coefficients) up to a maximum degree of 14. In COV-OBS.x2, the inversion of the geomagnetic field model from the data is based on a Bayesian approach that allows access to posterior model uncertainties. This is made possible by the use of realistic a priori temporal statistics based on second-order autoregressive processes consistent with the occurrence of geomagnetic jerks (abrupt changes in the rate of change of the recorded magnetic field). The model is projected in time onto cubic B-splines with knots every two years, which limits the temporal variability at periods shorter than ≈ 3 years.

METHOD

Local estimation of the quasi-geostrophic core surface flow

To locally estimate the flow at the top of the Earth's core, we assume that the velocity field is QG, incompressible (∇ • u = 0) and contained in a full sphere with an impenetrable boundary. The velocity field can then be expressed as [START_REF] Bardsley | Could hydrodynamic Rossby waves explain the westward drift[END_REF][START_REF] Schaeffer | Quasigeostrophic model of the instabilities of the Stewartson layer in flat and depth-varying containers[END_REF])

u = ∇ψ × ∇ z H , (5) 
where H = r 2 o -s 2 denotes the half-height of the geostrophic fluid columns, r o the radius of the sphere (i.e. the core radius) and (s, ϕ, z) the cylindrical coordinates. The scalar stream function ψ depends only on the spatial coordinates perpendicular to the rotation axis. The velocity field at the core surface is then given by

u = - 1 H 2 e r × ∇ψ, (6) 
where e r is the unit vector in the radial direction. Inserting the above expression for the QG velocity into the induction equation (Eq. 1), and assuming that diffusion is negligible, yields

∂B r ∂t = -H 2 u • ∇ B r H 2 . ( 7 
)
Note that from this equation, flows parallel to the isolines of B r /H 2 cannot be determined as they do not generate any SV. However, the organization of the fluid motion in axially aligned columns under the assumption of quasi-geostrophy implies that the core surface flow is mirror symmetric about the equatorial plane, i.e.

     u ϕ (θ, ϕ) = u ϕ (π -θ, ϕ) u θ (θ, ϕ) = -u θ (π -θ, ϕ) . ( 8 
)
Therefore, the azimuthal velocity is symmetric and the co-latitudinal velocity is antisymmetric about the equator. From this directly follows that u θ (π/2, ϕ) = 0. Furthermore, as long as the isolines of B r /H 2 are not symmetric about the equator, the flow can then be uniquely determined by writing Eq. ( 7) separately for the Northern and Southern hemispheres and taking advantage of Eqs (8). This results in two equations for two unknowns (u θ , u ϕ ) for each hemisphere. In the Northern hemisphere, solving them for the velocity field u

(r) = u N θ , u N ϕ T at a position r = (r o , θ, ϕ) yields u N θ = r o - ∂B N r ∂t ∂B S r ∂ϕ + ∂B S r ∂t ∂B N r ∂ϕ ∂B S r ∂θ + 2B S r tan θ ∂B N r ∂ϕ + ∂B N r ∂θ + 2B N r tan θ ∂B S r ∂ϕ , (9) 
and

u N ϕ = r o - ∂B N r ∂t ∂B S r ∂θ + 2B S r tan θ - ∂B S r ∂t ∂B N r ∂θ + 2B N r tan θ 1 sin θ ∂B N r ∂ϕ ∂B S r ∂θ + 2B S r tan θ + 1 sin θ ∂B S r ∂ϕ ∂B N r ∂θ + 2B N r tan θ . ( 10 
)
The superscripts N and S in the above two equations denote equatorially mirror symmetric locations in the Northern and Southern hemispheres, respectively. The corresponding velocity components in the Southern hemisphere can then simply be obtained using the symmetry properties (8).

In the following, we represent the core surface using a spherical grid with 60 points in θ and 120 points in ϕ with respectively constant spacings ∆θ and ∆ϕ. We consider the set of positions

r o = r o j j∈[1,n o ]
in the Northern hemisphere of the core surface, where n o = 3600. For these positions, we create a set of 'observations' of the ortho-radial (

x o θ = [u o,N θ,1 . . . u o,N θ,n o ] T ) and azimuthal (x o ϕ = [u o,N ϕ,1 . . . u o,N ϕ,n o ] T
) flow components obtained from the local estimates given by Eqs (9,10).

We store them in a vector 

x o = x oT θ , x oT
N,S = H N,S r g , ḃN,S = H N,S r ġ , b N,S θ = H N,S θ g , b N,S ϕ = H N,S ϕ g , (11) 
where, H N,S r , H N,S θ and H N,S ϕ are linear operators mapping the model space described by the Gauss coefficients onto the corresponding field values at the core surface (see [START_REF] Sabaka | Mathematical properties relevant to geomagnetic field modeling[END_REF].

By additionally introducing the diagonal matrices D N,S tan and D N,S sin in which we store the values for tan θ j and 1/sin θ j , we can then translate Eqs (9,10) into the following expressions for the vectors

x o θ and x o ϕ :

x o θ = N θ D θ , (12) 
where

     N θ = r o -H N r ġ • H S ϕ g + H S r ġ • H N ϕ g , D θ = H S θ + 2D S tan H S r g • H N ϕ g + H N θ + 2D N tan H N r g • H S ϕ g, (13) 
and

x o ϕ = N ϕ D ϕ , (14) 
where

     N ϕ = -r o H N r ġ • H S θ + 2D S tan H S r g + H S r ġ • H N θ + 2D N tan H N r g , D ϕ = D N sin H N ϕ g • H S θ + 2D S tan H S r g + D S sin H S ϕ g • H N θ + 2D N tan H N r g . ( 15 
)
The symbols • and denote respectively the Hadamard product and division (i.e. element-wise multiplication and division). Calculating the local estimates of the velocity field this way has the advantage that the θand ϕ-derivatives are applied to the spherical harmonic expansion of the magnetic field, for which they can be computed analytically.

Gaussian process regression

Since having access only to the large-scale radial magnetic field and SV at the core surface does not allow for a reliable recovery of meaningful small scales of the flow, we in an additional step filter (smooth) the velocity field values obtained from Eqs (12,14) using a Gaussian process regression (see e.g., [START_REF] Rasmussen | Gaussian processes for machine learning[END_REF]. For this purpose, we consider the velocity field u(r) to be distributed as a Gaussian process, i.e. as a process that is defined by a mean function )] and a cross-covariance function k(r, s) = E u (r)u (s) T , where r and s are two positions on the core surface and u (r) = u(r) -u b (r). For simplicity, we assume the mean function to be zero, i.e. u b (r) = 0 for all positions.

u b (r) = E [u(r

A priori model cross-covariances

For the covariance function, we need to choose a kernel that describes the dependence between the flow at two positions. Below we consider two types of isotropic kernels (correlation functions), both prescribing a decreasing correlation with d the arc distance between two positions r and s on the sphere. The first one belongs to the Matérn family of functions,

ρ M (d) = 1 + √ 3 d λ exp - √ 3 d λ , (16) 
while the second is a 5-th order piecewise rational function widely used for instance in oceanography [START_REF] Gaspari | Construction of correlation functions in two and three dimensions[END_REF],

ρ R (d) =                  - 1 4 d λ 5 + 1 2 d λ 4 + 5 8 d λ 3 - 5 3 d λ 2 + 1, 0 ≤ d ≤ λ, 1 12 d λ 5 - 1 2 d λ 4 + 5 8 d λ 3 + 5 3 d λ 2 -5 d λ + 4 - 2 3 λ d , λ ≤ d ≤ 2λ, 0, 2λ ≤ d, (17) 
where λ is a characteristic averaging length scale. The above two correlation functions are illustrated in Fig. 2 for λ = 1. While both show similar behavior for short distances, the cut-off is sharper for the latter piecewise rational function.

We consider a set of positions r m = {r m j } j∈[1,n m ] on the sphere at which we want to estimate the flow. Assuming that u θ and u ϕ are uncorrelated (but see below for cross-correlations related to the QG constraint), we now write for two points r m i and r m j

E u (r m i )u (r m j ) T =    E u m θi u m θj E u m θi u m ϕj E u m ϕi u m θj E u m ϕi u m ϕj    =    σ 2 ρ(d m ij ) 0 0 σ 2 ρ(d m ij )    , (18) 
with d m ij the arc distance between the two positions. We choose for the a priori variance of the flow σ 2 = (20 km/yr) 2 , typical of the speed expected at the core surface (e.g., [START_REF] Finlay | Short timescale core dynamics: theory and observations[END_REF]). We then construct from Eq. (18) all possible 2 × 2 covariance matrices between the sets of u(r m i ) and u(r m j ), for (i, j) ∈ [1, n m ] 2 , and from these blocks the isotropic a priori covariance matrix

C iso mm = E x m x mT . ( 19 
)
Note that the above cross-covariance matrix does not account for the correlation between u θ and u ϕ associated with the QG constraint. This latter imposes [START_REF] Amit | Helical core flow from geomagnetic secular variation[END_REF])

∇ h • u cos 2 θ = 0 . (20) 
For a set of N positions on a sphere, this condition can be written in matrix form as

L θ x θ + L ϕ x ϕ = Lx = 0, (21) 
where L θ and L ϕ are linear operators of dimension N × N , and

L = [L θ , L ϕ ] is of dimension N × 2N .
For the derivatives in the θand ϕ-directions, we use second-order finite difference approximations. To incorporate the constraint (20) into the a priori model cross-covariances, we consider Eq. ( 21) as a forward problem to be satisfied with vanishing uncertainties (additive noise) ε,

i.e.

y = 0 = Lx + ε, (22) 
for which the error covariance matrix is given by C εε = µ -1 W -1 εε , with µ 1 and W εε a diagonal weight matrix filled with sin θ values which distribute the weight equally across all colatitudes.

Knowing the prior statistics C iso mm , the posterior covariance matrix of the inverse problem associated with the above equation is the Hessian

C mm = C iso -1 mm + µL T W εε L -1 . ( 23 
)
It combines the second-order statistics prescribed by ( 18) with the QG constraint (20). We choose µ so that the QG constraint ( 20) is tightly satisfied.

Data error covariances

In addition, we need to define an error covariance matrix R o that contains estimates of the observation error statistics. The way we define the uncertainties on the observations x o is crucial for obtaining a meaningful flow model x m . In particular, they should reflect the fact that the local estimates derived from Eqs (12,14) are biased when the respective denominators are close to zero.

From the COV-OBS.x2 geomagnetic field model, we have access to uncertainties on the Gauss coefficients of the main field and the SV, which we store in the vectors δg and δ ġ. Note that we use the uncertainties provided by COV-OBS.x2 regardless of whether we consider real or synthetic data. Since these do not account for errors arising from subgrid induction and magnetic diffusion, we add to them the square root of the diagonal elements of C ee (see Section 2.1.2), which we calculate from one of the three dynamo models described in Section 2.1 (the 71p dynamo model when using real data and S1 † instead when using synthetic data obtained from the 71p dynamo model).

From δg and δ ġ, we can then estimate the standard deviations associated with the observations x o , which are stored in δx o = δx o θ , δx o ϕ T (see Appendix A). By ignoring cross-covariances between δx o θ and δx o ϕ , we can then construct an observation error covariance matrix

Σ o =    Σ o θ 0 0 Σ o ϕ    =    E δx o θ δx oT θ 0 0 E δx o ϕ δx oT ϕ    . (24) 
For simplicity, we further assume that the uncertainties δx o θ and δx o ϕ are respectively uncorrelated in the physical space, i.e. we reduce Σ o θ and Σ o ϕ to diagonal blocks. We justify this assumption based on the short length-scale structure of the local errors on the flow estimates, when no a priori cross-covariances are considered (see below).

Meanwhile, the error estimates derived from uncertainties on the Gauss coefficients are not guaranteed to fully minimize the impact of outliers in the Gaussian process regression. Thus, we apply an iteratively re-weighted algorithm based on the Huber norm (Huber 2004) in an attempt to remove any remaining bias, as described below.

Flow regression in the presence of outliers

We consider in the following r m = r o , so that cross-covariances involving either the observation and model points, under the QG assumption, are

C oo = E x o x oT = C mo = E x m x oT = C mm . ( 25 
)
Knowing the above cross-covariance matrices, together with observations x o and their associated uncertainties, the optimal flow model estimate is sought iteratively (e.g., Farquharson and Oldenburg 1998) as

x m i+1 = C mm (C mm + R o (x m i )) -1 x o . ( 26 
)
The error covariance matrix at iterate i is given by

R o (x m i ) = Σ o 1 2 W(x m i )Σ o 1 2 , (27) 
where W(x m i ) is a diagonal weight matrix whose elements are

W kk,i =        1, |z k,i |< c |z k,i |/c, |z k,i |≥ c , (28) 
with the normalized residuals 2004). The function (28) thus considers a L2 distribution for normalized residuals less than the threshold c in absolute value, and a L1 distribution for larger residuals (outliers). We follow Huber (2004) and choose c = 1.345, as this value provides 95% efficiency compared to a pure L2 loss function if the normalized residuals follow a normal distribution, while it offers protection against outliers in other cases. The iterative process is initialized with a L2 distribution, i.e. W(x m 0 ) = I. In practice, performing N ∞ = 15 steps of the scheme ( 26) is enough to reach convergence (as measured by a relative change between two iterations less than 10 -3 ). The a posteriori covariance matrix of the flow estimate at the end of the iterative process is given by

z k,i = x o k -x m k,i /δx o k , k ∈ [1, 2n o ] ( Huber 
R m = C mm -C mm C mm + R o (x m N∞ ) -1 C T mm . ( 29 
)

Core flow inversion using statistical properties of dynamo simulations

To assess how well the local flow estimation (and subsequent filtering using a Gaussian process regression) performs relative to other methods, we compare it to a core flow inversion incorporating subjective prior information derived from numerical dynamo simulations (e.g., [START_REF] Fournier | Inference on core surface flow from observations and 3-D dynamo modelling[END_REF]. This approach can be referred to as stochastic inversion [START_REF] Gubbins | Geomagnetic field analysis -I. Stochastic inversion[END_REF]. Following the formalism classically used for inverting core flows (e.g., Bloxham and Jackson 1991), we consider Eq. ( 3) as a forward problem, in which ġ is the observation vector, H = A (g) is the observation operator and e is the observation error vector. The statistics of the latter are characterized by the cross-covariance matrix C ee , which accounts for errors due to subgrid processes and magnetic diffusion. We search for the solution to the linear problem (3) that best fits observations ġ, knowing the second-order statistics C vv on the large-scale flow coefficients stored in v. In a Bayesian framework this amounts to minimizing the functional

J (v) = Hv + e b -ġ T C -1 ee Hv + e b -ġ + v -v b T C -1 vv v -v b . (30) 
Here, the covariance matrix C vv is used to regularize the solution. The best linear estimate for the core surface flow is then given by

v = v b + C vv H T HC vv H T + C ee -1 ġ -Hv b -e b . ( 31 
)
The matrices C vv and C ee along with the expected values v b and e b must be supplied as prior information. In the following, they shall be derived from a numerical dynamo simulation as described in Section 2.1. Which of the considered models we select for the calculation of the priors depends on whether we consider synthetic or real data. In the former case, we try to estimate the core surface flow of the 71p dynamo. Therefore, we derive the covariance matrices from either the S1 † or 50p dynamos. When applying Eq. ( 31) to geomagnetic data, we compute them from the 71p simulation, as it is the most realistic model of the Earth's dynamo to date (and should therefore represent the most relevant prior).

Diagnostics

To quantify how accurately the velocity fields imaged using the methods outlined above reproduce the synthetic reference flows provided by the 71p dynamo simulation, we calculate two measures:

(i) the correlation coefficient (e.g., [START_REF] Rau | Core flow inversion tested with numerical dynamo models[END_REF][START_REF] Amit | Tests of core flow imaging methods with numerical dynamos[END_REF])

c = S u • u * dS S u • u dS S u * • u * dS , ( 32 
)
and (ii) the normalized misfit

m = S |u -u * | dS S |u * | dS , ( 33 
)
where S is the core surface, and u and u * denote the estimated and the reference flow, respectively.

The correlation coefficient indicates the quality of the recovery of the flow pattern, while the normalized misfit provides additional information about the accuracy of the fit of the amplitude.

The larger the correlation coefficient and the smaller the normalized misfit, the better the overall flow reconstruction whereby a perfect flow reconstruction corresponds to c = 1 and m = 0.

RESULTS

Method validation using synthetic QG data

To test the validity of the local flow estimation described in Section 3.1, we first create a scenario in which all of our assumptions are perfectly satisfied. To this end, we choose a snapshot in time of the 71p dynamo simulation. We only consider the part of the velocity field that satisfies the topological QG constraint (Eq. 20) and is mirror symmetric about the equatorial plane, which we denote u * (see Appendix B). Its latitudinal and azimuthal components are shown in Fig. 3a. We then use this QG velocity together with the radial magnetic field for this same snapshot to generate an artificial secular variation using only the non-linear term of the induction equation, i.e. order piecewise rational function (Eq. 17, dark blue symbols) is used to create the a priori covariance matrix (Eq. 19) as a function of the characteristic averaging length scale λ. The correlation coefficients c (Eq. 32, circles) and the normalized misfits m (Eq. 33, squares) correspond to average values for the 50 snapshots.

∂B r ∂t = -∇ h • (u * B r ) . ( 34 
)
better in terms of these two metrics for all λ. While λ = 4000 km yields the best flow recovery for this correlation function, the results vary only marginally between λ = 2000 km and λ = 5000 km. Note also that the sudden drop in the quality of the flow recovery in the case of the Matérn kernel for λ > 4000 km is due to the matrix C iso mm becoming ill-conditioned (near-singular) with increasing λ, as the effective distance d/λ between grid points decreases. As a result, C iso mm can no longer be inverted with sufficient numerical accuracy. This is a well-known issue for covariance matrices generated from correlation functions (see e.g., [START_REF] Ababou | On the condition number of covariance matrices in kriging, estimation, and simulation of random fields[END_REF]. This problem would be exacerbated (and would occur already at smaller λ) if the frequently used Squared Exponential (or Gaussian) kernel were adopted instead (see e.g. Zimmermann 2015).

Application to 71p dynamo simulation

Before applying the local flow estimation to the 71p geodynamo simulation, we analyze the extent to which the core surface flow in the model is consistent with the topological expression of quasi- geostrophy and equatorial mirror symmetry. For this purpose, we truncate the velocity field at degree = 13 in the spectral domain and calculate the kinetic energies contained in the flow that satisfies the QG constraint (Eq. 20), in the equatorially mirror symmetric part of the flow, and in the flow that fulfills both conditions. The respective ratios between these three quantities and the kinetic energy of the total flow (also truncated at = 13) are shown in Fig. 5a as a function of the simulation time. The green circles denote the 50 snapshots of the dynamo model which we consider in this study. We find that the surface expression of the QG constraint is very well satisfied throughout the time series, with typically more than 95% of the kinetic energy ascribed to the part of the velocity field that satisfies this constraint. Concerning the equatorial mirror symmetry of the flow, the 71p dynamo displays a higher variability, with the kinetic energy fraction varying between 70% and 98%. The fact that the latter condition is less well satisfied is partly attributable to the presence of the inner core, which does not allow for columnar vortices coupling the surface flows in the Northern and Southern hemispheres within the axially-aligned cylinder that is tangent to it, thereby eliminating the physical argument for the mirror symmetry. This can be seen in Fig. 5b either the Matérn kernel (Eq. 16, light grey symbols) or the 5-th order piecewise rational function (Eq. 17, dark blue symbols) is used to create the a priori covariance matrix (Eq. 19) as a function of the characteristic averaging length scale λ. The correlation coefficients c (Eq. 32, circles) and the normalized misfits m (Eq. 33, squares) correspond to average values for the 50 snapshots.

where the same quantities as in Fig. 5a are shown with the tangent cylinder (TC) excluded. We note that the extent to which the topological QG constraint is satisfied changes only slightly, while the flow outside the TC tends to be more equatorially symmetric overall. However, the kinetic energy fraction still shows considerable variability with values typically between 75% and 98%.

As in the case of the method validation, we test the local flow estimation and subsequent Gaussian process regression on the 50 snapshots of the 71p model highlighted in Fig. 5a. To derive the core surface flow of the simulation, we now use the actual SV from the simulation in addition to B r , truncating both at = 13. At this point, we again evaluate which of the considered averaging kernels, i.e. the Matérn kernel (Eq. 16) or the 5th order piecewise rational function (Eq. 17), provides the best flow recovery when applying the Gaussian process regression by calculating the correlation coefficients and the normalized misfits between the estimated flows and the reference flows provided by the geodynamo simulation. For this comparison, the latter are truncated at = 13. The resulting average values of these two measures for different characteristic length scales are shown in Fig. 6. We find that, as in the method validation, the piecewise rational function yields better overall results than the Matérn kernel with respect to both metrics. For the former function, the best flow recovery for the considered averaging length scales is achieved at λ = 6000 km, which is the value we choose in the following. The need for a larger λ, i.e. stronger averaging, when using dynamo data compared to the artificial setup considered in Section 4.1 can be attributed to the fact that in this case far more small-scale contributions are neglected. For λ > 6000 km, the same numerical difficulties which occur during the inversion of C iso mm when using the Matérn kernel also emerge for the piecewise rational function. However, the values of the correlation coefficient and the normalized misfit appear to have converged, as both measures change by only about 1% between λ = 5000 km and λ = 6000 km, so that even in the absence of numerical issues only marginal improvements could be expected at larger λ. Note also that the results shown in Fig. 6 are independent of which of the considered dynamo simulations is used to calculate the matrix C ee whose diagonal elements enter the estimation of the uncertainties on the locally estimated velocities (see Section 3.2.2).

An example for the reference flow of the simulation and the recovered flow adopting this configuration is illustrated in Fig. 7a-b. This snapshot is the same as the one considered in Fig. 3.

Note the similarity between the velocity fields shown in Fig. 3a and Fig. 7a. This highlights that the QG constraint (Eq. 20) and the assumption of equatorial mirror symmetry are indeed largely satisfied within the dynamo simulation. We find that the estimated core surface flow (Fig. 7b) reproduces well the main large-scale features of the reference flow. However, it is significantly less complex on small scales and the amplitude is underestimated overall. The correlation coefficient between the two velocity fields is 0.74, while the normalized misfit is 0.62.

To assess how good these results are, we compare them to core flow inversions that include subjective prior information derived from numerical geodynamo simulations using Eq. ( 31). For the estimated velocity components shown in Fig. 7c, the prior covariance matrices C vv and C ee are calculated from the 50p dynamo model. The correlation coefficient between this flow and the reference flow is 0.80 and the normalized misfit is 0.56. Therefore, these results are better than those obtained with the local flow estimation for this particular snapshot. It should be noted, though, that the 50p model, by virtue of its construction, closely resembles the 71p dynamo and is therefore a very realistic prior for the flow (of the 71p dynamo) that we are attempting to invert. Hence, we consider as an alternative prior the S1 † dynamo. The estimated flow based on covariance matrices computed from this model is depicted in Fig. 7d. In this case the flow recovery is significantly less accurate with a correlation coefficient of 0.47 and a normalized misfit of 0.91. This indicates that the results of the inversion based on statistical properties of geodynamo simulations is strongly prior dependent.

To obtain a more robust comparison between the local flow estimation and the flow inversion based on dynamo statistics, we apply the latter also to the aforementioned 50 snapshots. The respective mean correlation coefficients and normalized misfits between the velocity fields estimated using these different methods and the reference flow of the 71p model are listed in Table 1. We find that the inversion employing statistical properties derived from the 50p dynamo achieves on average a better flow recovery than the local flow estimation method. It also shows less variability in the results, as indicated by the minimum and maximum values of the two metrics. However, compared to the inversion which relies on a less realistic prior in the S1 † dynamo, the local flow estimation gives much more accurate results, underlining the strong prior dependence of the former method, as observed above for the snapshot in Fig. 7. Finally, Table 1 also provides the mean correlation coefficients and normalized misfits of the estimated flows with respect to only the QG portion of the velocity fields of the 71p model at the snapshots considered. In this case, the two measures improve slightly for the local flow estimation and the inversion adopting the 50p dynamo as a prior, while only the correlation coefficient gets better when S1 † dynamo statistics are incorporated.

Application to geomagnetic field model COV-OBS.x2

For the application of the two proposed methods to real geomagnetic data, we consider the epoch 2015.0 of the COV-OBS.x2 model [START_REF] Huder | COV-OBS.x2: 180 years of geomagnetic field evolution from ground-based and satellite observations[END_REF]. For the Gaussian process regression used to smooth the locally estimated flow, we take the averaging kernel and the characteristic length scale that produced the best results when applying the method to the 71p dynamo, i.e. the piecewise ra-

Local estimation of quasi-geostrophic flows in Earth's core 29 tional function with λ = 6000 km. In the core flow inversion that incorporates statistical properties of dynamo simulations, we adopt the 71p dynamo as the prior, since it is the most geophysically realistic model available to date. In this case, the velocity is estimated up to a maximum spherical harmonic degree = 13.

The velocity fields resulting from these approaches are shown in Fig. 8. Outside the TC, the flow pattern and amplitude are largely consistent between the two methods. While the locally estimated flow (Fig. 8a) is by design equatorially symmetric, the core flow inversion based on dynamo statistics (Fig. 8b) also shows a high degree of equatorial mirror symmetry outside the TC, which is to be expected since the equatorial symmetry is largely satisfied within the 71p model used as prior. In both cases, the obtained velocity fields show a strong westward flow beneath the Atlantic and Africa with amplitudes of about 15 -25 km/yr. Immediately West of Central America, the flow diverges towards the North and South, where it forms high-latitude jets which converge again under the Indian ocean. These types of flows have been interpreted as the surface signature of an eccentric axial columnar gyre inside the outer core (e.g., [START_REF] Pais | Quasi-geostrophic flows responsible for the secular variation of the Earth's magnetic field[END_REF][START_REF] Gillet | Planetary gyre, time-dependent eddies, torsional waves, and equatorial jets at the Earth's core surface[END_REF][START_REF] Aubert | Recent geomagnetic variations and the force balance in Earth's core[END_REF]. Beneath the Pacific region, which is enclosed by this circulation, the flow is considerably weaker and less coherent, with typical velocities below 10 km/yr. The flow inverted using the dynamo prior shows a larger spatial complexity, for instance with more important variations of the azimuthal flow along the equator. The weaker complexity of the local QG solution was notable in the synthetic case. Overall the two velocity maps estimated from geomagnetic data are closer than the maps obtained from synthetic data (see Fig. 7).

The most striking difference between the flows obtained using the two approaches is found within the TC, where there is no physical argument for the flow to be equatorially symmetric. In the locally estimated flow, where this constraint is explicitly enforced, the flow inside the TC is very weak with velocities less than 5 km/yr. Hence, the high-latitude jets are mostly confined to outside the TC. On the other hand, when we invert the core flow using statistics from simulations as prior information, we find, like [START_REF] Gillet | A reduced stochastic model of core surface dynamics based on geodynamo simulations[END_REF], a very asymmetric flow within the TC. In the Northern hemisphere, we observe a strong polar vortex that reaches flow amplitudes of more than 30 km/yr. The currents inside the TC in the Southern hemisphere are much weaker in comparison, with velocities of about 5 -15 km/yr. We also observe some continuity between the polar vortices and the high-latitudinal jets outside the TC similar to what was found by Aubert (2020).

DISCUSSION

Inferring the fluid flow at the top of the Earth's outer core from geomagnetic observations represents a highly non-unique inverse problem (even if magnetic diffusion is assumed to be negligible).
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This non-uniqueness has two major origins: (i) any flow that does not produce a SV is undetectable in our observations (ii) the length scale of the fluid motion in the core is unconstrained since any arbitrarily small-scale flow could generate the large-scale SV that is accessible via observations.

To eliminate the theoretical non-uniqueness in the study presented here, we assumed that the flow in the core is QG (e.g., [START_REF] Amit | Helical core flow from geomagnetic secular variation[END_REF][START_REF] Pais | Quasi-geostrophic flows responsible for the secular variation of the Earth's magnetic field[END_REF][START_REF] Gillet | Planetary gyre, time-dependent eddies, torsional waves, and equatorial jets at the Earth's core surface[END_REF]. Taking advantage of the implied equatorial mirror symmetry of the surface flow, we were then able to uniquely estimate the velocity field locally. Note though that some non-uniqueness still remains if there are locations where the isolines of B r /H 2 are symmetric about the equatorial plane. At such points, only the flow perpendicular to the isolines can be uniquely determined.

Using a synthetic setup, we demonstrated that when the assumptions of quasi-geostrophy and negligible magnetic diffusion are met, and we have access to fully-resolved observations, then there is no longer any theoretical underdetermination of the flow. However, if instead only largescale observations are available, the local flow estimation method proposed here yields unrealistically large values at small scales. This highlights the severe limitation incomplete data pose to the recovery of the core surface flow. To mitigate these difficulties, we smoothed the estimated velocity fields using a Gaussian process regression [START_REF] Rasmussen | Gaussian processes for machine learning[END_REF]. In the case of this ideal setup, this allowed us to still recover the flow pattern quite accurately, although it led to the amplitude being somewhat underestimated.

When applying this combination of local flow estimation and subsequent smoothing to simulation data provided by the 71p dynamo (Aubert and Gillet 2021), i.e. to data where the methodinherent assumptions are no longer perfectly satisfied, the loss of magnitude in the reconstructed flow became more pronounced. However, the main large-scale features of the reference flow of the numerical model could still be recovered fairly reliably. In this case, a limitation to the local flow estimation method, in addition to the difficulties associated with relying only on large-scale observations, is that while the core surface flow in the geodynamo simulations considered fulfills the topological QG constraint very well, it satisfies the equatorial mirror symmetry only to a lesser extent (even when excluding the TC). This can generally be observed in numerical geodynamo simulations, where the flow typically shows a strong tendency to organize into columnar structures aligned with the axis of rotation (see e.g., [START_REF] Schaeffer | Turbulent geodynamo simulations: a leap towards Earth's core[END_REF]. Though these do not necessarily extend throughout the entire outer core.

Compared to the local flow estimation, we were able to reconstruct the flow of the 71p dynamo more accurately using core flow inversions that rely on statistics from numerical geodynamo models as subjective prior information. However, we found this to depend heavily on whether a very realistic/relevant prior in the 50p dynamo or a less realistic one in the S1 † dynamo was used. In the latter case, the results were much less accurate than those obtained with the local flow estimation approach. Since it is uncertain how closely current numerical geodynamo simulations match the exact dynamics of the Earth's core, one of the main advantages of the local flow estimation method is that it depends comparatively little on the prior information chosen. The success of our method hinges on the equatorial symmetry of the flow. This may indicate that keeping only the entries of the covariance matrix that reflect the dominant equatorial symmetry would make the prior information obtained from numerical geodynamo models more relevant. Such a 'covariance localization' has recently proved useful in an assimilation of geomagnetic field models by dynamo simulations [START_REF] Sanchez | Predictions of the geomagnetic secular variation based on the ensemble sequential assimilation of geomagnetic field models by dynamo simulations[END_REF]. Furthermore, limitations of empirical dynamo norms might be mitigated by reducing their sensitivity to the finite number of independent dynamo snapshots (see [START_REF] Istas | Transient core surface dynamics from ground and satellite geomagnetic data[END_REF], in the context of time-dependent core flow models).

Application of the two methods to real geomagnetic data provided by the COV-OBS.x2 model [START_REF] Huder | COV-OBS.x2: 180 years of geomagnetic field evolution from ground-based and satellite observations[END_REF] showed that both methods can reproduce the main flow features found in numerous previous studies. Namely, the strong westward flow under the Atlantic and Africa, and the high-latitude jets that enclose the Pacific region, where the overall flow is weaker and less directionally uniform. This circulation has been interpreted as the surface signature of an eccentric axial columnar gyre inside the outer core by several authors (see e.g., [START_REF] Pais | Quasi-geostrophic flows responsible for the secular variation of the Earth's magnetic field[END_REF][START_REF] Gillet | Planetary gyre, time-dependent eddies, torsional waves, and equatorial jets at the Earth's core surface[END_REF][START_REF] Aubert | Recent geomagnetic variations and the force balance in Earth's core[END_REF].

Future work could focus on using the local flow estimation method to construct a time-dependent model of the QG core surface flow. The estimate that we propose is interesting in that it does not rely on a prior attached to a specific dynamo simulation. Building this way a time-dependent flow model would potentially allow the analysis of wave-like motions. The approach presented here is particularly intriguing since QG waves have been detected both in numerical simulations of the geodynamo [START_REF] Aubert | Geomagnetic jerks and rapid hydromagnetic waves focusing at Earth's core surface[END_REF][START_REF] Aubert | A taxonomy of simulated geomagnetic jerks[END_REF]) and from geomagnetic observations in the form of Magneto-Coriolis waves [START_REF] Gerick | Fast Quasi-Geostrophic Magneto-Coriolis Modes in the Earth's Core[END_REF][START_REF] Gillet | Satellite magnetic data reveal interannual waves in Earth's core[END_REF]) and torsional Alfvén waves [START_REF] Gillet | Fast torsional waves and strong magnetic field within the Earth's core[END_REF][START_REF] Gillet | Planetary gyre, time-dependent eddies, torsional waves, and equatorial jets at the Earth's core surface[END_REF]. To this end, either a time series of snapshots may simply be considered or the current framework could be extended to include temporal correlations between different epochs through a priori covariance matrices or a time-stepped QG core flow model. where v contains the Schmidt semi-normalized spherical harmonic coefficients of the velocity field. The matrix M can be derived adopting the Gaunt-Elsasser integrals (e.g., [START_REF] Whaler | Geomagnetic evidence for fluid upwelling at the core-mantle boundary[END_REF] that are commonly used to compute the electromotive force ∇ h • (uB r ) in spectral space, which corresponds to the term A (g) v in Eq. (3). By considering B r = cos 2 θ, we can analogously write the above equation as

A (ǧ) v = 0 . (B.
2)

The vector ǧ containing the Gauss coefficients associated with B r = cos 2 θ is given by

ǧ =                        1 3 r o a 2 0 0 0 2 9 r o a 4 0 . . . 0                        , (B.3)
where a = 6371.2 km is the mean radius of the Earth. Note that here the first non-zero element corresponds to a 'monopole', i.e. g 0 0 , and the second non-zero element to the axisymmetric quadrupole

g 0 2 .
Consider a velocity field represented by a set of spectral coefficients stored in the vector v * .

The part of v * that fulfills condition (20) can be obtained by minimizing

L (v) = (v -v * ) T W (v -v * ) + µv T M T Mv , (B.4)
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for which an estimate is given by

v = W + µM T M -1 W v * . (B.5)
Here, the diagonal matrix W contains the weights W ,ii = ( + 1) /(2 + 1) with i ∈ [1, 2 max ( max + 2)] associated with the degree of the spherical harmonic coefficients in v. This formulation gives a uniform weight to the kinetic energy stored in all degrees.

Finally, to access only the equatorially mirror symmetric part of v, i.e. the part for which condition (8) holds, we keep only the poloidal coefficients for which m + is even, with m being the spherical harmonic order, and the toroidal coefficients for which m + is odd, while setting all the remaining coefficients to zero.

Figure 1 .

 1 Figure 1. Radial field (colourscale) and flow (streamlines) at the core surface for decorrelated snapshots of the S1 † dynamo, truncated at spherical harmonic degrees respectively 12 and 18. The colourscale range from ±1.5 nT. Thickness of the streamlines range from 0 to 60 km/yr.

  the statistical expectation of x (or background) and x = xx b the perturbation to the background. The two covariance matrices of interest to us are C vv = E v v T and C ee = E e e T . To calculate them for the considered dynamo simulations, we approximate the expected values v b and e b by the time averages of the respective time series of v and e for the different dynamo models. The covariance matrices are then approximated as

ϕT.

  For the calculation of x o , we store the radial magnetic field and its time derivative at the CMB in vectors b N,S and ḃN,S , and the θand ϕ-derivatives of the radial magnetic field in vectors b N,S θ and b N,S ϕ . Here, vectors with superscript N (e.g., b N ) contain the field values at positions r o j , while vectors with superscript S contain the field values at the corresponding equatorially mirror symmetric locations in the Southern hemisphere. We can express these vectors as functions of the Gauss coefficients of the field and the SV, which are respectively stored in vectors g and ġ, such that b

Figure 2 .

 2 Figure 2. Matern correlation function ρ M (d) and 5-th order piecewise rational function ρ R (d), for a characteristic length-scale λ = 1.

Figure 3 .

 3 Figure 3. (a) QG and equatorially mirror symmetric part of the flow components u θ (left) and u ϕ (right) of the 71p dynamo simulation at the snapshot t = 12510 yr truncated at degree = 13 in spectral space. (b-c) Locally estimated velocity field obtained from the artificially generated secular variation (see Section 4.1 for details) truncated at degrees = 26 and = 13, respectively. (d) Filtered flow components after applying a Gaussian process regression (Eq. 26) to the velocity field shown in (c).

Figure 4 .

 4 Figure 4. Comparison between the results of the Gaussian process regression applied to the locally estimated velocity fields as part of the method validation (see Section 4.1) for 50 snapshots of the 71p dynamo simulation (highlighted in Fig 5a) when either the Matérn kernel (Eq. 16, light grey symbols) or the 5-th

Figure 5 .

 5 Figure 5. Fraction of the kinetic energy contained in the part of the flow that fulfills the topological QG constraint (Eq. 20, black), in the equatorially mirror symmetric part of the flow (red) and in the flow satisfying both conditions (blue) relative to the total kinetic energy of the flow of the 71p geodynamo model for (a) the entire core surface and (b) the core surface excluding the area within the intersection of the inner core tangent cylinder (TC) that is aligned with the rotation axis. The velocity fields used to calculate these energy ratios were truncated at degree = 13.

Figure 6 .

 6 Figure 6. Comparison between the results of the Gaussian process regression applied to the locally estimated flows derived from the 50 snapshots of the 71p dynamo simulation (highlighted in Fig 5a) when

Figure 7 .

 7 Figure 7. (a) Flow components u θ (left) and u ϕ (right) of the 71p dynamo simulation at the snapshot t = 12510 yr truncated at degree = 13 in spectral space. (b) Locally estimated flow after filtering out outliers using a Gaussian process regression (Eq. 26). (c-d) Estimated velocity fields (up to = 13) based on an inversion incorporating statistics from the (c) 50p dynamo and (d) the S1 † dynamo simulations as subjective prior information using Eq. (31).

Table 1 .

 1 Average correlation coefficients c and normalized misfits m calculated between the different estimated velocity fields and the reference flows provided by the 50 snapshots of the 71p geodynamo simulation highlighted in Fig.5. The rows with an asterisk (c * and m * ) refer to the same measures computed between the estimated flows and the part of the flow of the 71p dynamo that satisfies the topological QG constraint and is equatorially mirror symmetric. The values in parentheses correspond to the minimum and maximum values obtained for the 50 snapshots.Method validationLocal flow estimation Stochastic inverse (50p) Stochastic inverse (S1

Figure 8 .

 8 Figure 8. Velocity fields estimated from the COV-OBS.x2 geomagnetic field model for the epoch 2015.0 using (a) the local flow estimation method that includes filtering out of outliers using a Gaussian process regression (Eq. 26) and (b) a core flow inversion incorporating statistics of the 71p dynamo as prior information (Eq. 31). The size of the arrows used to illustrate the flow direction is proportional to the magnitude of the flow. The dashed orange lines indicate the surface signature of the inner core tangent cylinder.

  APPENDIX B: QUASI-GEOSTROPHIC PART OF THE CORE SURFACE VELOCTIY FIELD In the spectral domain, the topological QG constraint (20) can be expressed as Mv = 0, (B.1)
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DATA AVAILABILITY

The core surface data of the analyzed dynamo simulations are accessible at https://gricad-gitlab. univ-grenoble-alpes.fr/Geodynamo/pygeodyn_data. The COV-OBS.x2 geomagnetic field model [START_REF] Huder | COV-OBS.x2: 180 years of geomagnetic field evolution from ground-based and satellite observations[END_REF]) used to test the proposed methods on real data is available at https:// www.space.dtu.dk/english/research/scientific_data_and_models/magnetic_field_ models.

For this test, we truncate both u * and B r in spectral space at spherical harmonic degree = 13. Note that despite only considering large-scale fields, the generated secular variation contains energy up to = 26.

By assuming B r truncated at = 13 and the diffusion-free ∂B r /∂t obtained from Eq. ( 34) as observations, we now try to estimate (reverse-engineer) u * using Eqs (9,10) together with the symmetry properties (8). We first consider ∂B r /∂t truncated at = 26, which corresponds to the fully-resolved secular variation. The resulting estimated velocity components are illustrated in Fig. 3b. We observe that in this scenario the flow can be perfectly recovered (i.e., c = 1, m = 0). If we instead only have access to the large-scale secular variation, i.e. ∂B r /∂t up to = 13, the local flow estimation does not yield a plausible velocity field anymore. Figure 3c shows that in this case, we obtain unrealistically large velocities towards smaller scales. However, it appears that at least some of the large-scale flow features are still reasonably well recovered. To filter out the extreme values on small scales, we apply an iteratively re-weighted Gaussian process regression using Eq. ( 26). Note that due to the design of the method validation (large-scale fields, diffusion-free), we do not need to account for errors arising from subgrid induction and magnetic diffusion. Thus, we here consider only the uncertainties on the Gauss coefficients provided by the COV-OBS.x2 model to estimate the standard deviations of the locally estimated velocities, which enter the observation error covariance matrix (Eq. 24). The resulting flow components are shown in Fig. 3d. The pattern of the reference flow is reproduced fairly well with a correlation coefficient of 0.83. However, the amplitude of the flow is less accurately recovered with a normalized misfit of 0.51.

For the Gaussian process regression, we here used the 5-th order piecewise rational function (Eq. 17) with a characteristic length scale λ = 4000 km as the averaging kernel to create the required covariance matrices. We find that this configuration yields the most accurate recovery of the reference flow when performing the above method validation on 50 snapshots (every 100 yr from 8010 yr to 12910 yr) of the 71p dynamo. This is illustrated in Fig. 4 where we show the mean correlation coefficient and the mean normalized misfit as a function of λ for the Matérn kernel and the piecewise rational function. Both quantities are computed between the estimated velocity field and u * . We observe that the piecewise rational function performs (at least slightly) Local estimation of quasi-geostrophic flows in Earth's core 39

Taking the variance of both sides yields

where σ xy denotes the covariance between the variables x and y. Thus, to obtain estimates for the uncertainties δx o θ and δx o ϕ , we start by linearizing the non-linear terms in the respective equations for the numerators and denominators of x o θ and x o ϕ (Eqs 13,15) and determine their variance according to (A.2). Here, we assume that δg and δ ġ are random, normally distributed and uncorrelated variables. For the uncertainties δN θ and δD θ corresponding to N θ and D θ , we then obtain

Analogously, the uncertainties δN ϕ and δD ϕ corresponding to N ϕ and D ϕ are given by