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Abstract. Objective. In this paper, we investigate how the virtual fan-beam (VFB)

method can be used to perform mathematically correct 2D reconstruction in a region-

of-interest (ROI), using truncated fan-beam projections acquired on a circular scan,

for truncation that only occurs on one side of the object.

Approach. We start by choosing a virtual fan-beam trajectory and specifying how to

obtain the corresponding virtual projections. Then, three VFB formulas are obtained

by applying known super-short-scan (SSS) formulas to this virtual trajectory. Two

of them perform the backprojection in a virtual parallel geometry and the third in

the virtual fan-beam geometry. Next, we develop two VFB formulas that perform the

backprojection step in the fan-beam acquisition geometry.

Main results. We present five VFB reconstruction formulas for this truncation

setting. To our knowledge, the two VFB formulas performing the backprojection in the

fan-beam acquisition geometry are new. Moreover, the five VFB formulas presented

here obtain accurate reconstruction in a larger ROI than what has been previously

reported in the literature in the same setting. A complete mathematical derivation of

these five VFB formulas is given, and their implementation is described step by step.

Numerical simulations, using the Forbild head and thorax phantoms, demonstrate the

efficacy of these formulas. A spatial resolution analysis and a variance study indicate

minor differences between these five VFB formulas.

Significance. This work shows that many different VFB formulas can be applied to

perform mathematically correct 2D reconstruction in a ROI, in case of truncated fan-

beam projections acquired on a circular scan. Moreover, the two new VFB formulas,

with backprojection in the acquisition geometry, may open the path for an extension

of the VFB method to 3D reconstruction from transversely truncated cone-beam

projection acquired on a circular scan.

1. Introduction

In two-dimensional (2D) computed tomography (CT), the aim is to reconstruct the

density function of a 2D object, f , from its projections. Typically, measurements over

all lines traversing the object are obtained and grouped either as parallel or fan-beam
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projections. In this situation, the well-known filtered backprojection (FBP) algorithm

can be applied to reconstruct the object function f (Natterer 1986). To obtain the

density f(x⃗) at any specific point x⃗ in the plane, the FBP formula uses every line-

integral measurement, including those of lines not passing through x⃗.

In the situation where not every line-integral measurement is available, the approach

to image reconstruction, until at least the turn of the century, was to estimate

or ignore the missing information prior to reconstruction. Various reconstruction

approaches were explored including FBP after estimating the missing measurements

(Lewitt 1979, Ohnesorge et al. 2000), iterative schemes based on the known object

outline (Ogawa et al. 1984), singular value decomposition (Louis & Rieder 1989), and

wavelet approaches (Rashid-Farrokhi et al. 1997).

The most common situation of missing information was and still is truncated

projections, where measurements at the edges of some or all of the projections are

not available, typically because the object being imaged is too large for the detector.

Another case of missing data is a reduced angular range of fan-beam projections where

the fan-beam vertex (the x-ray source) follows a circular trajectory but for less than

the minimum required to measure all line-integrals through the object. Missing data

situations that we do not address here are the interior and exterior problems, and

limited-angle data (Natterer 1986).

New understanding emerged shortly after the turn of the century (Clackdoyle &

Defrise 2010), establishing the concept of “partial data” rather than “missing data”,

because the mathematics showed that, in some specific situations, part of the object

can be reconstructed (“partial reconstruction”) from partial data. The apparent

contradiction with the FBP formula, which uses every line-integral for reconstruction of

each point of the object, was reconciled by the fact that many different reconstruction

formulas exist, as shown by Clackdoyle & Noo (2004) for example.

An early example of partial data reconstruction arose for fan-beam data from

a limited angular range (Noo et al. 2002, Chen 2003), later called the “super-short-

scan”(SSS) (Kudo et al. 2002). Explicit reconstruction formulas were given for points

in the object which were irradiated by x-ray sources from all directions (all 180°), even
though other points might not satisfy this condition. This approach has the advantage

of being mathematically correct, and can be implemented efficiently. A limitation is the

requirement that none of the contributing fan-beam projections can be truncated.

Shortly afterwards, in 2004, another approach appeared which achieved partial

reconstruction but from truncated projection data, using a first step of backprojecting

the derivative of the projection data. This method has been called differentiated

backprojection (DBP) (Noo et al. 2004, Zhuang et al. 2004) or backprojection filtration

(BPF) (Zou et al. 2004), and involves a post-backprojection processing using the

Hilbert transform. This approach is also mathematically correct. It can handle a

broad range of truncated data configurations, and in many cases can be efficiently

implemented. However, the line-by-line post-processing of the inverse Hilbert transform

can be challenging to implement.
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Also in 2004, a different approach to handling truncated projection data appeared,

which was based on the SSS fan-beam method even though that method does not

allow truncated projections. This approach (Clackdoyle et al. 2004) took the truncated

projections and reformulated (or “rebinned”) the measurements into new “virtual” fan-

beam projections which were not truncated, so the SSS formula (Noo et al. 2002) could

then be applied. This approach has since been referred to as the virtual fan-beam

(VFB) method, and is the subject of the work presented here. This method also

has the advantage of being mathematically correct. A disadvantage is the need to

find an appropriate virtual trajectory. Also, this method handles fewer truncated data

configurations than the DBP method. However, the VFB approach is complementary

to that of DBP because it processes truncated projections in a fundamentally different

way (Clackdoyle et al. 2009).

These various analytic approaches provided knowledge as to what partial

reconstructions (which regions of the object) can be obtained from specific partial

data. Further theoretical understanding and enlarged possibilities arose in 2006

(Defrise et al. 2006) although a general reconstruction formula was not provided.

With this information linking measurements to reconstructible regions of the object,

iterative reconstruction algorithms (or “discrete-model based” algorithms), such as

those described in (Fu et al. 2006, Zhang & Zeng 2007, Rashed et al. 2009, Sidky

et al. 2014), produce accurate results. These iterative methods are effective and simple

to implement, but suffer the usual difficulties of finding a reliable stopping criteria and

of much longer reconstruction times. In a similar category to iterative methods, deep

learning approaches are also being applied to partial data problems (Li et al. 2019).

These approaches may turn out to be effective but are also “blind” methods that do

not provide direct insight into the nature of the reconstruction problem.

Here, we restrict our attention to the particular partial data problem of truncated

projections arising from an object that is too large for the detector, and one extremity

of it protrudes outside the scanner field-of-view (FOV). As the truncation occurs only

from one side of the object, this situation can be seen as a one-sided truncation problem,

which we call ‘unilateral truncation’ in the following. It is not to be confused with the

one-sided truncation due to an off-center detector, where only the right or left side of

a centered detector is measured (Lux 1981). Although iterative algorithms and the

DBP method can be used for this problem, here we are specifically considering the VFB

approach, which can reconstruct the same region-of-interest (ROI) as the DBP method

for the unilateral truncation considered here (Noo et al. 2004).

The VFB method was first introduced by Clackdoyle et al. (2004), in the context

of unilateral truncation. The chosen virtual trajectory was an arc of circle, and the

acquisition data were rebinned into the virtual fan-beam geometry before applying a SSS

formula to the virtual projections. For more general cases of partial data, Clackdoyle

& Noo (2004) described a large class of VFB formulas. These formulas, expressed

entirely in the parallel-beam setting, allowed the choice of virtual fan-beam projections

to change with each reconstruction point, provided the virtual vertex lay outside a disk



4

containing the object. For the case of an elliptical object with two extremities protruding

outside the FOV (‘bilateral truncation’), a VFB procedure was developed by Clackdoyle

et al. (2006). This procedure required the area of the object to be less than the area

of the FOV. Later, Ould-Mohamed et al. (2007) developed VFB formulas similar to

those of Clackdoyle & Noo (2004), but with the flexibility to choose the virtual vertices

anywhere outside the smallest convex and compact set supporting the object. These

formulas were applied to artificially truncated parallel projections which could not be

handled by previous methods (Ould-Mohamed et al. 2008).

For unilateral truncation, the VFB procedure presented by Clackdoyle et al. (2004)

applies to a ROI smaller than the maximal ROI for the VFB method (Clackdoyle

et al. 2004). For the large class of VFB formulas (Clackdoyle & Noo 2004), the

requirement of virtual vertices outside the object disk limits the virtual trajectory and

the size of the FOV. The VFB formula developed for bilateral truncation (Clackdoyle

et al. 2006) could in principle be applied to unilateral truncation, provided the extended

object is not too large compared to the FOV. The formulas of Ould-Mohamed et al.

(2007) could be applied to any situation with unilateral truncation, but cannot be

applied to fan-beam data without a conversion to parallel-beam geometry.

In this paper, we present five VFB reconstruction formulas customized for fan-beam

projections acquired on a full circular trajectory, in case of unilateral truncation and of

an object with elliptical support. These five formulas are mathematically correct in the

maximal ROI for the VFB method, and differ mainly in which domain is used for the

backprojection step. Two of them backproject parallel projections and another performs

backprojection in the virtual fan-beam domain. These three formulas correspond to the

application of three SSS formulas of Noo et al. (2002) to the virtual fan-beam trajectory.

The fourth and fifth formulas, which we believe to be new, perform backprojection in

the original acquisition geometry. A first version of these formulas was presented in a

conference proceeding by the same authors (Charles et al. 2021), but with one of the

formula suffering from a smaller valid reconstruction area compared to the other four.

This issue has been resolved in this paper. The numerical simulation section has also

been enhanced by using more challenging phantoms and adding a spatial resolution

analysis. Furthermore, this paper contains a complete self-contained mathematical

derivation of the formulas, and the discretization and implementation of the formulas is

described step by step.

The paper is organized as follows: in section 2, we recall the VFB principle, and we

present the five reconstruction formulas; in section 3, we specify how the formulas are

discretized and implemented; in section 4, we describe the numerical simulations and

present the results; in section 5, we discuss these results; finally, in section 6, we draw

conclusions.
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2. Theory

In this section, we present five VFB-based formulas customized for the setting of fan-

beam projections acquired along a full circular trajectory, for an elliptical object with

unilateral truncation. Taking advantage of the specificity of this setting, we provide

comprehensive demonstrations of these five VFB formulas, including several well-known

intermediate results, so that the following mathematical derivations do not rely on other

articles.

We begin by recalling the relations linking parallel projections and fan-beam

projections acquired along a circular scan. These relations are very well-known, and

we provide analytic proofs here. To do so, we introduce two couples, (λ1, γ1) and

(λ2, γ2), which correspond to the parameters of the two fan-beam rays supported by a

line intersecting a circular scan (see equations (13) and (14) in section 2.2).

Using this framework, we demonstrate two relations between filtered parallel

projections and filtered fan-beam projections, which lead to three SSS formulas for

a fan-beam circular acquisition scan, two of them performing parallel backprojection

and the third fan-beam backprojection along the circular scan. The proofs we provide

for these three formulas, especially for the third one, use a different framework than

that of Noo et al. (2002), where their results are derived for the first time.

Next, we recall the principles of the VFB method and apply them to the unilateral

truncation setting considered here. Taking advantage of this specific truncation setting,

we choose a circular virtual trajectory allowing the reconstruction of the largest possible

ROI in this situation for the VFB method. Then, using the fan-beam to parallel

projections relations, we derive a rebinning procedure to obtain non-truncated virtual

projections from the acquisition data, for any vertex of the circular virtual trajectory

chosen. Next, we apply the three SSS formulas derived above to the circular virtual

trajectory, resulting in three VFB formulas, two of them using parallel backprojection,

and the third fan-beam backprojection in the virtual geometry. These formulas were

already known (Clackdoyle et al. 2004), but not customized to obtain the largest possible

ROI.

Finally, from the fan-beam to parallel filtered projections relations, we derive a fan-

beam to fan-beam filtered projections relation, for two fan-beam circular geometries with

different radii, which we believe to be a new result. From this relation, we derive two

new VFB formulas, whose novel features are backprojection in the fan-beam acquisition

geometry, and directly filtering the non-truncated fan-beam acquisition projections.

2.1. Configuration studied

In the situation we study, fan-beam projections are acquired with a circular source

trajectory of radius RA (‘A’ stands for acquisition). The FOV, which is the region

viewed by every source position, is a disk of radius RF . The object to be reconstructed

has a known elliptic support included inside the disk of radius RA, but only partially

inside the FOV, so most of the fan-beam projections are truncated (see figure 1).
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Let ΛRA
= [0, 2π) denote the angular extent of the acquisition trajectory. We

decompose the set of acquisition projections into the sets of non-truncated and truncated

projections, of angular extent ΛC
RA

and ΛT
RA

respectively (‘C’ and ‘T’ stand for ‘complete’

and ‘truncated’ respectively). So {ΛC
RA

,ΛT
RA

} is a partition of ΛRA
, i.e. we have

ΛRA
= ΛC

RA
∪ ΛT

RA
with ΛC

RA
∩ ΛT

RA
= ∅. Depending on the supports of the FOV

and the object, ΛC
RA

is a single interval or the union of two intervals (a configuration

illustrating the second case is displayed in figure 1).

ΛC
RA

ΛT
RA

acquisition trajectory

RF

RA

FOV

object

Figure 1. The configuration studied. The acquisition trajectory has a radius RA and the FOV a

radius RF . The tangents to the object and the FOV delimit the parts of the trajectory for which the

projections are non-truncated (bold dashed arcs of circle).

2.2. Notation and relations between parallel and fan-beam geometries

We define the projections in the parallel-beam and fan-beam settings and also the filtered

projections that we will use in those two settings. We loosely follow the notation in (Noo

et al. 2002). Let f denote the 2D object density to be reconstructed. We assume that

the support of f is contained within the interior of the disk of radius RA (i.e. f(x⃗) = 0

when ||x⃗|| ≥ RA).

The parallel-beam projections of f are defined by

p(ϕ, s) =

∫
R
f(lθ⃗ϕ + sη⃗ϕ)dl, ϕ ∈ [0, 2π), s ∈ (−RA, RA), (1)

where θ⃗ϕ = (cosϕ, sinϕ) and η⃗ϕ = (− sinϕ, cosϕ). In the following, as ϕ 7→ p(ϕ, s) is

2π-periodic, if the first parameter of p is outside [0, 2π) then we implicitly consider its
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value modulo 2π. From equation (1), it is easy to verify that

p(ϕ, s) = p(ϕ+ π,−s), (2)

which shows that there are two possible parallel parametrizations for a given line-

integral. Let hF (s) =
∫
R |σ|e

2iπσsdσ (formally) denote the ramp filter. The ramp-filtered

parallel projections are defined by

pF (ϕ, s) =

∫
R
hF (s− s′)p(ϕ, s′)ds′. (3)

From equations (2) and (3) and the fact that hF (−s) = hF (s), it follows that

pF (ϕ, s) = pF (ϕ+ π,−s). (4)

Let hH(s) =
∫
R−i sign(σ)e2iπσsdσ (formally) denote the Hilbert filter. The Hilbert-

filtered parallel projections are defined by

pH(ϕ, s) =

∫
R
hH(s− s′)p(ϕ, s′)ds′. (5)

Similarly, from equations (2) and (5) and the fact that hH(−s) = −hH(s), we obtain

pH(ϕ, s) = −pH(ϕ+ π,−s). (6)

Moreover, (∂/∂s)hH(s) =
∫
R −i sign(σ)(2iπσ)e2iπσsdσ = 2πhF (s) (see Deans (1983, p.

139, remark 1)) so it follows, and is well-known (e.g. (Noo et al. 2002)), that

pF (ϕ, s) =
1

2π

∂

∂s
pH(ϕ, s). (7)

Using pF , defined in equation (3), image reconstruction can be performed with the

well-known parallel FBP formula (see (Kak & Slaney 1988) for instance):

f(x⃗) =

∫ π

0

[pF (ϕ, s)]|s=x⃗·η⃗ϕ dϕ. (8)

The fan-beam projections of f for a circular source trajectory of radius R are defined

by

gR(λ, γ) =

∫ ∞

0

f(Rθ⃗λ + tθ⃗λ+π+γ)dt, λ ∈ [0, 2π), γ ∈ (−π, π). (9)

Here, λ indicates the angular position of the source, and γ is the ray-angle, measured

from the central ray, which goes from the source to the center of rotation. Unlike

(Noo et al. 2002), we choose to measure γ counterclockwise, also. For circular fan-beam

geometries, these are typical parameters, see e.g. (Kak & Slaney 1988). In the following,

as λ 7→ gR(λ, γ) is 2π-periodic, if the first parameter of gR is outside [0, 2π), then we

implicitly consider its value modulo 2π, and similarly for the second parameter, γ. The

Hilbert-filtered fan-beam projections are defined by (Noo et al. 2002, eq. (13))

gRH(λ, γ) =

∫ π

−π

hH(sin(γ − γ′)) gR(λ, γ′)dγ′ (10)

and we introduce a second type of filtered fan-beam projections, defined by (Noo

et al. 2002, eq. (34))

gRF (λ, γ) =
1

2π

∫ π

−π

hH(sin(γ − γ′))

(
∂

∂λ
− ∂

∂γ′

)
gR(λ, γ′)dγ′, (11)
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which satisfies the following property:

gRF (λ, γ) =
1

2π

(
∂

∂λ
− ∂

∂γ

)
gRH(λ, γ). (12)

To demonstrate this property, we rewrite gRH as gRH(λ, γ) =
∫ π

−π
hH(sin γ

′) gR(λ, γ−γ′)dγ′

and inject this expression in (12) to obtain (11).

We can now link fan-beam and parallel projections. Given ϕ ∈ [0, 2π) and

s ∈ (−RA, RA), we define (λ1, γ1) and (λ2, γ2) as follows:

λ1(ϕ, s) = ϕ+ π − arcsin(s/RA), γ1(s) = arcsin(s/RA), (13a)

λ2(ϕ, s) = ϕ+ arcsin(s/RA), γ2(s) = − arcsin(s/RA), (13b)

so γ1, γ2 ∈ (−π/2, π/2). Note that λ1, γ1 and λ2, γ2 are expressions in (ϕ, s) and not

independent variables. We will now show that

p(ϕ, s) = gRA(λ1, γ1), (14a)

= gRA(λ2, γ2). (14b)

Geometrically, these relations correspond to the configurations displayed in figure 2.

λ2
λ1

γ1

-γ2

ϕ

O

S1

S2

L

s

RA

RA

λ1
λ2

-γ1

γ2

ϕ

O

S1

S2

L

-s

RA

RA

Figure 2. The line L of parallel parameters (ϕ, s) intersects the circle C of radius RA at S1 and

S2. The fan-beam rays (half-lines) emitted from S1 and S2 along L and inside C are defined by the

parameters (λ1, γ1) and (λ2, γ2) respectively. The two possible cases are shown (left: s > 0, right:

s < 0). All angles are measured counterclockwise.

For an analytic demonstration of (14a) and (14b), we first have to establish that

the integration limits in equation (9), for R = RA and γ ∈ (−π/2, π/2), can be

extended from (0,∞) to (-∞,∞), so that they match those of equation (1). For

x⃗ = RAθ⃗λ + tθ⃗λ+π+γ, we obtain x⃗ · θ⃗λ = RA − t cos(γ) ≥ RA for t ≤ 0 and
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γ ∈ (−π/2, π/2) so ||x⃗|| ≥ |x⃗ · θ⃗λ| ≥ RA. Since f(x⃗) = 0 when ||x⃗|| ≥ RA, we have∫ 0

−∞ f(RAθ⃗λ + tθ⃗λ+π+γ)dt = 0, so for all γ ∈ (−π/2, π/2), we obtain

gRA(λ, γ) =

∫
R
f(RAθ⃗λ + tθ⃗λ+π+γ)dt. (15)

Then, for given (ϕ, s) ∈ [0, 2π)×(−RA, RA), we start with (15), and use the definitions of

λ1 and γ1 to evaluate g
RA(λ1, γ1) =

∫
R f(RAθ⃗λ1+tθ⃗λ1+π+γ1)dt =

∫
R f(RAθ⃗ϕ+π−γ1+tθ⃗ϕ)dt.

We first change integration variable t = RA cos γ1 + l, and then apply θ⃗ϕ+τ − cos τ θ⃗ϕ =

sin τ η⃗ϕ with τ = −γ1, to yield

gRA(λ1, γ1) =

∫
R
f(RA(−θ⃗ϕ−γ1 + cos γ1θ⃗ϕ) + lθ⃗ϕ)dl

=

∫
R
f(RA(− sin(−γ1)η⃗ϕ) + lθ⃗ϕ)dl

=

∫
R
f(sη⃗ϕ + lθ⃗ϕ)dl = p(ϕ, s) (16)

which establishes (14a). For (14b), a similar proof applies, but with the change of

variables t = RA cos γ2 − l. Alternatively, we can use (2), p(ϕ, s) = p(ϕ + π,−s):

we established that p(ϕ, s) = gRA(λ1(ϕ, s), γ1(s)) so p(ϕ + π,−s) = gRA(λ1(ϕ +

π,−s), γ1(−s)). From the definitions of λ1, λ2 we note that λ1(ϕ + π,−s) = (ϕ +

π) + π − arcsin(−s/RA) = ϕ + arcsin(s/RA) + 2π = λ2(ϕ, s) + 2π and γ1(−s) = γ2(s).

Therefore p(ϕ, s) = p(ϕ+ π,−s) = gRA(λ2, γ2) which establishes (14b).

We will need the reverse relationship for the more general case of a virtual circular

trajectory, where the support of f is not necessarily contained within the disk of radius

RV . Specifically, given (λ, γ), what are the values of (ϕλ,γ, sλ,γ) such that gRV (λ, γ) =

p(ϕλ,γ, sλ,γ)? Again, under the assumption that the half-line-integral gRV (λ, γ) is equal

to the line-integral, i.e. gRV (λ, γ) =
∫
R f(RV θ⃗λ + tθ⃗λ+π+γ)dt, the following rebinning

relationship is well-known (for example, (Kak & Slaney 1988, Guerrero et al. 2023)):

gRV (λ, γ) = p(λ+ γ,−RV sin γ). (17)

We provide the analytic demonstration. Starting from the left-hand side, changing

variables t = RV cos γ − l and again using the relation θ⃗A+B − cosB θ⃗A = sinBη⃗A with

A = λ+ γ, B = −γ, we obtain

gRV (λ, γ) =

∫
R
f(RV θ⃗λ + (RV cos γ − l)θ⃗λ+π+γ)dl

=

∫
R
f(RV θ⃗λ+γ−γ + (l −RV cos γ)θ⃗λ+γ)dl

=

∫
R
f(RV (θ⃗λ+γ−γ − cos(−γ)θ⃗λ+γ) + lθ⃗λ+γ)dl

=

∫
R
f(RV sin(−γ)η⃗λ+γ + lθ⃗λ+γ)dl

= p(λ+ γ,−RV sin γ) (18)

as claimed.
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2.3. The super-short-scan method

We now recall the main results of the SSS method (Noo et al. 2002) as applied to the

special case of a circular source trajectory or a circular arc source trajectory composed

of non-truncated fan-beam projections. These results will be used later in the VFB

method. In this section, to emphasize that we consider any fan-beam trajectory, we

use a radius R instead of RA, so the previous definitions made with RA such as those

of (λi, γi) will be considered here with R. ΛR will denote the angular extent of the

fan-beam trajectory of radius R, whose projections gR are all non-truncated. More

precisely, ΛR will be an interval or union of intervals, such that ΛR ⊂ [0, 2π).

The support of f is no longer required to be within the disk of radius R, but any

point to be reconstructed has to satisfy this condition. The main result is that pH and

pF can be expressed respectively in terms of gRH and gRF for any line intersecting the

fan-beam trajectory. Consequently, if all lines passing through a point x⃗ intersect the

fan-beam trajectory, then we can compute the parallel filtered projections corresponding

to these lines and apply the parallel FBP (8) to reconstruct f(x⃗). Moreover, we will see

that it is possible to backproject directly along the fan-beam trajectory to compute any

f(x⃗) for x⃗ satisfying the condition above.

The fundamental result on which the SSS method is based, sometimes called the

Hilbert projection equality (Clackdoyle & Defrise 2010), was first presented by Hamaker

et al. (1980), and later by Noo et al. (2002) for the specific 2D context. With our

notation, it is written

pH(ϕ, s) = gRH(λ1, γ1) (19a)

and

pH(ϕ, s) = −gRH(λ2, γ2). (19b)

To show (19a) and (19b) we use the identity sin(A − B) = −η⃗A · θ⃗B with A = ϕ and

B = ϕ + γ − γ1. Recalling the rebinning formulas for λ1 and γ1, (13a), for given (ϕ, s)

we have

gRH(λ1, γ1) =

∫ π

−π

hH(sin(γ1 − γ)) gR(λ1, γ)dγ

=

∫ π

−π

hH(−η⃗ϕ · θ⃗ϕ+γ−γ1)

∫ ∞

0

f(Rθ⃗λ1 + tθ⃗λ1+π+γ)dtdγ

=

∫ π

−π

∫ ∞

0

t hH(−η⃗ϕ · tθ⃗ϕ+γ−γ1)f(Rθ⃗ϕ+π−γ1 + tθ⃗ϕ+γ−γ1)dtdγ

where the degree -1 homogeneity of hH was applied. We now perform the polar to

rectangular change of variables x⃗ = Rθ⃗ϕ+π−γ1 + tθ⃗ϕ+γ−γ1 , so tdtdγ = dx⃗.

gRH(λ1, γ1) =

∫ ∞

−∞

∫ ∞

−∞
hH(−η⃗ϕ · (x⃗−Rθ⃗ϕ+π−γ1))f(x⃗)dx⃗

=

∫ ∞

−∞

∫ ∞

−∞
hH(R sin γ1 − η⃗ϕ · x⃗)f(x⃗)dx⃗
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=

∫ ∞

−∞

∫ ∞

−∞
hH(s− η⃗ϕ · x⃗)f(x⃗)dx⃗

=

∫ ∞

−∞

∫ ∞

−∞
hH(s− s′)f(lθ⃗ϕ + s′η⃗ϕ)dlds

′

=

∫ ∞

−∞
hH(s− s′)p(ϕ, s′)ds′ = pH(ϕ, s) (20)

where the last change of variables was x⃗ = lθ⃗ϕ + s′η⃗ϕ with dx⃗ = dlds′. The proof

of (19b), gRH(λ2, γ2) = −pH(ϕ, s), follows very similar lines. Alternatively, we can use

equation (6) with equation (19a). Applying the definitions of λ1, γ1 and λ2, γ2, we obtain

pH(ϕ, s) = −pH(ϕ + π,−s) = −gRH(λ1(ϕ + π,−s), γ1(−s)) = −gRH(λ2(ϕ, s), γ2(s)), and

thus pH(ϕ, s) = −gRH(λ2, γ2), which establishes (19b).

Similarly, pF can be expressed from gRF by

pF (ϕ, s) = − 1√
R2 − s2

gRF (λ1, γ1) (21a)

and

pF (ϕ, s) = − 1√
R2 − s2

gRF (λ2, γ2). (21b)

From the definitions λ1(ϕ, s) = ϕ + π − arcsin(s/R) and γ1(s) = arcsin(s/R), and the

identity (∂/∂u) arcsin(u) = 1/
√
1− u2, we see that ∂λ1(ϕ, s)/∂s = −1/

√
R2 − s2 =

−∂γ1(s)/∂s. Using the notation ∂ig
R
H to denote the partial derivative of gRH with respect

to the i-th variable, we have from equations (7), (19a) and (12)

pF (ϕ, s) =
1

2π

∂

∂s
pH(ϕ, s) =

1

2π

∂

∂s
gRH(λ1(ϕ, s), γ1(s))

= − 1

2π
√
R2 − s2

(∂1g
R
H(λ1, γ1)− ∂2g

R
H(λ1, γ1))

= − 1√
R2 − s2

gRF (λ1, γ1) (22)

which establishes equation (21a). Equation (21b) follows similarly, since ∂λ2/∂s =

1/
√
R2 − s2 = −∂γ2/∂s.

A well-known fan-beam version of (2) is gR(λ, γ) = gR(λ + π + 2γ,−γ). We will

need a similar version for filtered projections gRF . From equations (21a) and (21b), we

can show that, for all λ ∈ [0, 2π) and γ ∈ (−π/2, π/2),

gRF (λ, γ) = gRF (λ+ π + 2γ,−γ). (23)

Combining (21a) and (21b), we obtain gRF (λ1, γ1) = −
√
R2 − s2pF (ϕ, s) = gRF (λ2, γ2).

Then, using (13) for any (ϕ, s), we have λ2 + π + 2γ2 = λ1 and −γ2 = γ1.

Therefore, gRF (λ2 + π + 2γ2,−γ2) = gRF (λ1, γ1) = gRF (λ2, γ2). Now, given any

(λ, γ) ∈ [0, 2π) × (−π/2, π/2), we choose s(γ) = −R sin γ and ϕ(λ, γ) = λ + γ,

and obtain λ2(ϕ(λ, γ), s(γ)) = λ and γ2(s(γ)) = γ. This choice of (ϕ, s) applied to

gRF (λ2, γ2) = gRF (λ2 + π + 2γ2,−γ2) establishes (23).

From relations (19) and (21), two SSS formulas can be established. They are both

based on the parallel FBP formula (8) and differ on how to obtain the filtered parallel
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projections pF . The first SSS formula computes gH with (10), then obtain pH from gH
with (19), and finally converts pH to pF with (7), before applying formula (8). The

second SSS formula computes gF with (11), and directly obtain pF from gF with (21),

before applying (8). To reconstruct f(x⃗), these SSS formulas require pF or pH to be

known on the set of parallel lines parameterized by (ϕ, x⃗ · η⃗ϕ) for all ϕ ∈ [0, 2π), which

amounts to the set of lines passing through x⃗. Using the rebinning relations (19) and

(21) between fan-beam and parallel geometries, pH and pF are available for all lines

intersecting the fan-beam trajectory. So both SSS formulas provide reconstruction of a

point x⃗ only if all lines through x⃗ intersect the fan-beam trajectory.

Finally, as shown by Noo et al. (2002), instead of rebinning the filtered fan-beam

projections into filtered parallel projections to perform parallel backprojection, it is

possible to directly perform the backprojection in the fan-beam acquisition geometry.

To that end, a non-negative fan-beam weighting function wR(λ, γ) is introduced which

must satisfy the following property.

wR(λ1, γ1) + wR(λ2, γ2) = 1 for all ϕ ∈ [0, π), s ∈ (−R,R), (24)

recalling that λ1, λ2, γ1, γ2 are all expressions in (ϕ, s). Conceptually, each ray is available

from two different fan-beam projections, and a weight is assigned to each, such that

the total summed weight for the ray is one. (Similarly to gF , we implicitly take the

first variable of wR to be modulo 2π.) The purpose of the weighting function wR

will become clear below, but for now we note that setting wR(λ, γ) = 1/2 (for all

(λ, γ) ∈ [0, 2π) × (−π/2, π/2)) will satisfy the normalization requirement (24). To

obtain a suitable fan-beam FBP formula, the basic idea is to replace pF by gRF in the

parallel FBP formula (8), using (21a) and (21b). We assume that ||x⃗|| < R. We have

f(x⃗) =

∫ π

0

[pF (ϕ, s)]|s=x⃗·η⃗ϕ dϕ

=

∫ π

0

[
(wR(λ1, γ1) + wR(λ2, γ2)) pF (ϕ, s)

]∣∣
s=x⃗·η⃗ϕ

dϕ

=

∫ π

0

[
wR(λ1, γ1)

(
−1√

R2 − s2

)
gRF (λ1, γ1)

]∣∣∣∣
s=x⃗·η⃗ϕ

dϕ

+

∫ π

0

[
wR(λ2, γ2)

(
−1√

R2 − s2

)
gRF (λ2, γ2)

]∣∣∣∣
s=x⃗·η⃗ϕ

dϕ. (25)

We show in Appendix A that the first term f1(x⃗) and the second term f2(x⃗) of (25) can

be written

f1(x⃗) = −
∫
Λ1(x⃗)

1

||x⃗−Rθ⃗λ||
[
wR(λ, γ)gRF (λ, γ)

]∣∣
γ=γR

x⃗,λ

dλ (26)

and

f2(x⃗) = −
∫
Λ2(x⃗)

1

||x⃗−Rθ⃗λ||
[
wR(λ, γ)gRF (λ, γ)

]∣∣
γ=γR

x⃗,λ

dλ (27)

where, for x⃗ = (x1, x2),

Λ1(x⃗) = [π − arcsin(x2/R), 2π + arcsin(x2/R)), (28)
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Λ2(x⃗) = [arcsin(x2/R), π − arcsin(x2/R)), (29)

and

γR
x⃗,λ = − arcsin

(
x⃗ · η⃗λ

||x⃗−Rθ⃗λ||

)
. (30)

η⃗λ γR
x⃗,λ

O

Rθ⃗λ

x⃗

λ

R

−x⃗ · η⃗λ

||x⃗−Rθ⃗λ||

Figure 3. View of the angle γR
x⃗,λ = − arcsin(x⃗·η⃗λ/||x⃗−Rθ⃗λ||) between the central ray (passing through

O) and the ray passing through x⃗.

A geometrical illustration of γR
x⃗,λ is given in figure 3. The expressions for the integrands of

f1(x⃗) and f2(x⃗) are the same, and the integration ranges Λ1(x⃗) and Λ2(x⃗) are contiguous

intervals with no overlap. Therefore, from (25),

f(x⃗) = f1(x⃗)+f2(x⃗) = −
∫
Λ1(x⃗)∪Λ2(x⃗)

1

||x⃗−Rθ⃗λ||
[
wR(λ, γ)gRF (λ, γ)

]∣∣
γ=γR

x⃗,λ

dλ.(31)

Because Λ2(x⃗) ∪ Λ1(x⃗) = [arcsin(x2/R), 2π + arcsin(x2/R)), and since the integrand is

periodic (in λ) of period 2π, we can shift the integration limits by the constant quantity

arcsin(x2/R) and write, for our final fan-beam FBP result,

f(x⃗) = −
∫ 2π

0

1

||x⃗−Rθ⃗λ||
[
wR(λ, γ)gRF (λ, γ)

]∣∣
γ=γR

x⃗,λ

dλ, (32)

which corresponds to (33) in (Noo et al. 2002).

We now discuss the role of the weight wR. As shown by (21a) and (21b), the

filtered data gRF (λ1, γ1) and gRF (λ2, γ2) are redundant. Condition (24) ensures that the

total weight attributed to these redundant data is always one (see (25)). As mentioned

earlier, setting wR(λ, γ) = 1/2 satisfies (24). However, this uniform weighting is only

possible if all the filtered data are available, i.e. for a full-scan.

For a partial scan ΛR ⊊ [0, 2π), some projections are missing, so some filtered

projections are not available. In that case, wR provides an essential mechanism to
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compensate with the redundant data. If only one of the two filtered projection values

gRF (λi, γi) for i ∈ {1, 2} is available, we have to attribute all the weight (i.e. a weight of

one) to the available one while assigning a zero weight to the unavailable one (so that

unavailable data are not used).

For a fan-beam ray of parameters (λ, γ), the redundant filtered data are gRF (λ, γ)

and gRF (λ + π + 2γ,−γ), as shown by (23). So for a fan-beam trajectory of angular

extent ΛR composed of non-truncated projections, we can define the redundancy weight

wR on [0, 2π)× (−π/2, π/2) by:

wR(λ, γ) =


1
2

if λ ∈ ΛR and λ+ π + 2γ ∈ ΛR,

1 if λ ∈ ΛR and λ+ π + 2γ /∈ ΛR,

0 if λ /∈ ΛR,

(33)

where λ + π + 2γ is considered modulo 2π. We note that for a line with parameters

(ϕ, s) not intersecting the source trajectory, both weights wR(λ1(ϕ, s), γ1(s)) and

wR(λ2(ϕ, s), γ2(s)) are zero, so (24) is not satisfied. Therefore, formula (32) cannot

be applied to reconstruct points x⃗ for which there are lines through x⃗ not intersecting

the source trajectory.

2.4. Principles of the virtual fan-beam method

To use the SSS formulas of Noo et al. (2002), a key step is the computation of either gRH
or gRF . However, equations (10) and (11) require non-truncated fan-beam projections,

so it is not possible to directly compute gRA
H or gRA

F in case of truncation. The idea of

the VFB method is to look for a virtual trajectory for which we have non-truncated

projections and to rebin the data into this virtual geometry. Following the SSS theory,

image reconstruction can be obtained for each point of the object for which all lines

passing through this point intersect the virtual trajectory.

The choice of the virtual trajectory is constrained by the requirement of

non-truncation of the virtual fan-beam projections: for any virtual source point,

measurements must be available for all half-lines from this point passing through the

object. Although virtual source points inside the object are possible in theory, in

practice it is not possible to obtain half-line data from such locations. Now, because

the acquisition trajectory is a full circle, all line-integrals passing through the FOV are

known so points inside the FOV are good potential candidates for virtual source points.

For any such point inside the FOV, the goal is to obtain half-line-integrals from line-

integrals. This is possible only if, in any direction, one of the two half-line-integrals is

zero so that the other is equal to the line-integral. This condition is ensured for any

point outside the convex hull of the object. Thus any point in the FOV and outside the

convex hull of the object can be chosen as a virtual source point. If we choose a circular

virtual trajectory, then its radius has to be less or equal than RF to stay in the FOV.

Although other choices are also possible, we take as virtual trajectory the circular arc

of radius RV = RF that lies outside the convex hull of the object.
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2.5. Detailed rebinning procedure

We now describe how the rebinning from the acquisition geometry of radius RA to the

virtual trajectory of radius RV can be performed.

First, the virtual trajectory is restricted to the points RV θ⃗λ that are outside the

convex hull of the object. We define ΛRV
, the angular extent of the virtual trajectory,

by ΛRV
= {λ ∈ [0, 2π)|RV θ⃗λ is outside the convex hull of the object}.

Then, for any virtual source point, we have to determine, in any direction, to which

of the two half-lines we attribute the line-integral. There are two possibilities. First,

the line does not intersect the object. In that case the line-integral and both half-

line-integrals are zero, so we can attribute the zero line-integral to either one of the

two half-lines. Second, the line intersects the object. Since the virtual source point is

outside the convex hull of the object, only one of the two half-lines intersect the object

so we assign the line-integral to this half-line. We note therefore that at most half of the

half-lines from a virtual source intersect the object, and furthermore they form a single

continuous range of angles. In terms of the angular parameter γ of gRV , it means that

the half-lines intersecting the object belong to an interval in γ of length π at most. This

γ-interval can be expressed as Γ(sRV (λ)) = [−π/2 + sRV (λ), π/2 + sRV (λ)) where sRV

is an offset angle depending on the virtual source position RV θ⃗λ and on the support of

the object. Usually, but not always, sRV (λ) = 0. In Appendix B, we calculate sRV (λ)

for an object of elliptical support.

Finally, the virtual half-line-integrals gRV must be expressed in terms of acquisition

half-line-integrals gRA . We need gRV (λV , γV ) for all λV ∈ ΛRV
, γ ∈ [−π, π). From

the discussion above, we know that the half-line-integral gRV is equal to the whole

line-integral when γ ∈ Γ(sRV (λ)) so, from (17), we obtain

gRV (λV , γV ) =

{
p(λV + γV ,−RV sin γV ) if γV ∈ Γ(sRV (λ)),

0 if γV ∈ [−π, π) \ Γ(sRV (λ)).
(34)

The p(λV + γV ,−RV sin γV ) value is obtained by averaging the two measurements

available from the acquisition projections gRA(λ1, γ1) and gRA(λ2, γ2) with the particular

values ϕ = λV + γV , s = −RV sin γV . From (13)

λ1 = λV + γV + π + arcsin
(

RV

RA
sin γV

)
, γ1 = − arcsin

(
RV

RA
sin γV

)
, (35a)

λ2 = λV + γV − arcsin
(

RV

RA
sin γV

)
, γ2 = arcsin

(
RV

RA
sin γV

)
, (35b)

so, from (14), we obtain, for λV ∈ ΛV and γV ∈ Γ(sRV (λ)),

gRV (λV , γV ) = p(λV + γV ,−RV sin γV )

= 1
2

(
gRA(λV + γV + π + γV

A ,−γV
A ) + gRA(λV + γV − γV

A , γ
V
A )
)
(36)

where

γV
A = arcsin

(
RV

RA

sin γV

)
. (37)
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2.6. Reconstruction formulas using the VFB method

We will now present our five VFB formulas. The first three formulas are known SSS

formulas (Noo et al. 2002) applied to the virtual trajectory. On the other hand, the last

two formulas, which perform backprojection in the acquisition geometry, use the virtual

trajectory only when filtered data are not available from the non-truncated acquisition

projections.

The condition for reconstruction of f(x⃗) with a SSS formula is that every line

through x⃗ intersects the fan-beam trajectory to which the SSS formula is applied. For

a connected SSS trajectory, this condition is satisfied by any point in the convex hull

of the trajectory. As the virtual trajectory is connected (composed of one arc), the

reconstruction area for the three first VFB formulas is the convex hull of the virtual

trajectory, denoted conv(RV θ⃗ΛRV
).

For the last two formulas, f(x⃗) can be reconstructed if any line through x⃗ intersects

either the virtual trajectory, or the part of acquisition trajectory with non-truncated

projections. So the reconstruction area is larger than for the three previous formulas.

Nevertheless, if we restrict our attention to the portion of reconstruction area situated

inside the object support, it is the same for all five formulas. (The reason is that any

line covered by the one or two arcs of non-truncated acquisition trajectory and passing

through the object intersects the virtual trajectory. We do not give a demonstration, but

it can be seen from figure 1. So using the non-truncated part of acquisition trajectory

in addition of the virtual trajectory does not increase the reconstruction area inside the

object support.) We call this area the region-of-interest (ROI) in the following, and we

have ROI = Ω ∩ conv(RV θ⃗ΛRV
) with Ω the elliptic support of the object.

2.6.1. Formulas with parallel backprojection

The first two reconstruction formulas are based on the standard parallel-beam FBP

formula, (8), for x⃗ ∈ ROI:

f(x⃗) =

∫ π

0

[pF (ϕ, s)]|s=x⃗·η⃗ϕ dϕ (38)

and the difference between the two formulas is how the filtered projections pF (ϕ, s) are

obtained.

In the first case, which we call formula (a), the filtered parallel projections are

obtained from Hilbert-transformed parallel projections (equation (7))

pF (ϕ, s) =
1

2π

∂

∂s
pH(ϕ, s) ϕ ∈ [0, π), s = x⃗ · η⃗ϕ with x⃗ ∈ ROI (39)

and the values of pH(ϕ, s) are obtained through the available filtered virtual projections

gRV
H using (19a) and (19b):

pH(ϕ, s) = gRV
H (λRV

1 , γRV
1 ) if λRV

1 ∈ ΛRV
, (40a)

= − gRV
H (λRV

2 , γRV
2 ) if λRV

2 ∈ ΛRV
. (40b)
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Here we introduce the superscript RV as a reminder that λ1 and λ2 lie on the virtual

trajectory, so

λRV
1 (ϕ, s) = ϕ+ π − arcsin(s/RV ), γRV

1 (s) = arcsin(s/RV ) (41a)

λRV
2 (ϕ, s) = ϕ+ arcsin(s/RV ), γRV

2 (s) = − arcsin(s/RV ) (41b)

and for simpler notation, we usually drop the implied (ϕ, s) dependence.

Since we only need pH(ϕ, s) for ϕ ∈ [0, π), s = x⃗ · η⃗ϕ with x⃗ ∈ ROI ⊂ conv(RV θ⃗ΛRV
),

we are thus assured that either λRV
1 ∈ ΛRV

or λRV
2 ∈ ΛRV

. If both λRV
1 , λRV

2 ∈ ΛRV
,

then, in our implementation, we average the two available values and use

pH(ϕ, s) =
1
2

(
gRV
H (λRV

1 , γRV
1 )− gRV

H (λRV
2 , γRV

2 )
)

if λRV
1 and λRV

2 ∈ ΛRV
. (40c)

Finally, gRV
H is computed according to its definition, (10), from gRV which is found from

the acquisition projections gRA , according to (36).

Note that the virtual trajectory is essential here, because (10) requires non-

truncated projections.

In the second case, which we call formula (b), the same parallel geometry FBP

formula is used, (38), but this time the filtered parallel projections pF are obtained

directly from the filtered virtual fan-beam projections gRV
F using (21a) and (21b):

pF (ϕ, s) = − 1√
R2

V −s2
gRV
F (λRV

1 , γRV
1 ) if λRV

1 ∈ ΛRV
, (42a)

= − 1√
R2

V −s2
gRV
F (λRV

2 , γRV
2 ) if λRV

2 ∈ ΛRV
, (42b)

and, for our implementations,

pF (ϕ, s) = − 1

2
√

R2
V −s2

(
gRV
F (λRV

1 , γRV
1 ) + gRV

F (λRV
2 , γRV

2 )
)

if λRV
1 and λRV

2 ∈ ΛRV
.(42c)

As with formula (a), we are assured that at least one of λRV
1 , λRV

2 lies on the virtual

trajectory ΛRV
because (ϕ, s) satisfy x⃗ · η⃗ϕ = s with x⃗ ∈ ROI ⊂ conv(RV θ⃗ΛRV

), and thus

the line defined by (ϕ, s) will intersect the virtual trajectory.

Finally, gRV
F is computed from its definition, (11), with gRV obtained from the

acquisition projections gRA , according to (36).

Note that formulas (a) and (b) amount to the two rebinning methods described

by Noo et al. (2002), but applied to the virtual trajectory instead of the non-truncated

acquisition projections in (Noo et al. 2002). These two formulas have already been

presented by Noo et al. (2002), but the equations for the different steps were not

provided, and only the first formula was implemented, with parallel-beam acquisition

data instead of fan-beam acquisition data. Moreover, the virtual radius used by Noo

et al. (2002) was larger than the FOV radius RF , so the ROI was not as big as the one

obtained in this paper. Thus, we consider the rebinning procedure composed of (34)

and (36), allowing the use of RF as virtual radius to obtain the largest possible ROI for

the VFB method in the context of unilateral truncation, to be a new contribution.
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2.6.2. Formula with fan-beam backprojection in the virtual geometry

The third reconstruction formula is based on the fan-beam SSS formula (32) described

by Noo et al. (2002), but applied to the virtual trajectory instead of the acquisition tra-

jectory, since it requires non-truncated projections. This formula, called (c), is defined

for x⃗ ∈ ROI, with x⃗ verifying the additional constraint ||x⃗|| < RV , and given by (32)

with the virtual trajectory:

f(x⃗) = −
∫
ΛRV

1

||x⃗−RV θ⃗λ||
[
wRV (λ, γ)gRV

F (λ, γ)
]∣∣

γ=γ
RV
x⃗,λ

dλ. (43)

As in formula (b), gRV
F is computed from its definition (11) with gRV obtained through

(36). The values of γRV

x⃗,λ and wRV are given respectively in equations (30) and (33).

As with formulas (a) and (b), formula (c) is not in itself a new formula, but the

rebinning procedure common to these three formulas can be considered new.

2.6.3. Formulas with fan-beam backprojection in the acquisition geometry

We now develop two formulas with fan-beam backprojection in the acquisition geometry.

They are based on the fan-beam SSS formula (32) and their common backprojection

step is, for x⃗ ∈ ROI:

f(x⃗) = −
∫ 2π

0

1

||x⃗−RAθ⃗λ||
[
w̃RA(λ, γ)g̃RA

F (λ, γ)
]∣∣

γ=γ
RA
x⃗,λ

dλ (44)

where w̃RA and g̃RA
F are specified below for each formula. Unlike formula (c), filtered

projections are here computed from their definition (11) only on the portion ΛC
RA

of

acquisition trajectory, for which there is no truncation. For the remaining portion

ΛT
RA

of the acquisition trajectory, we will show that some values of gRA
F are accessible

thanks to a link between gRA
F and gRV

F . (The accessible values will correspond to when

gRV
F can be computed, i.e. to the rays intersecting the virtual trajectory.) This link

will be expressed first with explicit rebinning steps between the virtual and acquisition

geometries. Then it will be rewritten to obtain an expression of gRA
F directly in terms

of gRA , in a manner that avoids using the missing data. So in the first case, which we

call formula (d), the filtered acquisition projections are obtained from

g̃RA
F (λ, γ) =


gRA
F (λ, γ) if λ ∈ ΛC

RA
,

ḡRA
F (λ, γ) if λ and λ+ π + 2γ ∈ ΛT

RA
, and λ+ γ − γA

V ∈ ΛRV
,

0 else,

(45)

where ḡRA
F represents gRA

F obtained from gRV
F with explicit rebinning steps between

acquisition and virtual geometries, while in the second case, which we call formula (e),

the filtered acquisition projections are obtained from

g̃RA
F (λ, γ) =


gRA
F (λ, γ) if λ ∈ ΛC

RA
,

¯̄gRA
F (λ, γ) if λ and λ+ π + 2γ ∈ ΛT

RA
, and λ+ γ − γA

V ∈ ΛRV
,

0 else.

(46)
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where ¯̄gRA
F is a rewriting of ḡRA

F to have gRA
F expressed directly from the available

acquisition data gRA .

In those twos formulas, ḡRA
F and ¯̄gRA

F are used only when λ ∈ ΛT
RA

, λ+π+2γ ∈ ΛT
RA

,

and λ + γ − γA
V ∈ ΛRV

. Among those three requirements, the first one is obvious since

if λ ∈ ΛC
RA

, we can compute gRA
F directly from its definition. The second one is due

to the redundancy of the filtered data gRA
F (λ, γ) and gRA

F (λ + π + 2γ,−γ). It follows

that if λ+ π + 2γ ∈ ΛC
RA

then gRA
F (λ, γ) is already taken into account directly from the

acquisition trajectory, so ḡRA
F and ¯̄gRA

F are needed only when λ + π + 2γ ∈ ΛT
RA

. (This

requirement will also make easier the redundancy handling, as shown below.) Finally,

the condition λ+γ−γA
V ∈ ΛRV

is needed to ensure that the fan-beam ray parameterized

by (λ, γ) in the acquisition geometry intersects the virtual trajectory, so that the link

between gRA
F and gRV

F can be used.

Before expressing ḡRA
F and ¯̄gRA

F , we focus on the redundancy weight w̃RA , which will

be the same for both formulas. The requirement that λ + π + 2γ belongs to ΛT
RA

- to

use ḡRA
F and ¯̄gRA

F - ensures that there is not redundancy between gRA
F computed directly

and gRA
F obtained from ḡRA

F or ¯̄gRA
F , so the redundancy can be treated separately in each

case. For λ ∈ ΛC
RA

, both formulas use the non-truncated acquisition projections so the

redundancy can be handled with wRA , defined as wR applied to ΛR = ΛC
RA

. For λ and

λ+π+2γ ∈ ΛT
RA

, ḡRA
F and ¯̄gRA

F provide filtered data only for rays intersecting the virtual

trajectory, so the redundancy can be handled in the virtual setting with wRV , which

amounts to use wRV (λ + γ − γA
V , γ

A
V ) when we rebin back into the acquisition setting.

Thus the total redundancy weight is given by

w̃RA(λ, γ) =


wRA(λ, γ) if λ ∈ ΛC

RA
,

wRV (λ+ γ − γA
V , γ

A
V ) if λ and λ+ π + 2γ ∈ ΛT

RA
,

0 else,

(47)

where wRA is obtained by applying the definition of wR, (33), to ΛC
RA

, the portion of

acquisition trajectory with non-truncated projections. For the first parameter of wRV ,

we implicitly consider its value modulo 2π when it is outside [0, 2π).

We now discuss ḡRA
F , the key element of method (d). It is based on the following

result (proven below):

Proposition 1

For two circular trajectories of radius RA and RV , with RV ≤ RA, γV ∈ (−π/2, π/2),

and γA ∈ (−γm, γm) where γm = arcsin(RV /RA), we have

gRA
F (λA, γA)

RA cos(γA)
=

gRV
F (λV , γV )

RV cos(γV )
(48)

where

RA sin γA = RV sin γV ,

λA + γA = λV + γV .
(49)

Then, from (49), we can express the virtual geometry parameters in terms

of the acquisition geometry parameters: γV = arcsin((RA/RV ) sin γA) and λV =
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λA + γA − γV = λA + γA − arcsin((RA/RV ) sin γA). It follows that RV cos γV =

RV cos arcsin((RA/RV ) sin γA) = RV

√
1− ((RA/RV ) sin γA)2 =

√
R2

V −R2
A sin2 γA. So,

combining (48) with (49), we obtain the following result:

Corollary 1

Consider two circular trajectories of radius RA and RV , with RV ≤ RA and

γm = arcsin(RV /RA). Then, for all λ ∈ [0, 2π) and all γ ∈ (−γm, γm) such that

λ+ γ − γA
V ∈ ΛRV

, we have

ḡRA
F (λ, γ) =

RA cos γ√
R2

V −R2
A sin2 γ

gRV
F (λ+ γ − γA

V , γ
A
V ) (50)

where

γA
V = arcsin

(
RA

RV

sin γ

)
. (51)

We use the alternative notation ḡRA
F instead of gRA

F to emphasize that the filtered

acquisition projections are not obtained through the definition (11).

We now demonstrate proposition 1. It is a consequence of (21), which shows that

for any radius R > 0, the fan-beam filtered projection gRF can be related to the parallel-

beam filtered projection pF . So a link can be established between any pair of filtered

data (gR1
F , gR2

F ) for any two positive radius R1 and R2. Starting from (21a), we have, for

all ϕ ∈ [0, 2π) and all s ∈ (−R,R), pF (ϕ, s) = −gRF (λ1, γ1)/
√
R2 − s2 where, as usual,

λ1 = ϕ + π − arcsin(s/R) and γ1 = arcsin(s/R). It follows, for all λ ∈ [0, 2π) and all

γ ∈ (−π/2, π/2),

pF (λ+ γ − π,R sin γ) = − 1

R cos γ
gRF (λ, γ). (52)

We can apply the above result to both R = RA and R = RV . To combine those

two relations, we need the parameters of pF to have the same value in both cases, hence

s = RA sin γA = RV sin γV and ϕ = λA + γA − π = λV + γV − π. With this assumption,

we obtain proposition 1.

We now specify ¯̄gRA
F , the key element of formula (e). In (50), the filtered acquisition

data gRA
F data are expressed in terms of the filtered virtual data gRV

F , which are defined

in (11) from the virtual projections gRV . Since those virtual projections are obtained

from the acquisition projections gRA through the rebinning relation (36), it is possible

to reformulate the previous link (50) between gRA
F and gRV

F to express gRA
F directly from

the acquisition projections gRA in a manner that avoids using the truncated part of the

projections.

The main work is to express gRV
F in terms of gRA , which is done by combining

definition (11) of gRV
F with the rebinning relation (36) between gRA and gRV . To do so,

we use the change of variables γA = arcsin ((RV /RA) sin γV ) between the acquisition and

virtual geometries. To have this change of variables one-to-one, we need the γ-interval

of the virtual projections gRV (λ, γ) to be contained within (−π/2, π/2). This is ensured

by shifting the initial γ-interval Γ(sRV (λ)) = [−π/2 + sRV (λ), π/2 + sRV (λ)) by the
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offset angle sRV (λ), for each λ. See Appendix C for a complete demonstration. Thus

we obtain the following result:

Proposition 2

Consider two circular trajectories of radius RA and RV , with RV ≤ RA and

γm = arcsin(RV /RA). If the virtual vertex RV θ⃗λ+γ−γA
V

is outside the convex hull of

the object support (i.e. if λ + γ − γA
V ∈ ΛRV

, with γA
V defined in (51)) then, for all

λ ∈ [0, 2π) and all γ ∈ (−γm, γm), we have

¯̄gRA
F (λ, γ) =

RA cos γ

4π
√

R2
V −R2

A sin2 γ

∫ γm

−γm

hH

(
sin
(
γA
V − γ′A

V

))
signA

V (λ, γ, γ
′)[

∂gRA(λ+ γ − γ′ − (γA
V − γ′A

V ), γ
′)− ∂gRA(λ+ π + γ + γ′ − (γA

V − γ′A
V ),−γ′)

]
dγ′

(53)

where

∂gRA(λ, γ) =

(
∂

∂λ
− ∂

∂γ

)
gRA(λ, γ), (54)

and

signA
V (λ, γ, γ

′) = sign
(
π/2−

∣∣∣γ′A
V − sRV (λ+ γ − γA

V )
∣∣∣) . (55)

Propositions 1 and 2, as well as formulas (d) and (e), are, to our knowledge, new

results. We now analyse the differences between formulas (d) and (e) regarding the way

filtered projections are obtained from truncated acquisition projections. We observe two

main differences: one concerns the rebinning steps, and the other concerns the filtering

step (we consider here the differentiation to be part of the filtering step).

In formula (d), the process of obtaining filtered projections in the acquisition

geometry via the virtual geometry consists of three steps: an explicit rebinning of the

acquisition projections into virtual projections using (36), a differentiation and filtering

of the virtual projections with (11), and an explicit rebinning of the virtual filtered

projections into acquisition filtered projections using (50). In formula (e), these three

steps are condensed into a single one, (53). Therefore, formula (e) performs only one step

of 1D interpolation, on the first variable of ∂gRA in equation (53) (the second variable

of ∂gRA is evaluated at γ′ and −γ′, which correspond both to discretization values of

the second variable of gRA), while formula (d) performs two steps of 2D interpolation,

on both variables of gRA and gRV
F , in equations (36) and (50) respectively.

In formula (d), the filtering step is performed in the virtual geometry, with (11).

In this equation, the first parameter of gRV is independent of the integration variable

γ′, so the filtering step of (d) is shift-invariant and corresponds to a convolution. In

formula (e), the filtering step is done in (53). When (53) is applied with RV ̸= RA, the

first variable of ∂gRA depends on the integral variable γ′, so the filtering step of (e) is

shift-variant and does not correspond to a convolution.
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2.6.4. Summary of the five VFB formulas

The different steps of the five reconstruction formulas are summarized in figure 4, with

each step associated with the corresponding equation, using the following color code:

blue for acquisition geometry, red for virtual geometry and green for parallel geometry.

3. Implementation of the formulas

3.1. Rebinning

The rebinning steps are performed through an inverse mapping (Wolberg 1990,

Section 3.1.2). Each element of the rebinned projections is mapped into the

input projections and computed with bilinear interpolation. In equation (36), the

interpolations are performed on the right term, on the acquisition sinogram gRA , and

the acquisition data are not uniformly used. (Virtual and acquisition rays are equally

spaced at the center of rotation but their spacings differ elsewhere, such that there

are many more virtual samples in total than acquisition samples. Therefore, when

stepping uniformly through the virtual samples, the acquisition samples are increasingly

accessed when moving closer to the extremities ±γm.) In equations (50) and (53), the

interpolations are also performed on the right term, on gRV
F and ∂gRA respectively. On

the other hand, no rebinning step is used to get w̃RA (see section 3.4).

3.2. Differentiation

Following (Noo et al. 2002), the differentiation steps are performed with the formulas

∂

∂λ
gR(λ, γ) ≈ gR(λ+∆λ, γ)− gR(λ−∆λ, γ)

2∆λ

, (56)

∂

∂γ
gR(λ, γ) ≈ gR(λ, γ +∆γ)− gR(λ, γ −∆γ)

2∆γ

, (57)

∂

∂s
pH(ϕ, s) ≈

pH(ϕ, s+∆s)− pH(ϕ, s−∆s)

2∆s

, (58)

where ∆λ, ∆γ and ∆s are the respective discretization steps of parameters λ, γ and s.

3.3. Filtering

We discretize the ‘Hilbert sin’ filter hH ◦ sin similarly to the ‘ramp sin’ filter hF ◦ sin in

(Kak & Slaney 1988, Section 3.4.1), with a rectangular apodization window and obtain

hrect
H (sin(n∆γ)) =

 0 for n even,
2

π sin(n∆γ)
for n odd.

(59)
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formula (a) formula (b) formula (c)

acquisition to virtual (36) acquisition to virtual (36) acquisition to virtual (36)

differentiation (11) differentiation (11)

Hilbert filtering (10) Hilbert filtering (11) Hilbert filtering (11)

virtual to parallel (40) virtual to parallel (42)

differentiation (39)

redundancy weighting (33)

backprojection (38) backprojection (38) backprojection (43)

in parallel geometry in parallel geometry in virtual geometry

formula (d) formula (e)

truncated projections: non-truncated projections: truncated projections:

acquisition to virtual (36)

differentiation (11) differentiation (11) differentiation (54)

Hilbert filtering (11) Hilbert filtering (11) Hilbert shift-variant filtering (53)

virtual to acquisition (50)

redundancy weighting (47) redundancy weighting (47)

backprojection (44) backprojection (44)

in acquisition geometry in acquisition geometry

Figure 4. Summary of the different steps of the five VFB formulas. The top block is composed of

three already known SSS formulas, applied to the SSS virtual trajectory we chose. The bottom block

is composed of the two new VFB formulas we have derived.

In formulas (a), (b), (c) and (d), the filtering step (10) or (11) corresponds to a

convolution, which was performed using the fast Fourier transform to reduce the

computation time. However, this was not possible for formula (e), as its filtering step

(53) does not correspond to a convolution when RA ̸= RV .
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3.4. Backprojection

The backprojection step is performed with a pixel-driven approach (inverse mapping).

For each pixel of the reconstructed image grid, the data contribution is obtained through

linear interpolation of the filtered data. For formulas (c), (d) and (e), the redundancy

weights wRV and w̃RA , obtained from equations (33) and (47) respectively, are computed

for all rays passing through the pixels of the image grid, without interpolations. On the

other hand, for formulas (a) and (b), the redundancy weights are applied to the rays

specified by the virtual fan-beam sinogram, before the rebinning step to the parallel

geometry (see the right terms in (40) and (42)).

3.5. Computational complexity analysis

In all formulas but (e), the most expensive step is the backprojection. The complexity

of parallel backprojection is O(NϕN
2
x), with Nϕ the number of parallel projections and

N2
x the number of pixels of the reconstructed grid. The complexity of backprojection in

the virtual fan-beam geometry is O(NλV
N2

x), with NλV
the number of virtual fan-beam

projections, and the complexity of backprojection in the acquisition fan-beam geometry

is O(NλA
N2

x), with NλA
the number of acquisition fan-beam projections (see table 1

for the values of Nϕ, NλA
, NλV

, Nx). For the same number of projections, fan-beam

backprojection is more expensive than parallel backprojection, due to the computation

of the backprojection weight 1/||x⃗−RV θ⃗λ||.
For formula (e), the most expensive step is the shift-variant filtering. Since it

cannot be performed with fast Fourier transform (FFT) (which allows a convolution

with a O(NλA
NγA logNγA) complexity), its complexity is O(NλA

N2
γA
), with NγA the

number of rays in each fan-beam acquisition projection.

4. Simulations and results

4.1. Numerical simulations

We simulate four scanning configurations: two with full data acquisition of a 2D slice of

the Forbild head phantom (Lauritsch & Bruder ) (figures 5 (a) and (b)) and two with

truncated acquisitions of a 2D slice of either the Forbild head phantom (figure 6 (a)) or

the Forbild thorax phantom (Sourbelle ) (figure 6 (b)).

The acquisition trajectory under consideration is the outer dashed circle of radius

RA. Fan-beam projections are acquired (simulated) such that only the rays passing

through the inner dashed circle of radius RF are measured (the FOV is the disk inside

this inner circle). In configuration 1, the chosen virtual trajectory is the circle of radius

RA (which corresponds to the acquisition trajectory) while in configuration 2, the virtual

trajectory is the circle of radius RF (which corresponds to the border of the FOV). For

both configurations, no truncation of the head phantom occurs. Configuration 2 is used

to study the artefacts induced by the rebinning steps between two circular trajectories
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RA = 45 cm

RV = 45 cm

RF = 13 cm

ROI

(a) configuration 1

RA = 45 cm

RV = 13 cm

RF = 13 cm

ROI

(b) configuration 2

Figure 5. Two configurations with full data acquisition of the 2D slice at z=0 of the Forbild head

phantom centered at (0, 0), for a circular source trajectory of center (0,0) and radius RA = 45, and a

FOV of center (0,0) and radius RF = 13. We choose for virtual trajectory the circle of center (0,0) and

radius RV = RA = 45 (left) and RV = RF = 13 (right) (bold dashed circle). The ROI (striped area)

is the full object. (all values in cm)

with different radii, without the influence of truncation, which will be studied in the

following configurations. In configurations 3 and 4, the largest ROI is obtained by

choosing the virtual trajectory to be the arc of the inner circle outside the convex hull

of object support (which corresponds to the border of the FOV outside the convex hull

of the object support), i.e RV = RF as in configuration 2. In figures 5 and 6, the virtual

trajectory is represented by a bold dashed (arc of) circle and the ROI is the striped

area. In figure 6, the non-truncated part of the acquisition trajectory is represented by

a thick dotted arc of circle.

The data were acquired with an acquisition trajectory of radius RA = 45 cm

for all configurations. The reconstructed images were computed on a square grid of

dimensions [−xextent, xextent] in each direction with xextent = RF , ∆x = 0.04 cm and Nx =

2xextent/∆x+1. We let NλA
, NλV

, NγA and NγV represent the number of vertices and of

equiangular rays of the acquisition and virtual trajectories respectively, and Nϕ and Ns

the number of parallel projections and parallel rays used in formulas (a) and (b). From

Natterer (1986, Section III.3), we can determine the optimal values of these numbers

for the reconstruction of a function f of support [−xextent, xextent]× [−xextent, xextent] on

a Cartesian grid of step ∆x. We obtain ∆λ = ∆x/xextent, ∆γ ≈ ∆x/R with R the radius

of the fan-beam trajectory considered (∆γ is such that the spacing between two rays at

the center of rotation is equal to ∆x), ∆ϕ = ∆x/xextent and ∆s = ∆x, from which we

can compute the number of projections and rays in each geometry. The values used in
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RA = 45 cm

ΛC
RA

RV = 9 cm

RF = 9 cm

ROI

(a) configuration 3

RA = 45 cm

ΛC
RA

RV = 11 cm

RF = 11 cm

ROI

(b) configuration 4

Figure 6. Two situations with truncated data acquisition, for a circular acquisition source trajectory

of center (0,0) and radius RA = 45. The tangents to the object and the FOV delimit the part of the

trajectory for which the projections are non-truncated (thick dashed arc of circle of radius RA and

of angular extent ΛC
RA

). We display the ROI (striped area) in case of a virtual trajectory of radius

RV = RF (bold dashed arc of circle), for respectively the 2D slice at z=0 of the Forbild head phantom

centered at (0, -6) with a FOV of center (0,0) and radius RF = 9 (left) and the 2D slice at z=14.1

of the Forbild thorax phantom centered at (16.5, 0) with a FOV of center (0,0) and radius RF = 11

(right). (all values in cm)

the four configurations are summarized in table 1.

Table 1. Sampling values used for the reconstructions of the four configurations.

configuration 1 2 3 4

RA (in cm) 45 45 45 45

RV (in cm) 45 13 9 11

RF = xextent (in cm) 13 13 9 11

NλA
2042 2042 1414 1728

NγA 661 661 455 557

NλV
2042 2042 780 1225

NγV 661 1020 1412 1728

Nϕ 1020 1020 708 864

Ns = Nx 651 651 451 551

The sinograms were computed using RTK (Rit et al. 2014). To avoid high-frequency

artefacts due to the sharpness of the phantoms, we smoothed the sinogram entries by

computing 3 rays per pixel and averaging those 3 values for each detector pixel.
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4.2. Results

We compare our five VFB formulas (a), (b), (c) (d), (e) and we add, as reference for

the non-truncated configurations, the fan-beam FBP formula (see (Kak & Slaney 1988)

for instance)

f(x⃗) =
1

2

∫ 2π

0

1

||x⃗−RAθ⃗λ||2

∫ π
2

−π
2

hF (sin(γ
RA

x⃗,λ − γ′))RA cos γ′gRA(λ, γ′)dγ′dλ (60)

where γR
x⃗,λ is defined in (30). The reference 2D slices of the head and thorax phantom,

both centered at (0,0), are shown in figure 7.

Figure 7. 2D reference slices of the head phantom (left) and the thorax phantom (right). The red

ellipse drawn on the head phantom is the interface used to evaluate the spatial resolution.

4.2.1. Noise-free case

In this section, we used noiseless sinograms. Figure 8 shows, for the non-truncated

configurations 1 (top) and 2 (bottom), the reconstructed images of the fan-beam FBP

and the five VFB formulas. Figures 9 and 10 show, for the truncated configurations

3 and 4 respectively, the reconstructed images and the corresponding profiles of the

fan-beam FBP and the five VFB formulas.

For configuration 1, the six reconstructions are rather similar. The only remarkable

artefacts are horizontal streaks passing through the inner right ear (right white half-

ellipse containing black disks in figure 7 left), which are present in formulas (a), (b) and

(c).

For configuration 2, other artefacts appear for formulas (a), (b) and (c). We now

see many streaks, which are stronger for (b) than for (a) and (c). For (c), two other

kinds of artefacts can be observed : a thin ring of white artefacts surrounding the

trajectory, and a black and white pattern at the bottom of the head. Note that the four

reconstructions of formulas (d) and (e) in configurations 1 and 2 are all the same, as

there is no truncation of the acquisition data (recall from figure 4 that (d) et (e) perform
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FBP (a) (b)

(c) (d) (e)

above: configuration 1 below: configuration 2

FBP (a) (b)

(c) (d) (e)

Figure 8. Top rows: images reconstructed from the head phantom with RV = 45 cm (configuration 1)

for the fan-beam FBP and the five VFB formulas. Bottom rows: images reconstructed from the head

phantom with RV = 13 cm (configuration 2) for the FBP and the five VFB formulas. The plotting

scale is [1 (black), 1.1 (white)]. In both cases, there is no truncation of acquisition data, so both FBP

reconstruction are the same, and the four reconstructions of formulas (d) and (e) are all the same.
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FBP (a) (b)

(c) (d) (e)

FBP (a) (b)

(c) (d) (e)

Figure 9. Top rows: images reconstructed from the head phantom with RV = 9 cm (configuration 3)

for the naive fan-beam FBP and the five VFB formulas. The horizontal black dashed line defines the

boundary of the possible reconstruction area. The plotting scale is [1 (black), 1.1 (white)]. Bottom

rows: profiles corresponding to the white horizontal line, plotted with scale [1, 1.1] for the VFB formulas

and scale [0.55, 1.55] for the fan-beam FBP. The reference profiles are plotted in green dashed line and

the reconstruction profiles in red.
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FBP (a) (b)

(c) (d) (e)

FBP (a) (b)

(c) (d) (e)

Figure 10. Top rows: images reconstructed from the thorax phantom with RV = 11 cm (configuration

4) for the naive fan-beam FBP and the five VFB formulas. The vertical black dashed line defines the

boundary of the possible reconstruction area. The plotting scale is [0.95 (black), 1.05 (white)]. Bottom

rows: profiles corresponding to the white horizontal line, plotted with scale [0.95, 1.05] for the VFB

formulas and scale [0.5, 1.5] for the fan-beam FBP. The reference profiles are plotted in green dashed

line and the reconstruction profiles in red.
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the same processing for non-truncated projections). Similarly, the reconstructions of the

fan-beam FBP are the same in configurations 1 and 2.

For configuration 3, the ROI is restricted to the part of the object inside the

convex hull of the virtual trajectory. For FBP, we can only distinguish the high-contrast

structures, whereas the five VFB formulas provide accurate reconstruction in the ROI.

Compared to configuration 2, the streaks observed in the reconstructions of (a), (b) and

(c) are different and less numerous. The profiles along the white horizontal line show

that the artefacts are not symmetric and differ for each formula. Images reconstructed

from simulations of the same head phantom without the right inner ear (not shown) do

not display such an asymmetry, which suggests that the asymmetry stems from streaks

produced by the density features of the right inner ear. For (c), a black and white

pattern can now be observed close to the virtual trajectory boundaries. For (d), streak

artefacts at the edges of interfaces between areas with different densities are now visible,

with some common to (b), (c) and (d), and others observed for (d) only. For (e), no

streak artefacts are observed but some stripe artefacts absent in configurations 1 and 2

appear now in configuration 3 at the left of the left eye and the right of the right eye

(they can be seen on the left and right extremities of the profile of formula (e) in figure

9)).

For the thorax phantom (configuration 4), the ROI is also restricted to the part of

the object inside the convex hull of the virtual trajectory. Again, the FBP reconstruction

is very poor, whereas the five VFB formulas provide excellent reconstruction inside the

ROI. The profiles along the white horizontal line show that the VFB reconstructions

are similar on the right side but not on the left side, where (a) and (e) have the lowest

artefacts and (c) the largest.

For the four configurations studied, we computed the normalised mean absolute

errors (nMAE) in the ROI where exact reconstruction is expected of the VFB formulas

between the reconstructed images and the reference images, and display them in table

2.

Table 2. Normalised mean absolute error (nMAE) between the reconstructed images

and the reference images (see figure 7 left), restricted to the ROI where exact

reconstruction is performed by the VFB formulas (see figures 5 and 6), for the four

configurations studied, with noise-free data, and multiplied by a factor 103.

configuration 1 2 3 4

FBP 16.3 16.3 131.9 313.2

(a) 18.8 20.0 24.8 12.9

(b) 18.8 20.4 23.4 14.7

(c) 17.4 20.0 24.3 14.0

(d) 17.2 17.2 23.2 13.6

(e) 17.2 17.2 23.2 11.5

We observe that the FBP values are slightly smaller than the VFB values when
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there is no truncation (configurations 1 and 2), but much higher in the presence of

truncation (configurations 3 and 4). Among the five VFB formulas, there are minor

differences, with the smallest values obtained by (d) and (e) for configurations 1, 2 and

3, and by (e) for configuration 4.

We now perform an analysis of spatial resolution on the reconstructions of the

head phantom (configurations 1, 2 and 3). We select an elliptical interface of the head

phantom (drawn in red in figure 7 left) for which we can approximate the radial edge-

spread function (ESF) as

ESF(x) = A

(
1 + erf

(
x− 1√

2b

))
+ c (61)

where x represents the distance to the edge (such that x = 0 at the center of the

interface and x = 1 at the border of the interface in figure 7 left), and erf is the Gauss

error function. Then, following (Richard et al. 2012), the modulation transfer function

(MTF) derived from this ESF is

MTF(ξ) = e−2π2b2ξ2 (62)

and the frequency at which the MTF is 10 % of the maximum is

ξ10% =

√
ln 10

2

1

πb
. (63)

Finally, the uncertainty associated with the ξ10% estimate is

σ =

√
ln 10

2

1

πb2
σESF (64)

with σESF the standard deviation error of the fitted parameter b of the ESF (61)

(provided by the fitting routine curve fit of the software package SciPy). For

configurations 1, 2 and 3, we display in table 3 the frequency ξ10% ± 3σ (the interval

[ξ10% − 3σ, ξ10% + 3σ] has a probability of 99.7% to contain ξ10% assuming a normal

distribution of the error) for the elliptic interface of the head phantom drawn in red in

figure 7 left.

Table 3. Quantitative assessment of the spatial resolution with the 10 % MTF

frequency ξ10% ± 3σ measured at an elliptic interface of the head phantom (see figure

7 left).

configuration 1 2 3

FBP 36.9 ± 2.0 36.9 ± 2.0 36.1 ± 3.4

(a) 20.6 ± 0.6 18.7 ± 0.6 21.1 ± 0.8

(b) 20.9 ± 0.6 17.2 ± 0.7 24.0 ± 0.8

(c) 23.0 ± 0.7 19.2 ± 0.9 27.0 ± 1.0

(d) 23.6 ± 0.7 23.6 ± 0.7 24.6 ± 0.7

(e) 23.6 ± 0.7 23.6 ± 0.7 23.9 ± 0.7

We observe that the FBP values are higher than the VFB values in all cases, and

configuration 3 suffers from a higher fitting error due to the image artefacts seen in

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
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figure 9. For the VFB formulas, the MTF values are the highest for configuration 3

and the lowest for configuration 2, with configuration 1 in between. Among those five

formulas, the spatial resolution differs marginally, with the best results obtained by (c)

for configuration 3, and (d) and (e) for configurations 1 and 2.

4.2.2. Noisy projections

We also analyzed the robustness of the reconstructions with respect to noise for the

truncated configuration 3. We assume that the detector individually counts the pho-

tons and that this counting is modeled by a Poisson law applied to the emerging photons

beam I1 = I0 exp(−
∫
L
µdl) where we take for initial beam I0 = 107 photons. Because

the values of the phantoms represent the density ρ (in g.cm−3) and not the linear at-

tenuation coefficient µ (in cm−1), we multiply the sinogram by the mass attenuation

coefficient of water at 75 keV, τH2O = 0.1879 cm2g−1, to obtain line-integrals of µ.

For a single simulation with noisy data, we compute the nMAE between the

reconstructed images and the reference images, as we did in the noise-free case, and

display it in table 4. Similar to the noise-free case, the FBP values are smaller than the

Table 4. Normalised mean absolute error (nMAE) between the reconstructed images

and the reference images (see figure 7 left), restricted to the ROI where exact

reconstruction is performed by the VFB formulas (see figures 5 and 6), for the four

configurations studied, with noisy data.

configuration 1 2 3 4

FBP 17.1 17.1 131.9 313.2

(a) 19.2 20.4 25.2 15.6

(b) 19.2 20.7 23.9 17.4

(c) 17.8 20.3 24.9 16.8

(d) 17.7 17.7 23.8 18.5

(e) 17.7 17.7 23.8 16.2

VFB values in the absence of truncation and much higher in the presence of truncation.

Among the VFB values, the smallest values are again obtained by (d) and (e) in

configurations 1, 2 and 3, but in configuration 4, it is now (a) which has the lowest

value.

Then, for each formula, we perform 100 simulations with a different noise realization

and we compute the point-wise variance between the 100 reconstructions. Figure 11

shows the images of the variance in each pixel for configuration 3.

We observe that, for the FBP, the variance is much higher than for the five VFB

formulas (the plotting scale used for FBP is 2.5 times bigger than the scale used for

the VFB formulas). For formula (c), the variance is the highest around the virtual

trajectory. Among the other four VFB formulas, which are all rather close, (a) shows

the lowest variance, followed by (b) and (d), and then (e).
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FBP (a) (b)

(c) (d) (e)

FBP (a) (b)

(c) (d) (e)

Figure 11. Top rows: variance of 100 image reconstructions from noisy projections of the head

phantom with RV = 9 cm (configuration 3) for the fan-beam FBP and the five VFB formulas. The

horizontal black dashed line defines the boundary of the possible reconstruction area. The plotting scale

is [0 (black), 10−5 (white)] for the VFB formulas and [0 (black), 2.5 · 10−5 (white)] for the fan-beam

FBP . Bottom rows: variance profiles corresponding to the white horizontal line, plotted with scale [0,

10−5] for the VFB formulas and scale [0, 2.5 · 10−5] for the fan-beam FBP.
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5. Discussion

We have presented five VFB formulas, two of which, (d) and (e), are, to the best of our

knowledge, new. Their novelty is that they perform the backprojection in the fan-beam

acquisition geometry, and thus avoid rebinning steps for the non-truncated acquisition

projections. In the literature, previous VFB formulas were either specific to parallel

data (Clackdoyle & Noo 2004, Clackdoyle et al. 2006, Ould-Mohamed et al. 2007) or

performed the backprojection in the parallel geometry after an explicit rebinning from

the virtual geometry (Clackdoyle et al. 2004). The difference between (d) and (e) is

that formula (d) uses explicit rebinning steps between the acquisition geometry and

the virtual geometry, whereas formula (e) directly processes the truncated projections

in the acquisition geometry (similarly to the formulas of Clackdoyle et al. (2006) and

Ould-Mohamed et al. (2007) which directly process truncated parallel projections).

We compared our two new VFB formulas to fan-beam FBP and to three already

known VFB formulas, called (a), (b) and (c), which perform the backprojection either in

parallel, for (a) and (b), or in the virtual fan-beam geometry, for (c). The computation

time of the VFB formulas in configuration 3 was approximately 16 sec for (a) and (b), 38

sec for (c), 74 sec for (d) and 98 sec for (e), for a non-optimised implementation (using

a hand-made 2d interpolation, and with a pre-computation of the redundancy weight

in (c), (d), (e) for each backprojection ray before the backprojection, to make faster the

parallelized computation of the 100 simulations for the variance). As mentioned in the

computational complexity analysis of section 3.5, parallel backprojection is faster than

fan-beam backprojection since it does not have to compute the backprojection weight

1/||x⃗−RV θ⃗λ||, which explains why formulas (a) and (b) require less computation time.

Regarding the formulas with fan-beam backprojection, (c) is computationally faster than

(d) since it has one rebinning step fewer (for the truncated projections, which represent

the majority of projections in configuration 3) and performs backprojection over a

shorter scan. Formula (e) is slower than (d) as its filtering step is not a convolution,

and so cannot be implemented using the fast Fourier transform. If the calculation time

is an issue for a particular application, then it is preferable to use formula (a), (b) or

(c), which produces comparable image quality to (d) and (e) for a factor five less in

computation time.

We performed numerical experiments in four configurations (two without truncation

and two with truncation), using two Forbild phantoms (head and thorax). We used

a discontinuous redundancy weight wRV , defined in equation (33), and no noticeable

difference was observed compared to the results (not shown) obtained using a smooth

weight as the one defined by Noo et al. (2002).

The numerical results have shown that all formulas obtain satisfactory results for

the non-truncated configurations 1 and 2, with noticeably more streaks in configuration

2 for formulas (a), (b) especially, and (c). Additional simulations (not displayed) showed

that the streak sizes increase as RV decreases between 45 and 13 cm, and also that the

streaks are smaller if the virtual projections are directly computed with RTK instead of
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being interpolated from acquisition projections with (36). So, we deduce that the streaks

are caused by interpolating between two fan-beam geometries with very different radii.

This applies not only to (36), but also (40) and (42), since the parallel geometry can be

considered as a fan-beam geometry of infinite radius. In configuration 1, RV = RA so

(36) generates no interpolation errors, and RV is large enough for the virtual projections

to be almost parallel as they pass through the object, so (40) and (42) generate very

small interpolation errors. In configuration 2, RV is much smaller than RA, so (36) now

generates significant interpolation errors, and the same applies to (40) and (42), since

RV is much smaller than infinity. This explanation is consistent with the smaller streaks

observed in (c), compared to (b), since (c) avoids the rebinning step (42). Smaller streaks

are also observed in (a), compared to (b), which suggests that (42) generates more

interpolation errors than (40). This difference can be explained by the differentiation

step present in gRV
F , but not in gRV

H , which makes the values of gRV
F higher than those

of gRV
H at interfaces, and therefore leads to more errors when interpolating values from

gRV
F instead of gRV

H . The ring of white artefacts observed around the virtual trajectory

and the black and white pattern in formula (c) reconstruction of configuration 2 seem

to be caused by the backprojection step when the trajectory of radius RV is very close

to the object, since the weight 1/||x⃗−RV θ⃗λ|| increases when ||x⃗|| gets closer to RV .

For the truncated configurations 3 and 4, the fan-beam FBP reconstructions suffer

from dramatic artefacts, whereas the VFB formulas give good reconstructions in the

convex hull of the virtual trajectory, as expected. Surprisingly, for formulas (a) and (b),

there are fewer streaks observed in configuration 3 than in configuration 2, although we

use an even smaller virtual radius than in configuration 2. Reconstructions of the head

phantom without the right inner ear (not displayed) showed that most of the streaks

observed for (a) and (b) in configuration 2 are due to the density features of the right

inner ear. Looking at the streaks above the right eye in the reconstruction of formula

(b) in configuration 2, we see that the lines along those streaks intersect the virtual

trajectory at two points in configuration 2 and at a single point in configuration 3.

Of those three intersections, the closest to the right inner ear - likely to be the most

affected by the density features of the right inner ear - is one of the two intersection from

configuration 2, which could explain why these streaks are observed in configuration 2

but not in configuration 3. For formula (d), some of the streak artefacts appearing in

configuration 3 can also be observed with formulas (b) and (c), so they seem to be due to

the combination of the interpolation step (36) and the differentiation step in the virtual

geometry, which are common only to (b), (c) and (d). For formula (e), the absence

of many streaks observed with (d) in configurations 3 and 4 may be explained by the

reduced number of interpolations performed by (e), compared to (d). On the other

hand, the stripe artefacts appearing in configuration 3 for formula (e) could be caused

by an edge effect of the filtering procedure of (53): when formula (e) is discretized, the

contributions of the rays of angles −γm and γm in the integral of equation (53) cancel

each other, so the angular intervals (−γm,−γm +∆γ) and (γm −∆γ, γm) are not taken

into account. This data discarding may seem minor since it concerns only a 2∆γ angular
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interval in the acquisition geometry. However, the corresponding angular interval in the

virtual geometry is much larger (as pointed out in section 3.1), so from the virtual

geometry viewpoint, this data discarding is substantial and it may explain the artefacts

observed.

The computation of nMAE between the reconstructed and reference images in the

ROI shows that in absence of truncation (configurations 1 and 2), the best reconstruction

is obtained by the FBP, followed by (d) and (e), and that in presence of truncation

(configurations 3 and 4), the best result is produced by formula (e). In configurations 1

and 2, there is no truncation so formulas (d) and (e) correspond both to the SSS formula

(32) applied to a full circular trajectory. Therefore, unlike formulas (a), (b) and (c),

they do not perform interpolations to obtain the filtered acquisition projections, which

may explain their superiority over (a), (b) and (c). Regarding the superiority of the

FBP over (d) and (e), we conjecture that the discretization of the ramp filtering step

in (60) leads to fewer numerical errors than discretizing the differentiation and Hilbert

filtering steps in (11). In case of truncation, the FBP values are much higher, while the

VFB values are similar to those computed without truncation. This confirms that the

VFB formulas can reconstruct accurately a ROI in presence of truncation, unlike FBP.

Among the VFB formulas, formula (e) performs fewer interpolations than the others,

which means fewer numerical errors and explains why this formula obtains the smallest

nMAE.

The quantification of the spatial resolution with the MTF analysis shows that

fan-beam FBP outperforms all five VFB formulas. This could be explained by the

differentiation step, present in all VFB formulas but not in FBP, which uses data from

neighbouring pixels when discretized and is likely to cause a loss of resolution. The VFB

results are quite similar, with (c) slightly better in configuration 3. The differences may

be explained by the required number of interpolation steps. In configuration 1, the

fan-beam acquisition and virtual geometries are the same, so only formulas (a) and

(b) perform an interpolation (with equations (40) and (42)), and this can explain why

they obtain the lowest MTF. In configuration 2, the virtual geometry has a different

radius than the acquisition geometry so all the VFB formulas but (d) and (e) perform

additional interpolations, and it may explain the decrease of spatial resolution between

configurations 1 and 2 for formulas (a), (b), (c). Among the five VFB formulas, (c)

performs one less interpolation than (a) and (b) since its backprojection is performed in

the virtual geometry, while (d) and (e) perform no interpolation since the data are not

truncated so it can explain why formulas (d) and (e) have the best spatial resolution,

followed by formula (c). In configuration 3, the MTF results are surprising as they

are even better than in configuration 1 for all five VFB formulas, despite the fact that

formulas (d) and (e) perform some interpolation. The least interpolations is performed

by (e) (only 1D interpolations on the first variable in (53)), followed by (c), and then

by (a), (b) and (d). The fact that (e) did not have the best MTF may be explained by

the edge effect presented above. The improvement of spatial resolution for all five VFB

formulas in configuration 3, compared to configurations 1 and 2, could be explained
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by the fact that with a trajectory which is not a full circle, filtered contributions from

opposite source positions are less often averaged, the averaging of data being a source

of spatial resolution loss.

Regarding the robustness to noisy data, the variance study shows that the results

are, as expected, quite opposite to those of spatial resolution. The more robust formula

to noise is (a), followed by (b) and (d), then (e), next (c), and finally FBP, which is the

most affected by noise. More interpolations (for formulas (a), (b) and (d), compared to

formulas (c), (e) and FBP) means more averaging, so less noise and a lowest variance

but also a worse spatial resolution. For formula (c), the very high variance around the

virtual trajectory seems to be caused by the backprojection weight 1/||x⃗−RV θ⃗λ||. For
FBP, the very high variance observed (we recall that the plotting scale is 2.5 times

bigger than for the other formulas) suggests that the filtering of truncated projections

is very sensitive to noise.

One interesting feature of formulas (d) and (e) is that, in the absence of

truncation, they simplify to FBP formulas. Moreover, the innovation of performing the

backprojection in the acquisition geometry may pave the way for an extension of the

VFB method to 3D approximate reconstruction from transversely-truncated cone-beam

projections acquired with a full circular scan, where the well-known FDK (Feldkamp

et al. 1984) algorithm produces severe truncation artefacts. A first extension has been

reported by Charles et al. (2022).

6. Conclusion

In this paper, we have presented full mathematical derivations for five VFB formulas,

two with a parallel backprojection and three with a fan-beam backprojection, one being

performed in the virtual geometry and two in the acquisition geometry. We believe the

latter two formulas, which do a fan-beam backprojection in the acquisition geometry,

to be new. The numerical simulations indicate that the two new VFB formulas yield

reconstructed images with a spatial resolution and a robustness to noise comparable to

the three previously known VFB formulas.

Appendix A.

In this section, we rewrite

f1(x⃗) =

∫ π

0

[
wR(λ1, γ1)

(
−1√

R2 − s2

)
gRF (λ1, γ1)

]∣∣∣∣
s=x⃗·η⃗ϕ

dϕ (A.1)

and

f2(x⃗) =

∫ π

0

[
wR(λ2, γ2)

(
−1√

R2 − s2

)
gRF (λ2, γ2)

]∣∣∣∣
s=x⃗·η⃗ϕ

dϕ (A.2)

to obtain (26) and (27).

Starting with f1(x⃗), we perform a change of variables ϕ → λ̄ defined by λ̄ =

λ1(ϕ, s)|s=x⃗·η⃗ϕ = ϕ + π − arcsin(x⃗ · η⃗ϕ/R). To verify that this change of variables
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is valid, we note that ∂λ̄/∂ϕ = 1 + x⃗ · θ⃗ϕ/
√

R2 − (x⃗ · η⃗ϕ)2 which is strictly positive

and therefore λ̄ is a monotone function of ϕ. (Note that ||x⃗|| < R implies that

R2 > ||x⃗||2 = (x⃗ · θ⃗ϕ)2+(x⃗ · η⃗ϕ)2, so |x⃗ · θ⃗ϕ|/
√

R2 − (x⃗ · η⃗ϕ)2 < 1 from which ∂λ̄/∂ϕ > 0.)

Therefore we can write

f1(x⃗) =

∫
Λ1(x⃗)

[
wR(λ̄, γ)gRF (λ̄, γ)

]∣∣
γ=γ̄x⃗,λ̄

−1√
R2 − (x⃗ · η⃗ϕ)2

|J |dλ̄. (A.3)

Here Λ1(x⃗) is the λ̄ interval corresponding to ϕ ∈ [0, π), so Λ1(x⃗) = [π −
arcsin(x2/R), 2π + arcsin(x2/R)) where x⃗ = (x1, x2). The Jacobian J is 1/(∂λ̄/∂ϕ),

and the product J/
√

R2 − (x⃗ · η⃗ϕ)2 turns out to be 1/||x⃗−Rθ⃗λ̄|| as we show below. The

expression for γ̄x⃗,λ̄ also depends on both x⃗ and λ̄, and will be given explicitly below;

it corresponds geometrically to the “γ-value” of the ray from the source at location λ̄

passing through the point x⃗. We first evaluate the expression ||x⃗ − Rθ⃗λ̄||2, using the

identities θ⃗A · θ⃗B = cos(A−B) and θ⃗A · η⃗B = sin(A−B).

||x⃗−Rθ⃗λ̄||2 = [(x⃗−Rθ⃗λ̄) · θ⃗ϕ]2 + [(x⃗−Rθ⃗λ̄) · η⃗ϕ]2

= (x⃗ · θ⃗ϕ −R cos(λ̄− ϕ))2 + (x⃗ · η⃗ϕ −R sin(λ̄− ϕ))2

=

(
x⃗ · θ⃗ϕ +R

√
1− (x⃗ · η⃗ϕ/R)2

)2

+ (x⃗ · η⃗ϕ −R(x⃗ · η⃗ϕ/R))2

=

(
x⃗ · θ⃗ϕ +

√
R2 − (x⃗ · η⃗ϕ)2

)2

(A.4)

where the third line arises from applying the definition of λ̄ as follows:

cos(λ̄− ϕ) = cos(π − arcsin(x⃗ · η⃗ϕ/R)) = −
√

1− (x⃗ · η⃗ϕ/R)2, (A.5)

sin(λ̄− ϕ) = sin(π − arcsin(x⃗ · η⃗ϕ/R)) = x⃗ · η⃗ϕ/R. (A.6)

Now, from (A.4), we can compute |J |/
√

R2 − (x⃗ · η⃗ϕ)2.

|J |√
R2 − (x⃗ · η⃗ϕ)2

=
1

|∂λ̄/∂ϕ|
1√

R2 − (x⃗ · η⃗ϕ)2

=
1

|1 + x⃗ · θ⃗ϕ/
√

R2 − (x⃗ · η⃗ϕ)2|
1√

R2 − (x⃗ · η⃗ϕ)2

=
1

|
√

R2 − (x⃗ · η⃗ϕ)2 + x⃗ · θ⃗ϕ|
=

1

||x⃗−Rθ⃗λ̄||
(A.7)

so, from (A.7) and (A.3), we obtain

f1(x⃗) = −
∫
Λ1(x⃗)

1

||x⃗−Rθ⃗λ̄||
[
wR(λ̄, γ)gRF (λ̄, γ)

]∣∣
γ=γ̄x⃗,λ̄

dλ̄. (A.8)

We now examine γ̄x⃗,λ̄ which arises from γ1|s=x⃗·η⃗ϕ followed by the change of variables

from ϕ to λ̄. In terms of ϕ, we have γ̄x⃗,λ̄ = arcsin(x⃗ · η⃗ϕ/R). We show below that

γ̄x⃗,λ̄ = − arcsin

(
x⃗ · η⃗λ̄

||x⃗−Rθ⃗λ̄||

)
. (A.9)
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We have already seen that ||x⃗|| < R implies x⃗ · θ⃗ϕ +
√

R2 − (x⃗ · η⃗ϕ)2 > 0. From this

and (A.4), we obtain ||x⃗ − Rθ⃗λ̄|| = x⃗ · θ⃗ϕ +
√
R2 − (x⃗ · η⃗ϕ)2, which, combined with the

identities cos arcsin s =
√
1− s2, θ⃗A · θ⃗B = cos(A−B), θ⃗A · η⃗B = sin(A−B), yields

x⃗ · η⃗ϕ
R

=
x⃗ · η⃗ϕ
R

x⃗ · θ⃗ϕ/R + cos arcsin(x⃗ · η⃗ϕ/R)

x⃗ · θ⃗ϕ/R +
√
1− (x⃗ · η⃗ϕ/R)2

=
x⃗ · θ⃗ϕ sin arcsin(x⃗ · η⃗ϕ/R) + x⃗ · η⃗ϕ cos arcsin(x⃗ · η⃗ϕ/R)

x⃗ · θ⃗ϕ +
√

R2 − (x⃗ · η⃗ϕ)2

=
[(x⃗ · θ⃗ϕ) θ⃗ϕ + (x⃗ · η⃗ϕ) η⃗ϕ] · η⃗ϕ−arcsin(x⃗·η⃗ϕ/R)

||x⃗−Rθ⃗λ̄||

=
x⃗ · η⃗ϕ−arcsin(x⃗·η⃗ϕ/R)

||x⃗−Rθ⃗λ̄||
=

−x⃗ · η⃗ϕ+π−arcsin(x⃗·η⃗ϕ/R)

||x⃗−Rθ⃗λ̄||
=

−x⃗ · η⃗λ̄
||x⃗−Rθ⃗λ̄||

,(A.10)

which establishes (A.9) and demonstrates (26).

We now focus on the second term f2(x⃗) of (25). In this case, we perform the change

of variables ϕ → ¯̄λ given by ¯̄λ = λ2(ϕ, s)|s=x⃗·η⃗ϕ = ϕ + arcsin(x⃗ · η⃗ϕ/R), which is a valid

substitution by the same argument as for λ̄. This time we find that ||x⃗ − Rθ⃗¯̄λ|| =∣∣∣x⃗ · θ⃗ϕ −
√

R2 − (x⃗ · η⃗ϕ)2
∣∣∣, which leads again to |J |/

√
R2 − (x⃗ · η⃗ϕ)2 = 1/||x⃗ − Rθ⃗¯̄λ||

where J = 1/(∂ ¯̄λ/∂ϕ). We thus find that

f2(x⃗) = −
∫
Λ2(x⃗)

1

||x⃗−Rθ⃗¯̄λ||

[
wR(¯̄λ, γ)gRF (

¯̄λ, γ)
]∣∣∣

γ=¯̄γ
x⃗,¯̄λ

d¯̄λ (A.11)

where Λ2(x⃗) is the
¯̄λ interval corresponding to ϕ ∈ [0, π), so Λ2(x⃗) = [arcsin(x2/R), π−

arcsin(x2/R)). For ¯̄γx⃗,¯̄λ, we have ¯̄γx⃗,¯̄λ = − arcsin(x⃗ · η⃗ϕ/R), and, as ||x⃗ − Rθ⃗¯̄λ|| =∣∣∣x⃗ · θ⃗ϕ −
√

R2 − (x⃗ · η⃗ϕ)2
∣∣∣ = √

R2 − (x⃗ · η⃗ϕ)2 − x⃗ · θ⃗ϕ since ||x⃗|| < R, a similar direct

calculation yields

¯̄γx⃗,¯̄λ = − arcsin

(
x⃗ · η⃗¯̄λ

||x⃗−Rθ⃗¯̄λ||

)
, (A.12)

which demonstrates (27).

Appendix B.

In this section, we determine an expression of the offset angle sR (the index R means

that we assume a fan-beam circular source trajectory, centered at the origin O, of radius

R) for any source point S outside an object of elliptic support and center C (see figure

B1 for an illustration of this situation). We first study at which condition this angle

can be zero. Then, we show that otherwise a valid value is given by the angle between

the line tangent to the trajectory at S and the line tangent to the object at I, the

intersection of the segment CS with the object elliptic boundary. Finally, we compute

the expression of this angle.
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Let S = Rθ⃗λ denote the source point of angle λ and Hk denote the half-plane

corresponding to the set of rays {Rθ⃗λ + tθ⃗λ+π+γ, t ≥ 0} such that γ belongs to

(−π/2 + k, π/2 + k). We have to determine a value of sR(λ) such that HsR(λ) contains

the object support.

Geometrically, H0 is the half-plane separated by the tangent to the circle of radius

R at the point S and containing this circle. So if the object support is confined inside

this circle, then we can take sR(λ) = 0. Else, it means that the tangent to the circle at

S intersects the object.

Let T⃗traj denote a direction vector of the tangent to the circular trajectory at S.

We can see in figure B1) that the portion of the object not covered by H0 is the part

of the object at the right of T⃗traj. Let C denote the center of the elliptic object, I

denote the intersection of the segment CS with the object boundary and T⃗obj denote

a direction vector of the tangent to the object at I. We see that the half-plane left to

T⃗obj contains the full object. If s
R(λ) denotes the angle from T⃗traj to T⃗obj, then HsR(λ) is

the half-plane delimited by the line parallel to T⃗obj and passing through S. This plane

contains the full object too, so this choice of offset angle sR(λ) is valid.

O

C

S

I

T⃗traj

T⃗obj

sR

R

object

source trajectory

Figure B1. Determination of a valid offset angle sR. I is the intersection of the segment CS with

the object elliptic boundary. sR is the angle between T⃗traj , a direction vector of the tangent to the

trajectory at S, and T⃗obj , a direction vector of the tangent to the object at I. T⃗obj direction is chosen

so that the half-plane to its left contains the object and T⃗traj direction is chosen so that the half-plane

to its left contains the circular trajectory.

With this choice, for an object with elliptic support of center C = (xC , yC), semi
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major-axis a and semi-minor axis b, we have

sR(λ) = arctan

(
a2 cosλ(R sinλ− yC)− b2 sinλ(R cosλ− xC)

a2 sinλ(R sinλ− yC) + b2 cosλ(R cosλ− xC)

)
(B.1)

To demonstrate this, we use the formula

tan(sR(λ)) =
det(T⃗traj, T⃗obj)

T⃗traj · T⃗obj

(B.2)

where det(u⃗(x, y), v⃗(x′, y′)) = xy′ − x′y. The equation of the tangent to the circle of

center O = (0, 0) and radius R at S = (xS, yS) is xSx + ySy = R2. So a direction

vector of this tangent is for instance T⃗traj = (−yS, xS) = (−R sinλ,R cosλ) (this choice

is consistent with the direction of T⃗traj in figure B1). Similarly, the equation of the

tangent to the ellipse of center C = (xC , yC), semi major-axis a and semi-minor axis b

at I = (xI , yI) is

(xI − xC)(x− xC)

a2
+

(yI − yC)(y − yC)

b2
= 1. (B.3)

So a direction vector of this tangent is for instance T⃗obj = (−(yI − yC)/b
2, (xI − xC)/a

2)

(this choice is consistent with the direction of T⃗obj in figure B1). Then, as
−→
CI = k

−→
CS

(k ∈ (0, 1)), we have (yI − yC)/k = (yS − yC) and (xI − xC)/k = (xS − xC) so

1

k
T⃗obj =

(
−yS − yC

b2
,
xS − xC

a2

)
=

(
−R sinλ− yC

b2
,
R cosλ− xC

a2

)
(B.4)

Since the norms of T⃗traj and T⃗obj play no role in the determination of sR(λ), we

remove the factors R and k to simplify the following computations and use now{
T⃗traj = (− sinλ, cosλ),

T⃗obj = (−(R sinλ− yC)/b
2, (R cosλ− xC)/a

2).
(B.5)

It follows that

det(T⃗traj, T⃗obj) = − sinλ
R cosλ− xC

a2
+ cosλ

R sinλ− yC
b2

=
a2 cosλ(R sinλ− yC)− b2 sinλ(R cosλ− xC)

a2b2
(B.6)

and

T⃗traj · T⃗obj =
sinλ(R sinλ− yC)

b2
+

cosλ(R cosλ− xC)

a2

=
a2 sinλ(R sinλ− yC) + b2 cosλ(R cosλ− xC)

a2b2
(B.7)

which, using equation (B.2), ends the demonstration.
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Appendix C.

In this section, we demonstrate proposition 2. We first show how to express gRV
F in

terms of gRA by combining (11) and (36). Then, as gRA
F is expressed in terms of gRV

F in

corollary (1), it will give an expression of gRA
F in terms of gRA , as desired.

Starting from definition (11), we have

2πgRV
F (λ, γV ) =

∫ π

−π

hH(sin(γV − γ))

(
∂

∂λ
− ∂

∂γ

)
gRV (λ, γ)dγ. (C.1)

For λ ∈ ΛRV
, we know from (34) that gRV (λ, γV ) = 0 for γV ∈ [−π, π)/Γ(sRV (λ)), so

the integral over (−π, π) in (C.1) reduces to the integral over Γ(sRV (λ)) = [−π/2 +

sRV (λ), π/2 + sRV (λ)). It follows that

2πgRV
F (λ, γV ) =

∫ π
2
+sRV (λ)

−π
2
+sRV (λ)

hH(sin(γV − γ))

(
∂

∂λ
− ∂

∂γ

)
gRV (λ, γ)dγ. (C.2)

To perform a one-to-one change of variables between the virtual and acquisition

settings, we need the integral in (C.2) to be over the interval [−π/2, π/2) instead of

[−π/2 + sRV (λ), π/2 + sRV (λ)). If sRV (λ) ≥ 0, as sRV (λ) ≤ π, we can write

2πgRV
F (λ, γV ) =

∫ π
2

−π
2
+sRV (λ)

hH(sin(γV − γ))

(
∂

∂λ
− ∂

∂γ

)
gRV (λ, γ)dγ

+

∫ π
2
+sRV (λ)

π
2

hH(sin(γV − γ))

(
∂

∂λ
− ∂

∂γ

)
gRV (λ, γ)dγ (C.3)

where the second term (STpos) of (C.3), when translating γ by −π, can be expressed

STpos =

∫ −π
2
+sRV (λ)

−π
2

hH(sin(γV − (γ + π)))

(
∂

∂λ
− ∂

∂γ

)
gRV (λ, γ + π)dγ

= −
∫ −π

2
+sRV (λ)

−π
2

hH(sin(γV − γ))

(
∂

∂λ
− ∂

∂γ

)
gRV (λ, γ)dγ (C.4)

because sin(a − π) = − sin a, hH is odd and gRV (λ, γ + π) = gRV (λ, γ) when λ ∈ ΛRV
.

This last equality follows from (36):

gRV (λ, γ + π) = p(λ+ γ + π,−RV sin(γ + π))

= p(λ+ γ + π,RV sin γ)

= p(λ+ γ,−RV sin γ) using (2)

= gRV (λ, γ). (C.5)

So, for sRV (λ) ≥ 0, a minus sign appears for the interval γ ∈ [−π/2,−π/2 + sRV (λ)].

When sRV (λ) < 0, as sRV (λ) ≥ −π, a similar calculation shows that

2πgRV
F (λ, γ) =

∫ π
2
+sRV (λ)

−π
2

hH(sin(γV − γ))

(
∂

∂λ
− ∂

∂γ

)
gRV (λ, γ)dγ

+

∫ −π
2

−π
2
+sRV (λ)

hH(sin(γV − γ))

(
∂

∂λ
− ∂

∂γ

)
gRV (λ, γ)dγ (C.6)
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where the second term (STneg) of (C.6), when translating γ by π, can be expressed

STneg =

∫ π
2

π
2
+sRV (λ)

hH(sin(γV − (γ − π)))

(
∂

∂λ
− ∂

∂γ

)
gRV (λ, γ − π)dγ

= −
∫ π

2

π
2
+sRV (λ)

hH(sin(γV − γ))

(
∂

∂λ
− ∂

∂γ

)
gRV (λ, γ)dγ. (C.7)

So, for sRV (λ) ≤ 0, a minus sign appears for the interval γ ∈ [π/2 + sRV (λ), π/2].

In both cases, the minus appears for values of γ such that |γ − sRV (λ)| > π/2, so

this minus can be expressed as sign(π/2 − |γ − sRV (λ)|) where sign(u) = 1 if u > 0,

sign(u) = −1 if u < 0, and sign(0) = 0. Using this notation, the expression of the

integrands of the first and second terms of both (C.4) and (C.6) become the same, and

the integral ranges are contiguous with no overlap, so we obtain

gRV
F (λ, γV ) =

1

2π

∫ π
2

−π
2

hH(sin(γV − γ)) sign
(
π/2−

∣∣γ − sRV (λ)
∣∣)(

∂

∂λ
− ∂

∂γ

)
gRV (λ, γ)dγ. (C.8)

Now, from (36),

gRV (λ, γ) =
1

2

[
gRA(λ+ γ − γV

A , γ
V
A ) + gRA(λ+ γ + π + γV

A ,−γV
A )
]

(C.9)

so, as

∂

∂γ
γV
A =

∂

∂γ
arcsin

(
RV

RA

sin γ

)
=

RV cos γ√
R2

A −R2
V sin2 γ

, (C.10)

a short calculation shows that(
∂

∂λ
− ∂

∂γ

)
gRV (λ, γ) = (C.11)

RV cos γ

2
√

R2
A −R2

V sin2 γ

[
∂gRA(λ+ γ − γV

A , γ
V
A )− ∂gRA(λ+ γ + π + γV

A ,−γV
A )
]

(C.12)

where

∂gRA(λ, γ) =

(
∂

∂λ
− ∂

∂γ

)
gRA(λ, γ). (C.13)

Using the change of variables γ′ = γV
A = arcsin ((RV /RA) sin γ), with the Jacobian

|J | = 1/|dγ′/dγ| =
√

R2
A −R2

V sin2 γ/(RV cos γ) from (C.10), gives

gRV
F (λ, γV ) =

1

4π

∫ γm

−γm

hH (sin (γV − arcsin ((RA/RV ) sin(γ
′))))

sign
(
π/2−

∣∣arcsin((RA/RV ) sin(γ
′))− sRV (λ)

∣∣)[
∂gRA (λ+ arcsin ((RA/RV ) sin(γ

′))− γ′, γ′)

−∂gRA (λ+ arcsin ((RA/RV ) sin(γ
′)) + π + γ′,−γ′)

]
dγ′. (C.14)

We can finally use corollary 1:

gRA
F (λ, γ) =

RA cos γ√
R2

V −R2
A sin2 γ

gRV
F (λ+ γ − γA

V , γ
A
V ). (C.15)
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Equation (C.14) is satisfied for all λ ∈ ΛRV
. From the hypothesis of Proposition 2, we

have λ + γ − γA
V ∈ ΛRV

, so we can apply the result of (C.14) to the right hand side of

(C.15) to obtain

gRA
F (λ, γ) =

RA cos γ

4π
√

R2
V −R2

A sin2 γ

∫ γm

−γm

hH

(
sin
(
γA
V − γ′A

V

))
sign

(
π/2−

∣∣∣γ′A
V − sRV (λ+ γ − γA

V )
∣∣∣)[

∂gRA

(
λ+ γ − γA

V + γ′A
V − γ′, γ′

)
−∂gRA

(
λ+ γ − γA

V + γ′A
V + π + γ′,−γ′

)]
dγ′ (C.16)

which ends the demonstration of proposition 2.
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