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Fuzzy Logic for Solving Water-Energy 

Management Problem in Standalone Water 

Desalination System: Water-Energy Nexus 

and Fuzzy System Design 

 

ABSTRACT  

This work investigates an important topic of energy and water security (water-energy nexus). 

For this purpose, Water-Energy Management Strategy (W-EMS) for a standalone water 

desalination system powered by PV-Wind source is designed. The proposed W-EMS is based 

on fuzzy logic. In this context, authors focus on the design phase of the Fuzzy Inference System 

(FIS) through which three design methods are described and analyzed. The influence of FIS 

design on W-EMS performance is highlighted. First, it is shown that based on the designer’s 

knowledge, the handmade-FIS can offer good performance for the W-EMS. Then, the water-

energy management is formulated as an optimization problem. Therefore, genetic algorithm is 

used to optimize the FIS design to reduce iterative hand-tuning trials. Furthermore, the design 

of the fuzzy W-EMS can be addressed by a data-driven approach as a third step. This method 

shows its good performance in terms of water production and energy efficiency compared to 

the designed FISs by the two previous methods (handmade tuning and genetic algorithm). 

KEYWORDS 

Fuzzy System Design, Human Expertise, Neuro-Fuzzy, Genetic Algorithm, Water-Energy 

Management, BWRO Desalination 
 

Acronyms 
  

ANFIS Adaptive Neuro-Fuzzy Inference System 𝒫WP Assigned electric power to the WP, W 

BWRO Brackish Water Reverse Osmosis 𝒫pump
min Minimum electric power supply for a pump, W 

DC Direct Current 𝒫pump
max Maximum electric power supply for a pump, W 

EMS Energy Management Strategy QWP Well Pump flow rate, L/min 

FLEMS Fuzzy Logic Energy Management Strategy QHPP High Pressure Pump flow rate, L/min 

FIS Fuzzy Inference System T1 Storage Tank of brackish water,   

GA Genetic Algorithm T2 Storage Tank of freshwater,   

GAFIS Genetic Algorithm optimized FIS Ts Sampling period, s 

HMFIS Hand-Made FIS α Power sharing factor,   

HPP High Pressure Pump   

MF Membership Function   

PV Photovoltaic   

RO Reverse Osmosis   

W-EMS Water-Energy Management Strategy   

WP Well Pump   

Symbols/variables/parameters   

Ec Consumed electric energy by the system, kWh   

Enc Non-Consumed electric energy, kWh   

FS Filling State of the storage tank T1, %   

FS0 Initial Filling State of the tank T1, %   

L Water Level in the storage tank T1, m   

Lmin Minimum limit Level in the storage tank, m   

Lmax Maximum limit Level in the storage tank, m   

𝒫dc Generated power transferred via a DC bus, W   

𝒫HPP Assigned electric power to the HPP, W   
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INTRODUCTION 

Energy Management Strategies (EMSs) present a major concern for researchers (Cai et al., 2009) 

working on complex energy systems such as: decentralized generation systems (Ball et al., 2009), 

residential applications (Aki et al., 2006), block-chain for smart city (Orecchini et al., 2019), hybrid 

renewable energy system (Benmessaoud et al., 2019) as well as standalone water pumping/desalination 

systems (Sallem et al., 2009; Kyriakarakos et al., 2017). Therefore, several EMSs have been proposed 

in literature for various complex energy systems, while it is still difficult to determine the best approach 

in each situation. These EMSs can be classified into two categories: Rule-based and Optimization-based 

approaches (Salmasi, 2007). Rule-based energy management approaches are well known for their 

simplicity in implementing rules and their effectiveness for real-time supervisory control of energy 

flows into a complex energy system (Lee et al., 2000; Tekin et al., 2007). Such rules are designed based 

on intuition, heuristics, human expertise, even mathematical model, but without a prior knowledge of 

operating conditions (e.g. electric power profile, driving cycle for electric vehicles, etc.). The rule-based 

approaches, in turn, can be subdivided into: i) deterministic rule-based methods, and ii) fuzzy rule-based 

methods. Deterministic rules are generally implemented based on lookup tables (not real-time data) 

(Han et al., 2014; Garcia et al., 2009) to schedule energy flows between the system components. Fuzzy 

rule-based methods are widely adopted for complex real-time supervisory control issues enabling to 

realize a real-time and optimal power split (Arcos-Aviles et al., 2016; Tidjani et al., 2016; Tan et al., 

2021; Mitiku et al., 2019; Chanda et al., 2019). Indeed, three main advantages of the fuzzy inference 

systems can be listed as follows: i) no real-time calculation issues, ii) robustness (tolerance to imprecise 

measurements), and iii) adaptation (easy tuning) with real-time parameters (Salmasi, 2007; Tie et al., 

2013). This paper focuses on the fuzzy logic theory for energy management issue.  

Fuzzy inference system is increasingly used and preferred for control and energy management issues 

for several complex energy systems, namely: 

 Micro-grids (Arcos-Aviles et al., 2016; Chen et al., 2012; Tidjani et al., 2016), and renewable energy 

generation systems (Cabrane et al., 2017; El Mokadem et al., 2009), 

 Transport domain, such as hybrid electric vehicles (Yin et al., 2016; Naffati et al., 2013; Xu et al. 

2018), electric bus (Gao et al., 2008; Tian et al., 2017), electric aircraft (Zhang et al., 2010), electric 

traction (Talla et al., 2015), and electric ship (Khan et al., 2017), 

 Water pumping (Sallem et al., 2009; Yahyaoui et al., 2015) and desalination (Abdul-Fattah, 1981) 

systems. 

For example, in (Zhang et al., 2010) authors presented four EMSs for a local power distribution system 

of more electric aircraft. The proposed EMSs are based on two multi-objective strategies using fuzzy 

logic and two simpler mono-objective strategies based on standard PI controller. Simulation and 

experimental results demonstrated that fuzzy logic is appropriate for: i) multi-objective approaches, ii) 

processing a large number of input variables, and iii) integrating several constraints. In (Cabrane et al., 

2017) a management strategy based on fuzzy logic theory was developed for photovoltaic energy storage 

in order to maintain the state of charge of batteries and super-capacitors within acceptable levels. The 

effectiveness of the proposed strategy to continuously meet the energy requirement of the load has been 

demonstrated. In addition, a Fuzzy Logic-based EMS (denoted FLEMS) for a residential grid-connected 

micro-grid was presented in (Arcos-Aviles et al., 2016), where the fuzzy inference system was designed 

for smoothing the grid power profile while keeping the state of charge of the battery within secure limits. 

Moreover, authors in references (Yin et al., 2016; Naffati et al., 2013) showed some examples of optimal 

adaptive FLEMS for hybrid electric vehicle with an objective to find the optimal instantaneous power 

distribution between the different energy sources in the vehicle. 

Given the above state of the art, fuzzy logic is successfully used for energy management of complex 

energy systems with the advantages of: i) the adaptability and easy optimization of its design parameters, 

and ii) the ability to cover all the expected conditions into the studied system. Nonetheless, relatively 

small changes in the Fuzzy Inference System (FIS) parameters can significantly affect the EMS 

performance. Indeed, the performance of a fuzzy logic-based EMS strongly depends on: i) the choice of 

the number and shape of the membership functions of each fuzzy variable, ii) the choice of fuzzy rules, 

iii) the type of the Defuzzification method, and iv) many other FIS parameters. Setting the FIS 
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parameters with its control fuzzy rules primarily depends on the designer’s expertise with regard to the 

energy management constraints, the intuitive and practical aspects about the system energy behavior, as 

well as successive experiments to ensure reliability and robustness of the process (Ferreira et al. 2008). 

In addition, the choice of these parameters is not deterministic and usually designers need a procedure 

of adjustment trials to find the suitable design of the FIS. In many cases, the performance of the fuzzy 

EMS can be improved by further hand tuning of the FIS parameters. 

On the other hand, Wang et al. explained in (Wang et al., 2006) that the FIS design can be formulated 

as a search problem in large space, where each point represents a set of membership functions, control 

rules, and the corresponding system behavior. According to authors, given certain performance criteria, 

the system performance constitutes a “hyper-surface” in the space, and determining the optimal FIS 

design consists of finding the optimal location of this hyper-surface. Wang et al. have demonstrated 

through (Wang et al., 2006a; Wang et al., 2006b) that evolutionary algorithms (e.g. genetic algorithm) 

offer a good tool for hyper-surface search than conventional methods. 

Another methodology to design the FIS is presented in (Courtecuisse et al., 2010) for fuzzy logic-based 

supervision of hybrid renewable generation system using a graphical modeling tool. The latter, which is 

an extension of Petri nets and grafcets approaches, enabled to facilitate the analysis, the determination 

and the implementation of fuzzy system algorithms. 

Besides to the above mentioned techniques (evolutionary algorithms, graphical modeling tool, and hand 

tuning) to design the FIS for energy management field, neuro-fuzzy hybrid systems have also emerged 

as an advanced artificial intelligence technique when compared to classical fuzzy inference system (i.e. 

a Mamdani type structure FIS). Indeed, for this type of FIS, artificial neural networks are used to design 

the FIS especially when no predetermined model structure exists, but when a collection of input/output 

data of the target system is available. Those data are usually collected in simulations, physical 

experiments, or production processes, etc. Among the existing fuzzy-neural hybrid systems, Adaptive 

Network-based Fuzzy Inference System or also called Adaptive Neuro-Fuzzy Inference System 

(ANFIS) is the most popular structure and widely used in the energy management field (Ozturk et al., 

2013; Cárdenas et al., 2012; García et al., 2013; Mahesh et al., 2016). The ANFIS is a hybrid structure 

combining fuzzy logic principle and the artificial neural network concept. During the training process 

driven by the collected input/output data, the trained FIS (a Takagi-Sugeno type structure) is fine-tuned 

(i.e. the rules and membership functions) by the neuro-adaptive learning techniques so as to tailor the 

trained FIS to the input/output data set. For example, an ANFIS-based EMS for a grid-connected micro-

grid was synthesized in (Leonori et al., 2017) through a data-driven approach relying on clustering 

algorithm to set the membership functions and the rule consequent hyperplanes. Moreover, a comparison 

study between fuzzy logic and neuro-fuzzy algorithm was conducted in (Arshdeep et al., 2012) to control 

the compressor speed of air conditioning system. The used ANFIS has proven its performance over 

conventional fuzzy logic to make the air conditioning system adaptive to the room weather with higher 

energy efficiency.  

Fuzzy logic methods can range from the simplest one to the most complex through hybridization of 

which the list is even longer (Suganthi et al., 2015), such as neuro-fuzzy-genetic algorithm 

(Kampouropoulos et al., 2014), fuzzy Q-learning using reinforcement learning (Avanija et al., 2022), 

fuzzy logic and machine learning (Zermane et al., 2020), Mediative micro artificial neural network fuzzy 

logic (Kocharla et al., 2022), etc. 

The use of fuzzy logic theory is widespread in technical literature and the industry, while using it in 

water-energy management for water desalination system to deal with energy dispatch between two 

hydro-mechanical processes (i.e. water pumping and desalination processes) was not issued in literature. 

In the present work, the studied system consists of an autonomous Brackish Water Reverse Osmosis 

(BWRO) desalination system powered by renewable energy source (hybrid solar photovoltaic generator 

and wind turbine) dedicated to the freshwater production for small remote communities without access 

to freshwater and electrical grid. First of all, this work investigates an important topic of energy and 

water security (energy-water nexus), considering the increasing population and the scarcity of water in 

poor or developing areas, combined with the need to mitigate climate change by reducing carbon 

emissions. Renewable energy-driven RO desalination systems are considered as dynamic systems 
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characterized by multi-domain, non-linear and time-varying variables (electric power, water pressure 

and flow rates). Therefore, smart and robust control algorithms, such as fuzzy logic techniques, are 

required to improve the real-time energy control and management strategy of such autonomous systems. 

A huge number of research work on reverse osmosis desalination systems are published. Most of them 

focused on eco-design (Peñate et al., 2012; Mohamed et al., 2004), socio-economic (Ghaffour et al., 

2015) and techno-economic (Ghaffour et al., 2013; Gude et al., 2010; Al-Karaghouli et al., 2009; Eltawil 

et al., 2009; Kaldellis et al., 2004; Agrawal et al., 2016) aspects. However, water-energy management 

issue for such systems has received less attention and according to the authors’ knowledge related work 

to the fuzzy logic-based water-energy management strategy for desalination systems are strongly limited 

in literature, if not rare. 

Secondly, this paper presents a non-exhaustive study, but reasonably sufficient, of the Fuzzy Inference 

System (FIS) design for such a specific application. For this purpose, based on their experience, authors 

present in this paper three different methods, among other, to design the FIS, which are: i) handmade 

tuning method based on the own designer’s expertise, ii) genetic algorithm (fuzzy-genetic algorithm 

tuning), and iii) neural network algorithm (neuro-fuzzy tuning). Authors explain through this application 

case (water-energy management for a standalone desalination system) the process of each design 

method, discuss and analyze the obtained results when applying each designed FIS into the water-energy 

management strategy. It is evidenced through this study that the design phase is of paramount 

importance for an efficient and/or optimized water-energy flows management into the system, especially 

when FIS parameters are changed. Authors highlight the influence of the FIS design on the performance 

of the Water-Energy Management Strategy (W-EMS); it is demonstrated that by further tuning of the 

FIS parameters such as the fuzzy partition of the input/output spaces (i.e. universe of discourse), the 

choice of the shape and the number of the input/output membership functions, and the fuzzy control 

rules, the performance of the designed fuzzy logic-based W-EMS can be significantly improved for the 

autonomous desalination system. Moreover, the comparison between the optimization method by 

genetic algorithm and neuro-fuzzy system was not given before in the studied field although they are 

familiar methods. 

This paper is organized as follows: the specifications of the system under study and the experiments 

regarding the system energy behavior are introduced in Section 2. Then, the water-energy management 

problem is set in Section 3. These elements (i.e. understanding of the system behavior and the water-

energy management constraints) constitute the preliminary phase for the designer to set the initial fuzzy 

system-based Water-Energy Management Strategy (W-EMS). Section 4 presents the first method to 

design the fuzzy system, which is made by hand tunings mainly based on the user’s expertise. The 

different steps of the Hand-Made FIS (HMFIS) design, such as Fuzzification, fuzzy inference and the 

rule base are described in this section. Section 5 is dedicated to analyze the HMFIS performance when 

applied into the W-EMS. According to the carried-out analysis, the HMFIS design is improved in 

Section 6. The different improvements and simulation results of the improved HMFIS-based W-EMS 

are described in this section. Section 7 is reserved to explain the second method for the FIS design, 

which is based on the genetic algorithm. In this section the usefulness of the genetic algorithm to limit 

the hand adjustment trials time to find the optimal FIS design is evidenced compared to the improved 

HMFIS. The third method of the FIS design is described in Section 8, which is the neuro-fuzzy technique 

(ANFIS), a data-driven method; this technique uses the artificial neural networks to estimate, based on 

input/output data base, the FIS design. The effectiveness of the ANFIS system to improve the 

performance of the W-EMS compared to both the handmade FIS and the GA-optimized FIS is 

demonstrated in this section. Section 9 is dedicated for drawn conclusions. 

SPECIFICATIONS OF THE BWRO DESALINATION SYSTEM 

Overview of the studied system 

The studied Brackish Water Reverse Osmosis (BWRO) desalination system, depicted in Figure 1, is 

dedicated to meet freshwater demand of a small community in remote areas with no access to freshwater 

and electrical grids, but where renewable energy resources are abundant. The system consists of small-

scale standalone brackish water pumping and desalination application supplied with a variable generated 
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power offered along wind speed and solar irradiation conditions without battery storage. An 

experimental BWRO desalination test bench was designed and implemented in the Electrical Systems 

Laboratory (LSE at the ENIT-UTM in Tunis-Tunisia) to be used as a prototype, where its freshwater 

production is rated at 7.2 m3/d. This experimental test bench (depicted in Figure 2) is powered by a 

programmable DC power source rated at 4 kW which physically emulates the power generated by the 

renewable energy source (photovoltaic PV-wind turbine). The intermittent power 𝒫dc “given” according 

to solar and wind conditions is transferred via a DC bus to the hydro-mechanical processes of the BWRO 

test bench. Technical information about the experimental test bench are reported in Table 2. 

1) The studied system mainly includes two independent hydro-mechanical processes that are decoupled 

through an elevated water storage tank T1. The first hydro-mechanical subsystem (Water Pumping 

Process) is dedicated to brackish water conveyance from the well to the storage tank T1, using a 

single-stage motor-pump (denoted Well Pump, WP) as depicted in Figure1. 

2) The second hydro-mechanical subsystem (RO-Desalination Process) is devoted to producing 

freshwater through a Reverse Osmosis (RO) desalination process consisting of a multi-stage High 

Pressure motor Pump (HPP), feeding at high pressure a RO membrane to produce freshwater.  

Indeed, water is a very good storage medium; the electric energy can be stored in the form of water into 

water storage tanks when renewable energy is abundant. Therefore, brackish water can be 

simultaneously pumped (stored) and desalinated when the energy supply is abundantly available, and 

be stored if not. This may alleviate the expensive buck-up systems need in remote areas with good 

renewable energy resources. Within this configuration the ‘gravitational water storage’ involves an 

advantage of great importance in terms of energy efficiency improvement. 

 

Figure 1 

Synoptic of the autonomous BWRO desalination system 
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It should be pointed out that the experimental test bench was designed such as the hydraulic load (the 

RO membrane) is modular so that other membranes can be added. That’s why two RO membranes are 

considered during simulations. 

Table 1   

Specifications of the BWRO desalination experimental test bench 

Component  Characteristics 

High Pressure Pump (HPP) 

 

Model: EBARA EVM2 22F/2.2 

Rated Power: 2.2 kW 

Rated Pressure: 8.17-18.6 bar 

Rated flow rate: 20- 60 L/min 

Well Pump  (WP) Model: PEDROLLO CP158 

Rated Power: 0.75 kW 

Rated Pressure: 2.5-3.4 bar 

Rated flow rate: 10-90 L/min 

RO membrane Model: TORAY TM710 

Feed water salinity: 4 g/L 

Maximum freshwater 

production: 7.2 m3/d 

Storage tank (T1) Capacity: 2180 Liters (L) 

Height 2.1 m 

Elevation height: 4 m 

Experimental characterization of the system for water-energy management 

The studied system is a complex energy system which complexity is characterized by the combination 

of components of different natures and functionalities, all interacting within the system under study. 

Such heterogeneity leads to several physical phenomena coexistence and several system constraints of 

different domains making difficult the modeling and the energy flows (power, water) management of 

Figure 2 

BWRO desalination experimental test bench 
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the system under study. Given the diversification of the system constraints namely, functioning under 

variable energy supply (i.e. variable feeding power and pressure), technological constraints of pumping 

devices (power ranges) and membrane (flow-pressure range), and functioning constraints (filling state 

of the storage tank), an experimental characterization of the desalination system is then mandatory.  

Given a hydraulic load characteristic, the suitable power range [𝒫pump
min – 𝒫pump

max] of each pumping 

device was experimentally identified (the operating pressure range of the hydraulic load is intrinsically 

included). Indeed, the suitable hydraulic load characteristic enabling to achieve a water production–

efficiency tradeoff was experimentally determined as depicted in Figure 3 and Figure 4 (for more details 

please see (Ben Ali et al., 2020)). This is considered a first step to prepare the prerequisites for an 

effective water-energy management. According to the experimental characterization, the hydro-

mechanical processes constraints are summarized in Table 2. It should be noted that these values are 

corresponding to 4g/L as brackish water salinity and to 4m storage tank elevation. 

Regarding the storage tank T1, the amount of the stored water is generally divided into two volumes: the 

so called “Dead Volume” where water Level L < Lmin. This volume will never be used because it is 

reserved for sedimentation of pumped water. Generally, we have to reserve 0.2m height for the Dead 

Volume in the tank.  The second part is called “Useful Volume” where water Level is: Lmin ≤ L ≤ Lmax. 

This volume is reserved to be used by the RO-process to be treated. The maximum level was chosen at 

Lmax = 2m while reserving the upper 0.1m (total height of tank is 2.1m) as a secure margin to avoid the 

“tank overflow”. 

The sought objective of the system is to maximize the freshwater production as much as possible 

according to the available renewable energy. For this sake, a specific water-energy management strategy 

is required to meet the objective while taking into account the system constraints.  

 

Figure 3 

Experimental characterization of the water pumping process 
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Table 2  

System constraints 

Well Pump HP Pump Tank water level 

𝒫WP
min = 120 W 𝒫HPP

min  =  620 W Lmin = 0.2 m (10%) 

𝒫WP
max = 1020 W 𝒫HPP

max  =  1800 W Lmax = 2 m (100%) 

STATEMENT OF THE WATER-ENERGY MANAGEMENT PROBLEM FOR THE 
DESALINATION SYSTEM 

Besides the variable nature of the PV/Wind-turbine generator power supply, the absence of the 

electrochemical storage device such as batteries, makes the electric energy/water supply a challenging 

issue for the remote regions. Therefore, a suitable Water-Energy Management Strategy (W-EMS) is 

required to determine the appropriate electric power dispatching between the two water subsystems with 

respect to: i) the given   generated power 𝒫dc, ii) the operating power range of each pumping device 

[𝒫pump
min – 𝒫pump

max], and iii) the current filling state of the storage tank T1: the level L of the stored water 

in the tank must vary on its specified confines (Lmin ≤ L ≤ Lmax).  

In order to resolve such an electric power dispatching problem, a “power sharing factor” (α) is then 

defined. It enables to instantaneously determine the power dispatching between the two hydro-

mechanical processes according to the constrained water-energy management rule expressed by 

Equation 1. Given that electrochemical storage was replaced by hydraulic storage in water tanks, electric 

energy management and hydraulic energy (here water) management can be coupled. Accordingly, the 

defined W-EMS enables to manage simultaneously the electric energy and water flows into the system 

while fulfilling the technological (electric power range of motor-pumps) and functioning (tank filling 

state) constraints during the system operation.  

Figure 4 

Experimental characterization of the RO desalination process for brackish water salinity of 4 g/L 
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{
𝒫𝐻𝑃𝑃

∗ = 𝛼 ∙ 𝒫𝑑𝑐
𝒫𝑊𝑃

∗ = (1 − 𝛼) ∙ 𝒫𝑑𝑐


Subject to: 

0 ≤ 𝛼 ≤ 1 

𝒫𝑝𝑢𝑚𝑝_𝑖
𝑚𝑖𝑛 ≤ 𝒫𝑝𝑢𝑚𝑝_𝑖

𝑚𝑖𝑛 ≤ 𝒫𝑝𝑢𝑚𝑝_𝑖
𝑚𝑎𝑥; 𝑖 = {1,2} 

𝐿𝑚𝑖𝑛 ≤ 𝐿 ≤ 𝐿𝑚𝑎𝑥

(1)  

Where 𝒫dc, 𝒫HPP and 𝒫WP denote the generated power from the power source transferred via DC bus, 

and the assigned electric powers to the HP-Pump (HPP) and the Well-Pump (WP), respectively. 

It should be pointed out that the considered case study limits the approach to 2 devices (motor-pumps), 

but the methodology may be extrapolated to any number (n>2) of sub systems. 

HAND-MADE FUZZY INFERENCE SYSTEM (HMFIS) DESIGN FOR THE WATER-
ENERGY MANAGEMENT: FIRST STEP 

The Fuzzy Inference System (FIS) constitutes the decision-making tool for the proposed W-EMS to 

determine the aforementioned power sharing factor. The decision-making is made on the basis of input 

states (i.e. electric power and tank filling state) taking into consideration constraints of the system 

elements, and the defined criterion (maximizing freshwater production).  

Generally, FIS design is mainly based on heuristics and the knowledge base of the user (the expert). It 

is usually characterized through the following steps: The Fuzzification, the inference engine and the 

Defuzzification.  

Fuzzification 

It consists of determining the “fuzzy subsets” and the linguistic variables for the inputs/outputs: each 

input and output is divided into a number of overlapped levels (fuzzy subsets) characterized by 

“membership functions”. They are developed based on the pre-defined limits of system components (cf. 

Table 2). 

A two inputs-single output FIS is designed, where the generated power 𝒫dc and the current Filling State 

(FS) of the storage tank T1 (given that FS (%) = (L/Lmax)· 100) are defined as the FIS inputs, and the 

power sharing factor ( ) as the FIS output. 

Figure 5 shows the Membership Functions (MFs) of the input/output variables describing their 

boundaries and depicts the shape and universes of discourse. The first input 𝒫dc is divided according to 

the operating power range of the two pumps into “four” fuzzy subsets represented by “four” MFs using 

the linguistic variables {L, M, QH and H}. The acronyms description of linguistic variables and the 

numerical range of MFs are reported in Table 3. Triangular shape is chosen for {M and QH} membership 

functions, and Trapezoidal shape for {L and H} membership functions. The range of values varies from 

120W to 2820W as the universe of discourse representing respectively the minimum power needed to 

run the Well Pump (𝒫WP
min = 120W), and the sum of maximum functioning powers (𝒫WP

max + 𝒫HPP
max = 

2820W). The second input (FS) of the storage tank is divided into “three” fuzzy subsets characterized 

by “three” Triangle membership functions using the linguistic variables {L, M, and F}. Its universe of 

discourse is within the range of 10 – 100% representing the water level limits in the storage tank. As for 

the output, it represents the power sharing factor enabling to instantaneously share the current power 

𝒫dc over the two pumps according to Equation 1 while respecting the constraints. The fuzzy output is 

divided into “five” overlapped levels represented by “five” Triangle membership functions using the 

linguistic variables {OFF, A, B, C and D}. Where, the first subset (OFF) causes the HP motor Pump 

(HPP) shutdown. The rest of fuzzy subsets involve its operation, from the subset (A) which limits the 

use of the HPP to a moderate ratio, until quasi-exclusively favoring desalination (D) over the pumping 

mode. The output universe of discourse is within the range of 0 – 1. 
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Table 3 

  Numerical ranges of the inputs/outputs variables of the HMFIS 

Symbo

l   

Description   Numerical 

range  

Input 1: 𝒫dc  

L Low [120 – 820] 

M Medium [370 – 1410] 

QH Quite High [820 – 2310] 

H High [1410 – 

2820] 

Input 2: FS 

L  Low [10 – 21.62] 

M  Medium [10 –100] 

F  Full [21.62 – 

100] 

Output:  

OFF The HPP is OFF  (i.e. Pumping only)  =>   ≈ 0   [0 – 0.25] 

A Pumping with moderate desalination [0 –  0.5] 

B Pumping and Desalination  [0.25 – 0.75] 

C Pumping and Desalination  [0.5 – 1] 

D The WP is OFF  =>   ≈ 1   [0.75 – 1] 
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Fuzzy inference and Rule base 

The fuzzy inference can be defined as a “mapping formulation process” from a given input to the output 

using fuzzy logic based on a fuzzy rule base. The fuzzy inference process includes: i) membership 

functions, ii) fuzzy logic operators (AND, OR), and iii) “IF-THEN” linguistic rules making possible to 

transcribe in a simple way the user’s expertise (i.e. the human know-how) acquired from simulations 

and experimentation with the system installed in our research laboratory LSE. (Figure 2). 

In order to compute the output value (i.e. the power sharing factor value) the mapping includes 

“Fuzzification”, “Aggregation” and “Defuzzification” sub-processes as illustrated in Figure 6: the 

degrees of membership of the “IF” parts of the fired rules are evaluated (Fuzzification phase), and the 

“THEN” parts of the fired rules are weighted by these degrees of membership, and Aggregated using 

the OR operator. This gives a resulting surface characterized by a resulting membership function (MF) 

obtained by forming the maximum of partial MFs, given that the latter are related by the OR operator. 

At the end, the Defuzzification is applied to the resulting surface to obtain a crisp value of the output 

factor (see (Lee et al., 1990) for more information on fuzzy logic controller). This factor, in turn, 

determines the references of the feeding electric powers (𝒫HPP
* and 𝒫WP

*) that should be assigned to 

each motor-pump according to Equation 1. 

The designed FIS was implemented using “Mamdani” architecture with 12 fuzzy control rules relating 

the two inputs with the output factor. The rule base is reported in Table 4. The performance of the 

designed FIS strongly depends on its fuzzy rule base. The latter is determined so that motor-pumps 

operate on their optimal efficiency region and the tank filling state (FS) varies on its specified confines, 

with the purpose of maximizing the freshwater production. For instance, in case of Low power 

generation (“𝒫dc[i] is L”) and if the storage tank is Full (“FS[i] is F”), the user must take advantage of 

Figure 5 

Input/output membership functions of the Hand-Made FIS (HMFIS) 
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all generated power for only the desalination process to maximize freshwater production, therefore (“ [i] 

is D”) (i.e. 𝒫HPP[i] =  · 𝒫dc[i] ≌ 𝒫dc[i]). This leads to the following rule: 

IF 𝒫dc is L  AND  FS is F  THEN   is D 

In Addition, if the power generation is Quite High (“𝒫dc[i] is QH”) and if the water level in the tank is 

Low (“FS[i] is L”), the user should take advantage of the available generated power to thoroughly 

desalinate the available amount of brackish water while respecting the secure limit (Lmin) of the storage 

tank. This leads to the following rule: 

IF 𝒫dc is QH  AND  FS is L THEN   is D 

In other case, if the power generation is abundant (High) (“𝒫dc[i] is H”) (i.e. 𝒫dc[i] > 𝒫HPP
max) and if the 

water level in the storage tank is Low (“FS[i] is L”), the power can be shared between the two motor-

pumps since the generated power is enough to operate simultaneously the two water processes as long 

as the tank is not used up. So, the value of the power sharing α should be an average value enabling the 

system to store brackish water and produce freshwater, as well. This leads to the following rule: 

IF 𝒫dc is H  AND  FS  is L  THEN   is B 

The “AND” method used for the FIS design is “MIN”, the implication (THEN) operator is “MIN”, the 

Aggregation is “MAX”, and the Defuzzification method used is the “Centroid” method. The latter is 

considered as the most popular Defuzzification method which returns the centroid of area under curve 

(step 3 in Figure 6). 

Table 4 

 Fuzzy rule table for the designed Hand-Made FIS (HMFIS) 

 𝒫dc 

L M QH H 

FS L  OFF OFF D B 

M  A D D C 

F  D D D D 
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HMFIS PERFORMANCE ANALYSIS 

Introduction to the analysis  

After having designed the FIS, the latter is implemented into the W-EMS in order to evaluate its 

performance. Simulation results of the fuzzy W-EMS are presented in Figure 7 for a daily power profile. 

The latter is extracted from real-data of PV-Wind power generation recorded every hour from January 

to December 2007 of a region in Southeast Tunisia: Djerba-Midoun. The considered sampling period is 

2.5 minutes (i.e. the sampling period is Ts = 2.5 x 60 = 150s). Indeed, an interpolation was performed 

on the recorded power profile in order to modify the sampling period (1 hour) which represents a long 

time interval for the W-EMS.  All simulations were coded in MATLAB© Software. The presented power 

profile values vary on its universe of discourse (120-2820W) as described in the above section and the 

initial Filling State is fixed at FS0 = 15%. Simulation results show that the implemented fuzzy rules 

(Table 4) are coherent with the proposed W-EMS described by Equation 1 and its objective. Moreover, 

simulation results comply with the system constraints; the water level in the storage tank is kept varying 

on its confines during the day and the supply power of each pump is within its operating power range. 

For example, when the generated power (𝒫dc) is High and the tank filling state (FS) is also High, we can 

abundantly produce freshwater while pumping brackish water in a moderate way (i.e. the WP water 

flow rate is QWP ≤ QHPP) in order to prevent tank overflow. This way, the designed FIS enables to take 

benefit of the available generated power while respecting the system constraints. This demonstrates the 

good performance of the designed FIS in terms of power dispatching and compliance with system 

constraints. 

Figure 6 

Computational process of the output factor inside the fuzzy inference system 

1394 W 15.2%

1. Fuzzification

OR

3. Defuzzification of the aggregated surface

0.86

Rule 7:  IF  dc is QH     AND FS is L  THEN is D

MIN MIN

MAX

MIN MIN

2. Aggregation
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However, the designed FIS presented some limitations during the treatment of some operating cases out 

of boundaries leading to affect its performance. In order to evaluate the FIS performance, the power 

profile amplitude and the initial filling state (FS0) of the tank can be varied. These factors (the power 

amplitude and FS0) significantly influence the decision making of the FIS.  

The outstanding situations are highlighted here in order to analyze the FIS performance. For this reason, 

a theoretical short-time interval power profile is chosen to focus on each studied case and show in details 

the influence of these factors on the system behavior and accordingly on the W-EMS performance. The 

power profile is sampled every five seconds for a total time scale of 200 seconds in the simulation. Then, 

some constraints are violated in order to investigate their impact on the system behavior.  

When observing Figure 8-(b) and Figure 9, a poor decision-making of the fuzzy W-EMS is noticed 

during some time intervals, that are illustrated through inappropriate behavior of the system in these 

figures. This is caused by a violation of some constraints related to the system operation. This problem 

can be split into two sub-problems:  

 The first one is related to the first FIS- input variable which is the generated power 𝒫dc, 

 The second one is related to the second FIS-input variable which is the filling state FS of the storage 

tank. 

These two problems are analyzed in the following two subsections. 

Influence of the first FIS-input variable: the electric power (𝒫dc) 

This problem is illustrated by Figure 8. The simulation started with a full tank (i.e. initial tank filling 

state FS0 = 100%) using a variable power profile denoted (A) (Figure 8-(a)) where its maximum 

magnitude value is 2820W. This case shows the good performance of the fuzzy W-EMS. Nonetheless, 

Figure 7 

Simulation results of the fuzzy logic-based W-EMS for a daily power profile 
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when using the power profile (B) depicted in Figure 8-(b), where the maximum magnitude value reaches 

3700W, while maintaining the same initial filling state of the tank, there is inappropriate behavior: the 

maximum limit in the storage tank is exceeded at the instant t2 (i.e. tank overflow). Indeed, during the 

interval time [t1 – t3] the input power is no longer into the universe of discourse (i.e. 𝒫dc > 2820W). As 

a result, the fuzzy system gives a random value of the power sharing factor (e.g. here  = 0. 5). 

 

Figure 8 

Simulation results of the fuzzy W-EMS for: (a) power profile (A) and FS0=100%, (b) power profile 

(B) and FS0=100% 
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Influence of the second FIS-input variable: the tank filling state (FS) 

The effect of the filling state violation reveals through two different cases: in Figure 8-(b) at t ≥ t3, a 

poor behavior of the system is noticed although the input power is within the universe of discourse: the 

two pumps operate simultaneously (i.e. pumping and desalination mode) which is inacceptable because 

in this case the Well Pump must be switched off. This is explained by the fact that the water level or the 

filling state (FS) of the tank is actually out of universe of discourse [10 – 100%]. Secondly, in case of 

empty tank (FS0 = 9% < FSmin) as depicted in Figure 9, normally the system should pump water in the 

well to increase the water level in the storage tank, while the High Pressure Pump (HPP) must be 

switched Off. However inacceptable behavior is noticed: the two pumps operate simultaneously during 

the interval time [t0 – t1]. This can be explained by the fact that this case (i.e. constraint violation on the 

filling state) has not been treated beforehand (FS0 ∉ [10 – 100%]). As a result, when an input value 

does not belong to the universe of discourse, it leads to a random decision-making. 

In the light of the above analysis, the FIS could be effective and offer good performance in terms of 

power dispatching, when varying the operating conditions of the system and for different input power 

amplitudes, by providing “the necessary intelligence” to the FIS to be designed. This enables to prevent 

in real-time approach the occurrence of any mistreated case beforehand (i.e. during the off-line phase). 

For this sake, in the next section the FIS design will be improved in order to perfect its intelligence.  

Figure 9 

Simulation results of the fuzzy W-EMS for the power profile (A) and initial tank filling state 
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HMFIS DESIGN TUNING AND IMPROVEMENT: SECOND STEP 

The performance of the FIS, and accordingly, the fuzzy logic-based W-EMS depends on the number 

and shape of the membership functions of each fuzzy variable, and on the choice of the fuzzy rules. The 

adequate choice of these parameters is crucial to reach the water-energy management objective 

(maximizing the freshwater production of the desalination system following weather conditions) and for 

maintaining the tank filling state FS within its specified confines. For this purpose, the designed FIS 

will be improved in this section by adjusting and tuning some setting parameters, namely:  

 The number of membership functions of the two fuzzy inputs,  

 The fuzzy rule base. 

Indeed, a priori additive fuzzy rules are planned to the previous rule base to deal with the exceptional 

cases mentioned in the previous section. The improvements are explained below. 

Improvements on the first fuzzy input variable: 𝒫dc 

Universe of discourse tuning  

Assuming that we already knew the input power profile, we can predefine the appropriate universe of 

discourse to this profile. Given the previous power profile (B), we can choose [0 – 4000W] as the 

universe of discourse of the 𝒫dc variable which is an oversized profile with respect to the system 

requirements. The chosen range concourse meets the alleged requirements.  

Membership functions tuning 

The chosen universe of discourse can be subdivided more than previously into “six” overlapped levels 

using the linguistic variables {Quite Low (QL), Low (L), Medium (M), Quite High (QH), High (H) and 

Very High (VH)}. The membership functions of the input variable are shown in Figure 10. A 

Trapezoidal shape is chosen for the membership functions {QL and VH}, and Triangle shape for others. 

Improvements on the second fuzzy input variable: FS  

Universe of discourse tuning 

For the same raisons, the filling state range [0 – 105%] is defined as universe of discourse of the FS 

variable. Indeed, the tank is 2.1m height corresponding to 105% value since we have defined the 

maximum storage limit (Lmax = 2m) as 100% to prevent tank overflow.   

Membership functions tuning 

Based on the chosen universe of discourse, “five” membership functions {Empty (E), Low (L), Medium 

(M), Full (F) and Overfilled (OF)} are set. Trapezoidal shape is chosen for the membership functions 

{E and OF}, and Triangle shape for others (Figure 10). 

It should be noted that parameters for the output variable are kept the same as shown in Figure 5. 
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Improvements on the Rule base 

The new rule base is composed of the initial 12 fuzzy rules given in Table 4 to which are added additive 

fuzzy rules in order to ensure the robustness and reliability of the process to deal with critical cases. The 

improved rule base includes now 30 fuzzy rules that are reported in Table 5. 

Table 5 

 Fuzzy rule table for the improved HMFIS 

 𝒫dc 

QL L M QH H VH 

FS E  OFF OFF OFF OFF OFF OFF 

L  OFF OFF OFF D B D 

M  OFF A D D C D 

F  OFF D D D D D 

OF  OFF D D D D D 

Simulation results of the improved HMFIS-based water-energy management 
strategy 

Simulation results show that the improved HMFIS is able to properly deal with water-energy 

management problem discussed in the previous section. In Figure 11-(a) where the storage tank is 

initially full, the improved fuzzy water-energy management strategy (W-EMS) reaches to manage 

simultaneously the electric energy and water flows into the system while respecting the constraints. The 

FIS gives the priority to the desalination process over pumping process by giving higher values for the 

power sharing factor ( ). In order to prevent tank-overflow the pumping process operates in moderate 

manner (i.e. QWP < QHPP) simultaneously with desalination process. This seems very interesting since it 

leads to take benefit of the abundant renewable energy while respecting the system constraints. 

Moreover, in Figure 11-(b), where the tank is initially totally empty the improved FIS imposes the HP 

Pump (HPP) shutdown despite the abundant generated power in order to prevent the “vacuum suction” 

problem. In such conditions the priority is given to the pumping process where the Well Pump (WP) 

operates with its maximum water flowrate (QWP = QWP
max). In order to be effective, and after a certain 

Figure 10 

Membership functions of input variables of the improved Hand-Made FIS (HMFIS) 
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moment, it becomes possible to switch-On the HP pump to operate in moderate manner such as: QWP > 

QHPP. This permits to take benefit of the abundant renewable power leading to maximize the freshwater 

production. 

In order to evaluate the improved HMFIS performance over a long period of time, a weekly power 

profile is applied. It is extracted from the real data of PV-Wind power generation of Djerba-Midoune 

region where the sampling period is set to 2.5 min. Simulation results are shown in Figure 12 

demonstrating the good performance of the improved HMFIS in terms of power dispatching and 

compliance with the system constraints. 

In light of the above outcomes, the improved HMFIS-based W-EMS enables, on the one hand to 

effectively manage the water/power flows into the desalination system, and on the other hand to make 

good use of the renewable generated power in order to maximize as much as possible the freshwater 

production while respecting the technological (power ranges) and the functioning (filling state of the 

tank) constraints of the system. 

The next section is dedicated to show how optimization algorithms can significantly reduce the time of 

hand-adjustment trials and improve the FIS design.  

 

Figure 11 

Simulation results of the fuzzy W-EMS for: (a) power profile (B) and FS0=100%, (b) power profile 

(B) and FS0=0% 
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FIS DESIGN OPTIMIZATION TECHNIQUE: GENETIC ALGORITHM-BASED FIS 
DESIGN (GAFIS) 

As previously explained, the design phase of a fuzzy inference system (FIS) consists of the choice of its 

different parameters, namely: 

 The number and shape of membership functions (MFs) per input/output and the location of their 

characteristic points/parameters, 

 The fuzzy rules, and 

 The Defuzzification method. 

This phase was essentially based on hand and iterative adjustment trials according to the expert analysis 

of obtained results: first of all, the initial FIS design was set by: i) setting the MFs of input/output 

variables (i.e. number, shape, location and mapping), ii) setting the initial rule base, and iii) choosing 

the Defuzzification method. Then, the MFs of the input/output variables have been adjusted while tuning 

the rule base and even the Defuzzification method. Nonetheless, in energy management optimization 

problems it is very difficult to find an optimal combination of all of these parameters. Indeed, each 

choice of design parameters leads to a new different FIS that may affect the W-EMS performance as 

previously explained. The best possible solution provides better power dispatching, but needs lots of 

human expertise and a huge number of tests to be found. Therefore, to find an optimal FIS design and 

limit adjustment trials time, an optimization algorithm appropriate for FIS design problems should be 

used, namely the Genetic Algorithm (GA). In order to make the design optimization more efficient, only 

the FIS parameters that have major effects on the FIS performance should be considered. Indeed, after 

Figure 12 

Simulation results of the fuzzy W-EMS for a weekly power profile 
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an in-depth expertise following the previous study, the designer is able to discern whether the FIS 

parameter has a great or negligible influence on the final result. Hence, those parameters that most 

influence the FIS performance (accordingly the performance of the fuzzy W-EMS) for this application 

are determined as: 

 The MF parameters for both input variables: the placement of the first point (i.e. first parameter: 𝑎) 

for each Triangle MF. Indeed, a Triangle MF is characterized by three parameters: 𝑎, 𝑏 and 𝑐, where 

𝑎 and 𝑐 define the base and 𝑏 defines the height of the Triangle.  

 The fuzzy rules (only those presented in bold type in Table 5), and  

 The Defuzzification method. 

The Genetic Algorithm (GA) optimization process of the improved HMFIS was performed on a daily 

power profile, where the optimization objective is to maximize the freshwater production. This phase 

was detailed in (Ben Ali et al., 2018) where the performance of the GA optimized FIS (denoted GAFIS) 

was evidenced in terms of freshwater production compared to the HMFIS. 

The optimized membership functions of the inputs of the GAFIS (Genetic Algorithm-optimized FIS) in 

comparison with those of the Hand-Made FIS (HMFIS) are depicted in Figure 13. The optimized rule 

base is reported in Table 6. The Defuzzification method obtained by the GA optimization is the 

BISECTOR method instead of the previously chosen Centroid method. 

 

Table 6 

Fuzzy rule table for the GA optimized FIS (GAFIS) 

 𝒫dc 

QL L M QH H VH 

FS E  OFF OFF OFF OFF OFF OFF 

L  OFF OFF A A C D 

M  OFF D B B B D 

F  OFF D C C C D 

OF  OFF D D D D D 

 

Figure 13 

Membership functions of the two inputs for the GAFIS and the improved HMFIS 
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Comparison results between the HMFIS and the GAFIS are reported in Table 7 for different seasonal 

power profiles. When applying the GAFIS for different input power profiles, better results (i.e. higher 

freshwater quantity) are always obtained compared to the HMFIS results (improvement of 3.3% during 

Autumn). In addition to freshwater production, higher stored amount of brackish water (improvement 

of 63% in Summer) can be noticed in Table 7, and less energy loss are noted when using the GAFIS 

(based on the consumed energy Ec and non-consumed energy Enc as key performance indicators). These 

findings demonstrate the usefulness and effectiveness of the genetic algorithm as an optimization tool 

for FIS design. 

Till now, the design phase of a “Mamdani-FIS structure” was introduced. The basic structure of a 

Mamdani-type FIS is a mapping process that maps input characteristics to input membership functions 

(MFs), the latter to control rules, in turn, rules to the different output characteristics, then, output 

characteristics to output MFs, and finally, the output MFs to a single crisp output value. In such a system, 

MFs and fuzzy rules are either chosen and predetermined by the expert, or obtained based on a tuning 

procedure using an optimization algorithm to find the optimal design.  

Another method may also be useful for tuning the FIS parameters that can be classified among data-

driven approaches. This approach is explained in the next section. 

Table 7 

Comparison of obtained results of the water-energy management strategy with HMFIS and GAFIS 

tested for different seasonal power profiles  

  Freshwater (m3) Brackish water (m3) Ec (kWh) Enc (kWh) 

Autumn GAFIS 747 1.49 1939 625.9 

HMFIS 722.7 1.242 1898 667 

Gain (%) 3.3 16.7 2.1 6.6 

Winter GAFIS 755.9 1.897 1964 618.8 

HMFIS 731.8 0.747 1925 657.5 

Gain (%) 3.2 60.6 2 6.3 

Spring GAFIS 817.24 1.85 2130 688.4 

HMFIS 795 1.242 2095 723.4 

Gain (%) 2.8 37.5 1.7 5.1 

Summer GAFIS 789.29 772.35 2071 683.9 

HMFIS 772.35 0.699 2028 726.6 

Gain (%) 2.2 63 2.1 6.3 

NEURO-FUZZY DESIGN TECHNIQUE: ANFIS 

Adaptive Neuro-Fuzzy Inference System (ANFIS) is a Takagi-Sugeno FIS whose MFs parameters are 

tuned and adjusted using a given input/output data set (see (Jang, 1993; Jang et al., 1995) for more 

information about ANFIS). This adjustment enables fuzzy system to learn from data they are modeling.  

When to use neuro-adaptive learning 

Supposing that the designer aims to apply a fuzzy inference system to the presented BWRO desalination 

system for which he already has a collection of input/output data that he wants to use for modeling or 

other similar scenario. However, the designer does not have a predetermined model structure. In such 

modeling situations, designer cannot discern what MFs should look like by simply looking at data. Given 

that the shape of MFs depends on their parameters as previously demonstrated, modifying those 

parameters may affect the MF shape and, accordingly, the FIS performance. Hence, instead of just 

looking at the data to choose arbitrarily the MF parameters, the latter here can be automatically identified 

using Fuzzy Logic Toolbox neuro-adaptive learning techniques so as to tailor the MFs to the 

input/output data. This enables designer to account for variations in data values. Indeed, the 

aforementioned Fuzzy Logic Toolbox learning technique is integrated in the ‘anfis’ function available 
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in MATLAB software, that accomplishes the tuning and adjustment of MF parameters based on the 

training collected data. 

Model learning and inference 

The neuro-adaptive learning method is a network-type structure working similarly to that of neural 

network using either back propagation alone or in combination with least squares method for 

membership function parameters estimation (Jang, 1993). These neuro-adaptive learning techniques 

offer to the fuzzy modeling procedure a method to learn information about a given data set. So, the 

Fuzzy Logic Toolbox ‘anfis’ command allows training the FIS model to emulate the given training data 

by modifying the MF parameters according to a given error criterion. In other words, it computes the 

MF parameters that best enable the associated FIS to track the input/output data. 

Model validation using testing data set 

Model validation constitutes the process to check how well the trained FIS model predicts the checking 

data set output values. During this process, the designer uses a testing (or checking) input/output data 

set on which the resulting FIS was not trained. Usually, the training and testing data sets are gathered 

based on observations, simulations, or physical experiments of the target system, and are stored in two 

separate data files.  

ANFIS design example 

The Neuro-Fuzzy Designer application available in MALAB software is used to generate and train a 

new Sugeno- type FIS (two inputs-one output as shown in Figure 14) for water-energy management of 

the BWRO desalination system. The used input/output data-base here is collected from results of a 

deterministic rules-based water-energy management strategy which was previously performed (see (Ben 

Ali et al., 2020)). 

Figure 15 depicts the input membership functions of the resulting ANFIS. Table 8 shows the simulation 

results of the ANFIS-based W-EMS, which are very close to the GAFIS-based W-EMS results during 

Spring. The presented ANFIS, using the neuro-adaptive learning technique, enables to improve, on the 

one hand, the total water production of the studied system, and the system energy efficiency (by 

presenting the lowest value of Enc) on the other hand. Therefore, users can apply the obtained ANFIS 

for real-time energy management. 

 
 

Figure 14 

ANFIS structure 

input inputMF rule outputMF output
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Table 8 

Comparison of fuzzy W-EMS results obtained with the improved HMFIS, the GAFIS and the ANFIS 

tested during Spring 

 ANFIS GAFIS Improved HMFIS 

Freshwater (m3) 816,64 817,24 795 

Brackish water (m3) 2,1 1,98 1,24 

Ec (kWh) 2247 2129,5 2094,5 

Enc (kWh) 570,94 688,41 723,43 

CONCLUSION 

This work investigates an important topic of energy and water security (water-energy nexus), 

considering the increasing population and the scarcity of water in poor or developing areas, combined 

with the need to mitigate climate change by reducing carbon emissions. The main innovation lies in the 

application field in that the use of the fuzzy logic in water-energy management for desalination systems 

to deal with energy dispatch between two hydro-mechanical processes (pumping and desalination) was 

not issued in literature. 

In this context, the paper is focused on the detailed description of how a Fuzzy Inference System (FIS) 

can be designed for water-energy management. For this purpose, based on their experience, authors 

presented three different methods, among other, to design the FIS, which are: i) handmade tuning 

method based on the designer’s expertise, ii) genetic algorithm (GA), and iii) neural network algorithm 

(NNA). Authors explained, through a specific application (water-energy management for a standalone 

renewable energy-driven desalination system without electrical storage device) the process of each 

design method. Authors highlighted the influence of the FIS design on performance of the Water-Energy 

Management Strategy (W-EMS). 

Firstly, the study showed that the W-EMS performance can be improved by further tuning the design 

parameters of the fuzzy system (the FIS) such as: i) the fuzzy partition of the input/output spaces (i.e. 

the universe of discourse), ii) the choice of the input/output membership functions, iii) the fuzzy control 

rules, and iv) the Defuzzification method. In addition, it was demonstrated that based on human 

expertise, heuristics, and intuition the choice of these parameters is not deterministic and usually requires 

an adjustment trial procedure to find the optimal FIS. Relatively small changes in these parameters 

Figure 15 

Gaussian membership functions of the inputs 
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involve a new fuzzy system requiring large human expertise and a big number of tests to find the optimal 

design. 

Secondly, it was shown that given performance criteria, evolutionary algorithms like GA (or also particle 

swarm optimization, PSO) offer good tools to find the optimal design, while limiting adjustment time 

and keeping a minimum of human analysis in the optimization phase. 

Thirdly, another interesting design approach of the FIS which is the ANFIS, was also described. It is 

based on neuro-adaptive learning driven by data that can be collected in simulations, physical 

experiments, or production processes. This method allows automatically estimating the FIS parameters 

according a given error criterion so as to tailor the trained FIS to the input/output data.  

Nonetheless, although the good performance offered by the FIS in the energy management field, nothing 

guarantees that the “optimized” or “estimated” parameters of the FIS are still appropriate for different 

scenarios of the studied system, namely: 

 Rough changes in weather conditions (e.g. successive cloudy sky or very low wind speed) leading 

to a drastically difference between the harvested power and that used during the FIS design process, 

especially for the GA-optimization process. 

 Modifying the initial filling state, FS0, of the water storage tank (similarly to the state of charge, the 

SOC, of the battery storage into electrical vehicles) that is different from that used as an operating 

condition during the GA-optimization process of the FIS design. Indeed, varying the operating 

conditions to which the GA-optimization process was performed will affect the FIS performance. 

 Potential measurement errors in the collected data which is used for estimating the ANFIS 

parameters. 

In order to overcome FIS design limitations, survey-based fuzzy inference systems can be an alternative 

for fuzzy systems design by combining the knowledge from different experts. However, because experts 

do not all agree, they will determine different FISs with different membership functions and different 

fuzzy rules. Type-2 fuzzy inference systems enable to combine the knowledge from different experts 

and to handle this uncertainty (e.g. about the meaning of the words, the rule consequence, the 

measurements, etc.).  

Another solution of great interest is the W-EMS based on adaptive fuzzy system, where several GAFISs 

that are obtained for different operating conditions (i.e. different FS0 of the water storage tank or 

different power profiles), are invoked in real-time to be applied in the W-EMS according to the 

corresponding operating conditions. This solution is under study and one can say that it may offer better 

results and deal with the GA-optimization drawback. 

ACKNOWLEDGEMENTS 

This work was supported by the Tunisian Ministry of Higher Education and Research under 

Grant LSE–ENIT-LR 11 ES15 and the European project "ERANETMED - EDGWISE" ID 

044". 

REFERENCES 

Abdul-Fattah, A. F. (1981). Engineering management of desalination plants in Saudi Arabia using fuzzy 

decision analysis. Desalination, 37(3), 343-350. doi: 10.1016/S0011-9164(00)88657-9 

Agrawal, R., & Mathur, S. (2016). A Review of Renewable Energy Technologies Integrated with 

Desalination System. International Journal of Production Engineering, 2(2), 1-8. doi: 

10.37628/ijpe.v2i2.252  

Aki, H., Yamamoto, S., Kondoh, J., Maeda, T., Yamaguchi, H., Murata, A., & Ishii, I. (2006). Fuel cells 

and energy networks of electricity, heat, and hydrogen in residential areas. International Journal of 

Hydrogen Energy, 31(8), 967-980. doi: 10.1016/j.ijhydene.2005.12.016 

https://doi.org/10.1016/S0011-9164(00)88657-9
https://doi.org/10.37628/ijpe.v2i2.252
https://doi.org/10.1016/j.ijhydene.2005.12.016


26 

 

Al-Karaghouli, A., Renne, D., & Kazmerski, L. L. (2009). Solar and wind opportunities for water 

desalination in the Arab regions. Renewable and Sustainable Energy Reviews, 13(9), 2397-2407. doi: 

10.1016/j.rser.2008.05.007 

Arcos-Aviles, D., Pascual, J., Marroyo, L., Sanchis, P., & Guinjoan, F. (2016). Fuzzy logic-based energy 

management system design for residential grid-connected microgrids. IEEE Transactions on Smart 

Grid, 9(2), 530-543. doi: 10.1109/TSG.2016.2555245 

Arshdeep K., & Amrit. K., (2012). Comparison of fuzzy logic and neuro fuzzy algorithms for air 

conditioning system. International Journal of Soft Computing and Engineering, 2(1), 417-420. 

Avanija, J., Konduru, S., Kura, V., NagaJyothi, G., Dudi, B. P & S., M. N. (2022). Designing a Fuzzy 

Q-Learning Power Energy System Using Reinforcement Learning. International Journal of Fuzzy 

System Applications (IJFSA), 11(3), 1-12. doi: 10.4018/IJFSA.306284 

Ball, M., & Wietschel, M. (2009). The future of hydrogen–opportunities and challenges. International 

journal of hydrogen energy, 34(2), 615-627. doi: 10.1016/j.ijhydene.2008.11.014 

Ben Ali, I., Turki, M., Belhadj, J., & Roboam, X. (2018). Optimized fuzzy rule-based energy 

management for a battery-less PV/wind-BWRO desalination system. Energy, 159, 216-228. doi: 

10.1016/j.energy.2018.06.110 

Ben Ali, I., Turki, M., Belhadj, J., & Roboam, X. (2020). Systemic design and energy management of a 

standalone battery-less PV/Wind driven brackish water reverse osmosis desalination 

system. Sustainable Energy Technologies and Assessments, 42, 100884. doi: 

10.1016/j.seta.2020.100884 

Benmessaoud M.T., Boudghene Stambouli A., Vasant P., Flazi S., Koinuma H., Tioursi M. (2019) New 

Smart Power Management Hybrid System Photovoltaic-Fuel Cell. In: Vasant P., Zelinka I., Weber GW. 

(eds) Intelligent Computing & Optimization. ICO 2018. Advances in Intelligent Systems and 

Computing, vol 866. Springer, Cham. doi: 10.1007/978-3-030-00979-3_50 

Cabrane, Z., Ouassaid, M., & Maaroufi, M. (2017). Battery and supercapacitor for photovoltaic energy 

storage: a fuzzy logic management. IET Renewable Power Generation, 11(8), 1157-1165. doi : 

https://doi.org/10.1049/iet-rpg.2016.0455 

Cai, Y. P., Huang, G. H., Yang, Z. F., & Tan, Q. (2009). Identification of optimal strategies for energy 

management systems planning under multiple uncertainties. Applied Energy, 86(4), 480-495. 

doi:10.1016/j.apenergy.2008.09.025 

Cárdenas, J. J., Romeral, L., Garcia, A., & Andrade, F. (2012). Load forecasting framework of electricity 

consumptions for an Intelligent Energy Management System in the user-side. Expert Systems with 

Applications, 39(5), 5557-5565. doi: 10.1016/j.eswa.2011.11.062 

Chanda, S. K., Arefin, M. S., Karim, R., & Morimoto, Y. (2019, October). Developing a Technique to 

Select Potential Candidates Using a Combination of Rough Sets and Fuzzy Sets. In International 

Conference on Intelligent Computing & Optimization (pp. 45-60). Springer, Cham. doi: 10.1007/978-3-

030-33585-4_5 

Chen, Y. K., Wu, Y. C., Song, C. C., & Chen, Y. S. (2012). Design and implementation of energy 

management system with fuzzy control for DC microgrid systems. IEEE Transactions on power 

electronics, 28(4), 1563-1570. doi: 10.1109/TPEL.2012.2210446 

Courtecuisse, V., Sprooten, J., Robyns, B., Petit, M., Francois, B., & Deuse, J. (2010). A methodology 

to design a fuzzy logic based supervision of Hybrid Renewable Energy Systems. Mathematics and 

computers in simulation, 81(2), 208-224. doi: 10.1016/j.matcom.2010.03.003 

El Mokadem, M., Courtecuisse, V., Saudemont, C., Robyns, B., & Deuse, J. (2009). Fuzzy logic 

supervisor-based primary frequency control experiments of a variable-speed wind generator. IEEE 

Transactions on Power Systems, 24(1), 407-417. doi: 10.1109/TPWRS.2008.2007005 

https://doi.org/10.1016/j.rser.2008.05.007
https://doi.org/10.1109/TSG.2016.2555245
http://doi.org/10.4018/IJFSA.306284
https://doi.org/10.1016/j.ijhydene.2008.11.014
https://doi.org/10.1016/j.energy.2018.06.110
https://doi.org/10.1016/j.seta.2020.100884
https://doi.org/10.1007/978-3-030-00979-3_50
https://doi.org/10.1049/iet-rpg.2016.0455
https://doi.org/10.1016/j.apenergy.2008.09.025
http://dx.doi.org/10.1016/j.eswa.2011.11.062
https://doi.org/10.1007/978-3-030-33585-4_5
https://doi.org/10.1007/978-3-030-33585-4_5
https://doi.org/10.1109/TPEL.2012.2210446
https://doi.org/10.1016/j.matcom.2010.03.003
https://doi.org/10.1109/TPWRS.2008.2007005


27 

 

Eltawil, M. A., Zhengming, Z., & Yuan, L. (2009). A review of renewable energy technologies 

integrated with desalination systems. Renewable and sustainable energy reviews, 13(9), 2245-2262. 

doi: 10.1016/j.rser.2009.06.011 

Ferreira, A. A., Pomilio, J. A., Spiazzi, G., & de Araujo Silva, L. (2008). Energy management fuzzy 

logic supervisory for electric vehicle power supplies system. IEEE transactions on power 

electronics, 23(1), 107-115. doi: 10.1109/TPEL.2007.911799 

Gao, D., Jin, Z., & Lu, Q. (2008). Energy management strategy based on fuzzy logic for a fuel cell 

hybrid bus. Journal of Power Sources, 185(1), 311-317. doi: 10.1016/j.jpowsour.2008.06.083 

Garcia, P., Fernandez, L. M., Garcia, C. A., & Jurado, F. (2009). Energy management system of fuel-

cell-battery hybrid tramway. IEEE Transactions on Industrial Electronics, 57(12), 4013-4023. doi: 

10.1109/TIE.2009.2034173 

García, P., García, C. A., Fernández, L. M., Lorens, F., & Jurado, F. (2013). ANFIS-based control of a 

grid-connected hybrid system integrating renewable energies, hydrogen and batteries. IEEE 

Transactions on industrial informatics, 10(2), 1107-1117. doi:  10.1109/TII.2013.2290069  

Ghaffour, N., Bundschuh, J., Mahmoudi, H., & Goosen, M. F. (2015). Renewable energy-driven 

desalination technologies: A comprehensive review on challenges and potential applications of 

integrated systems. Desalination, 356, 94-114. doi: 10.1016/j.desal.2014.10.024 

Ghaffour, N., Missimer, T. M., & Amy, G. L. (2013). Technical review and evaluation of the economics 

of water desalination: current and future challenges for better water supply 

sustainability. Desalination, 309, 197-207. doi: 10.1016/j.desal.2012.10.015 

Gude, V. G., Nirmalakhandan, N., & Deng, S. (2010). Renewable and sustainable approaches for 

desalination. Renewable and sustainable energy reviews, 14(9), 2641-2654. doi: 

10.1016/j.rser.2010.06.008 

Han, J., Charpentier, J. F., & Tang, T. (2014). An energy management system of a fuel cell/battery 

hybrid boat. Energies, 7(5), 2799-2820. doi : 10.3390/en7052799 

Jang, J. S. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE transactions on 

systems, man, and cybernetics, 23(3), 665-685. doi: 10.1109/21.256541 

Jang, J. S., & Sun, C. T. (1995). Neuro-fuzzy modeling and control. Proceedings of the IEEE, 83(3), 

378-406. doi: 10.1109/5.364486. 

Kaldellis, J. K., Kavadias, K. A., & Kondili, E. (2004). Renewable energy desalination plants for the 

Greek islands—technical and economic considerations. Desalination, 170(2), 187-203. doi: 

10.1016/j.desal.2004.01.005 

Kampouropoulos, K., Andrade Rengifo, F., García Espinosa, A., & Romeral Martínez, J. L. (2014). A 

combined methodology of adaptive neuro-fuzzy inference system and genetic algorithm for short-term 

energy forecasting. Advances in Electrical and Computer Engineering, 14(1), 9-14. doi: 

10.4316/AECE.2014.01002 

Khan, M. M. S., Faruque, M. O., & Newaz, A. (2017). Fuzzy logic based energy storage management 

system for MVDC power system of all electric ship. IEEE Transactions on Energy Conversion, 32(2), 

798-809. doi: 10.1109/TEC.2017.2657327 

Kocharla, L., & Veeramallu, B. (2022). Secure Energy-Efficient Load Balancing and Routing in 

Wireless Sensor Networks With Mediative Micro-ANN Fuzzy Logic. International Journal of Fuzzy 

System Applications (IJFSA), 11(3), 1-16. doi: 10.4018/IJFSA.306277 

Kyriakarakos, G., Dounis, A. I., Arvanitis, K. G., & Papadakis, G. (2017). Design of a Fuzzy Cognitive 

Maps variable-load energy management system for autonomous PV-reverse osmosis desalination 

systems: A simulation survey. Applied Energy, 187, 575-584. doi:  10.1016/j.apenergy.2016.11.077 

Lee, C. C. (1990). Fuzzy logic in control systems: fuzzy logic controller. I. IEEE Transactions on 

systems, man, and cybernetics, 20(2), 404-418. doi : 10.1109/21.52551 

https://doi.org/10.1016/j.rser.2009.06.011
https://doi.org/10.1109/TPEL.2007.911799
https://doi.org/10.1016/j.jpowsour.2008.06.083
https://doi.org/10.1109/TIE.2009.2034173
https://doi.org/10.1109/TII.2013.2290069
https://doi.org/10.1016/j.desal.2014.10.024
https://doi.org/10.1016/j.desal.2012.10.015
https://doi.org/10.1016/j.rser.2010.06.008
https://doi.org/10.3390/en7052799
https://doi.org/10.1109/21.256541
https://doi.org/10.1109/5.364486
https://doi.org/10.1016/j.desal.2004.01.005
https://doi.org/10.4316/AECE.2014.01002
https://doi.org/10.1109/TEC.2017.2657327
http://doi.org/10.4018/IJFSA.306277
https://doi.org/10.1016/j.apenergy.2016.11.077
https://doi.org/10.1109/21.52551


28 

 

Lee, H. D., Koo, E. S., Sul, S. K., Kim, J. S., et al. (Nov.-Dec. 2000). Torque control strategy for a 

parallel-hybrid vehicle using fuzzy logic. in IEEE Industry Applications Magazine, 6(6), 33-3. doi: 

10.1109/2943.877838 

Leonori, S., Martino, A., Rizzi, A., & Frattale Mascioli, F. M. (2017). Anfis synthesis by clustering for 

microgrids ems design. In IJCCI 2017-9th International Joint Conference on Computational 

Intelligence (pp. 328-337). SciTePress. doi: 10.5220/0006514903280337 

Mahesh, A., & Sandhu, K. S. (2016, November). ANFIS based energy management strategy for 

PV/Wind/Battery hybrid energy system. In 2016 IEEE 7th Power India International Conference 

(PIICON) (pp. 1-5). IEEE. doi: 10.1109/POWERI.2016.8077221  

Mitiku, T., & Manshahia, M. S. (2019, October). Fuzzy logic controller for modeling of wind energy 

harvesting system for remote areas. In International Conference on Intelligent Computing & 

Optimization (pp. 31-44). Springer, Cham. doi: 10.1007/978-3-030-33585-4_4 

Mohamed, E. S., & Papadakis, G. (2004). Design, simulation and economic analysis of a stand-alone 

reverse osmosis desalination unit powered by wind turbines and photovoltaics. Desalination, 164(1), 

87-97. doi: 10.1016/S0011-9164(04)00159-6 

Neffati, A., Guemri, M., Caux, S., & Fadel, M. (2013). Energy management strategies for multi source 

systems. Electric Power Systems Research, 102, 42-49. doi: 10.1016/j.epsr.2013.03.008 

Orecchini, F., Santiangeli, A., Zuccari, F., Pieroni, A., Suppa, T. (2019). Blockchain Technology in 

Smart City: A New Opportunity for Smart Environment and Smart Mobility. In: Vasant, P., Zelinka, I., 

Weber, GW. (eds) Intelligent Computing & Optimization. ICO 2018. Advances in Intelligent Systems 

and Computing, vol 866. Springer, Cham. doi: 10.1007/978-3-030-00979-3_36 

Ozturk, Y., Jha, P., Kumar, S., & Lee, G. (2013, May). A personalized home energy management system 

for residential demand response. In 4th International Conference on Power Engineering, Energy and 

Electrical Drives (pp. 1241-1246). IEEE. doi: 10.1109/PowerEng.2013.6635790 

Peñate, B., & García-Rodríguez, L. (2012). Current trends and future prospects in the design of seawater 

reverse osmosis desalination technology. Desalination, 284, 1-8. doi: 10.1016/j.desal.2011.09.010 

Sallem, S., Chaabene, M., & Kamoun, M. B. A. (2009). Optimum energy management of a photovoltaic 

water pumping system. Energy Conversion and Management, 50(11), 2728-2731. doi: 

10.1016/j.enconman.2009.06.036  

Salmasi, F. R. (2007). Control strategies for hybrid electric vehicles: Evolution, classification, 

comparison, and future trends. IEEE Transactions on vehicular technology, 56(5), 2393-2404. doi: 

10.1109/TVT.2007.899933 

Suganthi, L., Iniyan, S., & Samuel, A. A. (2015). Applications of fuzzy logic in renewable energy 

systems–a review. Renewable and sustainable energy reviews, 48, 585-607. doi: 

10.1016/j.rser.2015.04.037 

Talla, J., Streit, L., Peroutka, Z., & Drabek, P. (2015). Position-based TS fuzzy power management for 

tram with energy storage system. IEEE Transactions on Industrial Electronics, 62(5), 3061-3071. doi: 

10.1109/TIE.2015.2396871 

Tan, U., & Puntusavase, K. (2021). Decision-Making System in Tannery by Using Fuzzy Logic. 

In Advances in Computer, Communication and Computational Sciences (pp. 391-398). Springer, 

Singapore. doi: 10.1007/978-981-15-4409-5_35 

Tekin, M., Hissel, D., Pera, M. C., & Kauffmann, J. M. (2007). Energy-management strategy for 

embedded fuel-cell systems using fuzzy logic. IEEE Transactions on Industrial Electronics, 54(1), 595-

603. doi: 10.1109/TIE.2006.885471 

Tian, H., Wang, X., Lu, Z., Huang, Y., & Tian, G. (2017). Adaptive fuzzy logic energy management 

strategy based on reasonable SOC reference curve for online control of plug-in hybrid electric city 

bus. IEEE Transactions on Intelligent Transportation Systems, 19(5), 1607-1617. doi: 

10.1109/TITS.2017.2729621 

https://doi.org/10.1109/2943.877838
http://doi.org/10.5220/0006514903280337
https://doi.org/10.1109/POWERI.2016.8077221
https://doi.org/10.1007/978-3-030-33585-4_4
https://doi.org/10.1016/j.epsr.2013.03.008
https://doi.org/10.1007/978-3-030-00979-3_36
http://dx.doi.org/10.1109/PowerEng.2013.6635790
https://doi.org/10.1016/j.desal.2011.09.010
https://doi.org/10.1016/j.enconman.2009.06.036
https://doi.org/10.1109/TVT.2007.899933
https://doi.org/10.1016/j.rser.2015.04.037
https://doi.org/10.1109/TIE.2015.2396871
https://doi.org/10.1109/TIE.2015.2396871
https://doi.org/10.1007/978-981-15-4409-5_35
https://doi.org/10.1109/TIE.2006.885471
https://doi.org/10.1109/TITS.2017.2729621
https://doi.org/10.1109/TITS.2017.2729621


29 

 

Tidjani, F. S., Hamadi, A., Chandra, A., Pillay, P., & Ndtoungou, A. (2016). Optimization of standalone 

microgrid considering active damping technique and smart power management using fuzzy logic 

supervisor. IEEE Transactions on Smart Grid, 8(1), 475-484. doi:  10.1109/TSG.2016.2610971 

Tie, S. F., & Tan, C. W. (2013). A review of energy sources and energy management system in electric 

vehicles. Renewable and sustainable energy reviews, 20, 82-102. doi: 10.1016/j.rser.2012.11.077 

Wang, A., & Yang, W. (2006a, June). Design of energy management strategy in hybrid electric vehicles 

by evolutionary fuzzy system part II: tuning fuzzy controller by genetic algorithms. In 2006 6th World 

Congress on Intelligent Control and Automation (Vol. 2, pp. 8329-8333). IEEE. doi : 

10.1109/WCICA.2006.1713600 

Wang, A., & Yang, W. (2006b, June). Design of energy management strategy in hybrid vehicles by 

evolutionary fuzzy system part I: Fuzzy logic controller development. In 2006 6th world congress on 

intelligent control and automation (Vol. 2, pp. 8324-8328). IEEE. doi: 10.1109/WCICA.2006.1713599 

Xu, Q., Luo, X., Jiang, X., & Zhao, M. (2018). Research on double fuzzy control strategy for parallel 

hybrid electric vehicle based on GA and DP optimisation. IET Electrical Systems in 

Transportation, 8(2), 144-151. doi: 10.1049/iet-est.2017.0067 

Yahyaoui, I., Chaabene, M., & Tadeo, F. (2015). Fuzzy energy management for photovoltaic water 

pumping system. International Journal of Computer Applications, 110(9). doi: 10.5120/19346-1049 

Yin, H., Zhou, W., Li, M., Ma, C., & Zhao, C. (2016). An adaptive fuzzy logic-based energy 

management strategy on battery/ultracapacitor hybrid electric vehicles. IEEE Transactions on 

transportation electrification, 2(3), 300-311. doi: 10.1109/TTE.2016.2552721 

Zermane, H., & Kasmi, R. (2020). Intelligent industrial process control based on fuzzy logic and 

machine learning. International Journal of Fuzzy System Applications (IJFSA), 9(1), 92-111. doi: 

10.4018/IJFSA.2020010104 

Zhang, H., Mollet, F., Saudemont, C., & Robyns, B. (2010). Experimental validation of energy storage 

system management strategies for a local dc distribution system of more electric aircraft. IEEE 

Transactions on Industrial Electronics, 57(12), 3905-3916. doi:  10.1109/TIE.2010.2046575 

https://doi.org/10.1109/TSG.2016.2610971
https://doi.org/10.1016/j.rser.2012.11.077
https://doi.org/10.1109/WCICA.2006.1713600
https://doi.org/10.1109/WCICA.2006.1713599
https://doi.org/10.1049/iet-est.2017.0067
https://doi.org/10.5120/19346-1049
https://doi.org/10.1109/TTE.2016.2552721
http://doi.org/10.4018/IJFSA.2020010104
https://doi.org/10.1109/TIE.2010.2046575

