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The design of wavefront-shaping devices is conventionally approached using real-frequency modeling. However, since
these devices interact with light through radiative channels, they are by default non-Hermitian objects having complex
eigenvalues (poles and zeros) that are marked by phase singularities in a complex frequency plane. Here, by using tem-
poral coupled mode theory, we derive analytical expressions allowing to predict the location of these phase singularities
in a complex plane and as a result, allowing to control the induced phase modulation of light. In particular, we show
that spatial inversion symmetry breaking—implemented herein by controlling the coupling efficiency between input
and output radiative channels of two-port components called metasurfaces—lifts the degeneracy of reflection zeros in
forward and backward directions, and introduces a complex singularity with a positive imaginary part necessary for a
full 2π -phase gradient. Our work establishes a general framework to predict and study the response of resonant systems
in photonics and metaoptics. © 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

https://doi.org/10.1364/OPTICA.495681

1. INTRODUCTION

Non-Hermicity of photonic and nanophotonic systems provides
a powerful framework to engineer innovative light propagation
and scattering properties [1–6]. Emerging concepts, such as degen-
erate eigenstate accumulation and exceptional points at spectral
singularities, have recently led to the design of metasurfaces (MSs)
with unexpected wavefront modulation capabilities including,
among others, polarization decoupling of light, unidirectional
transmission, and light circular polarizers [7–10]. Besides form-
ing a versatile platform to test topological photonics concepts,
MSs have distinct advantages with respect to conventional—
refractive—optical components, including planar fabrication, the
possibility of multiplexing, and achieving unconventional optical
functionalities [11–15]. MSs were demonstrated to be extremely
beneficial for various applications such as holography [16–18],
LIDAR [19,20], imaging [21–23], polarization control [24,25],
quantum state detection [26], etc.

The design of MSs requires full 2π -phase modulation, which is
generally realized by leveraging several phase-control mechanisms,
including the resonant interaction of light with nanoscale dielec-
tric or metallic particles. The common approach to the design of

resonant phase MSs relies on the well-known property that scat-
tering of structures supporting a single resonant mode provides a
maximum phase shift of π with respect to the incoming wavefront
[27]. This limited phase modulation occurs when the photonic sys-
tem is time-reversal-symmetric in transmission, or both parity- and
time-reversal-symmetric in reflection [28–30]. To extend the cov-
erage to the required full 2π response, the phase is often “doubled”
by adding a back reflector, or combining two modes by geometric
parameter tuning [31]. This idea of doubling the phase using
multiple resonances has ensued from oversimplified models that
do not consider the interaction of resonantly scattered light with a
non-resonant background, which is the intrinsic non-Hermicity
of the system. Taking these interference effects into consideration
and looking at this problem using theoretical concepts associated
with non-Hermitian physics provide insights into the mechanism
of light scattering by nanostructured interfaces.

Here we present physical insights and design guidelines asso-
ciated with the topological properties of MSs to unify the design
principles of resonant phase components and to further achieve
asymmetric phase modulation in reflection. We rely on com-
plex frequency analysis to draw conclusions on the physics of
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MSs and guide the designs towards the engineering of innovative
nanophotonic devices [28]. By studying the analytical formulas
associated with the complex values of the reflection poles and zeros,
we suggest a quantitative way of controlling their position in the
complex frequency plane in the case of explicit symmetry breaking.
In particular, we show that the total effective gain in the system
should prevail over the total effective loss to fulfill this condition.
This conclusion provides a deeper understanding of currently
existing phase-gradient designs that we illustrate with the example
of metal–dielectric–metal structures previously proposed in the lit-
erature. It also opens the way for novel designs exploiting extremely
high coupling asymmetry between two channels. More precisely,
we link the asymmetric response with the absence of z-inversion
symmetry across the interface, and numerically demonstrate this
behavior using vertically asymmetric nanostructures composed of
conically shaped nanophotonic building blocks. Our description
establishes a clear connection between phase-controlling MSs and
the class of MSs supporting phase singularities [7,31–36]. Our
results bring us to the general conclusion that any resonant phase
MS that operates over a full phase range in reflection or transmis-
sion requires proper engineering of the position of topological
singularities in the complex frequency plane.

2. RESULTS AND DISCUSSION

A. Necessary Condition for the 2π Resonant Phase
Gradient

Coupling of the MS to the surrounding environment can be
described via linear operators supporting complex-valued eigen-
frequencies, which express the non-Hermicity of the system. The
imaginary parts of these eigenfrequencies essentially describe the
rate of energy exchange between resonators and the environment.
The physical quantities representing the responses of these com-
ponents, including reflection or transmission coefficients, as well
as any other response function of linear systems, can be expanded
in the complex plane according to the Weierstrass factorization
theorem [37–47] as

det(r )∼
∏

m

ω−ωRZ,m

ω−ωP,m
. (1)

This expression contains an infinite number of singular points
(poles and zeros) related to the eigenvalues of the system. As an
example, poles correspond to eigen-solutions with purely outgoing
fields. Reflection zeros instead describe purely incoming waves
in one set of channels and outgoing light exiting the device only
through the complementary set of channels [47,48]. Note that for
light scattering, poles and zeros are often calculated for the scat-
tering matrix, but they also appear for reflection or transmission
matrices. While poles of scattering, reflection, and transmission
matrices always coincide, the zeros are generally all different. When
we are operating a photonic system over a limited frequency range,
its response is dominated by one or just a few zero–pole pairs. The
contribution of the other factors can be truncated and simply
lumped together leading to a non-resonant background. Zeros and
poles are phase singularities with opposite handedness, which are
connected by a branch cut—a phase jump appearing due to the
ambiguous value of the phase. We have previously shown that a
sufficient condition for an optical component to realize a full 2π
resonant phase shift is to have at least one zero–pole pair separated
by the real axis [28]. The branch cut crossing confirms previous

numerical calculations [49] and further unifies all resonant phase
modulation mechanisms under a simple condition on the posi-
tions of complex singularities. Considering the time-convention
e−iωt , poles are bound to have a negative imaginary part in pas-
sive systems, which results in avoiding energy divergence due to
causality [50]. Fulfilling the branch cut crossing condition thus
requires engineering the zero positions to have a positive imaginary
part. For MSs operating in reflection, analytical expressions for
the positions of complex zeros and poles can be calculated using
temporal coupled mode theory (TCMT). Expressions for scat-
tering, reflection, and transmission matrices are formally similar
in TCMT (approximate analytic model) and the more rigorous
Heidelberg model [51–54]. Therefore, similar results for det(S),
det(R), and det(T) can be calculated using the Heidelberg model
[55]. However, evaluating quantities contained in these expres-
sions is often challenging in the case of the Heidelberg model, and
it is not always necessary. Therefore, here we focus on TCMT for
its sufficient accuracy for many scattering problems and its wide
applicability [47,48,56,57]. TCMT has been previously applied
to study, among others, the asymmetric response of photonic
structures [58–60]. The description of a MS operating at normal
incidence can be represented with the TCMT as a two-port system
supporting only one dominant resonance in the frequency range
of interest. Complex reflection zeros ωRZ [Eq. (2a)] and poles ωP

[Eq. (2b)] are expressed as

ωRZ =ω0 − iγ0 + iγ1 − iγ2, (2a)

ωP =ω0 − iγ0 − iγ1 − iγ2, (2b)

where γ0, γ1, and γ2 represent the absorption loss, and coupling
to the first (top) and second (bottom) channels, respectively. Note
that in a case of an active medium, this equation will contain an
additional term entering with a plus sign and representing gain. In
this description, ω0 is the real eigenfrequency of the structure as if
the structure were not interacting with the environment. Details
on the derivations are presented in Supplement 1. The equation
[Eq. (2a)] contains all information needed to predict the branch
cut crossing condition to achieve a full 2π resonant phase response,
that is, for Im(ωRZ) > 0. In other words, if the illumination comes
from the first channel, coupling to it should be larger than the sum
of the coupling to the second channel (which can be considered
as an effective loss) and absorption loss. This regime is described
in the literature as the “overcoupling” regime [61]. In TCMT,
this term can be used for total radiative coupling prevailing over
absorption loss. Here we used it by considering that radiative cou-
pling to the second channel (in this case, the transmission channel)
could also be associated with a loss for a first (reflection) channel.
The other possible situations are “critical coupling” (Im(ωRZ)= 0)
and “undercoupling” (Im(ωRZ) < 0) regimes. For the latter two
cases, resonant 2π phase retardation is not achievable at normal
incidence. Our first conclusion is that resonant MSs operating in
reflection achieve full phase modulation when operating in the
overcoupling regime, corresponding to the separation by the real
frequency axis of an isolated complex-valued zero–pole pair.

We identified another critical condition to split the zero and
pole of a pair in the complex plane: the zeros can be manipulated to
be placed in the upper part of the complex plane whenever the sys-
tem suffers from either absorption losses or when it presents some
sort of asymmetry. Suppose we are considering a perfectly symmet-
ric and lossless system. The absence of loss and gain implies that

https://doi.org/10.6084/m9.figshare.23703381
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(a)

(b)

Fig. 1. Schematic representation of the time-reversal operator to
parity-symmetric and asymmetric metasurfaces. The structures con-
sidered are made of non-absorbing and non-amplifying material. This
way, the application of time-reversal symmetry on the system, that is
imposing the condition T : t→−t , results in both inverting input to
output boundary conditions and imposing complex conjugated values
on the zeros frequencies. (a) On top, the reflection zeros associated with
light impinging onto the metasurface from both directions are bound
to the real axis. (b) On the bottom, the structure geometry is specifically
chosen to break the z-inversion symmetry. Note that in this latter case,
time-reversal symmetry imposes the bi-directional reflection zeros to be
complex conjugated.

the system verifies time-inversion symmetry (T-symmetry). The
z-inversion symmetry (P-parity) is also verified so that the system
is both P- and T-symmetric. Because of the out-of-plane inver-
sion symmetry of the structure, the reflection zeros of the system,
illuminated from the top, have the same complex frequency as the
zeros of the system illuminated from the bottom. The time-reversal
symmetry also imposes that these two ”bi-directional” zeros are
complex conjugates. The only solution is thus that the zeros are
either all real or exist in pairs with complex conjugate values. If we
consider that the response of both P- and T-symmetric systems
in a restricted spectral region of interest is dominated by only one
resonance, we immediately conclude that the reflection zeros,
whether the system is excited from the top or from the bottom,
are identical and for this reason, have to be real ω′RZ =ω

∗

RZ ∈R,
as schematically represented in Fig. 1(a). These very specific cases
have been identified as reflectionless scattering modes (R-zeros on
the real axis) for both direct and time-reversed propagation [47].
As the parity symmetry is broken, for example, by considering
different sub- and superstrate, the zeros of the reflection can be
different for top and bottom incidence, meaning that these zeros
are not forced to stay on the real frequency axis. However, they
remain complex conjugates of each other in the case of a lossless
system after applying time-reversal symmetry, which imposes that
ω′RZ =ω

∗

RZ ∈C; see Fig. 1(b). Similarly, breaking time-reversal
symmetry by adding losses or gain, even for a symmetric system,
is also a sufficient condition to move the zeros from the real fre-
quency axis. Note, however, that if the system is neither P- nor
T-symmetric while preserving the overall PT-symmetry, zeros are
expected to be bound to the real axis.

B. Controlling the Position of Reflection Phase
Singularities of Asymmetric Metal–Insulator–Metal
Metastructures

Placing a mirror with close to unity reflection at the bottom of the
structure is the most straightforward and most employed way of
breaking simultaneously z-inversion and time-reversal symmetries.
Indeed, metallic features can not only cancel the transmission of
light but also bring unavoidable optical losses (here time-reversal
symmetry is broken because of the losses, but it does not mean
that the system becomes nonreciprocal). As stipulated in the
introduction, we can leverage both effects to control the com-
plex frequencies of top and bottom reflection zero singularities.
We already know from previous works that tuning geometrical
parameters of a structure changes the absorption γ0 and the cou-
pling coefficients γ1 and γ2 and that full phase modulation can be
harvested by circulating around a zero amplitude of the reflection
coefficient [31–34,62,63]. In these papers, phase and amplitude
color-coded simulation maps, calculated by varying both the struc-
tural parameters and the real frequency of excitation, indicated the
presence of a zero of reflectivity and full phase modulation. It has
been shown that this condition is guaranteed when radiative losses
into the reflection channel prevail over absorption losses [31]. A
similar idea of circulation has been recently proposed in the context
of zeros of polarization conversion near exceptional points [7].

In the following, we analyze this problem from the non-
Hermitian perspective. Scattering problems driven by light sources
with complex-valued frequencies are solved using the finite-
element-based software package JCMsuite. We then prove that
the complex singularities observed in these systems occur at the
transition when a zero and pole of a pair become separated by the
real frequency axis. For a system including a thick metallic bottom
mirror, we can conveniently set the coupling to the transmission
channel to γ2 = 0. Thus, the expressions for the imaginary parts
of the reflection zeros and poles [calculated analogously from
Eqs. (2a) and (2b)] contain only two terms: Im(ωRZ)= γ1 − γ0,
Im(ωP)=−γ1 − γ0. From this system of equations, and numer-
ically calculating the imaginary parts of poles and zeros, we can
evaluate the absorption loss γ0 and the coupling coefficient γ1:
γ1 =

|Im(ωP)| + Im(ωRZ)
2 andγ0 =

|Im(ωP)| − Im(ωRZ)
2 .

We apply this analysis to the example discussed in [63]. The
structure studied in the latter paper is a typical example of a
metal–insulator–metal (MIM)-MS consisting of a gold mirror,
glass spacer of variable thickness d , and another thin gold layer
nanostructured into rectangular antennas [Fig. 2(a)]. To repro-
duce the results, we adopted the same parameters, i.e., frequency
ω= 2.4 · 1015 rad/s (wavelength λ= 800 nm), reflectivity of the
bottom mirror rm = 1, refractive index of a spacer n = 1.5, lattice
pitch a = 350 nm, and the parameters of the gold antennas exactly
as in the former paper. We first reproduced the same reflection
amplitude and phase maps as a function of real frequency and
spacer thickness d [Figs. 2(b) and 2(c)], consistent with Fig. 2(c)
in [63]. At first glance, both reflection maps seem to reveal pairs of
reflection zeros appearing for a specific range of spacer thickness.
In the latter reference, these zeros were attributed to a pair of topo-
logical singularities with opposite charge ±1. Here we apply the
complex frequency analysis to this problem, that is, we compute
the response of the system using a higher order finite element
method, called JCMsuite solver [64], assuming continuation of
Maxwell equations in the complex frequency plane by considering
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(a)

(d) (e) (f)
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Fig. 2. (a) An example of metal–insulator–metal (MIM) metasurface from [63]: the gold mirror is separated from gold resonators by a spacer of thickness
d . (b) Amplitude and (c) phase of light reflected by the metasurface in (a) as a function of real frequency and spacer thickness (reproduced from same param-
eters as in [63]). (d) Reflection amplitude and phase maps corresponding to the vertical dashed line denoted by 1 [d = 130 nm in (b) and (c): a 2π resonant
phase as a function of the real frequency is obtained]. Note that this figure has been plotted using phase unwrap. In the bottom, the logarithm of the reflec-
tion amplitude and phase as a function of complex frequency illumination for d = 130 nm. (e) Reflection amplitude and phase maps corresponding to the
vertical dashed line denoted by 2 [d = 250 nm in (b) and (c): no resonant phase variation as a function of the real frequency is introduced]. In the bottom,
the logarithm of the reflection amplitude and phase as a function of complex frequency illumination for d = 250 nm. (f ) Evolution of the imaginary parts of
the complex zeros (ωRZ) and poles (ωP) as a function of spacer thickness d . Points corresponding to reflection zeros crossing the real axis are noted as PA, per-
fect absorption. These are the regions where the metasurface produces a resonant phase shift of 2π . (g) Evolution of the coupling coefficient to the reflection
channel γ1 (dashed line) and the metasurface absorption loss γ0 (full line) as a function of spacer thickness d . In (f ) and (g), the regions associated with the
positive imaginary part of the reflection zero are highlighted in gray.

a complex frequency excitation. We could then formally identify
the role played by complex singularities.

We first calculate the reflection amplitude and phase for a given
spacer thickness of d = 130 nm [corresponding to one reflection
zero in Fig. 2(b)] assuming complex excitation frequency and
extract the associated real frequency response [Fig. 2(d)]. Complex
frequency reveals topological singularities, the expected pole and
zero of reflection, represented on the complex frequency ampli-
tude map respectively by a maximum and minimum of reflection
amplitude. The phase map shows that each of these features is
surrounded, as previously discussed, by topological 2π clockwise
and anticlockwise phase vortices (±1) [28]. The complex plane
analysis thus reveals that for these specific geometrical parameters,
pole and zero are separated by the real axis and that a 2π resonant
phase modulation is obtained by varying the frequency along the
real axis. The position of the zero in the vicinity of the real axis also
leads to a decreased reflection amplitude resulting in a dip of the
reflection coefficient for real frequency excitation. We also calcu-
lated both real- and complex-frequency-dependent reflection for
another spacer thickness of d = 250 nm [Fig. 2(e)], and we did not
observe any significant resonant spectral responses, in either phase
or amplitude. The complex plane reveals that both singularities are
located in a lower frequency plane, each positioned sufficiently far

away from the real axis to significantly influence the response of the
system at real frequency.

The complex frequency analysis is further employed to follow
the detailed evolution of the positions of zero and pole singularities
as a function of spacer thickness. The full evolution is presented
in Visualization 1 and Visualization 2. We observe that both zero
and pole singularities move in circles, repeating similar trajectories
with the periodicity related to Fabry–Perot modes. We observe
that the points of zero reflection amplitude, which were apparently
identified previously as real space phase singularities, in Figs. 2(b)
and 2(c), correspond in fact to the same complex reflection zero
ωRZ crossing the real axis twice, moving back and forth between
the lower and upper parts of the complex plane [Fig. 2(f )]. Note
that whenever the zero crosses the real frequency axis, the system
reaches the critical coupling condition (γ0 = γ1) leading to perfect
absorption [10]. This observation helps us understand that if
indeed topological singularities of the opposite charge—poles and
zeros—govern the optical response of this structure, they do not
appear in the real parameters space, but in the complex frequency
space. Moreover, our analysis brings us to the conclusion that only
one zero is responsible for the observation of effective singularities
previously appearing in the real parameters space. Tracking the

https://doi.org/10.6084/m9.figshare.22893341
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complex values as a function of d also enables us to identify param-
eter regions where a zero–pole pair is separated by a real axis, that is,
the parameter regions where a 2π phase accumulation as a function
of real frequency can be achieved [see the gray shaded regions in
Fig. 2(f )].

To complete our analysis, we obtained the complex values
of the poles and zeros and used this information to calculate the
coupling coefficient to the reflection channel γ1 and the absorption
losses γ0. The results presented in Fig. 2(g) confirm that in the 2π
resonant phase shift regions, the coupling to the reflection channel
prevails over absorption, i.e., γ1 > γ0, confirming the earlier results
on the existence of reflection zeros in the real parameters space
[6,7,65–68].

C. Asymmetric Response of Dielectric Cone Structure

In the following, we propose to further leverage our understanding
of symmetry arguments to achieve a physical response similar to
MIM structures but using dielectric nanostructures, i.e., nanos-
tructures composed of a material having a real refractive index. As
time-reversal symmetry still holds, reflection zeros in the direct
(illumination from the top) and time-reversed (illumination from
the bottom) scenarios are complex-conjugated. If the system is also
P-symmetric, direct and time-reversed reflection zeros are forced
to coincide. Note that flipping upside down the structure and

exchanging the boundary conditions with respect to the x y plane
at z= 0 implies breaking P-symmetry [47]. As discussed previ-
ously, breaking the parity symmetry relaxes the second requirement
and allows zeros to become complex. In our study, we now consider
a simple lossless (γ0 = 0) silicon-based MS (n = 3.5) operating
in the vicinity of frequency ω= 1.28 · 1015 rad/s (wavelength
λ≈ 1450 nm) and presenting broken out-of-plane symmetry,
realized by truncating pillar structures to form cones. The structure
height is fixed in the rest of the analysis to h = 600 nm [Fig. 3(a)].
Pillars are arranged in a 2D square lattice with a fixed period of
p = 800 nm. We also embed the interface into a homogeneous
medium with a refractive index n = 1.5. When the pillar shape
is preserved, i.e., when their top and bottom diameters defined
as L1 and L2, respectively, are equal (L1 = L2), this structure is
completely symmetric in all directions, indicating that the system
remains identical upon z-inversion (and parity) symmetry. The
reflection zeros associated with the parity-symmetric system are
thus identical and real, whether the system is excited from the
top or bottom. Indeed, for lossless MS, γ0 = 0 and its coupling
coefficient to the substrate and superstrate are identical, so that in
Eq. (2a), γ1 = γ2, leading to Im(ωRZ)= 0. (We note that, with
respect to the reflection case, coupling coefficients γ1 and γ2 do
not have such a similar straightforward influence on the positions
of the transmission zeros. Transmission zeros are bound to the

(a) (b) (c)

(d) (e)

(f) (g)

Fig. 3. (a) Design of an asymmetric phase-gradient metasurface consisting of a 2D square lattice of conically shaped silicon meta-atoms embedded in a
glass environment. Metasurface can operate almost as a perfect reflector using both top and bottom illumination conditions. (b), (c) Metasurface reflection
amplitude and phase using top and bottom illuminations, respectively. In (b), a resonant 2π phase variation as a function of the excitation frequency is
observed. In (c), the structure behaves as a simple mirror, without resonant phase variation. (d), (e) Evolution of pole and zero complex plane positions as
a function of the asymmetry for top and bottom illuminations, respectively. We observe that decreasing the asymmetry parameter L1/L2 from one to 0.8
results in an asymmetric response associated with complex conjugated reflection zeros from the degenerated real frequency symmetric case. (f ) Coupling
coefficients of the top (γ1) and bottom (γ2) channels of the metasurface depicted in (a) upon top illumination for different out-of-plane asymmetries
(L1/L2 is changing from 0.8 to one). (g) Ratio between coupling coefficients γ2/γ1 and minimum reflection in the selected frequency range shown in
(b) and (c) as functions of L1/L2.
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real axis only by the time-reversal symmetry of the structure. This
point, which extends beyond the scope of this paper, is further
discussed in more detail in Supplement 1). However, when the
coupling asymmetry is introduced by varying the top diameter L1

between 400 nm and 500 nm and leaving the bottom diameter
at L2 = 500 nm, the structure is no longer preserved under the
parity operation. Breaking z-inversion thus moves the zeros to
the complex plane. To characterize and compare the behavior of
the system upon top and bottom illumination, we computed both
top and bottom reflection coefficients using finite element method
simulations for the asymmetric case L1/L2 = 0.84 and compared
their amplitude and phase responses. The results are presented in
Figs. 3(b) and 3(c). We observe that for this specific value of asym-
metry, the MS behaves similarly as an efficient mirror with almost
unity reflection over the entire spectral region for both illumination
directions. However, the phase behavior is extremely asymmetric,
showing drastic resonant 2π phase variation for light impinging
from the top, with only linear dispersion—characteristic of the
propagation phase across the simulation volume—observed using
bottom excitation.

We also link the asymmetric phase variation observed in
Figs. 3(b) and 3(c) with the position of zero singularities in the
complex plane. We thus compute both top and bottom reflection
cases for the asymmetric structure in the complex frequency plane
using JCMsuite. In both illumination cases, i.e., considering top
and bottom light impinging on the structure from the thin or
wide section of the cone, respectively, we observe that the complex
plane optical response is always composed of only one zero–pole
pair. Figures 3(d) and 3(e) show the evolution of the pole and the
zero as the structure is changing from symmetric to asymmetric
(L1/L2 is changing from one to 0.8). For the symmetric case with
L1/L2 = 1, the structure is P-symmetric, and the reflection zeros
are bound to the real axis (ω′RZ =ω

∗

RZ =ωRZ). Increasing the
asymmetry gradually moves awayωRZ andω′RZ from the real axis in
opposite complex half-planes. For the geometric asymmetry lead-
ing to maximally asymmetric response, i.e., when L1/L2 = 0.84,
we observe that the top illumination condition achieves almost
unity reflection and full phase modulation. This condition is
characterized by a complex zero frequency that is reaching the
conjugated value of its pole (ωRZ ≈ω

∗

P). Similar complex conju-
gation between pole and zero has recently been shown to achieve
extremely high modulation efficiency [69]. In comparison, the
bottom illumination case does not provide extensive phase modu-
lation simply because the associated zero, due to a time-reversal
symmetry consideration conjugated to the top illumination zero,
has a large imaginary part and, as such, does not influence the real
frequency response of the MS [Fig. 3(c)].

At this point, we recall the TCMT analytical expressions
for reflection poles and zeros, considering here a lossless system
with two ports, i.e., γ0 = 0 in Eqs. (2a), (2b), and simplify the
expressions to calculate coupling coefficientsγ1 andγ2; we obtain{

γ1 =
|Im(ωP)| + Im(ωRZ)

2 ,

γ2 =
|Im(ωP)| − Im(ωRZ)

2 .
(3)

With these equations and after numerically obtaining Im(ωRZ),
Im(ωP), we calculate coupling coefficients γ1 and γ2. We observe
that the coupling to the reflection channel γ1 increases with
asymmetry, while γ2 decreases with asymmetry to reach zero for
L1/L2 = 0.84, as shown in Fig. 3(f ). We show how the reflection

phase and amplitude are changing with a gradual increase of asym-
metry in the case of top illumination in Supplement 1. We also
calculate the minimum reflection Rmin in a considered frequency
region as a function of diameter ratio (L1/L2). These data, shown
on the same plot in Fig. 3(g), are presented as a function of the
coupling asymmetry γ2/γ1. Increasing the coupling asymmetry
(γ1/γ2 decreases) significantly increases the reflection efficiency of
the MS over the spectral region of interest. This condition creates
a unique situation, similar to a Gires–Tournois resonator with
approximately unity reflection, but with one layer of dielectric
only and without using a metallic or Bragg mirror [Fig. 1(b)]. The
reflection tends to unity for both bottom and top illumination.
However, due to the complex conjugation of top and bottom zeros
in a time-reversal symmetric system, we obtain an asymmetric
phase modulation, characterized by a single-side resonant phase
modulation of interest for the design of MSs. Again, this behavior
is shown to be connected to the presence of a zero in the upper part
of the complex frequency plane.

3. CONCLUSION

In conclusion, we provide guidelines to achieve full phase modula-
tion as a function of the real frequency in reflection. Our analysis
reveals that bringing the reflection zeros to the upper part of the
complex plane, a condition previously identified as a sufficient
condition for full 2π phase modulation can be realized using
nanostructured interfaces that break the z-inversion symmetry.
Breaking the out-of-plane symmetry allows reaching full phase
modulation with only one resonant mode, which is less sensitive
to parameter change than the careful adjustment of the interaction
between two scattering modes usually proposed for Huygens MSs.
Instead, we show that any array of nanostructures that behaves as a
Gires–Tournois resonator can feature narrowband high reflection
efficiency and full phase modulation for an extended stretch of
parameter values. This approach could thus have a high impact on
the emerging field of non-local MSs employing high quality factor
resonant mode [27,70–72]. Our work unifies, via the analysis of
complex frequency positions of reflection singularities, the phys-
ics of the overwhelming majority of MIM phase-gradient MSs
operating in reflection [6,7,62,63,65–68]. We also rely on a tem-
poral coupled-mode theory to study the positions of the complex
topological singularities and to generalize the previously defined
overcoupling regime associated with the full phase modulation
regime. This regime is characterized by the condition at which the
coupling to the reflection channel exceeds the sum of the coupling
to the transmission channel and the absorption loss. Linking these
quantities with the imaginary parts of complex poles and zeros
characterizing resonant reflection brings new physical insights to
the problem of 2π phase modulation. Additionally, the realization
of a strong asymmetric phase response between forward and back-
ward reflection with z-inversion symmetry broken surfaces further
highlights the interest in considering topological singularities in
the complex plane to design MSs in general. Incidentally, direct
excitation of these complex zeros using non-monochromatic light
enables extreme scattering responses, which are no longer limited
by conventional physical limits such as causality, passivity, and
conservation of energy [73], and as such, extensive developments
associated with complex singularities are expected in the coming
years.

See Supplement 1 for the detailed derivations of equations
with TCMT, simulation of silicon cone MS response in a wider
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parameters range, a video demonstrating the evolution of complex
poles and zeros in MIM structure as spacer thickness varies from
10 nm to 550 nm, and a second video showing an evolution of
the same zero–pole pair in the zoomed region in the lower part of
the complex plane in a reduced range of spacer thickness variation
(from 250 nm to 275 nm).
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