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RUFY3 regulates endolysosomes perinuclear
positioning, antigen presentation and
migration in activated phagocytes

Rémy Char1, Zhuangzhuang Liu2, Cédric Jacqueline 3, Marion Davieau3,
Maria-Graciela Delgado4, Clara Soufflet1, Mathieu Fallet1, Lionel Chasson1,
Raphael Chapuy1, Voahirana Camosseto1, Eva Strock1, Rejane Rua1,
CatarinaR.Almeida 5, BingSu 6, Ana-Maria Lennon-Duménil4, BeatriceNal 1,
Antoine Roquilly3, Yinming Liang 2, Stéphane Méresse 1, Evelina Gatti1,5 &
Philippe Pierre 1,5,6

Endo-lysosomes transport along microtubules and clustering in the peri-
nuclear area are two necessary steps for microbes to activate specialized
phagocyte functions. We report that RUN and FYVE domain-containing pro-
tein 3 (RUFY3) exists as two alternative isoforms distinguishable by the pre-
sence of a C-terminal FYVE domain and by their affinity for
phosphatidylinositol 3-phosphate on endosomal membranes. The FYVE
domain-bearing isoform (iRUFY3) is preferentially expressed in primary
immune cells and up-regulated upon activation by microbes and Interferons.
iRUFY3 is necessary for ARL8b + /LAMP1+ endo-lysosomes positioning in the
pericentriolar organelles cloud of LPS-activated macrophages. We show that
iRUFY3 controls macrophages migration, MHC II presentation and responses
to Interferon-γ, while being important for intracellular Salmonella replication.
Specific inactivation of rufy3 in phagocytes leads to aggravated pathologies in
mouse upon LPS injection or bacterial pneumonia. This study highlights the
role of iRUFY3 in controlling endo-lysosomal dynamics, which contributes to
phagocyte activation and immune response regulation.

Endosomes and lysosomes are cell organelles that primarily mediate
uptake, degradation and recycling of materials delivered by endocy-
tosis or autophagy1. As late endosomes, lysosomes, and other specia-
lized lysosomal-like compartments share many membrane proteins
(such as LAMP1 or LAMP2), we will refer to these compartments as
endo-lysosomes (ELs). ELs participate in many cellular processes,
including the regulation of cellmetabolismormigration1. ELs alsohave
cell-specific functions, such as antigen processing and presentation in

professional antigen presenting cells (APCs) like macrophages or
dendritic cells (DCs)2. These functions are highly dependent on EL’s
ability to move throughout the cytoplasm and concentrate as a cloud
of membrane organelles in the pericentriolar area of the cell3,4. In this
cloud, proteolytic compartments have propensity to tether and fuse
together to facilitate membrane dynamics and material exchanges
with other organelles, like the endoplasmic reticulum or the
mitochondria5,6. The formation of the perinuclear organelles cloud is
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therefore key to maintain cell homeostasis and fulfill specialized
functions, like activation by microbe-associated molecular patterns
(MAMPs) and efficient antigen presentation or cytokine secretion by
APCs7,8. Other external cues such as nutrient abundance and/or growth
factors also induce cellular responses by altering EL spatial and tem-
poral distribution9. Small GTPases like ARL8 or RAB7 have been shown
to coordinate bidirectional (anterograde and retrograde) transport of
EL along microtubules10–12, through the regulated recruitment and/or
activation of different effector proteins13,14. In addition to classical
motor proteins, several effectors have been identified to regulate the
localization and function of lysosomes viamammalian ARL8, including
the homotypic fusion and protein sorting (HOPS)-tethering complex
(HOPS)12, Pleckstrin Homology and RUN Domain Containing M1
(PLEKHM1)15 and PLEKHM2 (also known as SKIP)11,16. The interaction of
ARL8-GTP with HOPS could promote late endosomes-lysosomes
fusion by tethering lysosomes with Rab7/Rab2a+ late endosomes in
cooperationwith PLEKHM1 and PLEKHM215,17. Perinuclear clustering of
EL promote fusion with autophagosomes, which in turn leads to the
lysosome-mediated mTORC1 signaling and the activation of
autophagy18. Conversely, growth factors trigger anterograde lysosome
movement toward the cell periphery, activating themTORC1 signaling
required for protein synthesis and autophagy inhibition4. Nutrient-
driven lysosome positioning is also a critical determinant for ER
remodeling and focal adhesion disassembly at the cell membrane19,20.
Hence, bidirectional lysosome movement and distribution are key
aspects of cellular adaptation to environmental cues. However, the
exact molecular mechanisms linking lysosomes to the anterograde or
retrograde transport systems are yet to be fully elucidated.

Recently theRUNand FYVEdomain-containing protein 3 (RUFY3),
has also been shown to be an ARL8b effector21,22. The RUN and FYVE
domain-containing protein (RUFY) family encompasses five conserved
genesdisplaying relativelybroad tissue expression. Thedifferent RUFY
proteins have been described to regulate endosomal trafficking,
autophagy and cell migration23. They share a common structural
organization with an N-terminal RUN domain, several coiled-coil (CC)
motifs and a phosphatidylinositol 3-phosphate (PtdIns(3)P)-interact-
ing C-terminal FYVE domain. Distinct from other RUFY proteins,
RUFY3 was originally described to lack part of the C-terminal CC2
domain and the entire FYVE domain24. The interaction of RUFY3 with
the filamentous actin network through a complex formed together
with Rap2 and Fascin 1 (FSCN1) is critical for axonogenesis and growth
cone development25–27. Expression of rufy3 transcriptional spliced
variants can however be detected in other tissues and cell types, with
one uncharacterized mRNA variant coding for a predicted C-terminal
region extended by 200 amino acids and containing a putative FYVE
domain with potential affinity for PtdIns(3)P23. This variant of RUFY3
(RUFY3XL)23 was recently shown to promote coupling of ELs to dynein-
dynactin and regulate their trafficking along microtubules21,22. We
report here that this larger FYVE domain-bearing isoform of RUFY3 is
principally expressed in immune cells, including DCs and macro-
phages, and was termed “iRUFY3” in order to distinguish it from its
previously characterized shorter and neuron-specific isoform
(nRUFY3).We show that iRUFY3 expression and function are regulated
by MAMPs, type-I or type II Interferons (IFN), as well as upon nutrient
starvation. We confirm that in activated macrophages, like in HeLa
cells21,22, iRUFY3 drives the pericentriolar clustering of ARL8b/LAMP1+
ELs. In line with its association to ARL8b, targeted deletion of rufy3
inhibits the formation of Salmonella enterica-containing vacuoles and
replication inmacrophages. Intriguingly, in rufy3-/- phagocytes, the lack
of EL perinuclear clustering potentiates Interferon-γ-dependent anti-
gen processing and MHC II-restricted presentation in vitro, while also
affecting cell migration. In vivo, this translates into a pro-inflammatory
state leading to an aggravated inflammatory syndrome after LPS
injection or bacterial pneumonia. iRUFY3 appears therefore as a novel
ARL8b/PtdIns(3)P effector required to regulate spatio-temporal EL

positioning in the pericentriolar organelle cloud to coordinate antigen
presentation and inflammatory function of MAMPs activated
phagocytes2.

Results
The FYVE domain bearing RUFY3 isoform is preferentially
expressed in activated immune cells
We identified RUFY3 and RUFY4, as two proteins highly expressed in
bone marrow-derived dendritic cells (bmDCs), likely involved in the
regulation of endosome and autophagosome dynamics in response to
Interleukin-4 (IL-4) exposure or MAMPs detection28,29. Genomic data-
bases interrogation indicates that the rufy3mRNA is submitted to tis-
sue dependent alternative splicing with 7 different transcripts
detected in mouse. Along the previously characterized rufy3 mRNA
coding for a protein of 53 kDa (469 aa, nRUFY3, NP_001276705.1,
transcript 4), we identified a larger isoform coding for a protein of
74.8 kDa (iRUFY3/RUFY3XL, 669 aa, NP_001276703.1, transcript 1)
displaying a C-terminal extension of 200 amino acids containing a
putative FYVE domain23 (Fig. 1a). According to the ImmGen expression
atlas30 and qPCR monitoring, mouse irufy3 (transcript 1) and nrufy3
(transcript 4) mRNAs expressions are mutually exclusive with nrufy3
isoform restricted to brain and irufy3mostly detected in immune cells
(Fig. 1b and Supplementary Fig. 1a-c). Tissue analysis by immunoblot
confirmed this restricted expression pattern, with spleen, lymph
nodes, lung and thymus expressing solely iRUFY3 (Fig. 1c and Sup-
plementary Fig. 1c) and meningeal samples displaying the two iso-
forms, being enriched both in neuronal cells and macrophages31. Only
traces of RUFY3 isoforms were detected in other organs like liver or
kidney (Supplementary Fig. 1d). Selective isoform expression was
confirmed by immunoblot (Fig. 1d) and qPCR in Raw267.4 macro-
phages (RAW), MuTu DC32, GM-CSF- or FLT3L-differentiated bmDCs
(GM-CSF-DC or Flt3L-DC) (Supplementary Fig. 1a-c). The rufy3 gene
was inactivated using CRISPR/Cas9 technology in RAW macrophages
(rufy3-/-, Supplementary Fig. 1e), prior reconstitutionwith amyc-tagged
version of each isoform (RAW-iRUFY3 and RAW-nRUFY3) and com-
parative analysis of their respective expression (Fig. 1d). As inferred by
the prediction of several coil-coiled domains in its secondary structure
(Fig. 1a) and irrespective of the LPS activation state, iRUFY3 was found
to form a dimer of around 150 kDa after PAGE in non-denaturing
conditions (Fig.1e). Upon Flt3L-DC,MuTuDC, bone-derived or alveolar
macrophages activation with different MAMPs, rufy3was the only rufy
family member to be up-regulated transcriptionally after 8 h of sti-
mulation (Fig. 1f and Supplementary Fig. 1b and 1f-g). A similar
observation was made upon type-I IFN stimulation, with a near to
6-fold increase in rufy3 transcription over 6 h (Fig. 1g). Expression of
the iRUFY3 protein followed the same trend in MAMPs-activated Flt3-
DC (Fig. 1h). Differently from primary cells, LPS activated-RAW did not
up-regulate rufy3 mRNA and exhibited a limited loss of protein
expression (Fig. 1i), suggesting that transformation might affect some
aspect of rufy3 transcriptional regulation and homeostasis.

iRUFY3 is recruited to perinuclear LAMP1+ ELs upon LPS
activation or nutrient starvation
iRUFY3 is equipped with a putative FYVE domain likely to interact with
phosphatidylinositol-phosphate enriched membrane domains.
Although predicted to form two consensual “zing finger” motifs, this
domain however lacks the tandem histidine residue cluster that
defines affinity for PtdIns(3)P in other identified FYVE motifs
(R +HHC+ xCG)33,34 (Fig. 1a). With regard to their affinity for PtdIns(3)
P, FYVE domain-containing proteins generally regulate endosomal
membrane traffic and aremostly found associated to endo-lysosomes,
phagosomes and forming autophagosomes34. We examined by con-
focal microscopy the localization of RUFY3 in rufy3-/- RAW macro-
phages stably reconstituted with individual myc-tagged isoforms of
themolecule focussing on the endocytic pathway at steady state, upon
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LPS activation or nutrient starvation (EBSS). iRUFY3 distributedmostly
with concentrated perinuclear organelles, while nRUFY3 was clearly
diffused and cytosolic (Figs. 2a and 3a). The sorting endosomes (SE)
markers EEA1 and Syntaxin 6 did not show any significant distribution
overlap with iRUFY3, conversely to the late endosomal marker LAMP1,
that displayed extended co-localization with iRUFY3 (arrows,

Fig. 2b–d). As expected, RAB11A+ recycling endosomes (RE) were also
distributed in the perinuclear area, and therefore in close vicinity to
RUFY3, however no co-localization between the two molecules could
be observed after careful examination (arrows, Fig. 2b–d). Pearson’s
andManders’OverlapCoefficient (MOC) quantification both indicated
that iRUFY3 recruitment to LAMP1+ ELs was augmented in LPS-
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activated and EBSS-starved cells, in which EL clustering was increased
(Fig. 2c–d and Fig. 3a), as further evidenced after 3D rendering (Fig. 3b
and 3c) and localization at the microtubule organization center
(MTOC, Fig. 3d). Differently from EBSS starvation, LAMP1 overlap with
RUFY3, which was increased in LPS-stimulated cells compared to non-
treated conditions, mostly concerned pericentriolar ELs and not all
LAMP1 + EL subsets (MOC, Fig. 2c), suggesting some level of selectivity
for RUFY3 recruitment upon LPS-stimulation.

Importantly, reconstitution iRUFY3 levels in rufy3-/- cells did not
impact EL organization compared toWTRAW,while FYVE-less nRUFY3
was never associated with LAMP1+ ELs in all the experimental condi-
tions tested (Fig. 3a). iRUFY3 association to organelles was confirmed
using subcellular fractionation, with a portion of iRUFY3 pelleting with
membrane-enriched fractions (invariant chain/CD74 positive), includ-
ing ELs (Fig. 3e). As anticipated from confocal imaging, the proportion
of iRUFY3 associatedwithmembraneswas strongly increased after LPS
treatment.

iRUFY3 promotes LAMP1+ ELs clustering and associates
with ARL8b
Previous observations involving RUFY3 in EL positioning21,22, and
RUFY3 recruitment to LAMP1+ organelles in activated phagocytes, led
us to investigate whether iRUFY3 participates to EL clustering in con-
ditions known to trigger microtubules (MT)–dependent retrograde
transport like LPS exposure or nutrient starvation. This was supported
by the redistribution of RUFY3 + /LAMP1+ organelles to the RAW cells
periphery upon depolymerization of MT with nocodazole (Noc)
(Supplementary Fig. 2a), improving the imaging resolution of distinct
RUFY3 + /LAMP1+ ELs and demonstrating the importance of the MT
network to support perinuclear clustering. Two methods for image
analysis-based quantitation of LAMP1 + /LAMP2+ ELs clustering were
developed using organelle to centroid distance calculation and mon-
itoring of pixel distribution by 360° Angular Scanning monitoring
Organelle Distribution (360-ASOD, see methods and Supplementary
Fig. 2b). Both methods confirmed that RUFY3 deletion interferes
strongly with MT-based LAMP+ EL perinuclear positioning, with most
organelles remaining in the cell periphery at steady state and upon
starvation in RAW rufy3-/-, as judged from the calculated LAMP1 clus-
tering index as well as 360-ASOD polarity and variance distribution
(Fig. 4a). Conversely, iRUFY3 ectopic expression in HeLa cells induced
EL perinuclear clustering (Supplementary Fig. 2c), as previously
observed for RUFY421,28.

As anticipated from the published ARL8 interactome analysis21,22,
iRUFY3 was found to co-colocalize with ARL8b at steady state and
upon RAWcell activation by LPS or nutrient starvation (Fig. 4b). ARL8b
distribution was strongly affected by RUFY3 deletion, remaining

associated with LAMP1+ ELs in the periphery and failing to reach the
MTOC area, as indicated by a strong reduction of ARL8b clustering
index in non-treated and EBSS starved RAW rufy3 -/-. Colocalization
and a possible physical interaction (distance <40nm) between ARL8b
and iRUFY3 was also observed by confocal microscopy in a proximity
ligation assay (PLA) at steady state, the intensity of which was rein-
forcedupon starvation and LPS stimulation (Fig. 4c). A reduction in the
average distance among PLA spots also confirmed that in addition of
being increased, ARL8b and RUFY3 site of interactions were also
clustered upon LPS and EBSS treatments, as expected for LAMP1+ ELs
(Fig. 4c) and suggesting that RUFY3 and ARL8b could be co-recruited
to allow EL retrograde transport onmicrotubules21,22. These results are
in line with the recent observations that ARL8b and RUFY3 physically
interact upon ectopic overexpression in HeLa cells21,22. The same
experiments performed in RAW-nRUFY3 did not indicate any interac-
tion of nRUFY3 with ARL8b (Fig. 4c) confirming that the neuronal
isoform does not localize to ELs (Supplementary Fig. 2a), and con-
firming that the domain of interaction of iRUFY3 with ELs is located
within the last 200 aa residues of the protein and not within its RUN
domain21,22.

Silencing of ARL8b alters iRUFY3 expression and endosomal
localization
The role of ARL8b in recruiting iRUFY3 on LAMP1 + EL was examined
after silencing Arl8b expression by RNAi. A bulk 40% decrease in
ARL8b levels was reached after 24 h of silencing in RAW-iRUFY3
(Fig. 5a). Surprisingly, bulk levels of RUFY3were alsodecreased by 20%
upon ARL8b silencing, demonstrating a strong biochemical link
between the two molecules, although a reciprocal effect on ARL8b
expression upon loss of RUFY3 was not observed in rufy3-/- RAW
(Fig. 5b). Imaging and cytofluorographic analysis confirmed anaverage
loss of 50% in RUFY3 expression (MFI) in silenced cells. Themagnitude
of this loss at the single cell level was strongly correlated to the
intensity of ARL8b down-modulation (Supplementary Fig. 3a). How-
ever, although dimmed by silencing, remaining ARL8b and RUFY3
expression levels were sufficient to perform quantitative imaging
analysis (Fig. 5c and Supplementary Fig.3a and 3b). The down-
modulation of ARL8b notably impacted the dynamic of ELs, resulting
in reduced LAMP1 staining intensity during EBSS treatment. iRUFY3
recruitment to LAMP1+ organelles was also reduced upon ARL8b
silencing, as indicatedbyMOCcalculation (Fig. 5c). Thiswas confirmed
by the analysis of voxel gated co-localization channels (Supplementary
Fig. 3b), where a decreased number of LAMP1+ compartments
remained RUFY3 positive in the same conditions (Fig. 5c). Interest-
ingly, although the knock-down of ARL8b was not fully efficient in
most cells, the distribution of RUFY3 remained pericentriolar, yet

Fig. 1 | The FYVE domain bearing RUFY3 isoform is preferentially expressed in
activated immune cells. a Schematic representation of RUFY3 functional domains
organization. RUN: RPIP8, UNC-14 and NESCA domain, CC1: coiled-coil 1 domain,
CC2: coiled-coil 2 domain, FYVE: Fab1, YOTB, Vac1 andEEA1 domain. Anamino acids
alignment of the iRUFY3 FYVEdomainwith other known FYVE domains is displayed
showing the absenceof normally conservedHistidine tandem from the iRUFY3 and
RUFY4 Zinc finger 1 domains. Color code: cyan for hydrophobic positions (A, V, I, L,
M), turquoise for aromatic positions (F, Y, W, H), red for basic residues (K, R),
purple for acidic residues (D, E), green for non-polar charged (N,Q, S, T), salmon for
cysteine (C), orange for glycine (G) and yellow for proline (P). Br Brain, Sp Spleen
and Bm Bone marrow. b Comparative expression of the different rufy3 isoforms in
mouse tissues (RNA seq Immgen database). The shorter rufy3 transcript (nrufy3) is
mostly expressed in brain, while the FYVE-bearing larger transcript (irufy3) is
enriched in bone marrow, lymphoid organs and immune cells. c, d Immunoblot
showing the expression of RUFY3 protein isoforms in brain, spleen, mesenteric
(MLN) and iliac (ILN) lymph nodes with or without LPS stimulation in vivo (c) and
(d) in bone marrow-derived DCs and Raw264.7 (RAW) macrophages in vitro. Actin
is not detectable in HeLa i/nRUFY3 over-expressing control due to minimal sample

loading (100ng). Blots are representative of two independent experiments.
e Immunoblot after non-denaturing PAGE revealing iRUFY3 dimerization in RAW
WildType (WT) and rufy3 knockout (KO). Blot is representative of two independent
experiments. f, g Quantification by RT-qPCR of the rufy genes family transcripts in
Flt3L-bmDCs after 6 h exposure to TLR ligands and IFN-α (f) and of rufy3 over 6 h
(g). For f, the boxplot data represent medians, interquartile ranges and spikes to
upper and lower adjacent values. Each dot represents one independent experi-
ment. Statistical significance was established using two-way ANOVAwith Dunnett’s
multiple comparisons test. Forg, each dot represents one independent experiment
(n = 3) and data are presented as mean values +/- SD. Statistical significance was
established using one-way ANOVA with Tukey’s multiple comparisons test.
h, i Immunoblot detection of iRUFY3 levels in Flt3L-bmDCs (h), and (i) quantifi-
cation by RT-qPCR of the rufy3mRNA and iRUFY3 protein by immunoblot in RAW
stimulated or not with LPS. All data are presented as mean values +/− SD. n = 3
independent experiments except for IFNα condition where n = 4. Statistical sig-
nificance was established using one-way ANOVA with Dunnett’s multiple compar-
isons test. For all panels (*p <0,05; **p <0,01; ***p <0,001; ****p <0.0001).
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distinct from ARL8b+ structures (MOC Fig. 5c, and Supplementary
Fig. 3a-b). In silenced cells, RUFY3 was predominantly cytosolic, but
interestingly also associated with some ARL8b-negative endo-lyso-
somes. Thus, although its recruitment to ELs appears to be mostly
linked to that of ARL8b, RUFY3 may have the capacity to interact with
other membrane-associated molecules if ARL8b levels are decreased.

Given the presence of a FYVE domain in C-terminus of iRUFY3, we
evaluated the importance of PtdIns(3)P in its recruitment to ELs.
iRUFY3 distribution was investigated after treatment with the FYVE
finger containing phosphoinositide kinase (PIKfyve) inhibitor,
YM201636. PIKfyve is a phosphatidylinositol lipid kinase, which binds
and transforms PtdIns(3)P in PtdIns(3,5)P, and plays a critical role in
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endosomal membrane trafficking35. PIKfyve inhibition with YM201636
causes abnormal accumulation of PtdIns(3)P and results in the
appearance of enlarged vacuoles inmammalian cells due to alterations
in membrane fission and formation of tubules36,37. YM201636 treat-
ment clearly altered RUFY3 distribution in control cells, exacerbating
the loss of RUFY3 and ARL8b co-localization, as well as their associa-
tion with LAMP1+ organelles in ARL8b-silenced RAWs-iRUFY3 (MOC,
Fig. 5c). The fact that RUFY3 remained associated tomembranes upon
YM201636 treatment, suggests that an excess of PtdIns(3)P may
synergize with ARL8b silencing to decrease RUFY3 recruitment to
LAMP1+ ELs, and potentiate its binding to other organelles or mem-
brane structures (Fig. 5c). An hypothesis strongly supported by the
association of iRUFY3 with YM201636-induced LAMP1-negative
tubules emanating from ELs in steady state conditions and more pro-
minently in starved cells, thus competing with RUFY3 binding to
LAMP1+ ELs (Supplementary Fig. 4a-c). YM201636 treatment failed to
alter nRUFY3 cytosolic distribution, both at steady-state and in starved
cells (Supplementary Fig. 4c), further pointing at the critical role of
iRUFY3 C-terminal domain in EL targeting.

PtdIns(3)P contributes to iRUFY3 endosomal localization
iRUFY3 distribution was next investigated upon nutrient starvation
(EBSS) andpharmacological inhibition of theClass III PtdIns(3)P-kinase
VPS3438 (Fig. 6). VPS34 inhibitor (VPS34i) interferes with the main
pathway of PtdIns(3)P synthesis and affects the recruitment to endo-
somes of several endogenous PtdIns(3)P-binding proteins, including
EEA139,40. VPS34i treatment reduced the clustering of LAMP1 + EL in
EBSS starved cells (Fig. 6a, b). The pericentriolar positioning of RUFY3
and the decoration of some tubular organelles was however not
affected by VPS34i, although most of its co-localization with LAMP1
was lost, confirming that PtdIns(3)P generation next to ARL8b
recruitment contributes to its interaction with ELs. iRUFY3 direct
binding to PtdIns(3)P enriched domains was however not supported
by co-localization experiments with GFP-2xFYVE (Fig. 6c). GFP-2xFYVE
is a protein probe that specifically associates with PtdIns(3)P-enriched
domains upon ectopic expression41 and is sensitive to VPS34i (Fig. 6c).
In thedifferent conditions tested, iRUFY3was never foundco-localized
with this probe (Fig. 6c), suggesting that although PtdIns(3)P con-
tributes to iRUFY3 recruitment on ELmembranes, it might be through
an indirect process involving ARL8b or via an interaction with other
types of PtdIns lipid enriched domains.

RUFY3 is important for intracellular Salmonella replication in
macrophages
To test functionally the impact of RUFY3 on EL function, we performed
Salmonella infection, since ARL8b/PLEKHM2/HOPS- and Rab7/
PLEKHM1-dependent EL mobilizations are particularly important for
the maturation of Salmonella-containing vacuoles (SCV) and bacterial
replication in macrophages42–44. Colony forming unit assay (CFU)
monitoring indicated that Salmonella replication was reduced by 40%
in infected rufy3 -/- cells compared to WT RAW cells (Fig. 7a). Com-
plementation of rufy3 -/- cells with myc-iRUFY3 restored Salmonella
replication toWT levels, whilemyc-nRUFY3 expression had little effect
on rescuing CFU titers (Fig. 7a), in line with its lack of interaction with
ARL8b and ELs. Equivalent uptake of WT and replication-incompetent

(ΔsifA) bacteria was observed after 2 h of infection in rufy3 -/- and WT
RAW cells, showing that iRUFY3 is not involved with bacterial phago-
cytosis (Fig. 7b), although It is found in the vicinity of some SCVs,
together with LAMP1 and the bacterial effector PipB245 at 16 h post-
infection (Fig. 7c and 7d). Experiments performed in EBSS conditions
to enhance ELs perinuclear concentration, revealed that Salmonella
infection fully prevents LAMP1 clustering presumably by recruiting
RUFY3 to the SCV. Thus, iRUFY3 is therefore important to allow
intracellular Salmonella replication in macrophages.

iRUFY3, but not nRUFY3, is required for macrophages and DC
migration
Controls of axonal growth depends on nRUFY3 interaction with actin
filaments27. nRUFY3 is therefore key for nervous system development,
remodeling and function, explaining the embryonic lethality displayed
upon full rufy3 genetic inactivation in mouse46. We thus generated a
novel transgenicmouse with floxed alleles at the borders of the exon 3
of the rufy3 gene (Supplementary Fig. 5a). Upon Cre recombinase
expression, the deletion of exon 3 prevents expression of functional
RUFY3. Rufy3 lox/lox C57/BL6 mouse were crossed with a Itgax-cre del-
eter strain to specifically inactivate Rufy3 in CD11c-expressing cells,
including most DC subsets and alveolar macrophages47. Loss of rufy3
was confirmed at the mRNA and protein levels by RT-PCR and immu-
noblot in CD11c+ splenocytes, Alveolarmacrophages and GM-CSF-DCs
(Supplementary Fig. 5b-e). We used microfabricated channels, that
mimic the confined geometry of the interstitial space in tissues48 to
find that rufy3-deficient GM-CSF-DCs were unable to increase their
migration speed in response to LPS (Fig. 8a). We confirmed this
observation in rufy3 -/- RAW cells, which display a strong reduction in
their migratory properties in a scratch/wound healing assay in vitro
(Fig. 8b). Complementation with iRUFY3 fully restored the migration
capacity of resting and LPS-activated rufy3 -/- cells, while nRUFY3 did
not rescue this deficit (Fig. 8b). ELs positioning and dynamics is
therefore critical for cell migration, by potentially acting on the recy-
cling of integrins or the remodeling of focal adhesion dynamics, as
shown for ARL8b-dependent anterograde transport20, RAB7b and for
PIKfyve activity49. Importantly, nRUFY3 was not able to rescue normal
migration of RAW rufy3 -/-, although this FYVE-less protein is critical for
neurons migration and axonogenesis25,26. This lack of redundancy
confirms that the two RUFY3 isoforms operate in different molecular
environments to perform distinct functions. The described interaction
nRUFY3with Rap2 and Fascin (FSCN1) in neurons27, couldbe inexistant
for iRUFY3 inmacrophages due to the lack of fscn1 expression in RAW
cells (Fig. 8c) and other macrophage subsets50. iRUFY3-dependent ELs
positioning seems therefore necessary for the migration of circulating
and tissue resident MAMPs activated-phagocytes independently of its
interaction with FSCN1.

Rufy3 deletion alters antigen processing and presentation in
macrophages
We next examined the consequences of IFN-γ exposure on RAW
macrophages to establish whether MHC II dynamics could be altered
upon iRUFY3 inactivation in macrophages. Interestingly although
iRUFY3 levels were weakly augmented by IFN-γ treatment (Fig. 9a),
RAW rufy3 -/- showed an exacerbated response to this cytokine with

Fig. 2 | iRUFY3 co-localizes with perinuclear LAMP1+ endosomes upon LPS
activation or nutrients starvation. a Airyscan Immunofluorescence confocal
microscopy (AICM) panels showing iRUFY3 intracellular distribution in RAW rufy3-/-

cells stably expressing a control empty vector (left, RAW rufy3-/-), nRUFY3 (middle,
RAW-nRUFY3) and iRUFY3 (right, RAW-iRUFY3) at steady state (top), after 16 h of
LPS stimulation (middle) and 6 h of nutrient starvation (EBSS, bottom), dotted lines
indicate cell boundaries. Scale bar is 5 µm. These results are representatives of n = 3
independent experiments with >100 cells observed by experiments. b–d AICM
images of RAW-iRUFY3 showing RUFY3 intracellular (myc) distribution compared

to endocytic markers EEA1, Rab11A, Syntaxin-6 (STX6) and LAMP1 at steady state
(b), after 16 h LPS stimulation (100ng/mL) (c) or 6 h starvation (EBSS) (d). White
arrows indicate co-localization (LAMP1) or absence of co-localization (Rab11a) with
RUFY3. Pearson co-localization and Mander’s overlap coefficients (MOC) were
calculated using Image J for b-d panels. A highly significant co-localization score is
considered above 0.7 for Pearson’s. Statistical significance was established using
two-way ANOVA with Tukey’s multiple comparisons test (*p <0,05; **p <0.01;
****p <0,0001). Each dot represents the mean off all Z-stack from one region of
interest. Scale bar 1 µm.
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elevated levels of surface MHC II and numbers of cells expressing it
(Fig. 9b and 9c). This elevationwas also observed at the transcriptional
level since induction of major histocompatibility complex II transac-
tivator (CIITA) and I-Ad-alpha and beta MHC II mRNAs were aug-
mented in absence of iRUFY3 (Fig. 9d), indicating that rufy3 deletion
potentially augments CIITA co-transcriptional activity downstream of

IFN-γR151. Accumulation of MHC II molecules at the cell surface
strongly increased in rufy3 -/- cells exposed to IFN-γ for 24 h (Fig. 9e),
suggesting that RUFY3 could also regulate MHC II transport and exo-
genous antigen presentation.

Given the capacity of IFN-γ to potentiate endosomal proteases
activity52, wemonitored by flow cytometry the degradative capacity of
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RAW cells, using DQ-ovalbumin, which is a self-quenched conjugate of
ovalbumin that exhibits bright green fluorescence upon proteolytic
degradation. Although similar to control cells at steady state, proces-
sing of DQ-ovalbuminwas exacerbated in rufy3 -/- macrophages treated
with IFN-γ (Fig. 9f). Expression and proteolytical processing of the
MHC II-associated Invariant chain (Ii, CD74) was also examined in
presence of the cysteine protease inhibitor N-morpholinurea-leucine-
homophenylalanine-vinylsulfone-phenyl (LHVS)53 (Fig. 9g). LHVS
treatment results in the accumulation of discrete Ii intermediate
fragments known as p22 (22 kDa) and p10 (10 kDa), that remain asso-
ciated to MHC II αβ complexes and mediate their retention in ELs52,54.
Differently fromMHC II, intact Ii isoforms (Ii-p31 and Ii-p41) expression
was detected in non-stimulated RAWs and increased by IFN-γ stimu-
lation (Fig. 9g). Rufy3 -/- RAWs again displayed high sensitivity to IFN-γ
stimulation, with considerably increased levels of both Ii isoforms and
accumulation of Ii-p10 over control cells. LHVS forced also a much
greater accumulation (2-3 fold) of Ii-p10 and Ii-p22 in rufy3 -/- cells
treatedwith IFN-γ, indicating that both invariant chain synthesis and its
endosomal processing are greatly accelerated in absence of RUFY3.
This global enhancement in endosomal proteolysis and Ii-MHC II
complexes maturation was translated into a nearly 2-folds enhance-
ment of ovalbumin antigen presentation to DO.11 T cells by IFN-γ-
treated rufy3 -/- macrophages compared to control (Fig. 9h). Thus,
although EL dynamic is globally slowed-down by RUFY3 inactivation,
some key functions like IFN-γ signaling, as well as, MHC II-restricted
antigen processing and presentation are enhanced in activated rufy3 -/-

RAW cells.

Rufy3 deletion in the CD11c+ cell compartment is pro-
inflammatory
EL perinuclear positioning in response to MAMPs is a hallmark of DCs
activation/maturation8,55,56, which are characterized by higher surface
levels of MHC II and CD86, like IFN-γ-treated macrophages. Global
immunophenotyping of control and rufy3lox/lox-Itgax-cre mice, indi-
cated the presence of proportionally higher numbers of activated
(mature) cDC1 and cDC2 in the spleens of knock-out animals (Fig. 10a),
compatible with a reduced egress of activated cells from the spleen in
absence of functional iRUFY3. Upon intraperitoneal injection of LPS, a
light splenomegaly (Fig. 10a and 10b) with abnormal accumulation of
macrophages, pDC, mature cDC2, as well as NK cells was observed in
the rufy3lox/lox-Itgax-cre mice (Fig. 10c and Supplementary Fig. 6a).
Rufy3lox/lox-Itgax-cre animals were particularly sensitive to low doses of
LPS (1.5 ng/g) and displayed abnormal immune cell infiltrations in the
lung,whichwere characterized asB andTcells accumulating in tertiary
lymphoid structures using specific B220 and CD3 staining (Supple-
mentary Fig. 6b and 6c).

This pro-inflammatoryphenotype, promptedus into investigating
further how rufy3 deletion in CD11c+ alveolar macrophages, which
monitor the luminal surfaceof the epitheliumwhere air-borne bacteria
grow57, affects the response to lung infection. We infected intra-
tracheally rufy3lox/lox-Itgax-cre mice and control litter mates with fluor-
escent YFP expressing E. coli to cause a primary pneumonia58 and
evaluate disease progression and the associated immune response at
day 3 and 7 post-infection (Fig. 10d). Clinical signs of pneumonia,
analysed by measuring overall survival, weight loss, tolerance to pain,

were found to be more severe in rufy3lox/lox-Itgax-cre deficient animals
at day 3 post-infection (Fig. 10e). However, this increased severity did
not prevent, nor delay, the overall recovery observed at day 7. RUFY3
deficiency in lung phagocytes impacts therefore only transiently the
response to bacterial infection. This was in line with the equivalent
levels of bacterial phagocytosis measured in the different lung mac-
rophage subsets irrespective of their genetic background (Supple-
mentary Fig. 7a and 7b). We next examined the numbers and
phenotypes of macrophage subsets and lymphocytes present in the
lungs at steady state and during infection (Fig. 10f and Supplementary
Fig. 7a). Seven days post-infection, alveolar macrophages (AM) were
2-fold more numerous in rufy3-deficient animals than control, with a
greater proportion of IFN-γ-producing cells. Higher levels of surface
MHC II and of the IFN-γ inducible co-stimulatory receptor CD4859 were
also observed in rufy3 -/- AM (Fig. 10f), but not in other CD11c-negative
MACs subsets (I-MAC) (Supplementary Fig. 7c). Importantly, preced-
ing the phenotype observed with AM, the numbers and proportion of
IFN-γ-producing NK cells were significantly augmented 3 days post-
infection in rufy3lox/lox-Itgax-cre animals, while levels of CD3 + T cells
were reduced, particularly in the effector/memory T cells compart-
ment (TMEM) (Fig. 10f). The proportion and capacity of CD8 +T cells
to produce IFN-γ was however enhanced upon deletion of rufy3 in the
CD11c+ cells. This increased IFN-γ production and activated pheno-
types of rufy3 -/- AMs, strongly echoed with the sensitivity of rufy3 -/-

RAW to IFN-γ exposure in vitro, and was probably the cause of exa-
cerbated inflammation in the challenged rufy3lox/lox-Itgax-cre mice.
Overactivation of the T cells upon enhanced stimulation and IFN-γ
exposure in the lungs of CD11c+ rufy3-deficient mouse might lead to
rapid exhaustion, and premature contraction of the effector/memory
compartment, as previously observed during infection60.

Discussion
We have identified an immune-cell specific RUFY3 splicing variant
that contains a fully functional FYVE domain (iRUFY3). This dis-
covery has now corrected the anomaly of including the shorter
FYVE-less neuronal form23 in the RUFY family24. Our research has
shown that while PtdIns(3)P levels affect iRUFY3 recruitment to EL
and other organelles, its non-fully consensual sequence seems to
prevent direct binding to PtdIns(3)P-enriched membrane domains.
RUFY3 is necessary for the transport of ARL8b + /LAMP1 + EL from
the cell periphery to the perinuclear organelles cloud upon MAMPs
detection or nutrient starvation. Its interaction with ARL8b, as well
as the JIP4-dynein-dynactin complex in transfected HeLa cells21,22,
and on pericentriolar ARL8b+ ELs in activated macrophages (this
study), suggests that RUFY3 acts as an effector of ARL8b to control
microtubule-dependent retrograde transport of ELs15 (Supplemen-
tary Fig. 8). RUFY3 genetic inactivation produces similar effects to
that of ARL8b, including inhibition of Salmonella replication61,62 and
loss of migration capacity20. Interestingly, these phenotypes were
previously linked to the ARL8/PLEKHM2 complex activity that
controls kinesins-dependent MT plus end–directed transport of
ELs, rather than dynein-mediated retrograde transport. Although
RUFY3 seems to solely regulate ARL8b-dependent retrograde
clustering of ELs, as suggested by its interaction with the JIP4-
dynein complex22, it might be also necessary to maintain EL

Fig. 3 | iRUFY3 associates with perinuclear LAMP1+ endosomes upon LPS
activation or nutrient starvation. a AICM showing LAMP1+ vesicles and RUFY3
distribution in Raw264.7 macrophages (WT), rufy3 depleted (rufy3 -/-) and stably
complementedwith nRUFY3 or iRUFY3.Dotted lines indicate cell boundaries. Scale
bar 2 µm. These results are representatives of n = 3 independent experiments with
>100 cells observedbyexperiments.b 3D reconstruction showing iRUFY3 at steady
state (top), after 16 h LPS stimulation (middle) or 6 h nutrient starvation (bottom).
Scale bar 5 µm. c 3D display showing iRUFY3 intracellular distribution compared to
LAMP1 at steady state, after 16 h LPS stimulation and6 h starvation (EBSS). Scale bar

2 µm. X, Y and Z-axis are defined at the bottom right. d AICM showing iRUFY3
distribution and themicrotubule network (ß-tubulin) in LPS-activated RAW-iRUFY3
cells. Scalebar2 µm.This result is representativesofn = 2 independent experiments
with >100 cells observed by experiments. e Analysis of cytosolic (Cy) and mem-
brane (Mb) fractions from post-nuclear supernatants (PNS) of RAW and RAW
rufy3-/-. After LPS treatment, RUFY3 is enriched in Mb fractions that contain the
type-II transmembrane Invariant chain p31/CD74 used as fractionation control
marker. This blot is representative of n = 2 independent experiments.
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homeostasis and, indirectly regulate ARL8b-dependent ante-
rograde transport.

The phenotypic differences reported in ARL8b-deficient cells
compared to RUFY3-deficient ones (this study), may be attributed to
the restricted activity of RUFY3 on the clustering of a subset of ELs,
conversely to the broader impact of ARL8b deficiency on both

anterograde and retrograde traffic. It is worth noting that alternative
pathways, such as the Rab7/RILP/dynein system, which also promotes
the temporal andmorphological compartmentalization of perinuclear
ELs3, may partially compensate for RUFY3 loss. However, the inter-
pretation of these experiments may be complicated by the control
exerted by ARL8b on RUFY3 expression. We have shown that silencing
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ARL8b inRAW-iRUFY3 causes a proportional loss of RUFY3 expression,
which could be explained either by a potential instability of RUFY3
dimers when not efficiently recruited to ELs, and/or upon exclusion
from a multimeric protein complex formed with ARL8b. Additionally,
ARL8b silencing revealed interactions of iRUFY3with other organelles,
implying that it may have additional functions in membrane traffic
than facilitating EL pericentriolar positioning. How bidirectional EL
transport is regulated by ARL8b remains however unclear and it will be
crucial to revisit this issue in the light of our findings on RUFY3 func-
tion. It is tempting to speculate that, similar to RAB7, ARL8b uses
alternative recruitment of adapters like FYCO1 or RILP to determine
the type of organelle and of molecular motors to partner with3.
Interestingly, some of the adapter functions linking RUFY3 to ARL8b
maybe equivalent to thatof FYCO1 forRAB7, as bothmolecules exhibit
significant homology, and that FYCO1 can be classified as a RUFY
familymember (RUFY5)23. In this respect, the contribution of VPS34 or
PIKfyve kinases and their responses to environmental cues are likely
essential in fine-tuning RUFY3-dependent transport by defining the
sites of PtdIns(3)P accumulation and tagging ELs for perinuclear
transport and/or membrane exchanges with other compartments.

The exact nature of EL subsets requiring RUFY3 for their motility
and the nature of the signal regulating these pathways will have to be
further characterized. ELs are key organelles for nutrient sensing,
processing and loading of antigens for presentation, as well as pro-
teolytic activation or degradation ofmembrane receptors to induce or
shut-down downstream signaling according to the circumstances1,2.
Transport to the perinuclear organelles cloud is also necessary for
antigens to reach MHC II molecules in the late endocytic compart-
ments of D1 DCs, resulting in reduced antigen processing and pre-
sentation upon ARL8b silencing7. Interestingly, RUFY3’s loss enhances
antigen processing and presentation in IFN-γ–treated macrophages.
This effect was confirmed in vivo by the pro-inflammatory phenotype
of CD11ccrerufy3 fl/fl mice displaying increased sensitivity to low dose of
circulating LPS, as well as enhanced inflammation upon bacterial
pneumonia. The stronger response to IFN-γ of RUFY3 -/- phagocytes
could be a key determinant in promoting this situation, may be
becoming dominant over moderate alterations of antigen processing
andMHC II transport potentially caused directly by RUFY3 inactivation
and EL mispositioning (Supplementary Fig. 8). Our efforts to investi-
gate IFN-γR transport and signaling in rufy3 -/- cells have been unsuc-
cessful, due to the lack of appropriate probes63. However, a slowing-
down of IFN-γR degradation and signaling activity upon reduction of
EL distribution around the MTOC is a plausible hypothesis that will
have to be evaluated.

Surprisingly, expression of the rufy3 variants ismutually exclusive
with the shorter form (nRUFY3) limited to neuronal tissues. To date,
most of the data available on RUFY3, have been obtained in cells, in
which solely nRUFY3 is expressed or induced, withmost investigations
focussed on neuronal polarity, cell migration or metastasis27,46,64,65. We
have shown that solely iRUFY3 interacts with ARL8b and contributes to
ELpositioninguponcell activation.However, both isoforms contribute
to cell migration, albeit in a non-redundantmanner and probably amid

a cell-type specific biochemical context, like for instance FSCN1
expression. ARL8b and RUFY1 have also been shown to interact toge-
ther on recycling endosomes and to regulate endosomes to TGN
retrieval of CI-M6PR66. RUFY1 is required to control cell migration and
invasion23, suggesting that RUFY proteins might represent a family of
adapter molecules specialized in specifying the direction of endo-
somes subsets transport, while controlling cell migration. It will be
important to determine the contribution of the reduced migration
observed in rufy3 -/- phagocytes to the pro-inflammatory situation
observed in CD11cCre-rufy3loxp/loxp mice. Interestingly, it was recently
shown that Rab7b regulates activated DC migration by linking lyso-
somes to the actomyosin cytoskeleton, which requires correct posi-
tioning to allow localized Ca2+ release to activatemyosin II and fast and
persistent DC migration48,67. The preferential expression of iRUFY3 in
immunocytes and its regulation by immune mediators, demonstrate,
nevertheless, a key role for EL perinuclear positioning to modulate
functions typically associated to APCs, including pathogen clearance,
antigen presentation and inflammatory mediator production. These
functions could be harnessed pharmacologically by interfering with
the iRUFY3/ARL8b pathway.

Methods
Ethics statement
The research described in this manuscript complies with all relevant
ethical regulations. Animal Studies were carried out in strict accor-
dance with Guide for the Care and Use of Laboratory Animals of the
European Union. All experiments were approved by the ethical com-
mittees PACAandPdL, underMESRI approval numbersAPAFIS#18981-
2019020710111763 and APAFIS #32506-2021072015469639. All efforts
were made to minimize animal suffering.

Mice
Wild-type (WT) female and male C57BL/6 mice were purchased from
Janvier, France. rufy3 loxp/loxp mice were developed at the Centre d’Im-
munophénomique (CIPHE, Marseille, France), for details see Supple-
mentary Fig. 6a. Rufy3loxp/loxp were crossedwith Itgax-Cre+mice47. Mice
were backcrossed to obtain stable homozygotic lines for the loxp sites
expressing Cre. For all studies, age-matched WT and transgenic
6–12weeks females were used. To compare with CD11cCre-rufy3 loxp/loxp

mice, CD11cCre mice littermates were used as control. All animals were
maintained in the animal facility of CIML or CIPHE under specific
pathogen–free conditions accredited by the French Ministry of
Agriculture.

Model of non-lethal acute bacterial pneumonia
Infection and analysis were performed as described58. Briefly, YFP-E.
coli (strain DH5α with p-HG-1 plasmid) grown for 18 h in LB medium
at 37 °C, were washed twice, diluted in sterile isotonic saline and
calibrated by nephelometry. E.coli (75 μl, OD600 = 0.6–0.7) were
injected intratracheally in anesthetized mice to induce a non-lethal
acute pneumonia. Infected mice were monitored daily for weight
loss and tolerance to pain. Immune cell purification from lungs at

Fig. 4 | iRufy3 promotes LAMP1 + -lysosomes clustering and associates with
ARL8b. a Detection of myc-RUFY3 and LAMP1+ EL distribution by AICM in RAW-
iRUFY3 quantified with centroid based method and 360-ASOD. Dotted lines indi-
cate cell boundaries. Scale bar 2 µm. The boxplot data represent medians, inter-
quartile ranges and spikes to upper and lower adjacent values. Statistical relevance
was established using unpaired t-test (*p <0,05; **p <0.01; ***p <0.001;
****p <0,0001; ****p <0,0001). b Distribution of iRUFY3 and ARL8b monitored by
AICM in RAW-iRUFY3 and RAW rufy3 -/- with centroid basedmethod. Colocalization
score and clustering index are shown. A clear co-localization score is considered
above 0.7 for Pearson’s. Scale bar 2 µm. The boxplot data represent medians,
interquartile ranges and spikes to upper and lower adjacent values. Statistical
relevance was calculated with one-way ANOVA with Tukey’s multiple comparison

test (****p <0,0001; ****p <0,0001). c Immunofluorescence Proximity Ligation
Assay (PLA) was performed for iRUFY3 and ARL8b with 3D image reconstitution in
RAW rufy3 -/- (top), RAW-nRUFY3 (middle) and RAW-iRUFY3 (bottom) at steady
state (left), 16 h LPS stimulation (center) or 6 h nutrient starvation (EBSS, right).
Scale bar 5 µm. PLA spot quantification and distribution are shown. Clustering was
quantified by nearest neighbor’s distance calculation for each PLA spot. Data are
presented as mean values +/- SD. For all panels numbers (n) of cells analyzed are
indicated. Statistical relevance was calculated by Welch’s t-test for clustering
indexes, two-way ANOVA with Tukey’s multiple comparisons test for co-
localization and nearest neighbor distance (*p <0,05; ***p <0.001; ****p <0,0001;
****p <0,0001).
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day 3 and 7 p.i., and analytical flow cytometry using conjugated
monoclonal antibodies were performed as described58. After cell
sorting from lung, over-activation with Phorbol Myristate Acetate
(PMA, invivogen #tlr-pma) and Ionomycin (Invivogen, #inh-ion)
solution was performed.

Sequences alignment
Rufy3 sequences from human and mouse were obtained from
ImmGen and NCBI databases. Alignments were performed with Sea
View analysis software V5.0568. For all alignments, amino acids
are colored according to their biophysical properties. The accession
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numbers of the proteins are as follows: Human EEA1 (NP_003557.3),
Mouse EEA1 (NP_001001932.1), Human RUFY1 (NP_079434.3), Mouse
RUFY1 (NP_766145.1), Human RUFY2 (NP_060457.4), Mouse RUFY2
(NP_081701.2), Human RUFY3 (NP_055776. 1), mouse RUFY3
(NP_081806.1) human RUFY3XL (NP_001032519.1), mouse RUFY3XL
(NP_001276703.1), human RUFY4 (NP_940885.2), mouse RUFY4
(NP_001164112.1), human FYCO1 (NP_078789.2), mouse FYCO1
(NP_001103723.2).

Cell culture
A complete reagents list can be found in Supplementary data. Bone
marrow-derived DC were cultured with GM-CSF as described55.
Alveolar Macrophages were obtained from 6 to 12 weeks-old mice
as described29. Cells were resuspended in RPMI (Gibco, Invitrogen),
10% FCS, 1% pen/strep, 1% pyruvate,1% glutamine, supplemented
with 2.5% GM-CSF. RAW264.7 cells were cultured as described69.
HeLa cells were maintained in DMEM (Gibco Invitrogen)

Fig. 5 | Silencing of ARL8b alters iRUFY3 expression and endosomal localiza-
tion. a Immunoblot detection and quantification of iRUFY3 and ARL8b expression
upon Arl8b RNAi silencing in RAW-iRUFY3. N = 3 independent experiments. Data
are presented asmean values +/- SD.b Immunoblot detection of iRUFY3 andARL8b
expression in WT and rufy3 -/- RAW. The blot is representatives of two independent
experiments. Number below actin represents ARL8B intensity normalized on WT.
c Detection of iRUFY3, ARL8b and LAMP1 by AICM upon Arl8b silencing in RAW-
iRUFY3 at steady state, upon starvation (EBSS, 6 h) or after treatment with PIKfyve

inhibitor (YM201636, 45min, 5 µM). Dotted lines indicate cell boundaries and red
stars indicate cells with particularly efficient ARL8b silencing. Scale bar is 1 µm.
Mander’s Overlay Coeficient (MOC) was calculated using Image J. One dot repre-
sents the mean of all z stacks from one cell. Statistical relevance was calculated by
unpaired t-test (a) and two-way ANOVA with Tukey’s multiple tests for co-
localization (c). For (c) numbers (n) of cells analyzed are indicated. For all panels:
*p <0,05; **p <0.01; ***p <0.001; ****p <0,0001.
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Fig. 6 | PtdIns(3)P contributes to iRUFY3 endosomal localization. a, bDetection
of Myc-RUFY3 with EL markers LAMP1 after 6 h of starvation (a) or 6 h with VPS34
inhibitor (VPS34i, 5 µM). Dotted lines indicate cell boundaries. Pearson co-
localization coefficients were calculated using Image J. A clear co-localization score
is considered above 0.7. Numbers (n) of cells analyzed are indicated. Statistical
significance was established using one-way ANOVA test (****p <0,0001). Each dot

represents the mean of all stacks from one region of interest. c GFP-2X-FYVE
transfection and iRUFY3 detection by AICM in RAW-iRUFY3 at steady state or
nutrient starvation (EBSS) with or without VPS34 inhibition (VPS34i, 5 µM for 6 h).
Scale bar 2 µm. These results are representatives of n = 2 independent experiments
with >100 cells observed by experiments.
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supplemented with 10 % FCS, at 37 °C and 5% CO2. MuTuDC1 were
maintained in IMDM medium (Gibco, Invitrogen) with 8% FCS,
10mMHepes, 50 µM β-mercaptoethanol. DO11 T cell were grown in
RPMI (Gibco, Invitrogen) with 10% FCS, 1% pyruvate, 1% HEPES, 1%
non-essential amino acids. For all conditions, MAMPs and cytokines
stimulation were performed with: LPS at 100 ng/mL, p(I:C) at 10 µg/
mL, CpG-α ODN at 200 nM, IFN-α at 1000 U/mL and IFN-γ at 50 ng/
mL. All cell lines tested negative for mycoplasma contamination
using MycoAlert Mycoplasma Detection Kit (LT07-418, Lonza).

Rufy3 gene deletion inRaw264.7 cell lines and complementation
To generate gene-specific deletion via the CRISPR/Cas9 system, two
sgRNAs targeting Exon 2 of the mouse rufy3 gene (exon ID:
ENSMUSE00000222679) were designed and cloned into CRISPR-
expressing pX458-DsRed2 and pX458-ECFP70. The sequences of the
specific sgRNAs were as follows (the protospacer adjacent motifs, or
PAM for short, are underlined): TCGTTAGCCATGAGATAATT GGG and

CACCTTTCAAGCCGTGTTTC AGG. RAW264.7 cells possessing large
DNA fragment deletion in rufy3 genomic locus were obtained with the
aidoffluorescent reporters coupledwith the single-cell FACS sorting70.
Primers are listed in Supplementary Table 1. Complemented irufy3 and
nrufy3 cells were obtained by using RAW rufy3 -/- cells transfected
(jetPRIME®, PolyPlus) with plasmids coding for irufy3 (OriGen, CAT#:
MR230833; RAW-iRUFY3) or nrufy3 transcript variants (REF CAT#:
MR207512; RAW-nRUFY3) under geneticin selection. Clones were
selected after western blot analysis for normal expression levels
of RUFY3.

Silencing of arl8b
RAW-iRUFY3werenucleofected (Cell LineNucleofectorTM Kit V, Amaxa
Biosystems) with 100nM siRNA against Arl8b (SMART pool of
4 sequences, Horizon discovery, L-056525-01-0005) and Scramble
non-targeting sequences (Horizon discovery, D-001810-01-20), prior
seeding on coverglasses. Treatment started 24 h after nucleofection.
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gentamicin treatment, infected cells were lysed 2 h or 16 h post-infection (p.i) and
colonies counted on LB agar plates. Each dot represents one independent experi-
ment. One independent experiment represents the mean of three technical repli-
cates (three independents agar plate). Data are presented as mean values +/- SD.
Statistical relevance was established using one-way ANOVA with Holm-Šídák mul-
tiple comparisons test (*p <0.05; ***p <0,001; ****p <0,0001).bNumber of bacteria
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adjacent values. c, d S. enterica was imaged by AICM together with iRUFY3, LAMP1
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ments. Infected cells (Inf) and non-Infected (Ni) are indicated in the same panels.
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Quantitative PCR
TotalmRNA fromcells or tissueswaspurifiedusing theRNeasyMini Kit
(Qiagen). 500ng to 1 µg of total RNA were subjected to reverse tran-
scription using SuperScript II. Each gene transcript was quantified by
SYBR Green method with 7500Fast (Applied Biosystems). The relative
amount of each transcript was determined by normalizing to internal
housekeeping gene expression (gapdh). A complete list of primers can
be found in the Supplementary Table 1.

Immunodetection
All antibodies are listed in SupplementaryData. For immunoblottingof
tissue extracts, organs were taken from euthanized mice and put in
3ml RPMI supplied with 5% FCS and 1% gentamycin. Tissues were
dissociated with gentleMACS™ Octo Dissociator (Miltenyi), followed
by liberase (5mg/ml) and DNase I (150 µg/ml) digestion for 30min at
37 °C. Cell suspensions were centrifuged and pellets were lysed in 1%
triton 100X, 50mM Tris pH7,4, 150mM NaCl, 5mM MgCl2,

complemented with protease inhibitors cocktail (Roche). Lysates were
centrifuged (16.000g, 30min, 4 °C), prior running 20-30 µg of soluble
proteins in sample buffer on 3-15% gradient or 12% SDS-PAGE. Transfer
was performed on PVDF membranes, which were incubated in block-
ing solution (TBS1X +BSA 5%) prior antibody binding and chemilumi-
nescence detection (Pierce). For histology, lungs were taken from
euthanized mice, flush with PBS and put in 10% formol, before inclu-
sion in paraffin resin. 5 µm sections were cut prior eosin and hema-
toxylin or anti-CD3/B220 staining and imaging.

For Flowcytometry analysis, cells were harvested andput in a 96 v
well plates, washed two times with FACS buffer (PBS, FCS 2%, EDTA
2mM). Then, viability and surface staining were done at 4 °C during
30min. Twomorewasheswere performedpriorfixationwith 1% PFA in
FACS buffer. Intracellular staining was performed using BD Cytofix/
Cytoperm kit for 10min at RT using Permwash buffer (BD, 554723).
Data acquisition was performed on Canto II, LSR II UV or LSR Fortessa
Symphony BD cytometers using Diva 8.0.1 and FlowJo_v10 for analysis.
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Immunoprofiling of CD11c Cre-rufy3 loxp/loxp after LPS intraperitoneal
injection was performed on primary splenocytes. Spleens were har-
vested and cells extracted using gentleMACS™ Octo Dissociator (Mil-
tenyi) and enzymedigestion. Surfacemarkers profiling was performed
by flow cytometry as described above, list of markers and antibodies
used for cell identification and phenotyping are described in

Supplementary Table 2. All antibodies and reagents were used
according to CIPHE instructions.

Immunofluorescence confocal microscopy and image analysis
For immunofluorescence confocal microscopy, cells were seeded on
coverslips, fixed with 3.3% PFA and permeabilized 5min with 0.1%
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Triton X-100 or 0.05% Saponin. Before staining, samples were incu-
batedwithblockingbuffer (PBS 1X, 5% FCS, 1%Glycine). Antibodieswas
added on samples in a wet chamber for 1 h at RT or overnight at 4 °C.
Coverslips were washed in PBS three times before secondary staining.
Samples were thenwashed in PBS and purewater prior glassmounting
in ProLong™ Glass Antifade Mountant with nucleic stain (Invitrogen
P36980). For Proximity Ligation Assay (PLA), cells were fixed in 3,3%
paraformaldehyde and permeabilized in 0,1% Triton-X100. Duolink
PLA rabbbit/mouse was used, according to manufacturer instructions
(Merck, DUO92101).

Images were captured with a Zeiss LSM880 and Zeiss LSM780
confocal microscope using a 63x/1.40NA M27 Plan Apochromat oil
objective. High resolution imaging was performed using the Airyscan
module in Zeiss Black v3.9 (Carl Zeiss AG, Jena, Germany). Samples
were excited at 405, 488, 561 and 633 nm individually. Dicroïc mirror
MBS-405 +MBS 488/561/633 was used for laser. Emission filter com-
binations usedwasBP 420-480 + LP 605 / BP495-550 / BP 570-620 + LP
645 for 405, 488, 561, 647 nm laser respectively. Supplemental dicroïc
mirror were used for 561 and 647 nm laser with SBS SP 615 and
SBS LP 660.

Zen Blue 3.5 software was used to process the acquired images.
The Airyscan filtering (Wiener filter associated with deconvolution)
was set to the defaultfilter setting of 6.1 in 2D, prior deconvolution and
pixel reassignment to improve SNR. Levels of co-localization (r Pear-
son and Mander’s Overlap Coefficient) and cytofluorograms were
quantifiedusing JACoPplugin71 andmanualdefinition of theRegions of
Interest (ROI). Final r Pearson coefficient andMOC values corresponds
to the mean of all stacks of the ROI after subtracting the threshold. All
images were acquired in Z-stack mode prior assembly and recon-
stitution in IMARIS 9.9 software to obtain 3D rendering. For some
images, drift was corrected by applying images stabilizer plugin from
Image J software. For each 3D images, frame was put and X, Y, Z axis
were represented at the top left corner. For each image, surfaces were
added on nucleus. Cell shapes were manually added as a white dotted
line for all images. For PLA, spots quantification indicating a proximity
of targets <40 nm. Spots were counted and distance to the nearest
neighbor measured. Voxel gating was extracted from IMARIS 9.9 with
coloc plugin and mask from colocalization region were obtain after
subtracting the threshold.

Clustering index
Toobtain theClustering index, a centroid basedmethodwas usedwith
dedicated macro on ImageJ (https://github.com/Imagimm-CIML/
Determining-cell-polarisation, Macro_polarisation_polar_dispersion.
ijm). Masks on LAMP1, ARL8b and nucleus staining were applied indi-
vidually. The coordinates of the centroid and the distance between
LAMP1/nucleus or ARL8b/nucleus centroid were calculated and nor-
malized on cell radius (calculated from Feret diameter) to obtain a
scorebetween0 to 1 (Clustering index). Polarized cells aredefinedwith
a unique perinuclear site and a score close to 0.5. Conversely, non-

polarized cells with limited accumulation at a unique site will have a
shorter centroid between nucleus and organelle mask with a score
close to 0.

360-ASOD method
360-ASOD (360° Angular Scanningmonitoring Organelle Distribution)
has been filed on Github (Imagimm-CIML/360-Angular-Scanning-
monitoring-Organelle-Distribution (github.com)). A mask on nucleus
was generated to identify the cell centroid. From this centroid, an
image with polar coordinates is created from the ImageJ plugin “Polar
transformer”. From this radial image, a dedicated macro (available in
the github link) was used to extract the angular profile of the orga-
nelles signal summing the signal in the radial direction. This profile is
generated by counting the number of pixels in the radial direction of
the nucleus centroid above an intensity threshold for each angle (from
0 to 360 degrees). Each profile was then normalized on the sum of the
signal to transform the angular profile in probability. Moreover, the
profile was centered to 0 between −180 to 180 degrees on the max-
imum intensity after applying lowess regression to smooth the signal.
The variance was then extracted for each profile and plotted. Finally,
the mean profile for each condition was also generated. A polarized
cell will have a lower variance, meaning a concentration of organelle
over a small range of angles around 0. Conversely, a non-polarized cell
will have a distribution surrounding the nucleus with a high angle
range (ideally a flat curve). Representation of this method is shown in
Supplementary Fig. 2b.

Cell fractionation
For each condition, 15.106 cells were treated in hypotonic solution
(10mM triethanolamine, 10mM acetic acid, 1mM EDTA, 250mM
sucrose, titrated to pH 7.4) for 15min at 4 °C. Cells were lysed by 8
passages in a ball bearing cell cracker at at 4 °C, prior centrifugation to
collect post-nuclear supernatants (PNS). PNS were then centrifuged at
16,000g for 30min to obtain the membrane-enriched protein (Mb)
and cytosolic protein (Cy) fractions.

Cell migration and velocity
Scratch wound healing assays were performed with cells seeded to
confluence in lab-tek 2 chambers (ThermoScientific, Ref 155380). Prior
scratching, cells were treatedwith EBSSmedium for 2 h to synchronize
cell cycle. Scratchingwas performedwith 20-200 µL sterile pipette tips
and wound closure was acquired every hour using a videomicroscope
(Zeiss, Axio-observer, 10x/0.25 NA) over 24 h at 37 °C in 5% CO2. Rate
of wound closure was calculated using Wound Healing Tool plugin on
ImageJ from MRI. Wound closure was determined by the equation:
Wound Closure % = ðAt =0�At =n

At =0
Þ× 100 where At =0 is the initial wound

area, A t =n is the wound area after n hours of the initial scratch,
both in µm².

Velocity of CD11cCre and CD11c Cre-rufy3 loxp/loxp GM-CSF BMDCs was
performed as previously72. Briefly, DCs were taken at day 10 of culture

Fig. 9 | iRufy3 deletion alters antigen processing and presentation in APCs.
a Immunoblot quantification of RUFY3 protein levels in RAW cells stimulated with
IFN-γ (50ng/mL) during 24h. N = 5 independent experiments. The boxplot data
represent medians, interquartile ranges and spikes to upper and lower adjacent
values. b Surface MHC-II quantification by flow cytometry after IFN-γ exposure for
indicated time (50ng/mL) inRAWandRAW rufy3 -/-.N = 5 independent experiments
for all time point in WT condition. For RAW rufy3-/- condition, n = 5 for 0 h, n = 3 for
6 h and n = 4 for 12 h, 18 h and 24 h. The boxplot data represent medians, inter-
quartile ranges and spikes to upper and lower adjacent values. c Percentage of cells
expressing total detectable MHC-II signal (MHC-II +) by microscopy after 24 h of
IFN-γ stimulation. Data are presented as mean values +/- SD. d RT-qPCR quantifi-
cation ofMHC-IIα and β chains, CIITA and IFN-γ receptor-1 transcript fromRAWand
RAW rufy3 -/- stimulated with IFN-γ for 24 h. Each dot is one independent experi-
ment. e Distribution of iRUFY3, MHC-II and LAMP1 by AICM in RAW rufy3 -/- (right)

and RAW-iRUFY3 (left) with or without IFN-γ stimulation. Scale bar 2 µm. Pearson
co-localization coefficients were calculated using Image J. fMonitoring of OVA-DQ
endosomal degradation using a fluorescence dequenching assay in response to
IFN-γ stimulation. N = 4 with two duplicates. Data are presented as mean values +/-
SEM. g RAW and RAW rufy3 -/- stimulated with IFN-γ for indicated times (h) were
treated with the cysteine protease inhibitor LHVS (1 µM) for 6 h prior immunoblot
detection of Ii chain (p41/p31) and associated proteolytic fragments (p10 and p22).
N = 3 independent experiments. h ELISA dosage of Interleukin-2 released after
ovalbumin antigen processing and presentation to DO.11.10 T cells by RAW rufy3-/-

cells and RAW after IFN-γ stimulation. N = 3 independent experiment with two
technical replicates. Statistical relevance was calculated using in: a and e, unpaired
t-test,b andd, multiple unpaired t-test, and c, f and g, two-wayANOVAwith Tukey’s
multiple comparisons test. For all panels: *p <0,05; **p <0,01; ***p <0,001;
****p <0.0001. WT means Wild Type.
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and put (iDCs) in microfluidic channels (5 × 5 µm) or challenged with a
30min pulse of 10 ng/mL LPS (LPS-DCs) prior washing and channel
introduction. Hoestch dye was added to stain nuclei and follow cells.
Imageswere acquired every 2min for over 16 h at 37 °C in 5%CO2,with
a 20X objective video microscope (Zeiss, Axio-observer). Data are
shown as the median of velocity.

In vitro Salmonella infection
S. enterica infection was performed as described42. Briefly, Control,
complemented cells and RAW rufy3-/- cells were seeded in six well
plates with 1.106 cells per well. S. enterica strains were treated
30min on ice with mouse serum and added at MOI 20. After pha-
gocytosis, gentamicin was added at 100 µg/ml during 1 h and 5 µg/
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ml for the rest of the experiment at 37 °C. Infected cells were lysed
2 h and 16 h after infection by adding 0,1% triton to harvest bacteria.
The lysate was diluted in cascade fire times with a factor of 10 prior
plating on agarose. The drop was dried at room temperature and
the number of colonies were counted for each dilution factor after
24 h. The final replication factor was expressed as ratio of colonies
numbers at 16 h p.i. on the numbers at 2 h p.i.

Antigen processing and presentation assay
Ovalbumin-DQ degradation was followed using 1.105 RAW264.7
treated or not with IFN-γ for 18 h. Ovalbumin conjugate with BODIPY
was added at 100 µg/ml. Negative control was kept at 4 °C on ice
during OVA-BODIPY internalization to determine background
fluorescence. After ovalbumin processing and BODIPY dequench-
ing, cells were washed with PBS and processed for flow cytometry.
Final BODIPY-MFI was calculated using Xn37�C � X037�C

� ��
Xn4�C � X04�C

� �
where “Xn”, “X0” are conditions X after nmin of

ovalbumin processing at 37 °C or 4 °C. Antigen presentation was
performed using specific DO11.10 T cells. 3.104 RAW 264.7 (RAW)
cells were put in 96 V-wells plate after 20 h IFN-γ stimulation or not.
After PBS, washes, ovalbumin was added at 5mg/mL or 10mg/mL
for 8 h to 16 h. As positive control, OVA peptide 323-339 alone was
added to the cells at 100 µg/mL for 8 h. RAWs were washed with PBS
and DO11.10 T cells added at 5:1 ratio (1,5.105 T cells) for culture
overnight at 37 °C and 5%CO2. Culture supernatants were harvested
and IL-2 concentration was measured by ELISA (Invitrogen, #
BMS601) and colorimetric reading at 450 nm.

Statistics
All statistics were done using Prism 9 software. The most appropriate
statistical test was chosen according to each set of data, as indicated in
figure legends with p-values *p <0.05; **p <0.01; ***p < 0.001;
****p < 0.0001.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting this study are presented in the manuscript
and supplementary information. Rawdata anduncroppedwestern blots
are available in the Source Data file data are provided with this paper
(https://doi.org/10.6084/m9.figshare.22725707). Gene description and
sequences are available from NCBI (https://www.ncbi.nlm.nih.gov).
Gene expression profiles from immune cells are available from the
Immunological Genome project. https://www.immgen.org. Microscopy
data are available on reasonable request to the corresponding
author. Source data are provided with this paper.
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