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Abstract: We study a growth model with two types of agents who are heteroge-
neous in their degree of family altruism. We prove that every equilibrium path of
consumption, bequests and capital converges to a unique steady state, and study the
effect of altruism on the properties of steady-state equilibrium. We show that aggre-
gate income is positively related to both level of altruism and altruism heterogeneity.
When altruism heterogeneity is low or moderate, income inequality follows an inverse
U-shaped pattern relative to the level of altruism. These observations are consistent
with the cross-country Kuznets curve linking different steady-state levels of income to
steady-state levels of inequality. When altruism heterogeneity is high, income inequal-
ity decreases with the level of altruism. Our results suggest that heterogeneous altruism
is a possible mechanism linking economic growth and income inequality.

Keywords: Economic growth; Inequality; Altruism; Bequests

JEL Classification: D15, D64, E21, O40

3



1 Introduction

The relationship between economic growth and income inequality is intricate, as both
income levels and inequality are endogenously shaped over the course of economic
development. It is widely recognized that the growth-inequality nexus is influenced by
various country-specific characteristics, including the degree of technological advance-
ment, levels of education and human capital, political and institutional factors, and
the design of public policies (see, e.g., Hellier and Lambrecht, 2013, for an overview).
In this paper, we highlight the role of socio-cultural norms as an additional country-
specific factor affecting both economic growth and income inequality. Specifically, we
study the impact of heterogeneous altruism on income levels and inequality.

Parental altruism, a concern for the well-being of children as opposed to pure self-
interest, is a natural determinant of the joint evolution of growth and inequality. It is
generally acknowledged that altruism has a positive impact on economic development.
For instance, Hatcher and Pourpourides (2018) report a positive correlation between
country-level parental altruism and economic growth in a sample of 48 countries. Fur-
thermore, altruistic bequests are a key driver of wealth accumulation, and differences
in altruism are a significant factor contributing to inequality (see, e.g., Mankiw, 2000,
for a discussion). Laitner (2002) argues that calibrated models with altruistic bequests
are able to account for the empirical distribution of wealth in the US.

At the same time, there is substantial heterogeneity in the degree of altruism: some
people and societies are more altruistic than others. Falk et al. (2018) find that the
within-country altruism variation is much larger than the between-country variation:
the former amounts to 87.7% in the total individual-level variation in altruism, while
the latter explains only the remaining 12.3%.1 In this paper, we develop and study a
simple growth model in which agents differ in their degree of altruism. We show that
within-country heterogeneity in altruism, as suggested by empirical evidence, leads to
a non-monotonic relationship between income levels and inequality across countries.

Specifically, we consider a successive generations economy in which agents are
motivated by family altruism, that is, they care about the disposable income of their off-
springs. There are two types of agents who are heterogeneous in their degree of family
altruism: less altruistic and more altruistic agents. Altruistic transfer is the only sav-
ings motive, and bequests left by agents become the capital involved in the production.
We prove that when instantaneous utility functions are logarithmic and production
technology is Cobb–Douglas, every equilibrium path of consumption, bequests and
capital converges to a unique steady-state equilibrium.

We show that there are two types of steady-state equilibrium, depending on the
difference between the more altruistic and the less altruistic agents. If both types
of agents have similar degrees of altruism, then both types leave positive bequests.
However, if the difference in the degrees of altruism between the two types is sufficiently
high, then the less altruistic agents leave no bequests. We characterize the properties
of a steady-state equilibrium and analyze the impact of the level of altruism and
altruism heterogeneity on the steady state.

1 Formally speaking, Falk et al. (2018) define altruism as a willingness to give to good causes without
expecting anything in return. However, their measure is also a good proxy for parental altruism.
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To study the role of the level of altruism, we employ the share of the more altruistic
agents in total population as a measure of altruism. Given both degrees of altruism,
the higher the share of the more altruistic agents, the more altruistic is society as a
whole. We show that a higher level of altruism in society leads to a higher capital
stock and higher aggregate income. Intuitively, the more altruistic agents are the main
savers and leave higher bequests than the less altruistic agents. An increase in the share
of the more altruistic agents leads to the two effects. First, the higher share of main
savers drives down the interest rate and reduces their incentives to leave bequests, so
each single more altruistic agent decreases the amount of bequest left to her offspring.
Second, due to the increased presence of the main savers, the total amount of bequests
(aggregate capital stock) is increasing. This result confirms the natural intuition that
altruism positively affects aggregate income at the country level.

To study the impact of the level of altruism on the steady-state income inequality,
we use the Gini index as a measure of inequality. For the two types of agents, the Gini
index is determined by the shares of both types in the population and the difference
in relative income between the types. As a consequence, our results essentially depend
on the difference between the more altruistic and the less altruistic agents.

If both types have similar degrees of altruism, then an inverted U-shaped rela-
tionship is observed. Intuitively, when both types of agents leave positive bequests,
changes in income are similar for both types. Therefore, an increase in the share of
the more altruistic agents at first increases inequality: the direct effect of having more
relatively rich people in the population leads to higher inequality. However, beyond a
certain point, an increase in the share of the more altruistic agents decreases inequality
due to the direct effect of having less relatively poor people in the population.

Since aggregate income increases with the level of altruism, there is an inverted
U-shaped relationship between steady-state levels of income and the steady-state Gini
indices. This result can be interpreted in the spirit of the cross-country Kuznets curve:
an inverted U-shaped relationship between inequality and income in a cross-section
of countries. Countries with low levels of altruism would have low aggregate income
and low inequality; countries with midrange levels of altruism would be middle-income
and have high inequality; while countries with high levels of altruism would have high
aggregate income and low inequality.

If the difference in the degrees of altruism between the two types is sufficiently
high, then, as the share of the more altruistic agents increases, the steady-state level
of inequality decreases. Intuitively, in this case changes in income are different for
different types of agents, which is especially pronounced when only the more altruistic
agents leave bequests. In this case, an increase in the share of the more altruistic agents
decreases the bequests of the rich and does not affect the bequests of the poor. Hence
the difference in capital income is decreasing, which lowers the Gini index. Thus, for
sufficiently heterogeneous altruistic societies there is no trade-off between economic
growth and income inequality.

To study the role of altruism heterogeneity, we employ the difference in the recip-
rocals of degrees of altruism as a measure of heterogeneity. Given the harmonic mean
of degrees of altruism and the share of the more altruistic agents, the higher is the
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difference in the reciprocals, the higher is the variance in altruism, and the more het-
erogeneous is society as a whole. We show that a higher altruism heterogeneity leads
to a higher capital stock and a higher aggregate income. A harmonic-mean-preserving
increase in altruism heterogeneity increases the weighted arithmetic mean of degrees
of altruism in the population, and increases the amount of total bequests. This result
points out that not only the level of altruism, but also the diversity in the degree of
altruism positively affects economic development.

The steady-state income inequality is affected by altruism heterogeneity only at low
levels of heterogeneity. If both types of agents have similar degrees of altruism, then
increasing altruism heterogeneity leads to higher inequality.2 Intuitively, a harmonic-
mean-preserving increase in altruism heterogeneity makes more altruistic agents richer
while less altruistic agents become poorer. However, if the difference in the degrees
of altruism between the two types is sufficiently high, then an increase in altruism
heterogeneity does not affect inequality. In this case, the less altruistic agents leave
no bequests, and a further decrease in their degree of altruism does not affect their
relative position. This result can be interpreted as the existence of a maximum possible
steady-state level of income inequality (in terms of altruism heterogeneity).

Furthermore, we analyze the impact of the level of altruism on the steady-state
utility levels of both types of agents. We show that the utility of the more altruistic
agents decreases in the level of altruism. Intuitively, for the more altruistic agents,
capital income is more important than labor income, and their steady-state utility
is mainly determined by bequests. An increase in the share of more altruistic agents
lowers both the interest rate and the amount of bequests left by these agents. For the
main savers, this decrease in capital income leads to lower utility.

At the same time, the shape of the steady-state utility for the less altruistic agents
depends on altruism heterogeneity. If both types of agents have similar degrees of
altruism, the less altruistic agents are almost identical to the more altruistic agents.
Capital income plays a more important role in their utility, and due to the fall in
capital income, the consumption and utility of the less altruistic agents decrease with
the degree of altruism. However, if the difference in the degrees of altruism between
the two types is sufficiently high, the bequests left by the less altruistic agents are zero
or close to zero, and hence the utility of the less altruistic agents is determined mainly
by labor income. Since wage rate increases with the level of altruism, the consumption
and utility of the less altruistic agents increase as well.

If altruism heterogeneity is moderate, then the situation lies between these polar
cases, and the utility of the less altruistic agents is U-shaped in the level of altruism.
For low levels of altruism, the effect of decreasing capital income dominates, causing
their steady-state utility to decrease with the level of altruism. However, for high
levels of altruism, the effect of increasing labor income dominates, and the steady-state
utility of the less altruistic agents increases with the level of altruism.

Our paper is related to a large theoretical literature on the links between parental
altruism, growth and inequality. First, this paper contributes to the discussion of the
role of altruism in economic development. The existing literature typically follows

2 See also Krusell and Smith (1998) and Hendricks (2007), who find similar effect of discount rate
heterogeneity on the wealth Gini index in stochastic growth models.
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Barro (1974) and explores overlapping generations (OLG) models with dynastic altru-
ism where agents care about their offspring’s welfare: each agent derives utility from
her own consumption and the utility of her offspring.3 Barro (1974) shows that when
the degree of altruism is sufficiently strong (so that the bequest motive is operative),
the dynamics of an OLG model are analogous to the dynamics of the infinite-horizon
Ramsey model, and Ricardian equivalence holds: government debt does not influence
the steady-state capital stock.

Another strand of literature studies paternalistic altruism where agents care about
their offspring’s consumption or about the bequests they leave: each agent derives
utility from her own consumption and the consumption level of her offspring or the
amount of bequest.4 In the case where agents care about their offspring’s consumption,
each agent has a limited altruism towards only immediate successor, and there is a
conflict of interests among different dynasty members about consumption schedule.
Kohlberg (1976), Leininger (1986) and Bernheim and Ray (1987) study this conflict
from a game-theoretic point of view, establish the existence of equilibria in a game
between different altruistic dynasty members and characterize their properties. In the
case where agents care about the amount of bequests they leave, Andreoni (1989)
shows that government debt is not neutral, so that Ricardian equivalence fails to hold.

Our paper is different, as we follow Lambrecht et al. (2006) and assume that
agents exhibit family altruism. In our setting, each agent derives utility from her own
consumption and the disposable income of her offspring. This approach has several
advantages over other types of altruism studied in the literature. In contrast to dynas-
tic altruism, in our setting an agent can ignore the unknown preferences of her unborn
offspring when making her decisions. Also, in our case all dynasty members are not
equivalent to a single infinitely-lived agent which leads to a different long-run dynam-
ics. Furthermore, in contrast to paternalistic altruism where agents care about the
amount of bequests, in our setting agents can leave zero bequests which better fits
empirical evidence (for instance, Hendricks, 2001, documents that 70% of households
in the US receive no bequests). Thus, the assumption of family altruism allows one
to gain new perspectives and understanding.5 Our contribution here is to clarify the
mechanisms by which family altruism is positively related to economic growth.

Second, this paper contributes to the analysis of growth models with agents who
differ in their degree of altruism. The existing literature typically considers hetero-
geneous dynastic altruism. Michel and Pestieau (1998; 2005), Smetters (1999) and
Mankiw (2000) study the effectiveness of fiscal policy, and the very general result is
that Ricardian equivalence also holds in heterogeneous agents models in the long run.
However, government policies typically lead to a redistribution of income from the less
altruistic agents (poor) to the more altruistic agents (rich) and an increase in inequal-
ity within society, which is not observed in representative agent models. Palivos (2005)
shows that monetary policy under heterogeneous altruism also leads to substantial

3 Dynastic altruism is sometimes called pure altruism or non-paternalistic altruism (Ray, 1987).
4 The term “paternalistic” emphasizes that the altruist values the consumption of others, irrespective of

their preferences. Andreoni (1989) calls the case where bequests are treated as a consumption good impure
altruism and justifies it by assuming that the altruistic agent derives pleasure directly from the act of
giving (“joy-of-giving” or “warm glow giving”).

5 See Borissov (2016) for a family altruism model with relative consumption concerns. For the analysis
of fiscal policy in a family altruism model, see, among others, Borissov and Kalk (2020).
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distributional effects. Reichlin (2020) highlights the difficulties with standard social
welfare criteria in the OLG models with heterogeneous dynastic altruism.6

In a series of recent studies, Franks et al. (2018) and Franks and Edenhofer (2023)
consider the model with heterogeneous paternalistic altruism where agents differ in
their taste for leaving bequests. They calibrate the model to OECD data and show that
generically bequest taxation has a higher potential to decrease the level of inequality
without significantly reducing the output, as compared to capital taxation.

Our paper differs from previous contributions by focusing on heterogeneous family
altruism. In our model, we observe two distinct types of steady-state equilibrium: one
where all agents leave positive bequests and another where only the more altruistic
agents leave bequests. In contrast, existing models feature only one type of equi-
librium. In models with heterogeneous dynastic altruism (e.g., Michel and Pestieau,
2005), only agents with the highest degree of altruism leave bequests in the steady
state.7 Conversely, in models with heterogeneous paternalistic altruism (e.g., Franks
et al., 2018), all agents leave bequests in equilibrium, and empirically relevant zero-
bequest outcomes are impossible. Thus, our approach offers a more flexible framework
to analyze the impact of heterogeneous altruism on growth and inequality.

The paper is organized as follows. In Section 2 we present the model and define
equilibria. Section 3 provides main results and their discussion. Section 4 concludes.
All the proofs are relegated to the Appendix.

2 The model

We consider a closed market economy with households and firms. As usual, their
fundamentals are given by preferences, technology and endowments. In this section,
we describe the consumers’ and the producers’ programs at the individual level and
define dynamic general equilibrium at the aggregate level.

2.1 Households and firms

Time is discrete and runs from t = 0 to infinity. The economy is populated by suc-
cessive generations of agents. Each agent lives for one period, gives birth to one
offspring, and supplies one unit of labor. The population is constant over time, and
the population size is normalized to 1.

The population consists of two types of agents indexed by i = L,H. The share of
type i in the population is πi, with πL + πH = 1. Agents are identical within each
type. The agent and her offspring are of same type, so population shares are constant
over time. A disposable income of type i agent is defined as a sum of the wage bill,
wt, identical across types, and the current value of bequest left by her parent, bit. Out
of this, an agent consumes cit ≥ 0 and leaves bit+1 ≥ 0 to her offspring as a bequest.
Since the case of negative bequests is hard to justify on either a juridical or empirical

6 See also Pakhnin (2023) for the discussion of similar problems with social welfare under heterogeneous
time preferences.

7 The long-run properties of a model with heterogeneous dynastic altruism are analogous to those of
the many-agent Ramsey model in the spirit of Becker (1980), where the intertemporal utility function of a
single dynasty is an infinite-horizon discounted sum of instantaneous utilities, and different dynasties have
different discount factors.
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ground, we assume that bequests are non-negative.8 Formally, the budget constraint
of type i agent has the form

cit + bit+1 ≤ Rtbit + wt

where Rt is the gross interest rate.
Each agent cares about her consumption and the disposable income of her offspring.

The relative preference for the offspring’s disposable income with respect to own con-
sumption is naturally interpreted as a degree of altruism. Formally, the preferences of
type i agent are represented by the following utility function:

ln cit + βi ln
(
Rt+1b

i
t+1 + wt+1

)
where βi > 0 is the degree of altruism of type i agent.

Throughout the paper, we assume that agents are heterogeneous in terms of
altruism: type L agents are less altruistic, while type H agents are more altruistic.

Assumption 1. βH > βL.

Thus, type i agent living in period t solves the following maximization problem:

max
cit,b

i
t+1

[
ln cit + βi ln

(
Rt+1b

i
t+1 + wt+1

)]
(1)

s. t. cit + bit+1 ≤ Rtbit + wt

with cit ≥ 0 and bit+1 ≥ 0.
In every period, the economy produces a single good which is either consumed or

invested. Technology is given by a neoclassical production function F (K,N), where
K is the stock of physical capital, N is the labor input, and function F is homo-
geneous of degree one. The production function in intensive form, f , is given by
f(k) = F (K/N, 1), where k = K/N is the capital intensity. Capital fully depreciates
each period, which is justified by the length of the period (the lifespan). Throughout
the paper, we assume that the function f(k) satisfies the standard assumptions.

Assumption 2. f(0) = 0, f ′(k) > 0, f ′′(k) < 0, limk→0 f
′(k) =∞, limk→∞ f ′(k) = 0.

In each period t producers maximize profits, so that the gross interest rate Rt
(which coincides with the interest rate because of the complete capital depreciation)
and the wage rate wt are equal to the corresponding marginal products:

Rt = R (kt) ≡ f ′ (kt) (2)

wt = w (kt) ≡ f (kt)− ktf ′ (kt) (3)

Since the size of population is constant and normalized to one, the aggregate capital
Kt coincides with capital per capita kt.

8Negative bequests would mean that offsprings have to pay parents’ debts.
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For future reference, we define the income ratio (labor income over capital income):

γ (kt) ≡
w (kt)

ktR (kt)
=

1− α (kt)

α (kt)

where

α (kt) ≡
ktf
′ (kt)

f (kt)

is the capital share in total income.

2.2 Temporary, intertemporal and steady-state equilibria

The definitions of equilibria in our model are fairly standard. First, we define a tempo-
rary equilibrium where each agent maximizes her utility, producers maximize profits,
and the capital market clears, meaning that bequests become the capital involved in
production.

Definition 1 (Temporary equilibrium). Given the bequests bit ≥ 0 left by agents in

period t− 1, and the capital stock kt = πLb
L
t + πHb

H
t , a tuple

((
cit, b

i
t+1

)
i=L,H

, kt+1

)
is a time-t temporary equilibrium if:

(i) for any i,
(
cit, b

i
t+1

)
is a solution to the utility maximization problem (1) where

(Rt, wt) = (R(kt), w (kt)) and (Rt+1, wt+1) = (R (kt+1) , w (kt+1)), and the functions
R and w are given by (2) and (3);

(ii) kt+1 = πLb
L
t+1 + πHb

H
t+1.

Second, we define an intertemporal equilibrium as a sequence of temporary
equilibria.

Definition 2 (Intertemporal equilibrium). A sequence
((
cit, b

i
t+1

)
i=L,H

, kt+1

)∞
t=0

is an intertemporal equilibrium starting from
(
bL0 , b

H
0

)
with k0 = πLb

L
0 + πHb

H
0 if((

cit, b
i
t+1

)
i=L,H

, kt+1

)
is a time-t temporary equilibrium for any t ≥ 0.

Definition 2 yields the dynamic system representing an intertemporal equilibrium.

Proposition 1 (Dynamic system). The dynamics of bequests in an intertemporal
equilibrium are given by

bit+1 =
1

1 + βi
max

{
0, βiR (kt)

[
bit + ktγ (kt)

]
− kt+1γ (kt+1)

}
(4)

for i = L,H, with kt = πLb
L
t + πHb

H
t , and the initial condition

(
bL0 , b

H
0

)
.

Eq. (4) is a two-dimensional dynamic system in the variables
(
bLt , b

H
t

)
. We observe

that these variables are predetermined because initial bequests bL0 and bH0 are given.
Since kt+1 = πLb

L
t+1 + πHb

H
t+1, we also have the dynamics of capital stock:

kt+1 =
∑

i

πi
1 + βi

max
{

0, βiR (kt)
[
bit + ktγ (kt)

]
− kt+1γ (kt+1)

}
10



Here and in what follows, for notational simplicity, we denote
∑

i =
∑

i=L,H .
A steady-state equilibrium is naturally defined.

Definition 3 (Steady state). A tuple
((
ci, bi

)
i=L,H

, k
)

is a steady-state equilibrium

if the sequence
((
cit, b

i
t+1

)
i=L,H

, kt+1

)∞
t=0

with
(
cit, b

i
t+1

)
=
(
ci, bi

)
and kt+1 = k for

any i = L,H and any t ≥ 0 is an intertemporal equilibrium starting from
(
bL, bH

)
.

The following proposition determines the steady state.

Proposition 2 (Steady-state bequests). Assume that k > 0. The steady-state
bequests bi are given by

bi = kγ (k) max

{
0,

βiR (k)− 1

1 + βi − βiR (k)

}
(5)

where the steady-state capital stock k is a solution to the following equation:

γ (k)
∑

i
πi max

{
0,

βiR (k)− 1

1 + βi − βiR (k)

}
= 1

Note that, for any k, bi is non-decreasing in βi. Therefore, if a steady state exists,
the more altruistic agents leave higher steady-state bequests than the less altruistic
agents: bH > bL.

2.3 Local dynamics

Let k be the steady-state capital stock. Consider the local dynamics of bequests in a
neighborhood of a steady state. By (5), the steady-state bequests of type i agents are
positive if and only if

1

βi
< R (k) < 1 +

1

βi
(6)

By Assumption 1, we have 1/βH < 1/βL. Then it follows from (6) that there
are two possible cases: (1) 1/βL < R (k) < 1 + 1/βH , and (2) 1/βH < R (k) <
min {1/βL, 1 + 1/βH}.

Case (1) If 1/βL < R (k) < 1 + 1/βH , then both the more and the less altruistic
agents leave bequests. Local dynamics are given by

bLt+1 =
βLR

(
πLb

L
t + πHb

H
t

) [
bLt +

(
πLb

L
t + πHb

H
t

)
γt
]
−
(
πLb

L
t+1 + πHb

H
t+1

)
γt+1

1 + βL
(7)

bHt+1 =
βHR

(
πLb

L
t + πHb

H
t

) [
bHt +

(
πLb

L
t + πHb

H
t

)
γt
]
−
(
πLb

L
t+1 + πHb

H
t+1

)
γt+1

1 + βH
(8)

where γt = γ
(
πLb

L
t + πHb

H
t

)
.
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Case (2) If 1/βH < R (k) < min {1/βL, 1 + 1/βH}, then, by (6), bL = 0, and only
the more altruistic agents leave bequests. Local dynamics are given by bLt+1 = 0 and

bHt+1 =
βHR

(
πHb

H
t

) [
bHt + πHb

H
t γ
(
πHb

H
t

)]
− πHbHt+1γ

(
πHb

H
t+1

)
1 + βH

3 Main results

In this section, we focus on the case of a Cobb–Douglas technology. Suppose that the
production function is given by

F (K,N) = AKαN1−α

Then f(kt) = Akαt , and the price functions (2)–(3) take the form

R (kt) = αAkα−1
t and w (kt) = (1− α)Akαt

The capital share in total income and the income ratio are constant:

α (kt) = α and γ (kt) = γ =
1− α
α

and the dynamic system (4) becomes

bit+1 =
1

1 + βi
max

{
0, βiR (kt)

(
bit + γkt

)
− γkt+1

}
with kt = πLb

L
t + πHb

H
t . The transition dynamics of capital stock are given by

kt+1 =
∑

i

πi
1 + βi

max
{

0, βiR (kt)
(
bit + γkt

)
− γkt+1

}
3.1 Steady state and convergence

Let π ≡ πH be the share of the more altruistic agents in total population, which is
our measure of altruism. Let also

δ ≡ 1

βL
− 1

βH

be the altruism gap (the reciprocal of βi captures the selfishness), which is our measure
of altruism heterogeneity.

We introduce two critical interest rates:

R∗1 ≡
1

2

(
1 + α+

1

βL
+

1

βH
−
√

(δ + α− 1)
2

+ 4δπ (1− α)

)
(9)

R∗2 ≡
1

βH
+

1

1 + γπ
(10)
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Denote by

δ ≡ 1

1 + γπ
(11)

a threshold value of altruism heterogeneity which will play an important role below.
The following proposition characterizes the steady-state equilibrium.

Proposition 3 (Steady-state equilibrium). (1) Suppose that δ < δ. Then there
exists a unique steady-state equilibrium characterized by the interest rate R∗1. The
steady-state equilibrium is given by

(
cL∗1 , bL∗1 , cH∗1 , bH∗1 , k∗1

)
, where

cL∗1 =
γk∗1

βL + 1− βLR∗1
and cH∗1 =

γk∗1
βH + 1− βHR∗1

bL∗1 = γk∗1
βLR

∗
1 − 1

βL + 1− βLR∗1
and bH∗1 = γk∗1

βHR
∗
1 − 1

βH + 1− βHR∗1
(12)

k∗1 =

(
αA

R∗1

) 1
1−α

(2) Suppose that δ ≥ δ. Then there exists a unique steady-state equilibrium
characterized by the interest rate R∗2. The steady-state equilibrium is given by(
cL∗2 , bL∗2 , cH∗2 , bH∗2 , k∗2

)
, where

cL∗2 =
γk∗2
βH

(
1 +

βH
1 + γπ

)
and cH∗2 =

k∗2
βH

1 + γπ

π

bL∗2 = 0 and bH∗2 =
k∗2
π

(13)

k∗2 =

(
αA

R∗2

) 1
1−α

Proposition 3 implies that our model admits two types of steady-state equilibrium
which depend on the difference between the more and the less altruistic agents. First,
if agents of both types have rather similar degrees of altruism (altruism heterogeneity
δ does not exceed the threshold value δ), then both types of agents leave positive
bequests in the steady-state equilibrium. Intuitively, in this case, the more altruistic
agents, who are the main savers, do not leave high bequests, and the resulting interest
rate is sufficiently high to allow the less altruistic agents to also leave bequests.

Second, if the altruism gap between the more and the less altruistic agents is
sufficiently large (δ ≥ δ), then only the more altruistic agents leave positive bequests
in the steady-state equilibrium: bH∗2 > 0 = bL∗2 . Intuitively, in this case the more
altruistic agents are so altruistic that they leave substantial amounts of bequests which
drive the interest rate down. The interest rate becomes too low, which induces the less
altruistic agents to leave no bequests. Note that for any given set of parameters, the
steady-state interest rate is given by R∗ = min {R∗1, R∗2}.

The role of a steady-state equilibrium is highlighted by the following result which
shows that every intertemporal equilibrium converges to the steady state.
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Proposition 4 (Global convergence). Let
((
cit, b

i
t+1

)
i=L,H

, kt+1

)∞
t=0

be an

intertemporal equilibrium.
(1) Suppose that δ < δ. Then, bLt+1 > 0 and bHt+1 > 0 for all t ≥ 0, and intertempo-

ral equilibrium converges to the steady-state equilibrium
(
cL∗1 , cH∗1 , bL∗1 , bH∗1 , k∗1

)
defined

in part (1) of Proposition 3.
(2) Suppose that δ ≥ δ. Then intertemporal equilibrium converges to the steady-

state equilibrium
(
cL∗2 , cH∗2 , bL∗2 , bH∗2 , k∗2

)
defined in part (2) of Proposition 3. If δ = δ,

then either bLt+1 = 0 for all t ≥ 0 or bLt+1 converges to 0. If δ > δ, then there exists t0
such that bLt+1 = 0 for all t ≥ t0.

According to Proposition 4, the steady-state equilibrium is globally stable. To
provide a numerical illustration of this property, we compute the speed of convergence
which depends on the modulus of eigenvalues of the linearized dynamic system.

Case (1) of Propositions 3 and 4. Since 1/βL < R∗1 < 1 + 1/βH , both the more
and the less altruistic agents leave positive bequests and dynamics follow (7)–(8) with
γt = γ = (1− α)/α:

bLt+1 =
βLR (kt)

(
bLt + γkt

)
− γkt+1

1 + βL
and bHt+1 =

βHR (kt)
(
bHt + γkt

)
− γkt+1

1 + βH

where kt = (1− π)bLt + πbHt . Linearizing this system around the steady state (12), we
obtain the eigenvalues

λ1 =
(
T −

√
T 2 − 4D

)
/2 and λ2 =

(
T +

√
T 2 − 4D

)
/2 (14)

where T and D are the trace and the determinant of the Jacobian matrix evaluated
at the steady state:

T = R∗1

1−
1− αβLβH − π (1− α) (βH − βL)

1+αβH−βHR∗1
1+βH−βHR∗1

(1 + αβL) (1 + βH)− π (1− α) (βH − βL)

 (15)

D = (R∗1)2 αβLβH
(1 + αβL) (1 + βH)− π (1− α) (βH − βL)

(16)

Global convergence implies local convergence (both the eigenvalues are inside the
unit circle in the Argand–Gauss plane). A constructive proof of local convergence can
be also provided noticing that |λ1| < 1 and |λ2| < 1 if and only if the pair (T,D) lie
in the interior of the triangle defined by D > −T − 1, D > T − 1 and D < 1. Using
expressions (15)–(16) for trace and determinant, it is possible to prove that when both
types of agents leave bequests, these three inequalities are always jointly verified.9

In order to illustrate convergence in this case, we fix the parameter values as follows:
α = 0.33, π = 0.5, βL = 0.5, βH = 0.6. Using (9), we obtain R∗1 = 2.1273 and, thus,
2 = 1/βL < R∗1 < 1 + 1/βH = 2.667. Using (15) and (16), we obtain T = 1.0739 and
D = 0.24685. The eigenvalues given by (14), λ1 = 0.33333 and λ2 = 0.74054, are both

9See Proposition 11 in Borissov et al. (2023) for a detailed proof of local convergence.
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inside the unit circle (sink). The smaller their modulus, the faster the convergence to
the steady state, coherently with Proposition 4.

Case (2) of Propositions 3 and 4. Since 1/βH < R∗2 < 1/βL, only the more
altruistic agents leave bequests. Dynamics are given by

bHt+1 = bHt
R
(
πbHt

)
R∗2

and are locally approximated by the following equation:10

dbHt+1

bH∗2

= α
dbHt
bH∗2

The eigenvalue is given by λ = α. The trajectory locally converges to the steady
state because 0 < α < 1. Moreover, the lower the capital share in total income, the
faster the convergence.

3.2 Altruism and economic growth

Proposition 4 allows us to focus on the properties of the steady-state equilibrium.
We now study the effect of altruism on economic growth in our model. For this, we
analyze the dependence of the steady-state capital stock on the level of altruism and
on altruism heterogeneity.

To study the impact of the level of altruism, we employ the share of more altruistic
agents in the total population, π, as a measure of altruism. Given βL and βH , a higher
π indicates a more altruistic is society as a whole.

Denote by π the threshold value of altruism which corresponds to the threshold
value of altruism heterogeneity (11):

π ≡ α

1− α
1− δ
δ

(17)

Note that for δ > 1 we have π < 0, while for δ < α we have π > 1. The impact of the
level of altruism π on the steady-state capital stock k∗ is characterized as follows.

Proposition 5 (Capital stock and altruism). The steady-state capital stock k∗ is
continuous and strictly increases with π. For π < π, we have k∗ = k∗1 , while for π ≥ π,
k∗ = k∗2 .

For any given set of parameters, the steady-state capital stock is given by k∗ =
max {k∗1 , k∗2}. Proposition 5 shows that the more altruistic a society is, the higher the
steady-state capital stock. Since more altruistic agents leave higher bequests than less
altruistic agents, an increase in π replaces some less altruistic agents, who leave rela-
tively lower bequests, with more altruistic agents, who leave relatively higher bequests.

10For more details, the reader is referred to Proposition 12 in Borissov et al. (2023).
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This change reduces the steady-state interest rate, and increases capital accumula-
tion and output. Thus, greater altruism implies a higher level of aggregate income.
Proposition 5 is illustrated in Figure 1 with α = 0.33, βL = 0.5, βH = 0.75, A = 1.

ππ

 k 
1

*

 k 
2

*

Fig. 1 Steady-state capital stock and the level of altruism

To study the impact of altruism heterogeneity, we employ altruism gap δ (the
difference in the reciprocals of the degrees of altruism) as a measure of heterogeneity.
Let β be the weighted harmonic mean of βL and βH :

1

β
=

1− π
βL

+
π

βH

The variance of 1/βL and 1/βH is given by:

(1− π)

(
1

βL
− 1

β

)2

+ π

(
1

βH
− 1

β

)2

= π (1− π)

(
1

βL
− 1

βH

)2

= π (1− π) δ2

Therefore, given π and the weighted average of 1/βi, the standard deviation of 1/βi is
directly proportional to the altruism gap δ, which can be used as a relevant indicator
of altruism heterogeneity.11

The impact of δ on the steady-state capital stock k∗ is characterized as follows.

11 The difference in the reciprocals of the degrees of altruism, δ, naturally appears as a measure of
heterogeneity in our model. However, our qualitative results about the impact of heterogeneity on the
steady-state values do not change if we consider the difference in the degrees of altruism as a measure of
heterogeneity. It can be shown that an increase in δ keeping the weighted harmonic mean β constant is
equivalent to an increase in βH − βL keeping the weighted arithmetic mean (1− π)βL + πβH constant.
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Proposition 6 (Capital stock and heterogeneity). The steady-state capital stock
k∗ is continuous and strictly increases with δ. For δ < δ, k∗ = k∗1 , while for δ ≥ δ,
k∗ = k∗2 .

Thus, increasing altruism heterogeneity, that is, the standard deviation of 1/βi
around their mean 1/β, increases the steady-state capital stock. The reason is that
a harmonic-mean-preserving increase implies an increase in the degree of altruism
for the more altruistic agents and a decrease in the degree of altruism for the less
altruistic agents. At the same time, the weighted arithmetic mean of degrees of altruism
in the population is increasing. The resulting increase in bequests from the main
savers, who become more altruistic, outweighs the reduction in bequests from the less
altruistic agents, who become less altruistic. This effect is even more pronounced for
δ ≥ δ when the less altruistic agents do not leave any bequests. Thus, higher altruism
heterogeneity promotes capital accumulation and leads to a higher level of aggregate
income. Proposition 6 is illustrated in Figure 2 with α = 0.33, β = 0.75, π = 0.4,
A = 1.
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*

 k 
2

*

Fig. 2 Steady-state capital stock and altruism heterogeneity

Let us also address the question of the dynamic efficiency of an intertemporal
equilibrium. According to the Malinvaud sufficiency theorem, an equilibrium is dynam-
ically efficient if the steady-state capital stock is below the golden rule capital stock,
defined by the condition R∗ = 1 (see, e.g., Theorem 1 in Becker and Mitra, 2012).
In our model, similarly to a canonical OLG model, dynamic inefficiency is theoreti-
cally possible. Intuitively, dynamic inefficiency arises when the degree of altruism of
the more altruistic agents is high enough to leave excessively large bequests, leading
to overaccumulation of capital.
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Since R∗ decreases with π, it follows from (9)–(10) that

R∗ ≥ R∗1 |π=1 = R∗2 |π=1 =
1

βH
+ α

Therefore, under a simple sufficient condition βH < 1/(1−α), we have R∗ > 1 for all π,
so that the steady-state capital stock is always less than the golden rule capital stock.
Since an intertemporal equilibrium converges to a steady-state equilibrium, it follows
that when βH < 1/(1− α), any intertemporal equilibrium is dynamically efficient.

In both types of steady-state equilibrium, the more altruistic agents leave higher
bequests than the less altruistic agents. Moreover, when R∗ > 1, the more altruistic
agents also have higher steady-state consumption levels. Thus, in the empirically plau-
sible case of dynamic efficiency, the more altruistic agents have both higher income
and higher consumption than the less altruistic agents, leading to a similar pattern of
inequality in both income and consumption.

3.3 Altruism and income inequality

Consider now the effect of the level of altruism and altruism heterogeneity on steady-
state income inequality. It is natural to represent the level of social inequality using the
Gini index. The following proposition characterizes the Gini index in the steady-state
equilibrium.

Proposition 7 (Gini index). (1) Suppose that δ < δ. The Gini index in the steady-
state equilibrium

(
cL∗1 , bL∗1 , cH∗1 , bH∗1 , k∗1

)
is given by

G∗1 =
2δπ(1− π)

1− α+ (2π − 1) δ +

√
(δ + α− 1)

2
+ 4δπ (1− α)

(2) Suppose that δ ≥ δ. The Gini index in the steady-state equilibrium(
cL∗2 , bL∗2 , cH∗2 , bH∗2 , k∗2

)
is given by G∗2 = α (1− π).

Proposition 7 can be interpreted as follows. The Gini index for the society con-
sisting of two types of agents is given by the product of the shares of both types (π
and 1−π) and the difference in relative income between them. If agents of both types
have similar degrees of altruism, the difference in relative income depends on δ and on
the interest rate, which is reflected in G∗1. However, if the altruism gap is sufficiently
large and the less altruistic agents leave no bequests, then it follows from (13) that
the total amount of capital is divided only between the more altruistic agents, so the
difference in relative incomes is inversely proportional to π. Therefore, the Gini index
G∗2 depends only on the share of the less altruistic agents 1− π.

The impact of the level of altruism π on the steady-state Gini index G∗, given βL
and βH , is characterized as follows.

Proposition 8 (Gini index and altruism). The steady-state Gini index G∗ is
continuous in π. For π < π, G∗ = G∗1, while for π ≥ π, G∗ = G∗2.
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(1) Suppose that δ < min {1, 2 (1− α)}. Then there exists a threshold share of the
more altruistic agents, 0 < π̃ ≤ π, such that for π < π̃, G∗ increases with π, while for
π ≥ π̃, G∗ decreases with π. When δ < 1 − α, G∗ |π=0 = 0, while, when δ > 1 − α,
G∗ |π=0 = 1− (1− α) /δ > 0.

(2) Suppose that δ ≥ min {1, 2 (1− α)}. Then G∗ strictly decreases with π.

Note that for any given set of parameters, the steady-state Gini index is given by
G∗ = min {G∗1, G∗2}. It is clear that G∗2 decreases with π, since it depends only on the
share of the less altruistic agents, as explained above. Therefore, the non-monotonic
impact of the level of altruism on the Gini index is shaped by the effect of π on G∗1 in
a steady-state equilibrium where both types of agents leave positive bequests.

Proposition 8 suggests that there are three regimes of the steady-state Gini index,
which are determined by the interplay between level of altruism and altruism het-
erogeneity. The first regime occurs when altruism heterogeneity is sufficiently low,
δ < 1− α. In this case, both types of agents have similar degrees of altruism, and the
difference in their incomes is sufficiently small. Therefore, the direct effect on the Gini
index comes from the shares of both types of agents in the population. When π is very
low or very high, society is almost constituted by the same type of agents (less altruis-
tic and more altruistic, respectively). Since the population is almost homogeneous up
to a small minority of different agents, the social inequalities are close to zero. When
π takes values in the middle of the range, the shares of the rich (the more altruistic
agents who leave higher bequests) and the poor (the less altruistic agents) are similar,
which drives up social inequality.

Thus, in this regime, the dependence of the steady-state level of inequality on
the level of altruism has a rather symmetric inverted U-shape. The first regime is
illustrated in Figure 3 with α = 0.33, βL = 0.5, βH = 0.75.
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Fig. 3 Steady-state Gini index and the level of altruism: Low heterogeneity

19



The second regime occurs when altruism heterogeneity is moderate, 1 − α < δ <
min {1, 2 (1− α)}. In this case, when π is very low, the level of inequality is positive.
Due to the altruism gap, the population is not homogeneous. Even though the share
of the more altruistic agents is small, the difference in relative incomes is large enough
to significantly affect inequality. Similar to the first regime, an increase in π increases
the level of inequality. However, when π is already high, a further increase in π leaves
fewer relatively poor people in the population, which reduces social inequalities.

Therefore, in this regime, the dependence of the steady-state Gini index on the
level of altruism has an asymmetric inverted U-shape which is shifted upwards for
low levels of altruism. The second regime is illustrated in Figure 4 with α = 0.33,
βL = 0.45, βH = 0.75.
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Fig. 4 Steady-state Gini index and the level of altruism: Moderate heterogeneity

The third regime occurs when altruism heterogeneity is sufficiently high, δ ≥
min {1, 2 (1− α)}. When the difference between the more and the less altruistic agents
is high, then the highest possible level of inequality is observed in societies consisting
of only the less altruistic agents, and inequality is decreasing with the level of altru-
ism. Intuitively, in this regime, even if the less altruistic agents leave some bequests,
the amount of these bequests is very small and has almost no impact on their income.
An increase in the share of the more altruistic agents leads to equalization of relative
incomes and decreases inequality. The third regime of the steady-state Gini index is
illustrated in Figure 5, where we set α = 0.6, βL = 0.45, βH = 0.75.

Consider also the impact of altruism heterogeneity on the steady-state Gini index.
Fix π and β. The following proposition characterizes the dependence of G∗ on δ.
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Fig. 5 Steady-state Gini index and the level of altruism: High heterogeneity

Proposition 9 (Gini index and heterogeneity). The steady-state Gini index G∗

is continuous and non-decreasing in δ. For δ < δ, G∗ = G∗1 and G∗ strictly increases
with δ. For δ ≥ δ, G∗ = G∗2 and is independent of δ.

It follows that when both types of agents have similar degrees of altruism, higher
altruism heterogeneity leads to greater inequality. Intuitively, the more altruistic
agents become even more altruistic and increase their bequests more than the less
altruistic agents reduce their bequests after becoming even less altruistic. As a result,
the rich become relatively richer, increasing social inequalities. However, when δ is
sufficiently high, this effect disappears: an increase in altruism heterogeneity does not
affect the steady-state Gini index. In terms of altruism heterogeneity, there exists a
maximum possible steady-state Gini index which is equal to α (1− π). Proposition 9
is illustrated in Figure 6 with α = 0.33, π = 0.65.

3.4 Cross-country Kuznets curve

Comparing Proposition 5 and part (1) of Proposition 8, we observe that if altruism
heterogeneity is low or moderate, then the resulting dependence of the steady-state
level of inequality on the steady-state level of income is non-monotonic. This pattern
is consistent with the cross-country Kuznets curve: an inverted U-shaped relationship
between inequality and income in a cross-section of countries, confirmed in numerous
empirical studies (among others, Campano and Salvatore, 1988; Bourguignon and
Morrison, 1990; Jha, 1996; Milanovic, 2000; Savvides and Stengos, 2000).12

12 The cross-country Kuznets curve differs from the originally proposed within-country Kuznets curve.
Kuznets (1955) analyzed the evolution of the US and UK income distributions in the first half of the
20th century, and suggested that in the process of development within a single country, income inequality
increases with the shift of labor force from traditional agricultural sector to modern industrial sector, but
eventually declines as industrialization progresses. The recent rise in inequality in developed countries (see,
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Fig. 6 Steady-state Gini index and altruism heterogeneity

Table 1 highlights this relationship using the World Bank 2019 open data on the
Gini index for 105 countries divided into three income groups.13 The relationship
between income and inequality is not absolute, and there are variations among individ-
ual countries — some high-income countries are very unequal, while some low-income
countries are relatively equal.14 Nevertheless, it is clearly seen that high-income coun-
tries have much lower median and mean Gini indices compared to middle-income and
low-income countries (see also OECD, 2011). Moreover, cross-country inequality is
slightly higher in middle-income countries than in low-income countries.

Table 1 Gini indices for different income groups of countries in 2019

Low income Middle income High income
Median 0.374 0.377 0.319
Mean 0.374 0.379 0.324

Maximum
0.513

(Angola)
0.535

(Brazil)
0.498

(Panama)

Minimum
0.260

(Moldova)
0.253

(Belarus)
0.232

(Slovakia)
N. of countries 37 30 38

Source: Authors’ calculations based on the World Bank data.

e.g., Piketty, 2014; Bourguignon, 2018; Zucman, 2019) seems incompatible with the within-country pattern,
but the relationship observed in a cross-section of countries is relatively stable.

13 We construct income groups based on the World Bank classification in 2019. High-income countries
are World Bank’s high-income economies (GNI per capita greater than $12375); middle-income countries
are upper middle-income economies (GNI per capita between $3995 and $12375); low-income countries
correspond to World Bank’s low-income economies and lower middle-income economies (GNI per capita less
than $3995). Gini indices refer to 2019, but also to 2017 and 2018 where data for 2019 are not available.

14 For instance, in 2018, the Guinea Gini index was 0.296, while, in 2019, the US Gini index was 0.415.
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Table 1 can be illustrated in our model. Consider three countries (A, B, C) that
differ in their levels of altruism (πA > πB > πC) but are identical in every other
respect. In the steady state, country A would have the highest aggregate income, and
country C the lowest (k∗A > k∗B > k∗C). At the same time, high-income country A
would have the lowest income inequality, while middle-income country B would have
the highest (G∗B > G∗C > G∗A).

Moreover, for moderate altruism heterogeneity, the low-income country A and
middle-income country B would have similar Gini indices (due to the asymmetric
inverted U-shape). These observations are illustrated in Figure 7 with α = 0.33, βL =
0.47, βH = 0.75, A = 1.
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Fig. 7 Steady-state Gini index and steady-state capital stock: Cross-country Kuznets curve

Furthermore, comparing Proposition 5 and part (2) of Proposition 8, we observe
that if altruism heterogeneity is high, there is no trade-off between economic growth
and social inequality. The more altruistic society is as a whole, the higher the steady-
state capital stock, and the lower the steady-state Gini index. Higher aggregate income
is accompanied by a lower level of inequality.

Overall, these results suggest that heterogeneous altruism is a possible mechanism
contributing to the tendency of high-income countries to have lower levels of income
inequality.

3.5 Altruism and utility levels

Finally, we consider the effect of altruism on utility levels in the steady state. We
analyze how the steady-state utilities of both types of agents depend on the level of
altruism. Since social welfare criteria under heterogeneous preferences are in general
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problematic, we focus on individual utilities and study separately the steady-state
utility levels of the more and the less altruistic agents.15

According to (1), in the steady-state equilibrium
(
cL∗j , bL∗j , cH∗j , bH∗j , k∗j

)
with j =

1, 2, the utility of type i = L,H agent is given by

U i∗j = ln ci∗j + βi ln
(
ci∗j + bi∗j

)
Propositions 3 and 5 imply that the steady-state utility of type i agent, U i∗, is

continuous, and for π < π we have U i∗ = U i∗1 , while for π ≥ π we have U i∗ = U i∗2 .
Let us introduce two additional threshold values of altruism heterogeneity:

δ̌ ≡ (1− α)(1 + αβL)

(2− α+ βL)βL
and δ̂ ≡ (1− α)(1 + βL)2

(2− α+ βL)βL

Note that δ̌ < δ̂. The following proposition shows how the steady-state utility levels
depend on the level of altruism.

Proposition 10 (Agents’ utilities and altruism). (1) Less altruistic agents.
(1.1) If δ ≤ min{α, δ̌}, then the utility UL∗ strictly decreases with π.

(1.2) If min{α, δ̌} < δ < min{1, δ̂}, then there exists a threshold share of the more
altruistic agents, 0 < π̌ < 1, such that for π < π̌, UL∗ decreases with π, while for
π ≥ π̌, UL∗ increases with π.

(1.3) If δ ≥ min{1, δ̂}, then UL∗ strictly increases with π.
(2) More altruistic agents. The utility UH∗ strictly decreases with π.

Proposition 10 highlights the important difference between the more and the less
altruistic agents. The steady-state utility of each more altruistic agent always decreases
with π. At the same time, the shape of the steady-state utility of each less altruistic
agent depends on altruism heterogeneity. When altruism heterogeneity is sufficiently
low, UL∗ decreases with π. When altruism heterogeneity is sufficiently high, UL∗

increases with π. When altruism heterogeneity is moderate, the steady-state utility of
less altruistic agents is U-shaped in the level of altruism: UL∗ decreases for low π and
increases for high π.

Intuitively, the difference in the behavior of steady-state utility between two types
of agents reflects the difference in their roles. The more altruistic agents are the main
savers, and their disposable income is determined primarily by capital income. More-
over, the amount of bequest left by a single more altruistic agent decreases with the
share of more altruistic agents π. Indeed, the higher the π, the lower the interest rate,
which reduces individuals’ incentives to leave bequests and affects primarily the more
altruistic agents.16

15 See also the discussion of social welfare criteria under dynastic altruism in Reichlin (2020), and under
paternalistic altruism in Franks and Edenhofer (2023).

16A similar effect can be observed in the many-agent Ramsey model (Becker, 1980) with agents hetero-
geneous in their discount factors. After an increase in the share of the most patient agents, the steady-state
capital stock determined by the modified golden rule does not change. However, this stock is now divided
among a larger number of the most patient agents, resulting in a decrease in savings for each of them. In
our model, the situation is more complicated, because a higher π also leads to an increase in the aggregate
steady-state capital stock. Nevertheless, the effect of decreasing bequests for more altruistic agents holds:
the higher the π, the lower the bequest left by each more altruistic agent.
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Since both the interest rate and the amount of bequests for the more altruistic
agents decrease, the resulting fall in capital income tends to decrease their consumption
and lower their steady-state utility. For the more altruistic agents, the optimal level
of altruism is as close to π = 0 as possible: each more altruistic agent prefers to be the
only rich individual in the population. Part (2) of Proposition 10 for the more altruistic
agents is illustrated in Figure 8 with α = 0.64, βL = 0.495, βH = 0.75, A = 1.
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Fig. 8 More altruistic agents’ utility and the level of altruism

In contrast, the role of capital income in the disposable income of the less altruistic
agents depends on altruism heterogeneity. When both types of agents have similar
degrees of altruism, the behavior of the less altruistic agents is almost identical to that
of the more altruistic agents. Their bequests also decrease with π, and their disposable
income significantly depends on capital income. As a result, the steady-state levels
of consumption and utility of the less altruistic agents decrease with π. Thus, when
altruism heterogeneity is low, the optimal level of altruism for the less altruistic agents
is also π = 0.

However, when the difference in the degrees of altruism between the two types of
agents is sufficiently high, the situation reverses. The role of bequests for the less altru-
istic agents becomes negligible, and their disposable income is primarily determined
by labor income, which increases with π together with output. Therefore, an increase
in π raises the steady-state levels of consumption and utility for the less altruistic
agents. This effect is evident when altruism heterogeneity is very high, δ > 1, where
less altruistic agents leave no bequests and consume only their wages, but it can also
be observed in steady states where less altruistic agents leave positive bequests. Thus,
when altruism heterogeneity is high, the optimal level of altruism for the less altruistic
agents is π = 1.
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When altruism heterogeneity is moderate, the situation lies between the two polar
cases described above. For low levels of altruism, wages are low and the effect of
decreasing capital income dominates, so the steady-state utility of the less altruistic
agents decreases with π. After a certain threshold level, the effect of increasing labor
income dominates, and a further increase in π increases the steady-state levels of con-
sumption and utility for the less altruistic agents. This case (part (1.2) of Proposition
10) is illustrated in Figure 9 with α = 0.64, βL = 0.495, βH = 0.75, A = 1.

ππ

 U 
1

L*

 U 
2

L*

Fig. 9 Less altruistic agents’ utility and the level of altruism

4 Concluding remarks

In this paper, we argue that altruism heterogeneity is a possible mechanism underlying
the joint evolution of growth and inequality. We develop and analyze a simple growth
model with agents who differ in their degree of altruism. The novelty of our approach
rests on combining the assumption of family altruism (we consider agents who leave
bequests taking care of the disposable income of their offsprings) with the assumption
of agents’ heterogeneity (we consider two types of agents: the one being more altruistic,
the other less).

We prove that every path of consumption, bequests and capital converges to a
unique steady-state equilibrium and study the properties of a steady state. Our results
suggest that the effects of the level of altruism and altruism heterogeneity essentially
depend on the difference between the more and the less altruistic agents.

When altruism heterogeneity is low, we observe a non-monotonic dependence of
the steady-state level of inequality on the steady-state level of income, which is con-
sistent with a cross-country Kuznets curve. Countries with low levels of altruism tend
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to have low aggregate income and low level of inequality; countries with midrange lev-
els of altruism are middle-income and highly unequal; while countries with high level
of altruism tend to have high income and low level of inequality. Also, when altru-
ism heterogeneity is low, an increase in altruism heterogeneity leads to both higher
aggregate income and higher income inequality.

However, when altruism heterogeneity is sufficiently high, any trade-off between
growth and inequality disappears. An increase in the level of altruism would increase
aggregate income and decrease the level of inequality. Furthermore, an increase in
altruism heterogeneity leads to a higher aggregate income and does not affect the
steady-state level of inequality.

There are several opportunities for further theoretical research. First, altruism
heterogeneity is an important factor for policy implications. When designing poli-
cies related to income redistribution or social welfare programs, one should take into
account the empirically relevant fact that individuals have different degrees of altruism
and hence respond differently to different incentives. Future research could introduce
redistributive fiscal policies through bequest taxation, public debt and social security
or more general social welfare programs.

Second, it is natural to assume that agents’ degrees of altruism are not constant
but change over time depending on the relative wealth of agents. This case of endoge-
nous altruism has received considerable attention in the literature (see, among others,
Das, 2007; Rapoport and Vidal, 2007). It is also interesting to understand the con-
sequences of endogenous altruism in our framework. Overall, we believe that our
approach and results contribute to the understanding of the role of heterogeneous
altruism in economic growth and income inequality.
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Appendix A Proofs

A.1 Proof of Proposition 1

Consider problem (1). Let νit and µit be the Lagrange multipliers of the budget con-
straint and non-negativity bequest constraint respectively. Maximizing the Lagrangian
function of the Kuhn–Tucker program

ln cit + βi ln
(
Rt+1b

i
t+1 + wt+1

)
+ νit

(
Rtb

i
t + wt − cit − bit+1

)
+ µitb

i
t+1

we get a system of first-order conditions:

1

cit
= νit =

βiRt+1

Rt+1bit+1 + wt+1
+ µit

jointly with νit ≥ 0, Rtb
i
t + wt − cit − bit+1 ≥ 0, νit

(
Rtb

i
t + wt − cit − bit+1

)
= 0, and

µit ≥ 0, bit+1 ≥ 0, µitb
i
t+1 = 0. Since νit = 1/cit > 0, a non-negative pair

(
cit, b

i
t+1

)
is a

solution to (1) if and only if there exists µit ≥ 0 such that µitb
i
t+1 = 0, together with

1

cit
=

βiRt+1

Rt+1bit+1 + wt+1
+ µit and cit + bit+1 = Rtb

i
t + wt

The reduced utility function v
(
cit
)
≡ ln cit+βi ln

[
Rt+1

(
Rtb

i
t + wt − cit

)
+ wt+1

]
is

strictly concave: v′′
(
cit
)

= −(cit)
−2−βi

(
bit+1 + wt+1/Rt+1

)−2
< 0. Then the first-order

conditions are necessary and sufficient to utility maximization.
Now, take into account equations (2)–(3) where kt = πLb

L
t +πHb

H
t . If µit > 0, then

bit+1 = 0. If bit+1 > 0, then µit = 0, so that

βiRt+1

Rt+1bit+1 + wt+1
=

1

cit
=

1

Rtbit + wt − bit+1

and the dynamics of bequests are given by

bit+1 =
1

1 + βi

(
βiR (kt)

[
bit + ktγ (kt)

]
− kt+1γ (kt+1)

)
A.2 Proof of Proposition 2

We observe that at the steady state,

(1 + βi) b
i = max

{
0, βiR (k) bi + [βiR (k)− 1] kγ (k)

}
with i = L,H and k = πLb

L +πHb
H . In order to have positive bequests for type i, we

need (6). In order to have positive bequests for both types, we need

1

βL
< R (k) < 1 +

1

βH
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Then the steady-state capital stock is a solution to the following equation in k:

k =
∑

i
πib

i = kγ (k)
∑

i
πi max

{
0,

βiR (k)− 1

1 + βi − βiR (k)

}
A.3 Proof of Proposition 3

Let R (k) = R be the steady-state interest rate and bi ≥ 0 be the steady-state bequests
for i = L,H, which are solutions to the following equation:

(1 + βi) b
i = max

{
0, βiRb

i + (βiR− 1) γk
}

(A1)

If R ≤ 1/βi, then equation (A1) has a unique solution: bi = 0.
If R > 1/βi, then bi is positive, and we have

bi = γk
βiR− 1

1 + βi − βiR
(A2)

Therefore, if 1/βi < R < 1 + 1/βi, equation (A1) has a unique solution given by
(A2). If R ≥ 1 + 1/βi, equation (A1) has no solutions.

For 1/βH < R < 1 + 1/βH , according to (5), we have

bi

k
= γmax

{
0,

βiR− 1

1 + βi − βiR

}
Observing that πLb

L/k+ πHb
H/k = 1, we have that the steady-state interest rate R∗

is a solution to the following equation in R:

ρ (R) ≡ πL max

{
0,

βLR− 1

1 + βL − βLR

}
+ πH max

{
0,

βHR− 1

1 + βH − βHR

}
=

1

γ

Note that ρ (R) is a continuous function which increases with R, and ρ (1/βH) =
0 and limR→(1+1/βH) ρ (R) = ∞. Then there exists a solution R∗ to the equation
ρ (R) = 1/γ, and this solution is such that 1/βH < R∗ < 1 + 1/βH . Three cases are
possible: (1) 1/βL < R∗ < 1 + 1/βH ; (2) 1/βH < R∗ ≤ 1/βL < 1 + 1/βH ; and (3)
1/βH < R∗ < 1 + 1/βH ≤ 1/βL.

Consider first Cases (2) and (3). Let π ≡ πH . Since in both cases R ≤ 1/βL, we
have

ρ (R) = π
βHR− 1

1 + βH − βHR
≡ ρ2 (R)

The solution to the equation ρ2 (R) = 1/γ is given by

R∗ =
1

βH
+

1

1 + γπ
≡ R∗2

This solution is the steady-state interest rate if and only if R∗2 ≤ 1/βL, which is
equivalent to δ ≥ δ. Since f ′ (k) = R, the capital stock corresponding to this steady
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state is k∗2 ≡ (αA/R∗2)
1/(1−α)

. In this case, we also have bL∗2 = 0 and bH∗2 = k∗2/π.
Further,

cL∗2 = (1− α)A(k∗2)α = k∗2 (1− α)A(k∗2)α−1 = γk∗2R
∗
2

while

cH∗2 = (1− α)A(k∗2)α +
(R∗2 − 1) k∗2

π
=
k∗2
π

(γπR∗2 +R∗2 − 1) =
k∗2
π

1 + γπ

βH

When ρ (1/βL) < 1/γ, which is equivalent to δ < δ, we are in the conditions of
Case (1). We have

ρ (R) = (1− π)
βLR− 1

1 + βL − βLR
+ π

βHR− 1

1 + βH − βHR
≡ ρ1 (R)

The steady-state interest rate R∗ is a solution to the equation ρ1 (R) = 1/γ, which
can be written as

(1− π)
βLR− 1

1 + βL − βLR
+ π

βHR− 1

1 + βH − βHR
=

1

γ

or, equivalently, as

βLβH (1 + γ)R2 − [(1 + γ) (βL + βH) + (2 + γ)βLβH ]R

+ (1 + γ + βL + βH + βLβH + γ [(1− π)βH + πβL]) = 0

Noticing that γ = (1− α) /α, we obtain

R±1 =
1

2

(
1 + α+

1

βL
+

1

βH
±
√

(δ + α− 1)
2

+ 4δπ (1− α)

)
Let D (π) ≡ (δ + α− 1)

2
+ 4δπ (1− α). It is easily seen that D(π) increases with

π, and

D (0) = (δ + α− 1)
2
, D (π) = (1− δ + α)

2
, D (1) = (δ + 1− α)

2
(A3)

where π is given by (17).
Since for all π, D (π) ≥ (δ + α− 1)

2
, it follows that

R−1 ≤ 1 +
1

βH
≤ R+

1

Denote R∗1 ≡ R−1 . Then the corresponding steady-state capital stock is k∗1 =

(αA/R∗1)
1/(1−α)

. Since 1/βL < R∗1 < 1+1/βH , at the steady state we have for i = L,H,

bi∗1 = γk∗1
βiR

∗
1 − 1

1 + βi − βiR∗1
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and

ci∗1 = (1− α)A(k∗1)α + (R∗1 − 1) bi∗1 = γk∗1αA(k∗1)α−1 + γk∗1
(R∗1 − 1) (βiR

∗
1 − 1)

βi + 1− βiR∗1

= γk∗1

[
R∗1 +

(R∗1 − 1) (βiR
∗
1 − 1)

βi + 1− βiR∗1

]
=

γk∗1
βi + 1− βiR∗1

A.4 Proof of Proposition 4

(0) Consider a sequence
(
bLt , b

H
t , kt

)∞
t=0

. Fix t. Let λit ≡ bit/kt. Let λLt+1, λ
H
t+1 be such

that for i = L,H,

λit+1kt+1 =
βiR (kt) kt

(
λit + γ

)
− γkt+1

1 + βi

We observe that, at this stage of the proof, λit+1 may lie outside of the interval
(0, 1/πi). We have (

λit+1 +
γ

1 + βi

)
kt+1 =

βiR (kt) kt
(
λit + γ

)
1 + βi

and, therefore,
λHt+1 + γ

1+βH

λLt+1 + γ
1+βL

=
βH
βL

1 + βL
1 + βH

λHt + γ

λLt + γ

Since we need πLλ
L
t + πHλ

H
t = 1, we study the following equation

ζ
(
λHt+1

)
≡

λHt+1 + γ
1+βH

1−πHλHt+1

πL
+ γ

1+βL

=
βH
βL

1 + βL
1 + βH

λHt + γ
1−πHλHt

πL
+ γ
≡ ξ

(
λHt
)

(A4)

Functions ζ and ξ are increasing in the interval (0, 1/πH).
Notice that, given λHt , equation (A4) has a solution λHt+1 ∈ (0, 1/πH) if and only

if bLt+1, b
H
t+1 > 0. More precisely, let λHt+1 be solution to (A4) in (0, 1/πH), bit+1 =

λit+1kt+1 and

λLt+1 =
1

πL
− πH
πL

λHt+1

with

kt+1 =
∑

i

πi
[
βiR (kt)

(
bit + γkt

)
− γkt+1

]
1 + βi

= ktR (kt)
∑

i

πiβi

(
bit
kt

+ γ
)

1 + βi
−γkt+1

∑
i

πi
1 + βi

that is

kt+1 = ktR (kt)

∑
i

πiβi(λit+γ)
1+βi

1 + γ
∑

i
πi

1+βi

(A5)
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Let us prove that each solution to the equation ζ (λ) = ξ (λ) in (0, 1/πH) corre-
sponds to a steady state where both bequests are strictly positive. Indeed, let λH∗ be
a solution to equation ζ (λ) = ξ (λ) in this interval and

λL∗ =
1

πL
− πH
πL

λH∗

Let the sequence
(
b̂Lt , b̂

H
t , k̂t

)
be such that b̂L0 = λL∗k0 and b̂L0 = λH∗k0. Let

λit = b̂it/k̂t, for every i and t ≥ 0. By induction, we obtain λit = λi∗ and b̂it = λi∗k̂t, for
every t ≥ 0.

From (A5), we have(
1 + γ

∑
i

πi
1 + βi

)
k̂t+1 = αf

(
k̂t

)∑
i

πiβi
(
λi∗ + γ

)
1 + βi

since k̂tR
(
k̂t

)
= αAk̂αt = αf

(
k̂t

)
.

Therefore,

k̂t+1 = αf
(
k̂t

) ∑
i

πiβi(λi∗+γ)
1+βi

1 + γ
∑

i
πi

1+βi

= αSf
(
k̂t

)
where

S ≡
∑

i
πiβi(λ

∗+γ)
1+βi

1 + γ
∑

i
πi

1+βi

is a constant.
Since f

(
k̂t

)
= Ak̂αt with α ∈ (0, 1) and k̂t+1 = αSf

(
k̂t

)
with αS constant, it is

known that k̂t monotonically converges to some capital level k∗.
(1) Consider part (1) of Proposition 3. We want to prove that:
(1.1) For any 0 ≤ λHt ≤ 1/πH , there exists a unique λHt+1 ∈ (0, 1/πH) such that

ζ
(
λHt+1

)
= ξ

(
λHt
)
.

(1.2) There exists a unique λH∗ ∈ (0, 1/πH) which solves ζ (λ) = ξ (λ).
(1.1) To prove the first claim, we show that ζ (0) < ξ (0) ≤ ξ

(
λHt
)
, and ζ (1/πH) >

ξ (1/πH) ≥ ξ
(
λHt
)
. Indeed, inequality ζ (0) < ξ (0) is equivalent to

γ
1+βH

1
πL

+ γ
1+βL

<
βH
βL

1 + βL
1 + βH

γ
1
πL

+ γ

that is to

1 + γπL <
βH
βL

(1 + βL + γπL)

which is always true since βH > βL > 0.
The inequality ζ (1/πH) > ξ (1/πH) is equivalent to

1
πH

+ γ
1+βH
γ

1+βL

>
βH
βL

1 + βL
1 + βH

1
πH

+ γ

γ
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that is to
1

1 + γπH
>

1

βL
− 1

βH

which is true because, in this case, δ < δ. Therefore, ζ (0) < ξ (0) ≤ ξ
(
λHt
)

and

ζ (1/πH) > ξ (1/πH) ≥ ξ
(
λHt
)
.

Hence, there exists 0 < λHt+1 < 1/πH such that ζ
(
λHt+1

)
= ξ

(
λHt
)
. The strict

monotonicity of function ζ ensures the uniqueness. Let λHt+1 = ϕ
(
λHt
)

be the unique

solution to ζ
(
λHt+1

)
= ξ

(
λHt
)
. The function ϕ is continuous in the interval (0, 1/πH)

and is strictly increasing, with ϕ (0) > 0 and ϕ (1/πH) < 1/πH . This means that
starting from any initial pair

(
bL0 , b

H
0

)
with at least one positive bequest, bequests bLt

and bHt are both strictly positive for any t ≥ 1.
(1.2) Let us focus on the second claim, which is determinant in the proof of con-

vergence. As a preliminary step, we observe that any solution in (0, 1/πH) to equation
λ = ϕ (λ) corresponds to a steady state, which, according to Proposition 3, is unique.
We obtain also the uniqueness of λH∗, a solution to λ = ϕ (λ).

The uniqueness of the solution ensures that we have ϕ (λ) > λ on
(
0, λH∗

)
and

ϕ (λ) < λ on
(
λH∗, 1/πH

)
. Then, if 0 ≤ λH0 < λH∗, the sequence

(
λHt
)∞
t=0

is increasing

and converges to λH∗, and, in the opposite case λH0 > λH∗, this sequence is decreas-
ing and converges to λH∗. We can therefore ensure the convergence of

(
λLt , λ

H
t

)
to(

λL∗, λH∗
)
.

This implies also the convergence of
(
bLt , b

H
t

)
to
(
bL∗1 , bH∗1

)
. Indeed, we observe that

kt+1 = ktR (kt)

∑
i

πiβi(λit+γ)
1+βi

1 + γ
∑

i
πi

1+βi

= αf (kt)

∑
i

πiβi(λit+γ)
1+βi

1 + γ
∑

i
πi

1+βi

= αStf (kt)

where

St ≡
∑

i

πiβi(λit+γ)
1+βi

1 + γ
∑

i
πi

1+βi

By the convergence of λit to λi∗, we obtain

St → S ≡
∑

i

πiβi(λi∗+γ)
1+βi

1 + γ
∑

i
πi

1+βi

Fix any 0 < ε < S. There exists T such that S − ε < St < S + ε for any t ≥ T .
Let

(
kt
)∞
t=T

and (kt)
∞
t=T be defined as

kT = kT = kT , kt+1 = αA (S + ε) k
α

t , kt+1 = αA (S − ε) kαt

By induction, we have kt ≤ kt ≤ kt, for every t ≥ T . Clearly,

lim
t→∞

kt = [αA (S + ε)]
1

1−α and lim
t→∞

kt = [αA (S − ε)]
1

1−α
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Hence we obtain

lim
t→∞

sup kt ≤ [αA (S + ε)]
1

1−α and lim
t→∞

inf kt ≥ [αA (S − ε)]
1

1−α

Since ε is arbitrary, we have limt→∞ kt = (αAS)
1/(1−α)

. The convergence of kt
implies the convergence of bit and cit. Therefore, the sequence

(
cLt , c

H
t , b

L
t , b

H
t , kt

)∞
t=0

converges to the values defined in part (1) of Proposition 3.
(2) Consider part (2) of Proposition 3 and suppose that δ > δ.
(2.1) First, we prove the existence of some t such that bHt ≥ bLt . Assume the

contrary: bLt > bHt for every t ≥ 0.
(2.1.1) We prove that bHt+1 > 0 for every t ≥ 0. Indeed, assume the contrary,

bHt+1 = 0 for some t. Then, from bLt+1 > bHt+1 = 0, we have

βLR(kt)(b
L
t + γkt) ≥ γkt+1 ≥ βHR(kt)(b

H
t + γkt)

for some t, that is

bHt + γkt ≤
βL
βH

(
bLt + γkt

)
or, equivalently,

βL
βH

>
λHt + γ

λLt + γ

We know that bHt+1 > 0 if the equation ζ
(
λHt+1

)
= ξ

(
λHt
)

has a solution in

the interval (0, 1/πH). We already have ζ (0) < ξ (0) < ξ
(
λHt
)
. We will verify that

ζ (1/πH) > ξ
(
λHt
)
. Indeed, we have

ζ

(
1

πH

)
=

1
πH

+ γ
1+βH
γ

1+βL

>
1 + βL
1 + βH

=
βL
βH

βH
βL

1 + βL
1 + βH

>
λHt + γ

λLt + γ

βH
βL

1 + βL
1 + βH

= ξ
(
λHt
)

Hence, equation ζ
(
λHt+1

)
= ξ

(
λHt
)

has a solution in (0, 1/πH). Therefore, λHt+1 > 0
and bHt+1 > 0, a contradiction. Then, bHt+1 > 0 for every t ≥ 0 under the assumption
that bLt > bHt for every t ≥ 0.

(2.1.2) Since bLt+1 > bHt+1 > 0 for every t ≥ 0, using the same arguments as in the
preliminary part of the proof, we have 0 < λit < 1/πH for any t ≥ 0. Moreover, this
sequence is monotonic and converges to a solution to equation ζ (λ) = ξ (λ). Hence,
equation ζ (λ) = ξ (λ) has a solution in the interval (0, 1/πH). As proven above, this
implies the existence of a steady state with positive bequests: a contradiction with the
second part of Proposition 3. Hence, there exists some t0 such that bHt0 ≥ b

L
t0 .

(2.2) We will prove that bHt ≥ bLt for every t ≥ t0. Indeed, since β/ (1 + β) increases
with β and 1/ (1 + β) decreases, we have

βHR (kt0)
(
bHt0 + γkt0

)
− γkt0+1

1 + βH
≥

βLR (kt0)
(
bLt0 + γkt0

)
− γkt0+1

1 + βL

This implies bHt0+1 ≥ bLt0+1. By induction, we have bHt ≥ bLt for every t ≥ t0.
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(2.3) We prove the existence of some t1 ≥ t0 such that bLt1 = 0. Assume the contrary:
bHt ≥ bLt > 0 for any t ≥ t0. This implies the existence of a steady state with strictly
positives bequests: a contradiction. Therefore, there exists t1 ≥ t0 such that bt1 = 0.

(2.4) Now, we prove that bLt = 0 for every t ≥ t1. Assume the contrary: there is
some t ≥ t1 such that bLt = 0 and bLt+1 > 0. In this case, both bLt+1 and bHt+1 are strictly
positive. Since bLt = 0, we have λHt = 1/πH . Using the same arguments as in part (1)
with bLt+1, b

H
t+1 > 0, we find that λHt+1 = ϕ

(
λHt
)
> λHt = 1/πH , a contradiction.

Hence, bLt = 0 for every t ≥ t1. Therefore, the sequence
(
bLt , b

H
t

)
converges to(

0, bH∗2

)
in Proposition 3.

(3) Consider the cutting-edge case where δ = δ. Consider functions ζ and ξ defined
as in part (1) of the proof. We observe that, for any λ ∈ [0, 1/πH ], we have ζ (λ) ≤ ξ (λ),
with equality if and only if λ = 1/πH . Using the same arguments as in part (2) of the
proof, we have bHt > 0 for every t ≥ 1. Now, we consider two cases: either bL0 = 0 or
bL0 > 0.

In the first case, following the same line of arguments as in part (2) of the proof,
we have bLt = 0 for any t ≥ 1 and the solution converges to the one described in
Proposition 3.

In the second case, we have 0 < λH0 < 1/πH . Using arguments in part (1) of the
proof, we have 0 < λL0 < λL2 < 1/πH . By induction we obtain that the sequence(
λHt
)
t≥1

is strictly increasing and converges to the unique solution to ζ (λ) = ξ (λ),

that is 1/πH . A direct consequence of this is that λLt converges to 0. As in part (2), the
convergence of λLt to 0 and of λHt to 1/πH implies the convergence of

(
bLt , b

H
t , kt

)
. It is

easy to compute that they converge to the values defined in part (1) of Proposition 3.

A.5 Proof of Proposition 5

Denote

R∗1 (π) ≡ 1 + α

2
+

1

2

(
1

βL
+

1

βH

)
− 1

2

√
(δ + α− 1)

2
+ 4δπ (1− α)

R∗2 (π) ≡ 1

βH
+

1

1 + γπ

and consider the impact of π on the steady-state interest rate.
Condition δ < δ is equivalent to π < π. Thus, there are three cases: (1) if π > 1,

which is equivalent to δ < α, then R∗ (π) = R∗1 (π); (2) if 0 < π ≤ 1, then R∗ (π) =
R∗1 (π) for π < π and R∗ (π) = R∗2 (π) for π ≥ π; and (3) if π ≤ 0, which is equivalent
to δ ≥ 1, then R∗ (π) = R∗2 (π).

When 0 < π ≤ 1 and π = π, by (A3) and the fact that δ < 1 we have

R∗1 (π) =
1

2

[
1 + α+

1

βL
+

1

βH
−
√
D(π)

]
=

1

2

(
1

βL
+

1

βH
+ δ

)
=

1

βL
=

1

βH
+δ = R∗2 (π)

Therefore, R∗ (π) is continuous. It follows that k∗ is also continuous in π. Since both
R∗1 (π) and R∗2 (π) decrease with π, k∗ increases with π.
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A.6 Proof of Proposition 6

Let D (δ) ≡ (δ + α− 1)
2

+ 4δπ (1− α). Denote

R∗1 (δ) ≡ 1 + α

2
+

1

β
+

2π − 1

2
δ − 1

2

√
D (δ)

R∗2 (δ) ≡ 1

β
− (1− π) δ +

1

1 + γπ

and consider the impact of δ on the steady-state interest rate.
Since δ given by (11) corresponds to π given by (17), it is easily seen from (A3) that

D
(
δ
)

=

(
1 + α− 1

1 + γπ

)2

Therefore, R∗ (δ) is continuous, since

R∗1
(
δ
)

=
1

β
+

1

2

[
1 + α+

2π − 1

1 + γπ
−
√
D
(
δ
)]

=
1

β
+

π

1 + γπ
= R∗2

(
δ
)

Notice that

(R∗2)′ (δ) ≡ π − 1 < 0

(R∗1)′ (δ) ≡ 2π − 1

2
− δ + α− 1 + 2π (1− α)

2
√
D(δ)

< 0

Indeed, (R∗1)′ (δ) < 0 if δ > (2π − 1)
(√

D(δ)− 1 + α
)

. When 2π − 1 > 0, we have

δ > (2π − 1)δ, and the above inequality holds if
√
D(δ) < δ + 1 − α, which follows

from (A3). When 2π − 1 < 0, we have δ > (1− 2π)δ, and the above inequality holds
if
√
D(δ) > 1− α− δ, which also follows from (A3).

Since k∗ is inversely related to R∗, it follows that k∗ increases with δ.

A.7 Proof of Proposition 7

The level of social inequality in terms of income in the steady-state equilibrium is
represented by the Gini index:

G = 2

∫ 1

0

[x− g (x)] dx

where g : [0, 1]→ [0, 1] is the Lorenz curve.
Consider a share πL of less altruistic agents with income yL, and a share πH of

more altruistic agents with income yH ≥ yL. The continuous Lorenz curve is given by

g (x) =
yL

πLyL + πHyH
x if 0 ≤ x ≤ πL
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g (x) =
πLy

L + (x− πL) yH

πLyL + πHyH
if πL < x ≤ 1

We obtain

G = 2

∫ 1

0

[x− g (x)] dx = 2

(∫ πL

0

[x− g (x)] dx+

∫ 1

πL

[x− g (x)] dx

)
= 1− π2

L

yL

πLyL + πHyH
− 2 (1− πL)

πLy
L − πLyH

πLyL + πHyH
−
(
1− π2

L

) yH

πLyL + πHyH

and hence,

G =
πLπH

(
yH − yL

)
πLyL + πHyH

(A6)

Consider two parts of Proposition 3.
(1) For i = L,H, we have yi1 = R∗1b

i∗
1 + (1− α)A(k∗1)α. Observing that R∗1 =

αA(k∗1)α−1 and using (12), it follows from (A6) that

G∗1 = πLπH
R∗1

bH∗1

γk∗1
−R∗1

bL∗1
γk∗1

αA(k∗1)α−1 + πLR∗1
bL∗1
γk∗1

+ πHR∗1
bH∗1

γk∗1

= πLπH

1
βL
− 1

βH

1−R∗1 + πH
βL

+ πL
βH

(2) We have yL2 = (1− α)A(k∗2)α and yH2 = (1− α)A(k∗2)α+R∗2k
∗
2/πH , and hence,

G∗2 =
πLπH

(
yH2 − yL2

)
πLyL2 + πHyH2

=
πLR

∗
2k
∗
2

(1− α)A(k∗2)α +R∗2k
∗
2

=
πLαA(k∗2)α

(1− α)A(k∗2)α + αA(k∗2)α
= απL

A.8 Proof of Proposition 8

Denote

G∗1 (π) ≡ 2δπ(1− π)

1− α+ (2π − 1) δ +

√
(δ + α− 1)

2
+ 4δπ (1− α)

G∗2 (π) ≡ α (1− π)

Using (A3), we have

G∗1 (π) =
2δπ (1− π)

1− α+ (2π − 1) δ +
√
D(π)

=
2δπ (1− π)

1− α+ (2π − 1) δ + 1− δ + α

=
δπ (1− π)

1− δ + δπ
=

1

1 + γ
(1− π) = α (1− π) = G∗2 (π)

since δπ = (1− δ) /γ. Therefore, G∗ (π) is continuous.
To analyze the shape of G∗1 (π), denote G∗1 (π) = n (π) /d (π), where

n (π) ≡ 2δπ (1− π) and d (π) ≡ 1− α+ δ (2π − 1) +
√
D (π)
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Since

n′ (π) = 2δ (1− 2π) and d′ (π) = 2δ

[
1 +

1− α√
D (π)

]

we have

(G∗1)′ (π) = 2δ

(1− 2π) d (π)− 2δπ (1− π)

[
1 + 1−α√

D(π)

]
d (π)

2 (A7)

Now we have to distinguish between the two cases.
(1) Suppose that δ < 1−α. Then G∗1 (0) = G∗1 (1) = 0. We show that there exists a

unique π̂ such that for π < π̂, G∗1 (π) strictly increases with π, while for π ≥ π̂, G∗1 (π)
strictly decreases with π.

Indeed, after some algebra, equation (G∗1)′ (π) = 0 can be written as L (π) = R (π),
where

L (π) ≡ (1− α− δ) 1− 2π

2δπ

R (π) ≡
π
√
D (π) + (1− α) (3π − 1)√
D (π) + 1− α− δ

=

√
D (π) + (1− α)

(
3− 1

π

)
√
D(π)

π + 1−α−δ
π

Since in this case 1− α− δ > 0, L (π) is convex and decreasing with L (0+) =∞,
L (1/2) = 0 and L(1) = − (1− δ − α) / (2δ) < 0.

Further, R (π) increases with π. Indeed,
√
D (π)+(1− α) (3− 1/π) increases with

π, while
√
D (π)/π + (1− α− δ) /π decreases with π. By (A3),

R (0) = −1

2

1− α
1− α− δ

< 0 and R
(

1

2

)
=

1

2

√
D (1/2) + 1− α√

D (1/2) + 1− α− δ
> 0

Therefore, in this case there exists a unique value 0 < π̂ < 1/2 such that
L (π̂) = R (π̂), or (G∗1)′ (π̂) = 0. Moreover, for π < π̂, L (π) > R (π), so that G∗1 (π) is
increasing, while for π > π̂, L (π) < R (π), and G∗1 (π) is decreasing.

When δ < α, we have π > 1, and hence, as in the proof of Proposition 5, we have
G∗ (π) = G∗1 (π). In this case the threshold level of π, up to which G∗ is increasing
and after which G∗ is decreasing, is π̂. Similarly, when α < δ ≤ 1, for π < π we have
G∗ (π) = G∗1 (π), while for π ≥ π, we have G∗ (π) = G∗2 (π). In this case, the threshold
level of π is π̃ ≡ min {π̂, π}.

(2) Suppose that δ > 1− α. By Bernoulli’s rule,

G∗1 (0) =
n′ (0)

d′ (0)
=
δ + α− 1

δ
> 0 = G∗1 (1)

Moreover, in this case G∗1 (0) < α = G∗2 (0) if and only if δ < 1.
The second case has two subcases.
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(2.1) Suppose that 1 − α < δ < 2 (1− α). Then we show that (G∗1)′ (0+) > 0 and
(G∗1)′ (1−) < 0, so there exists an interior π̂ = arg max0≤π≤1G

∗
1 (π).

Indeed, using (A3) and (A7), we obtain

(G∗1)′ (1) = − δ

1− α+ δ
< 0

Applying Bernoulli’s rule to (A7), we get

(G∗1)′
(
0+
)

= 2δ lim
π→0+

−2d (π) + (1− 2π) d′ (π)− 2δ (1− 2π)

[
1 + 1−α√

D(π)

]
+ 4δ2 (1− α)

2 π(1−π)

D(π)
3
2

2d (π) d′ (π)

= lim
π→0+

−d (π)
√
D (π) + 2δ2 (1− α)

2 π(1−π)
D(π)

d (π)
[
1− α+

√
D (π)

]
In this case, by (A3),

√
D (0) = δ+α− 1 > 0. Applying again Bernoulli’s rule, we get

(G∗1)′
(
0+
)

= lim
π→0+

−d′ (π)
√
D (π)− d (π) D′(π)

2
√
D(π)

+ 2δ2 (1− α)
2 (1−2π)D(π)−π(1−π)D′(π)

D(π)2

d′ (π)
[
1− α+

√
D (π)

]
+ d (π) D′(π)

2
√
D(π)

=
2 (1− α)− δ
δ + α− 1

Thus, for 1− α < δ < 2 (1− α), (G∗1)′ (0+) > 0.
(2.2) Suppose that δ ≥ 2 (1− α). We have just seen that in this case (G∗1)′ (0+) ≤ 0.

Let us show that (G∗1)′ (π) < 0 for all π > 0. By (A7), this is equivalent to

π (1− π) d′ (π) > (1− 2π) d (π)

Since d (0) = 0, it is sufficient to check that for all π > 0,

[π (1− π) d′ (π)]
′
> [(1− 2π) d (π)]

′

that is 2d (π) > −π (1− π) d′′ (π) or 2d (π) > π (1− π) |d′′ (π)|, since d′′ (π) < 0. Or,
equivalently, it is sufficient to show that[√

D (π)− (δ + α− 1) + 2δπ
]

[D (π)]
3
2 > 2π (1− π) δ2 (1− α)

2

It is easily seen that

√
D (π)− (δ + α− 1) >

2δπ (1− α)√
D (π)
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and, since δ ≥ 2 (1− α) > 1− α,

√
D (π) =

√
(δ + α− 1)

2
+ 4δπ (1− α) > δ − (1− α) ≥ 1− α

Therefore,[√
D (π)− (δ + α− 1) + 2δπ

]
D (π)

3
2 =

[√
D (π)− (δ + α− 1)

]
D (π)

3
2 + 2δπD (π)

3
2

>
2δπ (1− α)√

D (π)
D (π)

3
2 + 2δπD (π)

3
2 = 2δπD (π)

[
1− α+

√
D (π)

]
> 2δπ (1− α)

2
[1− α+ δ − (1− α)] = 2πδ2 (1− α)

2 ≥ 2π (1− π) δ2 (1− α)
2

Again, as in the proof of Proposition 5, in both cases (2.1) and (2.2), when δ < α,
we have G∗ (π) = G∗1 (π). When α < δ ≤ 1, for π < π we have G∗ (π) = G∗1 (π),
while for π ≥ π, we have G∗ (π) = G∗2 (π). When δ > 1, we have π ≤ 0, and hence
G∗ (π) = G∗2 (π). Thus, if 1−α < δ < min {1, 2 (1− α)}, then G∗ (π) has an inverted-U
shape. If δ ≥ min {1, 2 (1− α)}, then G∗ (π) decreases with π.

A.9 Proof of Proposition 9

Denote

G∗1 (δ) ≡ 2δπ(1− π)

1− α+ (2π − 1) δ +

√
(δ + α− 1)

2
+ 4δπ (1− α)

We have

G∗1
(
δ
)

=
2δπ (1− π)

1− α+ (2π − 1)δ +
√
D(δ)

=
2δπ (1− π)

1− α+ (2π − 1)δ + 1 + α− δ

=
δπ (1− π)

1− (1− π)δ
=

π (1− π)

1 + γπ − 1 + π
= α (1− π) = G∗2

(
δ
)

since γ = (1− α) /α. Therefore, G∗ (δ) is continuous.
Let us show that (G∗1)′ (δ) > 0. Indeed,

(G∗1)′ (δ) =
2π (1− π)[

1− α+ δ (2π − 1) +
√
D (δ)

]2
[

1− α+
√
D (δ)− δD′ (δ)

2
√
D (δ)

]

and, since by (A3),
√
D (δ) ≥ δ + α− 1, we have

1− α+
√
D (δ)− δD′ (δ)

2
√
D (δ)

=
1− α√
D (δ)

[√
D (δ) +

D (δ)− δ (δ + α− 1)

1− α
− 2δπ

]
=

1− α√
D(δ)

[
2δπ +

√
D (δ)− (δ + α− 1)

]
> 0
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A.10 Proof of Proposition 10

In the steady state j = 1, 2, for agent i = L,H, we obtain

(U i∗j )′ (π) =
(ci∗j )′ (π)

ci∗j (π)
+ βi

(ci∗j )′ (π) + (bi∗j )′ (π)

ci∗j (π) + bi∗j (π)
(A8)

In the following, for simplicity, we omit the argument π. We have (U i∗j )′ = 0 if

(ci∗j )′

ci∗j

[
1 + (1 + βi)

ci∗j
bi∗j

]
+ βi

(bi∗j )′

bi∗j
= 0 (A9)

(1) Consider the steady-state equilibrium
(
cL∗1 , bL∗1 , cH∗1 , bH∗1 , k∗1

)
where both types

of agents leave bequests. For π < π, the utilities of the more and the less altruistic
agents are given by UH∗1 and UL∗1 respectively. Recall that (R∗1)′ < 0 and

(k∗1)′

k∗1
= − 1

1− α
(R∗1)′

R∗1

Furthermore, by part (1) of Proposition 3,

ci∗1
bi∗1

=
1

βiR∗1 − 1
(A10)

and hence
(bi∗1 )′

bi∗1
=

(ci∗1 )′

ci∗1
+

βi(R
∗
1)′

βiR∗1 − 1
(A11)

On the other hand,

(ci∗1 )′

ci∗1
=

(k∗1)′

k∗1
+

βi(R
∗
1)′

βi + 1− βiR∗1
=

(R∗1)′

R∗1

(
βiR

∗
1

βi + 1− βiR∗1
− 1

1− α

)
(A12)

Using (A8), (A9), (A10), (A11) and (A12), after some algebra we have

(U i∗1 )′ =
(R∗1)′

R∗1

[
βi (1 + βi)R

∗
1

1 + βi − βiR∗1
− 1 + αβi

1− α

]
Since (R∗1)′ < 0, we obtain that (U i∗1 )′ < 0 if and only if

βi (1 + βi)R
∗
1

1 + βi − βiR∗1
− 1 + αβi

1− α
> 0

or, equivalently,

R∗1 (π) >
1 + βi
βi

1 + αβi
2− α+ βi

(A13)
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Note that the right-hand side of this inequality depends on βi and hence is different
for different types of agents.

(1.1) Consider the utility of the less altruistic agents. Denote

R ≡ 1 + βL
βL

1 + αβL
2− α+ βL

= 1 +
1

βL
− (1− α)(1 + βL)2

(2− α+ βL)βL

Let the critical value of the level of altruism π̂ be a solution to the equation R∗1 (π) = R.
This solution exists only if R∗1 (1) ≤ R ≤ R∗1 (0). The first inequality holds when

1

βH
+ α ≤ 1 +

1

βL
− (1− α)(1 + βL)2

(2− α+ βL)βL
⇐⇒ 1

βL
− 1

βH
≥ (1− α)(1 + αβL)

(2− α+ βL)βL
≡ δ̌

For the second inequality, recall that R∗1 (0) = 1/βL+α when δ < 1−α, and R∗1 (0) =
1/βH + 1 when δ > 1− α. While it is always true that

1+
1

βL
− (1− α)(1 + βL)2

(2− α+ βL)βL
≤ 1

βL
+α ⇐⇒ (1− α)(1 + βL)2

(2− α+ βL)βL
≥ 1−α ⇐⇒ 1+αβL > 0

the second inequality holds when

1 +
1

βL
− (1− α)(1 + βL)2

(2− α+ βL)βL
≤ 1

βH
+ 1 ⇐⇒ 1

βL
− 1

βH
≤ (1− α)(1 + βL)2

(2− α+ βL)βL
≡ δ̂

Since R∗1 (π) strictly decreases with π, it follows that when δ̌ ≤ δ ≤ δ̂, there exists a
unique solution π̂ to the equation R∗1 (π) = R, and 0 ≤ π̂ ≤ 1.

Define also a critical value for the capital share in total income:

α ≡ 1

1 + βL + β2
L

There are three cases.
(1.1.1) Suppose that δ < δ̌. Then we have R∗1 (π) ≥ R∗1 (1) > R for all π, and

hence, according to (A13), (UL∗1 )′ (π) < 0.

(1.1.2) Suppose that δ̌ ≤ δ ≤ δ̂. Note that we have

π ≶ π̂ ⇐⇒ R∗1 (π) ≷ R ⇐⇒ 1

βL
≷

1 + βL
βL

1 + αβL
2− α+ βL

⇐⇒ α ≶ α

Therefore, since R∗1 (π) strictly decreases, when α < α, we have R∗1 (π) > R∗1 (π) > R
for all π < π, and hence (UL∗1 )′ (π) < 0 for all π < π.

Alternatively, when α > α, we have π̂ < π. Therefore, for all π ≤ π̂, we have
R∗1 (π) > R, and hence (UL∗1 )′ (π) < 0 for all π ≤ π̂. At the same time, for all π ≥ π̂,
we have R∗1 (π) < R, and hence (UL∗1 )′ (π) > 0 for all π̂ < π < π.

(1.1.3) Suppose that δ > δ̂. Then we have R∗1 (π) ≤ R∗1 (0) < R for all π, and
hence, according to (A13), (UL∗1 )′ (π) > 0.
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(1.2) Consider now the more altruistic agents. Clearly, for all π,

R∗1 (π) ≥ R∗1 (1) =
1

βH
+α =

1 + αβH
βH

>
1 + αβH
βH

1 + βH
1 + βH + 1− α

=
1 + βH
βH

1 + αβH
2− α+ βH

Therefore, by (A13), (UH∗1 )′ (π) < 0.
Let us also show that bequests of the more altruistic agents decrease with π.

Substituting (A12) into (A11), we obtain

(bi∗1 )′

bi∗1
=

(R∗1)′

R∗1

[
β2
iR
∗
1

(βi + 1− βiR∗1)(βiR∗1 − 1)
− 1

1− α

]
Since (R∗1)′ < 0, we have (bi∗1 )′ < 0 if and only if (βiR

∗
1−1)(βi+1−βiR∗1) < (1−α)β2

iR
∗
1,

which can be rewritten as

(R∗1)2 − 2R∗1

(
α

2
+

1

βi

)
+

1

βi
+

1

β2
i

> 0 (A14)

The largest root of the quadratic equation β2
i x

2− (αβ2
i +2βi)x+1+βi = 0 is given by

x+
i =

α

2
+

1

βi
+

√
α2

4
− 1− α

βi
< α+

1

βi

For i = H, we have R∗1(π) ≥ R∗1(1) = 1/βH+α > x+
H , and hence (A14) holds, meaning

that (bH∗1 )′ < 0 for all π.
(2) Consider now the steady-state equilibrium

(
cL∗2 , bL∗2 , cH∗2 , bH∗2 , k∗2

)
. For π ≥ π,

the utilities of the less and the more altruistic agents are given by UL∗2 and UH∗2

respectively. Recall also that

(R∗2)′ = − γ

(1 + γπ)
2 and

(k∗2)′

k∗2
=

1

(1 + γπ)
2

1

αR∗2
> 0

(2.1) Less altruistic agents leave no bequests and consume their wages, so that

UL∗2 = ln cL∗2 + βL ln
(
cL∗2 + bL∗2

)
= (1 + βL) ln cL∗2 = (1 + βL) ln [(1− α)A(k∗2)α]

Since k∗2 strictly increases with π, UL∗2 (π) also strictly increases with π: (UL∗2 )′ (π) > 0
for all π ≥ π.

(2.2) For the more altruistic agents, we have

(bH∗2 )′

bH∗2

=
(k∗2)′

k∗2
− 1

π
= − 1

πR∗2

[
R∗2 −

π

α (1 + γπ)
2

]
(A15)
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Note that bH∗2 strictly decreases with π. Indeed, (bH∗2 )′ < 0 because

R∗2 −
π

α (1 + γπ)
2 =

1

βH
+

1

1 + γπ
− π (1 + γ)

(1 + γπ)
2 =

1

βH
+

1− π
(1 + γπ)

2 > 0

Moreover,
cH∗2

bH∗2

=
1 + γπ

βH
(A16)

and hence

(cH∗2 )′

cH∗2

=
(bH∗2 )′

bH∗2

+
γ

1 + γπ
= − 1

π (1 + γπ)R∗2

[
R∗2 −

π

α (1 + γπ)

]
(A17)

Therefore, using (A8), (A15), (A16) and (A17), and taking into account (10), we
obtain

(UH∗2 )′ =
(cH∗2 )′

cH∗2

+ βH
(cH∗2 )′ + (bH∗2 )′

cH∗2 + bH∗2

=
bH∗2

cH∗2 + bH∗2

(
(cH∗2 )′

cH∗2

[
1 + (1 + βH)

cH∗2

bH∗2

]
+ βH

(bH∗2 )′

bH∗2

)
= − 1

π

bH∗2

cH∗2 + bH∗2

[
1

βH
+

1 + (1− π) (1 + βH)

1 + πγ

]
< 0

Hence (UH∗2 )′ (π) < 0 for any π ≥ π.
Summing up the results for both steady states, we conclude the following.
(1) Less altruistic agents.
(1.1) Suppose that δ < min{α, δ̌}. Since δ < α, we have π > 1, and hence only

the steady state where both types of agents leave positive bequests is possible, so the
utility is given by UL∗ = UL∗1 . Since δ < δ̌, (UL∗1 )′ (π) < 0 for all π, and therefore UL∗

strictly decreases with π for all π.
(1.2) Suppose that min{α, δ̌} < δ < min{1, δ̂}. When δ̌ < δ < α, the utility is given

by UL∗ = UL∗1 for all π, while when α < δ < 1, the utility is given by UL∗ = UL∗1

for π < π, and UL∗ = UL∗2 for π ≥ π. In both cases, there is a threshold π̌ defined as
follows:

π̌ ≡ π if α ≤ α and π̌ ≡ π̂ < π if α > α

such that UL∗ is continuous at π = π̌, strictly decreases with π for all π < π̌, and
strictly increases with π for all π > π̌.

(1.3) Suppose that δ > min{1, δ̂}. When δ̂ < δ < 1, the utility is given by UL∗ =
UL∗1 for π < π, and UL∗ = UL∗2 for π ≥ π, while when δ > 1, the utility is given by

UL∗ = UL∗2 for all π. Since δ > δ̂, we have (UL∗1 )′ (π) > 0, and it is always the case
that (UL∗2 )′ (π) > 0. Therefore, UL∗ strictly increases with π for all π.

(2) More altruistic agents.
In all possible cases, we have (UH∗1 )′ (π) < 0, and (UH∗2 )′ (π) < 0, and, therefore,

UH∗ strictly decreases with π for all π.
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