

Radio-sensitization of chondrosarcoma cells by PARP inhibitors

Utpal Ghosh, Jean-Baptiste Austry, Francesco Paulo Cammarata, Renata Leanza, Pietro Pisciotta, Giuseppe Antonio Pablo Cirrone, Paul Lesueur, Yannick Saintigny, François Chevalier

▶ To cite this version:

Utpal Ghosh, Jean-Baptiste Austry, Francesco Paulo Cammarata, Renata Leanza, Pietro Pisciotta, et al.. Radio-sensitization of chondrosarcoma cells by PARP inhibitors. ERRS and GBS 2017 - the Joint 43rd European Radiation Research Society (ERRS) and 20th German Society for Biological Radiation Research (GBS) Annual Meetings", Sep 2017, Essen, Germany. hal-04236732

HAL Id: hal-04236732 https://hal.science/hal-04236732

Submitted on 16 Oct 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Centre de Recherche sur les Ions, les Matériaux et la Photonique

Project with the financial support of

Radio-sensitization of chondrosarcoma cells by different PARP-inhibitors

1 LARIA – Cimap / iRCM - Commissariat à l'Energie Atomique et aux Energies Alternatives, Caen, France ; 2 Department of Biochemistry & Biophysics; University of Kalyani, India; 3 Institute of Molecular Bioimaging and Physiology, National Research Council - (IBFM-CNR) Cefalù (PA), Italy; 4 National Institutes of Nuclear Physics, South National Laboratory, Catania, Italy; 5 Centre Francois Baclesse, Radiotherapy Unit, Caen, France

Chondrosarcoma is a malignant tumor arising from cartilaginous tissues, described as radiation- and chemo- resistant to conventional treatments.

The primary treatment consists in wide surgical resection, which may lead to severe disabilities; in addition, this procedure is not feasible for some inoperable locations such as skull base chondrosarcoma.

Irradiations / treatments

Three human chondrosarcoma cell lines of different grades (SW1353 GII, CH2879 GIII and OUMS27 GIII)

- were irradiated with X-Rays (X-Rad 225 Cx), Proton and Carbon ions (when mentioned, in presence of Temozolomide (TMZ : induces guanine alkylation)
- with / without PARP inhibitor : Olaparib (Ola),

Aim of this study

 explore the differential cellular responses of chondrosarcomas to conventional radiotherapy and hadrontherapy

- understand the biological effects of carbon beams in cancer treatment
- estimate the capacity of PARP inhibitors in radio-

Proton and Carbon-ion irradiations (hadron-therapy) have been successfully used in the treatment of chondrosarcoma, due notably to a higher biological effectiveness and a better ballistic as compared with conventional radiotherapy with X-Rays.

The use of **PARP inhibitors** can increase the potential of these irradiations to treat such radio-resistant cancer, prevent metastasis and secondary cancers.

AG14361 (AG).

sensitizing chondrosarcoma cells

Irradiation facilities with accelerated ions

INFN, Catania, Italy Protons / Carbon ions

GANIL, Caen, France

Carbon ions

Western blotting analysis

PAR 250kDa

X-Rays

Olaparib

X-Ravs

Temozolomide

Pro-cas-

Active cas-3

Beta acti

Olaparib

0,5Gy

Analysis of apoptosis induction following irradiation

• Analysis of PAR (Poly-ADP Ribose) chains using a specific antibody

Time post irradiation 0 1 3 6 8 24 48 1 3 6 8 24 48 1 3 6 8 24 48

and 2Gy, the signal appears from 1h, with a maximum at 24h.

2Gy

PAR signal appears 6h following 0,5Gy irradiation on CH2879 cells, with 1

LARIA

NIRS, Chiba, Japan Carbon ions

Principle of synthetic lethality from Cancer Sci. 2014 105(4): 370–388.

DNA damage is often processed by multiple DNA repair pathways. In the example shown here, pathways A and B are both intact in normal cells, whereas pathway A is defective in cancer cells.

(a) In the absence of the pathway B inhibitor, cancer cells can survive, because the defect in pathway A is

Mutation profiles of chondrosarcoma cell lines

	SW1	SW1353 CH2879		OUMS27		
ATM			substitution	missense	substitution	missense
ATR			substitution	missense		
BABAM1			substitution	missense		
CDK12					substitution	missense
CHEK1	substitution	missense	substitution	missense	substitution	missense
ERCC1	substitution	missense				
FANCA			substitution	missense		
FANCD2	substitution	missense				
FANCG	substitution	missense				
FANCM	substitution	missense				
HDAC2			deletion	Frameshift		
NBN			substitution	nonsense		
PARP1					substitution	missense
PTEN	substitution	missense	substitution	missense		
RAD50			deletion	Frameshift		
RAD51D	substitution	missense				
SLX4	substitution	missense			substitution	missense

A panel of genes (69), implicated in DNA repair, have been sequenced for each cell line. An illumina NextSeq, 2x75pb pairedend technic was used. Bioinformatics analysis was performed HaplotypeCaller (Broad Institute).

All cell lines present mutations on genes implicated in DNA repair, and/or DNA stability. These mutation could have an impact on cell survival when DNA repair is partially impaired using PARPi.

Mutations in bold correspond to homozygous genotype, the others are heterozygous.

CHECK1 gene seems to be mutated in both cell lines, whereas the other mutations are highly dependent of the cell line considered. Such mutation status can impact cell survival especially following irradiation and drug treatment (PARPi +/-TMZ)

- compensated by the alternative pathway B.
- (b) When the cells are treated with the pathway B inhibitor, both pathways will be blocked in cancer cells, which will result in cell death. However, normal cells will not be affected, because inhibition of pathway B will be compensated by pathway A.

substitution	missense				
substitution	missense				
substitution	missense	substitution	missense		
	substitution substitution substitution	substitutionmissensesubstitutionmissensesubstitutionmissense	substitutionmissensesubstitutionmissensesubstitutionmissensesubstitutionmissense	substitutionmissensesubstitutionmissensesubstitutionmissensesubstitutionmissensesubstitutionmissense	substitutionmissenseImage: ConstructionsubstitutionmissenseImage: Constructionsubstitutionmissensesubstitutionsubstitutionmissensesubstitution

Clonogenic cell survival assays

Cells were irradiated at confluency with X-Rays and ion beams at the corresponding physical doses. Following a 18H incubation time, cells were seeded at low density. Colonies were stained after 10 to 12 days and clones (>50 cells) were counted. *In red = % sensitization effect vs corresponding control (when significant p<0,05) (multiple biological repetitions were used to plot the results)*

Cell cycle analysis

Following irradiation (**C-ions**), OUMS27 cells were analyzed by flow cytometry to estimate the percentage of cells in each cycle phase

	G0G1	S	G2/M		
0Gy	50.53	11.80	16.10		
0Gy + Ola	42.56	13.83	23.43		
0gy + TMZ	51.95	12.73	13.47		
Gy + Ola + TMZ	32.51	13.42	23.81		
1Gy	51.90	13.05	15.34		
1Gy + Ola	39.38	11.63	20.21		
1Gy + TMZ	50.17	11.83	15.24		
Gy + Ola + TMZ	31.57	15.93	28.73		
2 Gy	47.13	10.88	16.68		
2Gy + Ola	43.14	11.80	21.23		
2Gy + TMZ	47.91	12.05	12.97		
Gy + Ola + TMZ	26.86	12.72	29.08		
nly PARP inhibition can induce S-phase delay and G2/M arrest ed data) with OUMS27 cells					

The combination Ola + TMZ effectively arrests cells in G2/M phase, with a greater intensity than 1Gy or 2Gy C-ions alone.

Low dose C-ions and TMZ (CH2879)

0Gy	0,17Gy	0,33Gy	0Gy
	-	-	

C-ions and TMZ (OUMS 27)

1Gy

A	cording to	the Ca	s-3 sig	na
de	etection, bo	th Ola	and T	M
ar	e able to ir	nduce a	apopto	osi
in	OUMS27	cells,	with	0
w	ithout irrad	iation		

2Gy

PAR chains were analyzed 24h

after irradiation. In CH2879 cells.

the signal disappeared almost

completely using PARPi, showing

the efficiency of the inhibition

2Gy Proton : when compared with X-Rays, Ctr are similar, but AG and Ola seem more effective against SW1353 and CH2879 cells and less against OUMS27 cells

2Gy C-ions : between 35 and 50% of sensitization effect is observed with all cells and PARPi

Low doses C-ions and TMZ : Ola + TMZ appears as an effective sensitizer with CH2879 cells at low doses = until 94% of radiosensitization is observed at 0,33Gy + Ola and TMZ

