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Abstract

An active sonar system consists of a source emitting a sound pulse (ping)
and a receiver listening to the reflection of the wave on a target, known as the
echo. Such a system is further divided into two distinct configurations. The
first one, named monostatic, is made up of a collocated source and receiver,
while the second one, referred to as bistatic, is based on a non-collocated
source and receiver. To this extent, a Multistatic Sonar Network (MSN) is
thus comprised of a set of sources and receivers deployed across a given Area
of Interest (AoI), which, taken pairwise, form sonar systems in monostatic
and/or bistatic configuration. In this paper, we therefore propose an efficient
two-phase greedy heuristic to solve the Area Coverage (AC) problem in the
scope of MSNs, a special case of Wireless Sensor Networks (WSNs), while
taking into account existing coastlines. For this problem, the objective is to
determine the optimal spatial layout of the MSN, i.e. the one that maximize
the overall coverage of the AoI with regard to a limited number of sensors
and a given probabilistic detection model. Furthermore, we use a Mixed
Integer Linear Program (MILP) from the literature as a reference for the
numerical experiments conducted on a dataset of diversified instances. The
latter were specifically derived from Digital Elevation Models (DEMs) of
AoIs selected throughout the globe and in such a way as to encompass a
wide spectrum of peculiar geometric situations.
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1. Introduction

In the context of Anti-Submarine Warfare (ASW), sonar systems have
been used extensively for decades as an effective means of searching, locating
and tracking underwater threats. The expertise on these systems is there-
fore of importance for ASW decision-makers and the subject has naturally
known a growth of interest in the literature throughout the years. In par-
ticular, the question of the optimal deployment of these sensors for coverage
problems forms a flourishing research area, at the very forefront of the work
conducted herein.

A sonar, acronym derived from “Sound NAvigation And Ranging”, is
a detection system that underwent considerable developments through the
catalytic effect of the two successive World Wars. It relies substantially on
the fact that acoustic waves propagate better underwater than any other
type of physical wave (see (Urick, 1983; Cox, 1974; Lurton, 2002; Ainslie,
2010) for a more in-depth introduction to the subject). More specifically,
there are two main types of sonar systems: passive and active. A passive
sonar system is made up of a receiver listening to sounds radiated by a tar-
get, whereas an active sonar system consists of source emitting a sound pulse
(ping) and a receiver listening to the reflection of the wave on the target,
known as the echo (Urick, 1983). Note that the term transmitter is used
interchangeably when referring to a source and that the abbreviations Tx
and Rx are frequently used in the literature to designate a transmitter and
a receiver respectively (Ngatchou et al., 2006; Washburn and Karatas, 2015).

Within the framework of this study, we focus solely on the case of active
sonar systems and, to be more precise, we confine ourselves to the case of
sonobuoys, a portmanteau of sonar and buoy. These are disposable acoustic
units most often dropped in cylinder-shaped containers from an airborne
carrier and which unfold upon impact with the water surface (Holler et al.,
2008). That is, while the radio transmitter remains afloat, the core of the
system is submerged at a predetermined depth that can range from a few
dozen meters to several hundred meters depending on the use case (Holler
et al., 2008; Iqbal et al., 2020). As mentionned in (Holler et al., 2008; Ozols
and Fewell, 2011; Iqbal et al., 2020), a sonobuoy can be a source-only (e.g.
ALFEA), a receiver-only (e.g. DIFAR) or a combined source-receiver (e.g.
DICASS), commonly referred to as a post in the literature (Washburn, 2010;
Ozols and Fewell, 2011; Washburn and Karatas, 2015; Craparo et al., 2019).
Hence, as part of an ASW mission, several of these buoys may be deployed
on a given Area of Interest (AoI) to form a surveillance network, thus acting
as spotlights amidst the gloom in search of potential targets transiting in the
vicinity or as a mere deterrent measure. The simplified operational context
depicted here is illustrated in Figure 1 with a schematic representation of
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the DICASS sonobuoy (Holler et al., 2008).

Active sonar systems are further divided into two distinct configurations
depending on the source and receiver placement (Urick, 1983; Washburn,
2010; Hervé, 2011). The most prevalent configuration is the monostatic one
in which a single sensor performs both the transmission and reception func-
tions: the source and the receiver are said to be collocated (i.e. a post).
In contrast, when the emission and the reception are carried out by two
distinct sensors, the configuration is then referred to as bistatic: the source
and the receiver are said to be non-collocated, or delocalized. These two
configurations are geometrically portrayed in Figure 2.

To this extent, a Multistatic Sonar Network (MSN) is thus comprised
of a set of sources and receivers deployed across a given AoI, which, taken
pairwise, form sonar systems in monostatic and/or bistatic configuration.
A network of this kind presents numerous advantages over the inherently
more restrictive monostatic sonar networks (Cox, 1989). For example, it be-
comes a much more arduous task for a potential threat to counter-detect a
receiver since it remains silent and it may be deployed as a standalone unit.
Also, given that receivers are cheaper than sources (Amanipour and Olfat,
2011; Washburn and Karatas, 2015), it is therefore possible to cover larger
areas at a reduced cost compared to a monostatic sonar network where, by
definition, as many sources as receivers must be deployed. That being said,
the chief disadvantage of MSNs lies in the complex and unusual geometry
of the coverage area (Cox, 1989; Karatas, 2013) induced by the use of sonar
systems in bistatic configuration. This makes the performance evaluation of
such a network mathematically more challenging. In another vein, it is also
important to mention that MSNs share a certain proximity with Multistatic
Radar Networks (MRNs), as they relies on similar mathematics (Washburn,
2010).

In the literature related to the deployment in Wireless Sensor Networks
(WSNs), MSNs being a special case of WSNs, we find the following three
main types of coverage problems: “Barrier Coverage (BC)”, “Point (target)
Coverage (PC)” and “Area (blanket) Coverage (AC)” (see (Wang, 2011;
Khoufi et al., 2017; Elhabyan et al., 2019) for an extended overview of these
problems). Note that in some papers related to WSNs, the AoI is some-
times indiscriminately termed Region of Interest (RoI) (Mohamed et al.,
2018) or Field of Interest (FoI) (Tripathi et al., 2018). In this paper, we
therefore propose an efficient two-phase greedy heuristic to solve the AC
problem in the scope of MSNs while taking into account existing coastlines.
For this problem, the objective is to determine the optimal spatial layout of
the MSN, i.e. the one that maximizes the overall coverage (in the sense of
insonification) of the AoI with regard to a limited number of sensors and a
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Figure 1: A simplified illustration of the operational context.

Figure 2: Monostatic (left) and bistatic (right) configurations.
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given probabilistic detection model. This could be either for the purpose of
searching a target over a large area, or to protect the vicinity of some High
Value Units (HVUs), for example. The overall coverage corresponds here to
what can be found under the generic term Measure of Effectiveness (MoE)
in some of the MSN-specific literature (Been et al., 2007; Strode et al., 2012).

More precisely, as done in (Craparo and Karatas, 2020; Fügenschuh
et al., 2020), we approach the AC problem by reducing it to a PC-type
problem in order to have a discrete approximation of the surface to be cov-
ered. That is to say, as illustrated in Figure 3, an AoI is first identified
(a), isolated (b) and then discretized (c) by means of a Digital Elevation
Model (DEM) (Guth et al., 2021), i.e. a regular rectangular grid where
the maritime cells are the ones with an elevation less than or equal to zero
(arbitrary choice). Then, we place a Point of Interest (PoI) (Khoufi et al.,
2017), called here a ”target” to be consistent with the literature (Craparo
et al., 2017), and a deployment position in the center of each maritime cell
of the resulting grid (d). Note that a target refers to a physical position that
we wish to monitor (whose location is known beforehand) and not to an ob-
ject in the strict sense. Indeed, having no information on the real target(s),
these are dummy/control targets allowing us to evaluate the performance of
the network on a discrete set of positions (neglecting the orientation of the
target). In this manner, a cell is said to be covered if and only if the target
in its center is considered as detected (or covered) by the current network
(see Section 3 for more details), which is something that is regularly done
in the literature related to WSNs (Khoufi et al., 2017).

Moreover, if greater precision is required, the resolution of the current
grid may be artificially increased by performing an upsampling procedure,
i.e. by subdividing each cell until the desired resolution is reached and then
performing an interpolation (e.g. nearest neighbor, bilinear or cubic). Or,
in a similar way, it is possible to reduce the resolution of the current grid by
performing a downsampling procedure, i.e. by dragging a filter of fixed size
over the grid and aggregating neighboring cells using an operator (e.g. max,
min or mean). This procedure could make it possible to tackle larger areas,
taking care however to remain consistent with the sonar detection range (i.e.
to have at least one target in range).

Now, suppose that we consider only posts (source and receiver collo-
cated) and that we do not take into account the interactions between posts,
then this restricted problem can be seen as a Maximum Coverage Location
Problem (MCLP) (Church and Revelle, 1974; Megiddo et al., 1983) where
the facilities are the sensors and the clients the different targets. The latter
problem has been proved NP-Hard (Megiddo et al., 1983) and our problem
is at least as complicated because of the interactions between the facilities
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Figure 3: Transformation of an AC-type problem to a PC-type problem.

(the sensors). As a result, exact techniques are not suitable to handle real
life instances, thus motivating the derivation of a heuristic for the problem
at hand.

Regarding the assumptions considered in the scope of this study, we
first consider that the sensors and targets are stationary (refer to (Grasso
et al., 2013) for work on the deployment of sonobuoys with oceanic drift in a
monostatic case) and evolve in a two-dimensional space with homogeneous
environmental conditions. Additionally, we require that at most one source
and at most one receiver may be deployed on a given deployment position
(which would then correspond to a post). Lastly, the sensors are assumed
to be homogeneous (identical performances) and omnidirectional, which is
relevant to our case study: the sonobuoys.

The contributions of this research work can be summarized below:

• Creation and distribution of a benchmark of 27 instances derived from
pre-processed open access elevation data (bathymetric and altimetric
measurements).

• Proposal of the first heuristic, to the best of our knowledge, that solves
Area Coverage (AC), Barrier Coverage (BC) and Point Coverage (PC)
problems for MSNs while taking into account coastlines.
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• Taking into account binary and probabilistic models as well as the
direct blast effect often neglected in the literature.

• Comparison of this heuristic with the best model in the literature
which has been re-implemented in this paper.

• Construction of an original visualization tool for the solution output.

The paper is organized as follows. Section 2 contains a literature review
on coverage problems in multistatic networks. Section 3 consists of a formal
description of the problem considered, including some notions of multistatic
detection theory and how coastlines are handled. Section 4 is dedicated to
the introduction of a Mixed Integer Linear Program (MILP) from the liter-
ature while Section 5 concerns the two-phase greedy heuristic developed as
part of this work. Section 6 contains numerical experiments on the heuristic
using the MILP model as a reference and a state-of-the-art solver. Finally,
Section 7 contains a conclusion of the work that has been carried out so far
as well as some perspectives for further research.

2. Literature Review

Area Coverage (AC). Ngatchou et al. (Ngatchou et al., 2006) use a multiob-
jective Particle Swarm Optimization (PSO) algorithm to determine sensor
placement by maximizing coverage and minimizing the number of sensors
required simultaneously. DelBalzo and Stangl (DelBalzo and Stangl, 2009)
use a genetic algorithm to optimize both the placement of individual sen-
sors (depth included) and the emission times of individual sonobuoys in a
non-homogeneous environment (known as SCOUT). Ozol and Fewell (Ozols
and Fewell, 2011) studied a total of 27 different geometric patterns in open
water (i.e. no coastlines) to find the most efficient one for large area cover-
age. Strode et al. (Strode et al., 2012) use a genetic algorithm to determine
the positions of various sensors. Washburn and Karatas (Washburn and
Karatas, 2015) derive an analytical theory to predict the probability of de-
tection based on randomly deployed sensors and use it to determine optimal
patterns. Building on this work, Karatas and Craparo (Karatas and Cra-
paro, 2015) use simulations to quantify the impact of the direct blast effect
on coverage. Karatas et al. (Karatas et al., 2016) use simulations to quan-
tify the coverage of a mobile source performing parallel scans in a stationary
receiver field. Fugenschuh et al. (Fügenschuh et al., 2020) propose several
models with different linearizations and compare them in the context of two
problems: maximizing the total area covered with a limited number of sen-
sors (problem studied here) and minimizing the economic costs associated
with the deployment of the various sensors in order to cover the entire area.
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Barrier Coverage (BC). In MRNs, Gong et al. (Gong et al., 2013) propose a
method for optimal radar placement on a line segment in order to maximize
the worst-case intrusion detectability. Li et al. (Li et al., 2021) study the
Circular Barrier Coverage (CBC) problem and propose a method based on
the “equipartition strategy”, with the objective of determining the optimal
deployment patterns of multistatic radar for a sub-problem. The latter
patterns are then used through an Integer Linear Program (ILP) and an
exhaustive method to address the global problem. Li et al. (Li et al., 2022)
propose an ILP and exhaustive search to determine multiple unequal-width
barrier coverages of the AoI (with different deployment sequences).

Point Coverage (PC). Craparo et al. (Craparo et al., 2017) propose an algo-
rithm named Divide Best Sector (DiBS) for the placement of a single source
when a number of receivers are already deployed (with an iterative extension
for the placement of multiple sources). This last paper is essentially based
on the works present in (Kuhn, 2014). (Craparo et al., 2019) propose for
the first time the optimal placement of sources and receivers for this type of
problem in open water (without coastlines). They propose two ILPs (DISC-
LOC-M and DISC-LOC-ENUM) as well as two heuristics: Adapt-LOC and
Iter-LOC, based on a procedure named LOC-GEN-II, which is an enhanced
version of LOC-GEN (Craparo and Karatas, 2018) that may be found ini-
tially in (Hof, 2015). Craparo and Karatas (Craparo and Karatas, 2020)
propose an exact OPT-LOC solution method and a greedy GREEDY-LOC
heuristic for source placement when receivers are already deployed. This is
an extended form of the work of Craparo and Karatas (Craparo and Karatas,
2018).

3. Problem Formulation

3.1. Formal definition

Let m ∈ N+ be the number of maritime cells in the grid. We then have
T = {t1, . . . , tm} ⊆ R2 the set of targets positions and E = {e1, . . . , em} ⊆
R2 the set of deployment positions, i.e. a target and a deployment position in
the center of each maritime cell. Besides, we also have ns ∈ N+ and nr ∈ N+

corresponding respectively to the number of sources and receivers available.
In order to compare with the literature, we directly limit the number of
sources and receivers, but the extension to a limited number of buoys that
are source-receiver, source-only and receiver-only is rather straightforward.

An admissible solution for the problem under consideration is then a
network ω = (S,R) with S ⊆ E the set of sources positions and R ⊆ E the
set of receivers positions such that |S| ≤ ns and |R| ≤ nr. The set of all
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possible networks (admissible solutions) is therefore

Ω = {(S,R) | S,R ⊆ E ∧ |S| ≤ ns ∧ |R| ≤ nr} . (1)

As a reminder, a sonar system is defined as a source-receiver pair in
monostatic or bistatic configuration. Thus, the set of all possible sonar
systems is

Ξ =
{
(s, r) ∈ E2

}
. (2)

By extension, for a given network ω ∈ Ω, we write Ξω ⊆ Ξ the set of all
sonar systems of ω. Naturally, we have |Ξω| ≤ nsnr.

In addition, we note P
(s,r)
d (t) the instantaneous detection probability of

a target t ∈ T by a sonar system (s, r) ∈ Ξ and Pω
d (t) the cumulative de-

tection probability of a target t ∈ T by a network ω ∈ Ω, here calculated as
the probability that at least one of the sonar systems (s, r) ∈ Ξω detects the
aforementioned target (Subsection 3.2 will describe the computation of the
detection probabilities). Furthermore, as done in (Fügenschuh et al., 2020),
we consider that a target t ∈ T is detected by a network ω ∈ Ω when the
cumulative detection probability Pω

d (t) is greater than or equal to a thresh-
old ϕ ∈ [0, 1] set upstream and generally close to 1 (e.g. ϕ = 0.95).

The objective function f used to evaluate a network ω ∈ Ω here corre-
sponds to the proportion of covered cells (i.e. detected targets) or, in other
words, the coverage rate. It is defined as

f : Ω→ [0, 1]

ω 7→ 1

|T |
∑
t∈T

I (Pω
d (t)) , (3)

where

I(x) =

{
1 if x ≥ ϕ,
0 otherwise.

(4)

Note that it is possible to weight the targets in such a way as to accen-
tuate the importance of some cells over others by introducing a reward for
the detection of the target t ∈ T (and by extension for the coverage of the
cell in which it is located). This may make sense when protecting HVUs,
for example. On the other hand, this weighting can also be seen as a way
to model a probability distribution of the target presence in the AoI, which
might make sense when searching for a target (supposing prior knowledge).
However, in the remainder of this study and for the sake of simplicity, we
assume a unitary reward for all targets.

Finally, we look for the optimal network ω∗ ∈ Ω, i.e. the one maximizing
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the objective function f :

ω∗ = argmax
ω∈Ω

f(ω) . (5)

3.2. Multistatic detection theory

In the case of a sonar in bistatic configuration, let dt,s ∈ R+ the distance
separating the target t ∈ T from the source s ∈ E and dt,r ∈ R+ the distance
separating the target t ∈ T from the receiver r ∈ E. Then, by solving the
active sonar equations for the distance-dependent transmission loss term
while neglecting frequency-related absorption losses gives us the following
equality (Urick, 1983; Cox, 1989):

dt,sdt,r = ρ20 , (6)

where ρ0 (in km) is referred to as Range of the Day (RoD) (Fewell and
Ozols, 2011), range of the moment (Abbot and Dyer, 2002) or r50 (Ainslie,
2010). It is defined by convention (Jensen et al., 2011) as the distance at
which the probability of detecting a target is 50% for a sonar system in a
monostatic configuration and in a given environment.

More precisely, this last equality defines isocontours of constant detec-
tion probability describing what is commonly called “Cassini ovals” (Cox,
1989; Karatas, 2013) and whose interior region is defined by the set of points
for which the probability of detection is greater than or equal to 50%. As
illustrated in Figure 4, the different shapes of a Cassini oval can be classified
into several categories according to the ratio

ds,r
ρ0

, where ds,r is defined as the
inter-sensor spacing. First, for a sonar system in monostatic configuration,
i.e. when

ds,r
ρ0

= 0, we obtain a circle centered on the sonar system (i.e. a
post) and of radius ρ0 (a). Secondly, for a sonar system in bistatic config-

uration, several cases may be considered. For
ds,r
ρ0
≤
√
2, we get an ellipse

(b), while when
√
2 <

ds,r
ρ0

< 2, we get a a kind of bone (peanut) shape (c).
Furthermore, a particular shape called Bernoulli lemniscate is reached when
ds,r
ρ0

= 2 (d), before finally ending on two disjoint ovoids when the sensors

are far enough from each other, i.e. whenever
ds,r
ρ0

> 2 (e,f).

Then, as argued by Fewell and Ozols (Fewell and Ozols, 2011), the link
with the monostatic case is made by introducing the distance in monostatic
equivalent ρt,s,r =

√
dt,sdt,r. This way, it is then possible to refer to the

detection curves obtained for a sonar in monostatic configuration and to
generalize it by allowing the source and the receiver to be separated from
one another. Within the scope of this study, we will use schematic detec-
tion curve chosen to model many different situations and such that we have

P
(s,r)
d (t) = 0.5 when ρt,s,r = ρ0 to be in line with the RoD definition. More

10



Figure 4: Typical Cassini ovals.

realistic detection curves are generally non-monotonous (Fewell et al., 2008;
Fewell and Thredgold, 2009; Fewell and Ozols, 2011), due amongst other
things to the refraction of acoustic rays in the different strata of the water
column and to the seabed topology.

That being said, and although there are other schematic detection curves
in the literature, in this paper we will restrict ourselves to the class of func-
tions used by Fewell and Ozols (Fewell et al., 2008; Fewell and Ozols, 2011)
and named Fermi because of its proximity to the Fermi–Dirac distribution
(McDougall and Stoner, 1938). It is a logistic function (sigmoid) used to
compute the instantaneous detection probability of a target t ∈ T by a sonar
system (s, r) ∈ Ξ and it is defined as

P
(s,r)
d (t) =

1

1 + 10

( ρt,s,r
ρ0

−1

b

) . (7)

For this class of function, the parameter b ∈ R+ called diffusivity pa-
rameter enables to control the rate at which the detection probability fades
as ρt,s,r increases. Moreover, when b→ 0, this probabilistic (diffuse) model
approaches a deterministic (binary) model called “definite-range law” or
“cookie-cutter” detector in the MSN literature (Fewell and Ozols, 2011).
These detection models are illustrated in Figure 5 where the detection prob-

ability P
(s,r)
d (t) is expressed as a function of the distance in monostatic

equivalent ρt,s,r multiple of the RoD ρ0.

Finally, let us consider a network ω ∈ Ω and assume that each detec-
tion is stochastically independent from one another. Hence, the cumulative
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Figure 5: Schematic reference curves for a sonar system in monostatic configuration.

probability of detection, here expressed as the probability that at least one
of the sonar systems (s, r) ∈ Ξω detects a target t ∈ T , is defined as

Pω
d (t) = 1−

∏
(s,r)∈Ξω

(
1− P

(s,r)
d (t)

)
, (8)

which is equal to one minus the probability that none of the sonar sys-
tems (s, r) ∈ Ξω detects the target t ∈ T .

Nevertheless, in practice, there is a masking zone between the source and
the receiver within which there is no detection (Cox, 1989; Fewell and Ozols,
2011; Karatas and Craparo, 2015), also called “dead zone” and ellipsoidal in
shape. This is known as the direct blast effect and it occurs when the signal
reflected by a target (the echo) arrives at the receiver at the same time as a
portion of the ping coming directly from the source and is therefore partially
masked. The size of the blind zone is directly related to the transmission
time τ ∈ R+ (in seconds) of the ping traveling at celerity c ∈ R+ (in km·s−1).
Let rb ∈ R+ equal to half the transmitted “pulse length” or “pulse width”,
i.e. rb = cτ

2 (in km) (Fewell and Ozols, 2011). Hence, without going into

the mathematical details, there will be no detection (P
(s,r)
d (t) = 0) if

dt,s + dt,r < ds,r + 2rb . (9)

Many papers in the literature do not take this effect into account (Cra-
paro et al., 2017; Craparo and Karatas, 2018; Craparo et al., 2019; Craparo
and Karatas, 2020), as it can be greatly reduced through signal processing
(or “pulse compression”), as shown in (Cox, 1989; Fewell and Ozols, 2011).
However, the heuristic introduced in this paper will be compatible with the
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consideration of the direct blast effect.

3.3. Coastline management

For coastline management, the idea is based on the principle exposed by
Amanatides et al. in (Amanatides and Woo, 1987). Indeed, these authors
propose an efficient algorithm to discretize a segment through a grid in the
context of ray-tracing, heavily used in image synthesis. Thus, in our case,
for a given target t ∈ T and a sonar system (s, r) ∈ Ξ, it is sufficient to draw
two segments, one between the source and the target and the other between
the receiver and the target. If one of the two segments intersects a cell with
a positive elevation (terrestrial cell), then the probability of detection is set

to zero (P
(s,r)
d (t) = 0).

4. Mathematical Programming Formulation (MILP)

In the paper by Fügenschuh et al. (Fügenschuh et al., 2020), two math-
ematical formulations are presented as being the most efficient without one
standing out from the other for the AC problem herein under consideration.
More specifically, these are the two formulations based on the linearizations
of Oral and Kettani (Oral and Kettani, 1992) and Chaovalitwongse et al.
(Chaovalitwongse et al., 2004). Although there are other formulations and
sometimes several variants, only the formulation relying on the linearization
of Oral and Kettani in its most efficient variant noted OK1-S will be intro-
duced in the following.

First, for a network ω ∈ Ω, let us recall that a target t ∈ T is considered
detected if the cumulative probability of detection Pω

d (t) is greater than or
equal to the threshold ϕ:

Pω
d (t) = 1−

∏
(s,r)∈Ξω

(
1− P

(s,r)
d (t)

)
≥ ϕ . (10)

Following an approach proposed by Prim (Prim, 1957), this latter con-
straint may be linearized by taking its logarithm as follows:∑

(s,r)∈Ξω

log(1−ϕ)

(
1− P

(s,r)
d (t)

)
≥ 1 , (11)

where log(1−ϕ)

(
1− P

(s,r)
d (t)

)
corresponds to the individual contribution

of the sonar system (s, r) ∈ Ξω in the detection of the target t ∈ T .

Then, we set ∀e ∈ E,∀t ∈ T

Le,t =
∑
e′∈E

log(1−ϕ)

(
1− P

(e,e′)
d (t)

)
, (12)
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where Le,t corresponds to an aggregation of the individual contributions

log(1−ϕ)

(
1− P

(e,e′)
d (t)

)
for a fixed deployment position e ∈ E (which may

accommodate a source) and target t ∈ T . This is the OK1-S variant, as the
aggregation is done by fixing a deployment position that may accommodate
a source. Note that, alternatively, if the aggregation of individual contribu-
tions is done by fixing a position e′ ∈ E that may accommodate a receiver,
we thus obtain the variant called OK1-R by the authors (Fügenschuh et al.,
2020).

Furthermore, we introduce the following decision variables: xt ∈ {0, 1}
with xt = 1 if the target t ∈ T is detected, se ∈ {0, 1} with se = 1 if a source
is deployed on the position e ∈ E and, finally, re ∈ {0, 1} with re = 1 if a
receiver is deployed on the position e ∈ E.

We also have ∀e ∈ E,∀t ∈ T , the auxiliary variable ze,t ∈ R+ which can
be defined as

ze,t =

(
Le,t −

∑
e′∈E

log(1−ϕ)

(
1− P

(e,e′)
d (t)

)
re′

)
se . (13)

Since
∑

e∈E
∑

e′∈E log(1−ϕ)

(
1− P

(e,e′)
d (t)

)
sere′ =

∑
e∈E Le,tse − ze,t, it

is then sufficient to linearize this auxiliary variable to only take into account
the individual contributions when sere′ = 1, ∀(e, e′) ∈ E2.

Finally, the Mixed Integer Linear Programming (MILP) named OK1-S
is written as follows:

maximize
1

|T |
∑
t∈T

xt (14)

subject to
∑
e∈E

(Le,tse − ze,t) ≥ xt ∀t ∈ T (15)

ze,t ≥ Le,tse −
∑
e′∈E

log(1−ϕ)

(
1− P

(e,e′)
d (t)

)
re′ ∀e ∈ E,∀t ∈ T (16)∑

e∈E

se ≤ ns (17)∑
e∈E

re ≤ nr (18)

xt ∈ {0, 1} ∀t ∈ T (19)

se ∈ {0, 1} ∀e ∈ E (20)

re ∈ {0, 1} ∀e ∈ E (21)

ze,t ∈ R+ ∀e ∈ E,∀t ∈ T (22)
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To understand this modeling, we must distinguish two cases.

• In the first case, for a fixed deployment position e ∈ E and target
t ∈ T , we assume that se = 0. If se = 0, then the auxiliary variable ze,t

is bounded inferiorly by −
∑

e′∈E log(1−ϕ)

(
1− P

(e,e′)
d (t)

)
re′ in (16).

This last term being strictly negative, we thus have ze,t ≥ 0 by (22).
Moreover, knowing that we wish to maximize the number of detected
targets in (14), we therefore try to maximize

∑
e∈E(−ze,t) in (15),

which is the same as minimizing ze,t and thus to obtain ze,t = 0. That
is, if se = 0 then no individual contributions is taken into account,
which is correct because we have sere′ = 0,∀e′ ∈ E.

• In the second case, suppose that se = 1 for a fixed deployment posi-
tion e ∈ E and target t ∈ T . If se = 1, then the auxiliary variable

ze,t is bounded inferiorly by Le,t−
∑

e′∈E log(1−ϕ)

(
1− P

(e,e′)
d (t)

)
re′ in

(16). Now, this last term being strictly positive, we have ze,t ≥ Le,t −∑
e′∈E log(1−ϕ)

(
1− P

(e,e′)
d (t)

)
re′ and, as before, by (14) and (15), we

then have ze,t = Le,t−
∑

e′∈E log(1−ϕ)

(
1− P

(e,e′)
d (t)

)
re′ since we try to

minimize ze,t. This gives us Le,t−ze,t =
∑

e′∈E log(1−ϕ)

(
1− P

(e,e′)
d (t)

)
re′

in (15), which is equivalent to accounting for individual contributions
when sere′ = 1,∀e′ ∈ E.

The deployment constraints (17) and (18) compel the solution to use
only as many sources (ns) and receivers (nr) as available. The constraints
(19), (20) and (21) are integrity constraints on the decision variables and
(22) a positivity constraint on the auxiliary variable.

5. Heuristic

In this section, we will present the two-phase greedy heuristic designed
to construct iteratively an admissible solution (a network) of good quality
and in a reasonable time for the AC problem. We begin first with the näıve
version of the heuristic and then the improved version which consists of a
succession of various improvements. The decision-making criteria used for
these heuristics is identical to that used in the MILP formulation: maximiz-
ing the area covered with a limited, known beforehand, number of sensors
(hard constraint). Furthermore, given that there are no economic costs for
sources or receivers, it makes perfect sense to deploy them all as long as the
area is not fully covered. At each iteration, we are only interested in the
incremental gain in coverage rate resulting from the deployment of a sensor.
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5.1. Näıve Approach

In the first phase, we place as many posts as possible, i.e. min(ns, nr)
collocated source–receiver pair. In particular, at each iteration, we place one
source and one receiver on the deployment position that locally maximize
the coverage rate. At the end of this phase, if we still have sensors to be
placed, then we have only sources or receivers.

During the second phase, we place as many sensors as possible of the
remaining type, i.e. max(ns, nr)−min(ns, nr). Following the same principle
as before, at each iteration, we place either a source or a receiver on the
deployment position that locally maximize the coverage rate (see algorithm
1 for details).

The advantage of proceeding in this way is that it is then sufficient
to probe only one position at a time, which gives us a time complexity
of O(|E||T ||S||R|) against a complexity of O(|E|2|T ||S||R|) if we intended
to place non-collocated source-receiver pair at each iteration. Hence, with
m = |T | = |E| (one deployment position and one target per maritime cell)
and assuming that |S| + |R| ≪ m, we obtain a greedy heuristic with time
complexity of O(m2).

The heuristic stops when all the sensors have been deployed, this is the
primary stopping criterion. Other stopping criteria are also possible such as
a maximum computational budget Tmax ∈ R+ (in seconds) and a minimum
marginal gain σ ∈ [0, 1], i.e. the proportion of new covered cells (detected
targets) at each iteration.

5.2. Improved Approach

The improved version of the heuristic consists of a succession of improve-
ments explained hereafter. We draw attention to the fact that the improve-
ments will be given here in a more general case, i.e. where the deployment
positions do not necessarily coincide with the target positions. However,
when possible, specific improvements will be given for the particular case
that is addressed here. The complete pseudo-code is available in Appendix
A.

5.2.1. Memöızation

Knowing that we iteratively add either a post or a single sensor to the
network ω ∈ Ω, it is then redundant to recompute all the detection prob-
abilities for each of the sonar systems (s, r) ∈ Ξω. Indeed, if we introduce
a matrix P

ω
d ∈M1,|T |([0, 1]) storing the non-detection probabilities for each

of the targets t ∈ T by the current network ω ∈ Ω, it is then sufficient to
compute only the contributions related to the newly formed sonar systems.
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Algorithm 1: Two-phase greedy heuristic: näıve version

1 Initialization
2 S ← ∅; R← ∅; ω ← (S,R)
3 Phase 1 ; /* Adding posts (i.e. collocated source-receiver pairs) */

4 for i← 1 to min(ns, nr) do

5 Θ
s/r
ω ← {(S ∪ {e}, R ∪ {e}) | e ∈ E ∧ e /∈ S ∩R}

6 ω ← argmax
ω′∈Θs/r

ω

f(ω′)

7 Phase 2 ; /* Adding single sensors (i.e. sources or receivers) */

8 for i← 1 to max(ns, nr)−min(ns, nr) do
9 if ns > nr then

10 Θs
ω ← {(S ∪ {e}, R) | e ∈ E ∧ e /∈ S}

11 ω ← argmax
ω′∈Θs

ω

f(ω′)

12 else if ns < nr then
13 Θr

ω ← {(S,R ∪ {e}) | e ∈ E ∧ e /∈ R}
14 ω ← argmax

ω′∈Θr
ω

f(ω′)

15 return ω

Thus, for Phase 1, given a network ω = (S,R) ∈ Ω and assuming we
wish to add a post on a deployment position e ∈ E, we then have

ωs/r ← (S ∪ {e}, R ∪ {e}) , (23)

P
ωs/r

d (t) = 1−

P
ω
d (t)

∏
(s,r)∈Ξωs/r

\Ξω

(
1− P

(s,r)
d (t)

) . (24)

The reasoning is similar for Phase 2. The spatial complexity of this opti-
mization is O(|T |) and it reduces the time complexity from O(|E||T ||S||R|)
to O(|E||T |(|S| + |R|)) for Phase 1 and O(|E||T ||S|) or O(|E||T ||R|) for
Phase 2, depending on the type of remaining sensors (if any). This improve-
ment has therefore a non-negligible impact when the number of sensors
becomes significant compared to the number of maritime cells.

5.2.2. Precomputations

All the collisions with obstacles are precomputed and stored in a matrix
O ∈ M|T |,|E|({0, 1}). We then have Ot,e = 1 if there is an obstacle between
the target t ∈ T and the position e ∈ E and Ot,e = 0 otherwise. The space
complexity of this matrix is therefore O(|T ||E|) and it is possible to use bits
to store the information and thus reduce the amount of memory required.
Note that there is an interesting symmetry to be exploited which can halve
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the collision precomputations, i.e. Otj ,ei = Oti,ej ∀(i, j) ∈ J1,mK2, i ̸= j.
However, it only works if the deployment positions coincide with the target
positions, which is the case here, but not in a more general case.

5.2.3. Partial updates

It turns out to be unnecessary to update the probability of detection
of a target t ∈ T if it is already detected by the current network ω ∈ Ω,
i.e. Pω

d (t) ≥ ϕ or 1− P
ω
d (t) ≥ ϕ since the probabilities of non-detection are

stored in memory. In this way, we define an alternative objective function to
evaluate the marginal gain at each iteration, considering only non-detected
targets:

g : Ω→ [0, 1]

ω 7→ 1

|T |
∑
t∈T

1−P
ω
d (t)<ϕ

I(Pω
d (t)) . (25)

If needed, the effective detection probabilities will be calculated at the
end of the heuristic, which can be useful if one wishes to pursue with this
solution (i.e. network) as a starting point for a metaheuristic, for example.

5.2.4. Symmetries

During Phase 1, there are interesting symmetries to exploit. Indeed, let
us suppose that we add a pair (s1, r1) ∈ Ξ\Ξω to the current network ω ∈ Ω
and consider a pair (s2, r2) ∈ Ξω (if any). We then have three newly formed
sonar systems: (s1, r2), (s2, r1) and (s1, r1). For a given target t ∈ T , this
gives us three detection probabilities to compute, but it can be noticed that

P
(s1,r2)
d (t) = P

(s2,r1)
d (t), which means that it is not necessary to compute this

last probability. This brings us from a time complexity of O(|E||T |(|S| +
|R|)) (see 5.2.1) to a complexity of O(|E||T ||S|) (or O(|E||T ||R|)) for Phase
1.

5.2.5. Redundant computations

For a sonar system (s, r) ∈ Ξ and for each detection probability computa-
tion, it is necessary to calculate the following three distances: target-source
dt,s, target-receiver dt,r and source-receiver ds,r.

A first option is to precalculate all distances in advance. We then have
the following matrices: Dt⇔e ∈M|T |,|E|(R

+) for the distances between each
target t ∈ T and each position e ∈ E and De⇔e ∈ M|E|,|E|(R

+) for the dis-
tances between each pair of positions (e, e′) ∈ E2 (the latter matrix being in
fact upper triangular). The space complexity associated with the addition
of these matrices is O(|T ||E|) for Dt⇔e and O(|E|2) for De⇔e. Even when
storing floats in single or half precision, this represents a certain amount of
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memory.

A second option is to store only the distances between the sensors of the
current network and the targets/positions by making updates at each itera-
tion, i.e. after having deployed one or more sensors on a given deployment
position. This means that for each position e ∈ E probed in the next iter-
ation, we will only have to compute the distance dt,e for each target t ∈ T ,
all the other distances being already stored in memory. Note that at most
l = max(ns, nr) deployment positions will be used throughout the heuris-
tic, as we will deploy min(ns, nr) posts and max(ns, nr)−min(ns, nr) single
sensors (if the heuristic is not interrupted prior to the end). Thus we will
have Dt⇔e ∈M|T |,l(R

+) and De⇔e ∈M|E|,l(R
+) (actually l − 1, because we

do not need to store the distances in the last iteration). The space complex-
ity associated with the addition of these matrices is O(|T |l) for Dt⇔e and
O(|E|l) for De⇔e which is more memory efficient than the first option. For
the upcoming experimentations, we will therefore favor this second option,
although the first one is quite feasible on architectures with large memory
capacities or for small-sized instances.

All the above is valid in the most general case, i.e. where the deployment
positions and the targets do not necessarily overlap, but for this particular
problem that we consider here, it is possible to have only one matrix which
stores the distance between the centers of each of the maritime cells (which
would be upper triangular if we wanted to calculate all distances). However,
this does not change the fact that the second version remains more efficient
in terms of memory.

5.2.6. Maximum detection range

Given a threshold value ϵ ∈ [0, 1] ≃ 0, a target t ∈ T will be considered
out of range of a sonar system (s, r) ∈ Ξ if the probability of detection falls

below the predefined threshold, i.e. whenever P
(s,r)
d (t) < ϵ. This means that

the target will not be considered if

ρt,s,r > ρ0

(
1 + b log10

(
1

ϵ
− 1

))
= ρϵmax , (26)

where ρϵmax is thus the maximum range for a sonar system in monos-
tatic configuration, here defined for the class of Fermi functions. The value
of ρϵmax being pre-computed, it is then only necessary to carry out a sin-
gle comparison to discard or not the target t ∈ T and this saves us the

computation of the detection probability P
(s,r)
d (t) for a given sonar system

(s, r) ∈ Ξ. This is of interest because the computation of this probability
of detection is composed of multiple arithmetic operations and performed a
large number of times during the heuristic. Moreover, this opens the way to
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the computation of upper bounds.

5.2.7. Upper bounds

Using the maximum detection range ρϵmax defined above, it is possible
to derive an upper bound, i.e. a maximum number of targets that can be
reached if a post or a single sensor is placed at a given deployment position
with respect to a current network.

To do this, we first introduce the matrix Dt⇔s∗ ∈M|T |,1(R
+) containing

the minimum distance between a target and its closest source and the matrix
Dt⇔r∗ ∈M|T |,1(R

+) containing the minimum distance between a target and
its closest receiver. It basically boils down to obtaining a discrete Voronoi
tessellation (Aurenhammer, 1991) where the generators/seeds are here the
sensors already deployed and which evolves dynamically at each iteration
(w.r.t. last choice made). The space complexity associated with these ma-
trices is O(|T |). Indeed, it is only necessary to store the minimum distance,
because for a deployment position e ∈ E, if a target t ∈ T is not accessi-
ble with its closest sensor of the other type (source or receiver), then it will
not be accessible with any other sensor (regardless of the direct blast effect).

Therefore, after each iteration and after deploying a post or a single sen-
sor on a deployment position, these matrices are updated if the minimum
distance has changed (i.e. a sensor has been placed closer to the target).
Now, given a current network ω ∈ Ω, it is possible to define the set Ae

ω of
targets accessible from position e ∈ E if we deploy a post or a single sensor.

More precisely, for Phase 1, this gives us the following set:

Ae
ω = {t ∈ T | 1− P

ω
d (t) < ϕ ∧X} , (27)

where

X = dt,e ≤
ρϵmax

2

Dt⇔r∗
t

∨ dt,e ≤
ρϵmax

2

Dt⇔s∗
t

∨ dt,e ≤ ρϵmax . (28)

Knowing that if for a target t ∈ T neither of the two matrices has been
updated, then the target remains inaccessible at the next iteration for the
deployment position e ∈ E under consideration. Moreover, the case where
dt,e ≤ ρϵmax can be precalculated upstream: it is the case where we consider
the sonar system in monostatic configuration and it does not depend on the
current network. It should also be noted that, since only monostatic sonar
systems are added in Phase 1, it is sufficient to test only one of the first two
conditions (the minimum distances being identical). For Phase 2, knowing
that only one type of sensor is added iteratively, it will not be necessary
to update the matrix of minimum distances of the other type of sensor (as
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none will be added) and this set will therefore be precalculated to be more
computationally-frugal.

5.2.8. Lower bounds

There is a lower bound that can be easily computed at each iteration and
which avoids redundant computations. Let us take the example of Phase 1.
At a given iteration, when probing a given position e ∈ E, it is possible that
a certain number of targets t ∈ T may be detected if we add a post on this
position (unused for the moment) with respect to the current ω ∈ Ω network.
In the next iteration and for an unused deployment position e ∈ E, if we
are still in Phase 1, then it will not be necessary to recompute the detection
probabilities of the targets that we already knew were potentially detected if
we had placed a pair of sensors on the considered position. Indeed, we know
that these targets will be detected if we place this pair on this deployment
position regardless of the last choice made, as we have already probed this
position for the possible inclusion of this pair in the previous iterations (the
detection probabilities can only increase).

More specifically, for a current network ω ∈ Ω, we then define the set of
targets not yet detected by the current network but which would be detected
if we added a sonar system on the position e ∈ E, giving us a temporary
network ωs/r = (S ∪ {e}, R ∪ {e}):

Ce
ω = {t ∈ T | 1− P

ω
d (t) < ϕ ∧ P

ωs/r

d (t) ≥ ϕ} . (29)

These sets are updated at each iteration and so we have a lower bound
|Ce

ω| of the number of targets that can potentially be detected if we place a
pair of sensors on the position e ∈ E. This leads us to modify the previously
defined objective function g as follows:

g : Ω→ [0, 1]

ω 7→ 1

|T |

|Ce
ω|+

∑
t∈T

1−P
ω
d (t)<ϕ∧t/∈Ce

ω

I (Pω
d (t))

 . (30)

In other words, at each iteration, we need to evaluate only the targets
that are in range, not yet detected, and that we do not know yet if the
inclusion of a pair on the position e ∈ E will lead to their detection with
respect to the current network and the last choice made. The reasoning is
similar for Phase 2 and the sets must be reinitialized at the beginning of the
phase.
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5.2.9. Additional constraints using bounds

Using the previously defined upper and lower bounds, it is now possible
to discard certain deployment positions in a given iteration.

First, it will be unnecessary to probe positions e ∈ E such that |Ae
ω| ≤

maxe′∈E\{e} |Ce′
ω |, as we can detect at most |Ae

ω| targets by deploying a post
or a single sensor, while by deploying on the position with the best lower
bound, we are guaranteed to detect at least maxe′∈E\{e} |Ce′

ω | targets. Then,
for a given network ω ∈ Ω, suppose that we are in a given iteration and
that the best candidate position is able to detect z∗ targets. If we probe a
position e ∈ E not yet examined and such that |Ae

ω| ≤ z∗, then this position
can be discarded because we will not be able to cover more targets than
the current solution. By going even further, it is also possible to dismiss
a position that is currently being probed by continuously re-estimating the
number of targets that can be detected at most (because the targets are not
sorted by increasing distance, we do not know which targets are accessible).

5.2.10. Lazy evaluations

When adding a post or a single sensor to the current network, there is
no need to calculate all the detection probabilities if the target is detected
before all the newly formed sonar systems have been examined. Suppose we
have a current network ω ∈ Ω and we want to probe the position e ∈ E to
see if adding a post on this position leads to the detection of the not yet
detected target t ∈ T during Phase 1, i.e. 1 − P

ω
d (t) < ϕ. We thus have

a hypothetical network ωs/r = (S ∪ {e}, R ∪ {e}) and it is then sufficient

to stop as soon as P
ωs/r

d (t) ≥ ϕ when evaluating the newly formed sonar
systems (s, r) ∈ Ξωs/r

\ Ξω. The reasoning is similar for Phase 2. Note that
it would be conceivable to sort the deployment positions e ∈ E by decreasing
distances for each target t ∈ T in order to terminate the evaluation sooner
(on average). However, this would have a non-negligible cost in terms of
complexity, as it requires sorting |T | vectors of |E| elements. Therefore, this
has not been considered here.

5.2.11. Remarks

One idea might have been to precalculate the set of detection probabili-
ties for each possible sonar system (s, r) ∈ Ξ and each target t ∈ T . However,
the spatial complexity of such a matrix is O(|E|2|T |). Even with single or
half precision floats, this does not seem like a good idea for designing an ef-
ficient heuristic, especially since there may not be enough memory available
for large-scale instances. Also, it would be possible to sort the candidate
deployment positions by decreasing upper bounds in order to interrupt the
search more quickly. Or, similarly, to sort the positions by decreasing lower
bounds in order to prioritize the most promising positions and thus poten-
tially interrupt the search faster. Apart from these two remarks and unless

22



otherwise stated, all improvements have been taken into account for the
experiments to follow.

6. Numerical Experiments

First and foremost, we refer to the exact resolution by the acronym OK1-
S and the approximate resolutions by Greedy-N and Greedy-I for the näıve
and improved versions respectively.

Concerning the experimentations, they were carried out on a Debian 10
server (64 bits) with 32 GB of RAM and 2 processors clocked at 2 Ghz (32
cores each). More specifically, the exact resolutions were performed using
IBM ILOG CPLEX 20.1 (IBM, 2022) with default settings and 8 threads
in parallel. In addition, we have set a maximum computational budget of
1 hour for the different resolutions and the best solution found so far is re-
turned (if it exists). For the exact resolution, in table 2, the presence of an
asterisk (*) means that it is the optimal solution and the presence of a cross
(x) means that the model could not be loaded into memory due to its size.
Finally, the several parameters set for these experimentations are summa-
rized in table 1. The objective of these numerical experiments is therefore
to carry out a comparison between the different resolution methods and,
more specifically, between the exact resolution method (OK1-S) and the
approximate resolution methods (Greedy-N and Greedy-I). To achieve this,
we use the following two criteria: CPU time and coverage rate. When the
maximum CPU time (1h) is reached, we focus on the best integer solution
obtained (if one exists).

To conduct these experimentations, we have built up a dataset of 27 in-
stances that were derived from DEMs of coastal-based AoIs selected through-
out the globe and in such a way as to encompass a wide spectrum of peculiar
geometric situations (the DEMs are made available here 1). Indeed, to the
best of our knowledge, there is no benchmark of this type that has been made
accessible so far, it was therefore necessary to produce one. In particular,
these DEMs (i.e. regular rectangular grids) are derived from bathymet-
ric (depth) and topographic (height) data made publicly-available by the
GEneral Bathymetric Chart of the Oceans (GEBCO) (GEBCO Bathymet-
ric Compilation Group, 2022). The GEBCO global grid have a resolution of
15 arc-seconds, which corresponds to the dimensions of each grid cell (eleva-
tion is taken at the center point). A resolution of 15 arc-seconds corresponds
to an area of about 463 square meters at the equator and this surface de-
creases progressively on more extreme latitudes, the circles of latitude being

1https://github.com/owein-thuillier/DEMs-dataset/
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of smaller circumference. More precisely, to create these instances, we se-
lected AoIs on coastlines displaying a variety of geometries and retrieved the
elevation data from the GEBCO global grid (taking care also to vary the
dimensions). Besides, note that the DEMs have been preprocessed to locate
the isolated maritime cells (elevation less than or equal to 0) in the middle
of terrestrial cells (e.g. lakes or ponds) and to assign them an arbitrary
elevation so as not to take them into consideration. Without going into de-
tails, this preprocessing was done by transforming the set of maritime cells
of the grid into a graph and by subsequently carrying out a computation
of the connected components (He et al., 2017). For the various instances,
thumbnails are available at the beginning of each row of table 2 to roughly
visualize the geometry of the AoI under consideration.

Moreover, instances are ordered by increasing grid size and increasing
number of maritime cells, so as to progressively increase the solving com-
plexity. Also, the number of sources and receivers were chosen empirically
in order to have a satisfactory coverage rate (i.e. more than 80%). In the
following, we refer to an instance by the denomination width-height-m where
m ∈ N is the number of maritime cells. For example, the instance 25-25-542
indicates that this is a DEM (a grid) of dimension 25x25 with 542 maritime
cells (the terrestrial cells may be inferred and are 83 in total).

ρ0 c τ rb ϕ Fermi (b) ϵ σ Tmax

5 1.5 1 0.75 0.95 0.2 10−2 0.0 3600

Table 1: Parameters set for the numerical experiments.

As shown in table 2, it is no longer possible to load the model in mem-
ory beyond instance 25-25-542 due to an excessive number of variables and
constraints for the exact resolution OK1-S. Then, we manage to obtain an
optimal solution up to instance 20-20-187 and non-zero integer solutions up
to instance 25-25-336. The computational budget of 1 hours becomes in-
sufficient from instance 20-20-234 for the exact resolution OK1-S and from
instance 75-75-4282 for the approximate resolution Greedy-N.

For instance 15-15-146, Greedy-N is 20650 times faster than OK1-S and
Greedy-I 282296 times faster (real CPU time: 0.004389 s) for only 0.69%
less coverage. Also, for instance 20-20-187, Greedy-N is 12452 times faster
than OK1-S and Greedy-I 186790 times faster to find the optimal solution
that covers 100% of the AoI. Concerning instance 20-20-234, the compu-
tational budget having been reached for OK1-S, the best integer solution
with a coverage rate of 94.87% is returned and is not optimal. Indeed, since
Greedy-N and Greedy-I find a solution covering 96.15% of the AoI, the op-
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timal solution is thus necessarily at least as good.

For instance 75-75-3083, Greedy-I is 660 times faster than Greedy-N
and this gap widens considerably with the size of the considered instance.
In particular, for instance 175-175-26443, an admissible solution covering
92.81% of the AoI is found by Greedy-I in 966.14 seconds, while the admis-
sible solution obtained at the end of the one-hour computational budget by
Greedy-N covers only 1.16% of the area.

In summary, we have Greedy-N and Greedy-I which enable us to find
admissible solutions of high quality in a more than reasonable time compared
to OK1-S. Moreover, we have the improved version of the greedy heuristic
Greedy-I which outperforms the näıve version Greedy-N on larger instances.
More specifically, we are able to find a solution that covers 92.81% of a
175x175 grid with 26443 maritime cells, 60 sources and 120 receivers in about
15 minutes. For instances of size 15x15, the exact resolution (OK1-S) finds
better quality solutions (albeit in a much longer time) than the approximate
methods (respectively Greedy-N and Greedy-I). This is expected, as when
the exact method finds a solution within the allotted time budget (1 hour), it
is necessarily optimal, and the greedy heuristics can do no better in terms of
solution quality (i.e. coverage rate). Finally, an illustration of the solution
obtained for instance 50-50-2304 with the greedy heuristic is available in
Figure 6 (6 sources and 10 receivers). From left to right, we have the blank
grid (DEM) of the AoI with elevation data from GEBCO (a), the heatmap
with detection probabilities where the contour line (in white) corresponds
to the detection threshold of 0.95 (b) and, finally, the set of covered cells,
i.e. those whose target in the center is considered as detected (c).

7. Conclusions and Further Research

In this paper, we have proposed an efficient two-phase greedy heuristic
to solve the Area Coverage (AC) problem in the scope of MSNs, a special
case of WSNs, while taking into account existing coastlines. This is done
with regard to a limited number of sensors and a given probabilistic detec-
tion model, including amongst other things a masking zone called “direct
blast effect” that may occur in practice. The numerical experiments have
indeed demonstrated the effectiveness of the heuristic compared to an exact
model and its interest for the resolution of large-scale instances in an opera-
tional context. Besides, one of the notable advantages of such a constructive
heuristic is the deterministic aspect, meaning that the same solution is found
at each resolution. Moreover, the resolution of the AC problem being re-
alized through a reduction to a Point Coverage (PC) problem, the work
carried out in the scope of this study can naturally be used for the latter
problem and, by extension, for the Barrier Coverage (BC) problem that can
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Problem size CPU time (seconds) Coverage rate (%)

Grid size m ns nr OK1-S Greedy-N Greedy-I OK1-S Greedy-N Greedy-I

15 x 15

105 1 2 19.31 0.01 0.00 85.71* 82.86 82.86

125 2 2 186.72 0.04 0.00 95.20* 94.40 94.40

146 2 2 1239.00 0.06 0.00 92.47* 91.78 91.78
20 x 20

187 2 2 1867.90 0.15 0.01 100.00* 100.00 100.00

234 2 2 3600.00 0.21 0.02 94.87 96.15 96.15

291 2 2 3600.00 0.26 0.02 5.84 84.88 84.88
25 x 25

336 2 2 3600.00 0.40 0.03 79.76 85.71 85.71

419 2 2 3600.00 0.78 0.06 0.00 93.32 93.32

542 2 3 x 1.76 0.09 x 84.50 84.50
50 x 50

937 2 6 x 20.61 0.34 x 87.30 87.30

1454 3 7 x 80.34 0.65 x 83.15 83.15

2304 6 10 x 964.14 2.01 x 83.38 83.38
75 x 75

3083 6 12 x 3548.55 5.37 x 82.65 82.65

4282 8 15 x 3600.00 8.89 x 50.65 83.05

5343 10 18 x 3600.00 15.49 x 38.03 81.08
100 x 100

6360 12 24 x 3600.00 20.36 x 21.53 81.54

7524 14 28 x 3600.00 40.61 x 18.45 85.63

8947 16 32 x 3600.00 51.34 x 15.25 80.46
125 x 125

10490 18 36 x 3600.00 98.93 x 8.16 91.82

12224 22 42 x 3600.00 103.77 x 8.78 82.51

14239 26 52 x 3600.00 179.60 x 4.68 83.16
150 x 150

15525 28 56 x 3600.00 237.41 x 6.39 97.40

17026 30 60 x 3600.00 389.45 x 5.04 94.86

18948 37 74 x 3600.00 408.79 x 3.30 82.77
175 x 175

20675 40 80 x 3600.00 652.97 x 1.76 92.82

24179 50 100 x 3600.00 876.51 x 1.35 91.83

26443 60 120 x 3600.00 966.14 x 1.16 92.79

Table 2: Experimental results on the 27 instances.
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Figure 6: Solution obtained after solving instance 50-50-2304 with the greedy heuristic.

be discretized in the same way. It is also noteworthy that this heuristic can
be easily adapted to address the dual problem of minimizing the number
of sensors to cover the entire AoI with costs associated to the deployment
of sources and receivers (full coverage variant of the AC problem). Besides,
the heuristic is generic enough to allow the use of more accurate acoustic
models, such as the use of ray-tracing to estimate the performances of differ-
ent sonars (it is then sufficient to make a 2D projection and to compute the
detection probabilities according to the transmission losses at all points of
space). Finally, the work undertaken here can be repurposed to tackle cov-
erage problems in Multistatic Radar Networks (MRNs), which are mostly
based on similar mathematical concepts.

Until now, there has been no competing approximate resolution method
for the problem at hand, making it impossible to provide any comparison.
Therefore, we proposed the first constructive heuristic (greedy-based) in or-
der to generate high-quality solutions in a reasonable amount of time. In
future work, these solutions could be used in dedicated metaheuristics to de-
rive higher quality solutions (e.g. Local Search (LS), Variable Neighborhood
Search (VNS), Variable Neighborhood Descent (VND), Tabu Search (TS)
or Simulated Annealing (SA)). Another possibility would be to handle the
problem using a sector-based approach by encompassing a set of deployment
positions. In this way, it would be possible to discard the less interesting
sectors by means of appropriate lower and upper bounds, thus reducing the
time required per iteration. To another extent, a possible way of exploration
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could be the decomposition into sub-problems in order to use methods such
as benders decomposition, Lagrangian relaxations or even columns genera-
tion. Lastly, a refinement of the detection model could be considered for a
greater degree of realism from an operational standpoint by reinstating, for
example, absorption losses that have been largely neglected in the literature
related to optimal deployment in MSNs. Note that if one wishes to incorpo-
rate a more realistic performance model, care should be taken to vary the
instances and build a more comprehensive benchmark so as to have different
types of bottom depths (shallow, deep) and not just coastal-based instances,
most of which have shallow waters.
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Appendix A. Improved version: complete pseudo-code

Before giving the whole pseudo-code, some general remarks about it:

• We have chosen to use breaks when necessary to make it lighter.

• Checkpoints to ensure that the computation budget is not exceeded
have not been included, but they can be added where necessary (prefer-
ably deep in the nested loops).

Algorithm 2: Global pre-processing

1 O ∈M|T |,|E|({0, 1}) /* Matrix storing collisions */

2 if number of terrestrial cells ¿ 0 then
3 for t ∈ T do
4 for e ∈ E do
5 if id(t) ≤ id(e) then

/* id() returns the index of the cell on which the target or

position is located */

6 t′ ← e; e′ ← t /* Positions are reversed (symmetrical

matrix) */

7 bool← 0
8 if there is an obstacle between t and e then
9 bool← 1

10 Ot,e ← bool
11 Ot′,e′ ← bool

12 S ← ∅; R← ∅; ω ← (S,R) /* Current network */

13 zω ← 0 /* Number of targets covered by the current network */

14 Aω ← ∅; Cω ← ∅ /* Initializing sets */

15 [Phase 1] Pre-processing

Algorithm 3: [Phase 1] Pre-processing

1 for t ∈ T do
2 for e ∈ E do
3 dt,e ← compute distance(t, e)
4 if dt,e ≤ ρϵmax then

/* Target in range if a post is deployed on e */

5 Ae
ω ← Ae

ω ∪ {t}

6 [Phase 1] Main loop
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Algorithm 4: [Phase 1] Main loop

1 for i← 1 to min(ns, nr) do
/* Deployment of posts (collocated source-receiver pairs) */

2 lB∗ ← maxe∈E{|Ce
ω|} /* Best lower bound */

3 e∗ ← ∅ /* Best position */

4 z∗ ← 0 /* Best marginal gain */

5 for e ∈ E do
6 uB ← |Ae

ω| /* Upper bound if post deployed on e */

7 if e /∈ S ∩R and max{z∗, lB∗} < uB∗ then
/* Position e is available and we can expect to do better */

8 z ← |Ce
ω| /* Targets we knew were already covered */

9 uB ← uB − z
10 for t ∈ T do
11 if z + uB ≤ z∗ then

/* It will be impossible to do better (dynamic updating)

*/

12 break

13 if t ∈ Ae
ω and t /∈ Ce

ω then
/* Target accessible and to be evaluated */

14 dt,e ← compute distance(t, e)

15 P ← P
ω
d (t) /* Cumulative probability of non-detection */

16 P ← P · (1− P
(e,e)
d (t)) /* Monostatic contribution */

17 if 1− P ≥ ϕ then
/* Target covered */

18 z ← z + 1
19 Ce

ω ← Ce
ω ∪ {t} /* Information for the next iteration

*/

20 else
21 for e′ ∈ S ∩R do

/* Contributions with existing posts */

22 if Ot,e′ = 0 then
/* No obstacles between e′ and t */

23 dt,e′ ← Dt⇔e
t,e′ /* In memory */

24 de,e′ ← De⇔e
e,e′ /* In memory */

25 if dt,e ≤ ρϵmax
2

dt,e′
then

/* Target in range for the considered

pair */

26 P ← P · (1− P
(e,e′)
d (t))2 /* Symmetry */

27 if 1− P ≥ ϕ then
/* Target covered */

28 z ← z + 1
29 Ce

ω ← Ce
ω ∪ {t}

30 break /* Lazy evaluations */

31 uB ← uB − 1

32 if z > z∗ then
/* Better position found */

33 e∗ ← e; z∗ ← z

34 [Phase 1] Update

35 [Phase 2] Pre-Processing
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Algorithm 5: [Phase 1] Update

1 if e∗ = ∅ then
/* No improving position */

2 break

3 else if z∗ < σ then
/* Marginal gain below the threshold */

4 break

5 else
/* An optimal position has been identified */

6 zω ← zω + z∗ /* Update objective function (i.e. number of targets

covered) */

7 for t ∈ T do

8 if 1− P
ω
d (t) < ϕ and Ot,e∗ = 0 then

/* If the target is still not covered and accessible from the

new position (no obstacle) =⇒ if the target is already

covered, there is no need to update its (non-)detection

probability */

9 dt,e∗ ← compute distance(t, e∗)
10 bool update← 0

11 if dt,e∗ < Dt⇔s∗
t then

/* This post is the new sensor closest to the t target

(source and receiver) */

12 Dt⇔s∗
t ← dt,e∗

13 Dt⇔r∗
t ← dt,e∗

14 bool update← 1 /* If the minimum distance is updated, the

target may become accessible from certain positions */

15 Dt⇔e
t,e∗ ← dt,e∗

16 P
ω
d (t)← P

ω
d (t) · (1− P

(e∗,e∗)
d (t)) /* Monostatic contribution */

17 if 1− P
ω
d (t) < ϕ then

/* Target still not covered */

18 for e′ ∈ S ∩R do
/* Contributions with existing posts */

19 if Ot,e′ = 0 then
/* No obstacles between e′ and t */

20 dt,e′ ← Dt⇔e
t,e′

21 de∗,e′ ← De⇔e
e∗,e′

22 if dt,e∗ ≤ ρϵmax
2

dt,e′
then

/* Target in range for the considered pair */

23 P
ω
d (t)← P

ω
d (t) · (1− P

(e∗,e′)
d (t))2 /* Symmetry */

24 if 1− P
ω
d (t) ≥ ϕ then

/* Target covered */

25 break /* Lazy evaluations */

26 [Phase 1] Update sets

27 for e ∈ E do
/* Update distances from the new position added to the network to

all other positions */

28 de,e∗ ← compute distance(e, e∗)
29 De⇔e

e,e∗ ← de,e∗

30 S ← S ∪ {e∗};R← R ∪ {e∗}
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Algorithm 6: [Phase 1] Update sets

1 if 1− P
ω
d (t) ≥ ϕ then

/* Target just covered: remove it from sets */

2 for e ∈ E do
3 if t ∈ Ae

ω then
4 Ae

ω ← Ae
ω n {t}

5 if t ∈ Ce
ω then

6 Ce
ω ← Ce

ω n {t}

7 else
/* Target still not covered: it may become accessible from new

positions if an update of the minimum distance has occurred */

8 for e ∈ E do
9 if bool update = 1 and t /∈ Ae

ω and Ot,e = 0 then
/* There was an update and t was not accessible and there is no

obstacle between t and e */

10 dt,e ← compute distance(t, e)

11 if dt,e ≤ ρϵmax
2

dt,e∗
then

/* Target t is now accessible from position e */

12 Ae
ω ← Ae

ω ∪ {t}

Algorithm 7: [Phase 2] Pre-processing

1 Aω ← ∅; Cω ← ∅ /* Reinitialisation of the sets */

2 for t ∈ T do

3 if 1− P
ω
d (t) < ϕ then

/* Target not covered */

4 for e ∈ E do
5 if e /∈ S ∩R and Ot,e = 0 then

/* Position available and no obstacles between t and e */

6 dt,e ← compute distance(t, e)

7 if dt,e ≤ ρϵmax
2

Dt⇔s∗
t

then

/* Target in range if a post is deployed on e */

8 Ae
ω ← Ae

ω ∪ {t}

9 [Phase 2] Main loop
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Algorithm 8: [Phase 2] Main loop

1 for i← 1 to max(ns, nr)−min(ns, nr) do
/* Deployment of the remaining sensors (sources or receivers) */

2 lB∗ ← maxe∈E{|Ce
ω|} /* Best lower bound */

3 e∗ ← ∅ /* Best position */

4 z∗ ← 0 /* Best marginal gain */

5 for e ∈ E do
6 uB ← |Ae

ω| /* Upper bound if sensor (source or receiver) deployed on

e */

7 if e /∈ S ∪R and max{z∗, lB∗} < uB∗ then
/* Position e is available and we can expect to do better */

8 z ← |Ce
ω| /* Targets we knew were already covered */

9 uB ← uB − z
10 for t ∈ T do
11 if z + uB ≤ z∗ then

/* It will be impossible to do better (dynamic updating)

*/

12 break

13 if t ∈ Ae
ω and t /∈ Ce

ω then
/* Target accessible and to be evaluated */

14 dt,e ← compute distance(t, e)

15 P ← P
ω
d (t) /* Cumulative probability of non-detection */

16 for e′ ∈ S ∩R do
/* Contributions with existing posts */

17 if Ot,e′ = 0 then
/* No obstacles between e′ and t */

18 dt,e′ ← Dt⇔e
t,e′ /* In memory */

19 de,e′ ← De⇔e
e,e′ /* In memory */

20 if dt,e ≤ ρϵmax
2

dt,e′
then

/* Target in range for the considered pair */

21 P ← P · (1− P
(e,e′)
d (t))

22 if 1− P ≥ ϕ then
/* Target covered */

23 z ← z + 1
24 Ce

ω ← Ce
ω ∪ {t}

25 break /* Lazy evaluations */

26 uB ← uB − 1

27 if z > z∗ then
/* Better position found */

28 e∗ ← e; z∗ ← z

29 [Phase 2] Update

30 return ω, zω /* End of algorithm */
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Algorithm 9: [Phase 2] Update

1 if e∗ = ∅ then
/* No improving position */

2 break

3 else if z∗ < σ then
/* Marginal gain below the threshold */

4 break

5 else
/* An optimal position has been identified */

6 zω ← zω + z∗ /* Update objective function (i.e. number of targets

covered) */

7 for t ∈ T do

8 if 1− P
ω
d (t) < ϕ and Ot,e∗ = 0 then

/* If the target is still not covered and accessible from the

new position (no obstacle) =⇒ if the target is already

covered, there is no need to update its (non-)detection

probability */

9 dt,e∗ ← compute distance(t, e∗)
10 for e′ ∈ S ∩R do

/* Contributions with existing posts */

11 if Ot,e′ = 0 then
/* No obstacles between e′ and t */

12 dt,e′ ← Dt⇔e
t,e′

13 de∗,e′ ← De⇔e
e∗,e′

14 if dt,e∗ ≤ ρϵmax
2

dt,e′
then

/* Target in range for the considered pair */

15 P
ω
d (t)← P

ω
d (t) · (1− P

(e∗,e′)
d (t))

16 if 1− P
ω
d (t) ≥ ϕ then

/* Target covered */

17 break /* Lazy evaluations */

18 if 1− P
ω
d (t) ≥ ϕ then

/* Target just covered: remove it from sets */

19 for e ∈ E do
20 if t ∈ Ae

ω then
21 Ae

ω ← Ae
ω n {t}

22 if t ∈ Ce
ω then

23 Ce
ω ← Ce

ω n {t}

24 if ns > nr then
/* We add sources */

25 S ← S ∪ {e∗}
26 else

/* We add receivers */

27 R← R ∪ {e∗}
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