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Abstract

We study a growth model with two types of agents who are heterogeneous
in their degree of family altruism. We prove that every equilibrium path
converges to a unique steady state, and study the effect of altruism on the
properties of steady-state equilibrium. We show that aggregate income
is positively related to both level of altruism and altruism heterogeneity.
When altruism heterogeneity is low, income inequality follows an inverse
U-shaped pattern relative to the level of altruism, which is consistent with
the cross-country Kuznets curve. When altruism heterogeneity is high,
income inequality monotonically decreases with the level of altruism. Our
results suggest that heterogeneous altruism is an important mechanism
linking economic growth and income inequality.
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Kuznets curve.
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1 Introduction

Why income inequality differs between countries? Whereas inequality is a com-
plex and multidimensional phenomenon, there are various answers to this ques-
tion. Inequality is often linked to differences in productivity (levels of economic
and technological development), government policies (tax rates and social wel-
fare programs), human capital (access to education and opportunities for skills
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Low income Middle income High income
Median 0.374 0.377 0.319
Mean 0.374 0.379 0.324

Maximum
0.513
(Angola)

0.535
(Brazil)

0.498
(Panama)

Minimum
0.260

(Moldova)
0.253
(Belarus)

0.232
(Slovakia)

N. of countries 37 30 38

Table 1: Gini indices for different income groups of countries in 2019.
Source: Authors’ calculations based on the World Bank data.

development), political and institutional factors (demand for redistribution). In
this paper, we highlight the role of socio-cultural norms in shaping between-
country inequality and study the role of heterogeneous altruism in economic
growth and income inequality.
It is generally observed that high-income countries tend to have lower lev-

els of income inequality compared to low-income countries (see, for instance,
OECD, 2011). Table 1 illustrates this observation using the World Bank 2019
open data on the Gini index for 105 countries divided into three income groups.1

The relationship between income and inequality is not absolute, and there are
variations among individual countries — some high-income countries are very
unequal, while some low-income countries are relatively equal.2 Nevertheless,
it is clearly seen that high-income countries have much lower median and mean
Gini indices compared to middle-income and low-income countries.
Moreover, Table 1 also implies that cross-country inequality is slightly higher

for middle-income countries than for low-income countries. This pattern is con-
sistent with the cross-country Kuznets curve: an inverted U-shaped relation-
ship between inequality and income in a cross-section of countries, confirmed
in a large number of empirical studies (among others, Campano and Salvatore,
1988; Bourguignon and Morrison, 1990; Jha, 1996; Milanovic, 2000; Savvides
and Stengos, 2000). At the same time, the recent rise in inequality in devel-
oped countries seems to be incompatible with the originally proposed within-
country Kuznets curve.3 The fact that there is no within-country Kuznets curve
but ample evidence of the cross-country Kuznets curve suggests that there are

1We construct income groups based on the World Bank classification in 2019. High-income
countries are World Bank’s high-income economies (GNI per capita greater than 12375 $);
middle-income countries are upper middle-income economies (GNI per capita between 3995
and 12375 $); low-income countries correspond to World Bank’s low-income economies and
lower middle-income economies combined (GNI per capita less than 3995 $). Gini indices refer
mainly to 2019, but also to 2017 and 2018 where data for 2019 are not available.

2For instance, in 2018, the Guinea Gini index was 0.296, while, in 2019, the US Gini index
was 0.415.

3Kuznets (1955) analyzed the evolution of the US and UK income distributions in the first
half of the 20th century, and suggested that in the process of development within a single
country, income inequality increases with the shift of labor force from traditional agricultural
sector to modern industrial sector, but eventually declines as industrialization progresses.
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country-specific characteristics which affect both the level of income and the
level of inequality in each country and lead to the observed cross-sectional pat-
tern.
A natural determinant of the joint evolution of growth and inequality is

parental altruism, a concern for the well-being of children as opposed to pure
self-interest. It is generally acknowledged that altruism has a positive impact
on economic development.
For instance, Hatcher and Pourpourides (2018) report a positive correlation

between country-level parental altruism and economic growth in a sample of 48
countries. At the same time, there is substantial heterogeneity in the degree of
altruism: some people and societies are more altruistic than others. Falk et al.
(2018) find that the within-country altruism variation is much larger than the
between-country variation: the former amounts to 87.7% in the total individual-
level variation in altruism, while the latter explains only the remaining 12.3%.4

Furthermore, altruistic bequests are a crucial driver of wealth accumulation,
and difference in altruism is an important factor for inequality (see also Mankiw,
2000, for a discussion). In particular, Laitner (2002) argues that calibrated
models with altruistic bequests are able to account for the empirical distribution
of wealth in the US. In this paper, we develop and study a simple growth model
where agents differ in their degree of altruism. We show that the empirically
relevant assumption of within-country altruism heterogeneity might contribute
to the explanation of the cross-country Kuznets curve.
Specifically, we consider a successive generations economy in which agents

are motivated by family altruism, that is, they care about the disposable income
of their offsprings. There are two types of agents who are heterogeneous in their
degree of family altruism: agents of the first type are less altruistic, while agents
of the second type are more altruistic. Altruistic transfer is the only savings
motive, and bequests left by agents become the capital involved in the produc-
tion. We prove that when instantaneous utility functions are logarithmic and
production technology is Cobb-Douglas, every equilibrium path of consumption,
bequests and capital converges to a unique steady-state equilibrium. We char-
acterize the properties of a steady-state equilibrium and study the impact of
the level of altruism and altruism heterogeneity on the steady state.
To study the impact of the level of altruism on the steady state, we employ

the share of the more altruistic agents in total population as a measure of
altruism. Given both degrees of altruism, the higher is the share of the more
altruistic agents, the more altruistic is society as a whole. We show that a
higher level of altruism in society always leads to a higher capital stock and
a higher aggregate income. Intuitively, the more altruistic agents leave higher
bequests than the less altruistic agents, and an increase in the share of the more
altruistic agents leads to higher capital accumulation. This result confirms the
empirical observation that altruism positively affects aggregate income at the
country level.

4Formally speaking, Falk et al. (2018) define altruism as a willingness to give to good
causes without expecting anything in return. However, their measure of altruism is also a
good proxy for parental altruism.
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The impact of the level of altruism on the steady-state income inequality
(measured by the Gini index) depends on the difference between the more and
the less altruistic agents. If both types have rather similar degrees of altruism,
then an inverted U-shaped relationship is observed. An increase in the share
of the more altruistic agents would first increase inequality due to the concen-
tration of income among the more altruistic agents who leave higher bequests.
However, when the share of the more altruistic agents continues to increase
beyond a certain point, making a larger share of population richer, inequality
will decrease as income spreads more equally throughout the more altruistic
society. Therefore, this case is consistent with the cross-country Kuznets curve
linking different steady-state levels of income to the steady-state Gini indices.
An increase in aggregate income caused by increased share of the more altruistic
agents at first is associated with rising inequality, but beyond a certain point a
further increase in aggregate income is accompanied with falling inequality.
If the difference in the degrees of altruism between the two types is suf-

ficiently high, then, as the share of the more altruistic agents increases, the
steady-state level of inequality decreases. Hence, for sufficiently heterogeneous
altruistic societies there is no trade-off between economic growth and income
inequality. This result suggests that high-income countries may indeed have
lower levels of inequality because of altruism heterogeneity effects.
To study the impact of altruism heterogeneity on the steady state, we employ

the variance of the degrees of altruism as a measure of heterogeneity. Given the
mean and the share of the more altruistic agents, the higher is the variance,
the more heterogeneous is society as a whole. We show that a higher altruism
heterogeneity always leads to a higher capital stock and a higher aggregate
income. Intuitively, a mean-preserving shift in the degree of altruism increases
the degree of altruism of the more altruistic agents who in response would
increase their bequests proportionally more than the less altruistic agents would
reduce their bequests. This result points out that not only the average level of
altruism, but also the diversity in the degree of altruism plays a significant role
in economic development.
The impact of altruism heterogeneity on the steady-state income inequality

also depends on the difference between the more and the less altruistic agents.
If both types have similar degrees of altruism, then increasing altruism hetero-
geneity increases inequality.5 Intuitively, a mean-preserving shift in the degree
of altruism makes more altruistic agents richer while less altruistic agents be-
come poorer. However, if the difference in the degrees of altruism between the
two types is sufficiently high, then an increase in altruism heterogeneity does
not affect inequality. In this case, the less altruistic agents leave no bequests,
and a further decrease in their degree of altruism would not affect their relative
position. This result can be interpreted as the existence of a maximum possible
steady-state level of income inequality (in terms of altruism heterogeneity).
Furthermore, we analyze the impact of the level of altruism on the steady-

5See also Krusell and Smith (1998) and Hendricks (2007), who find similar effect of discount
rate heterogeneity on the wealth Gini index in stochastic growth models.
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state welfare of both types of agents. We show that the steady-state utility of the
more altruistic agents is strictly decreasing in the level of altruism. Intuitively,
the disposable income of the more altruistic agents is determined mainly by
their bequests. An increase in the share of the more altruistic agents would
lower the interest rate and incentives to save, which would in turn lower the
disposable income of the more altruistic agents, decreasing their consumption
and utility.
At the same time, the steady-state utility of the less altruistic agents has the

U-shape: it is decreasing in the level of altruism for low levels of altruism and is
increasing for high levels of altruism. Intuitively, in the disposable income of the
less altruistic agents, the importance is gradually shifting from bequests to the
wage bill. For low levels of altruism, their steady-state levels of consumption
and utility decrease in the level of altruism, because the wages are low and
bequests are decreasing. However, for high levels of altruism, the disposable
income of the less altruistic agents is determined mainly by the wage rate which
is increasing in the level of altruism, increasing their consumption and utility.
Our paper is related to a large theoretical literature on the links between

parental altruism, growth and inequality. First, this paper contributes to the
discussion of the role of altruism in economic growth. The existing literature
typically follows Barro (1974) and explores overlapping generations models with
dynastic altruism where agents care about their offspring’s welfare: each agent
derives utility from her own consumption and the utility of her offspring. Barro
(1974) shows that when the degree of altruism is sufficiently strong (so that
bequest motive is operative), the dynamics of an OLG model are analogous to
the dynamics of the infinite-horizon Ramsey model, and Ricardian equivalence
holds (government debt does not influence the steady-state capital stock).
Another strand of literature studies paternalistic altruism where agents care

about their offspring’s consumption: each agent derives utility from her own
consumption and the consumption level of her offspring.6 Since each agent has
a limited altruism towards only immediate successor, there is a conflict of inter-
ests among different dynasty members about consumption schedule. Kohlberg
(1976), Leininger (1986) and Bernheim and Ray (1987) study this conflict from
a game-theoretic point of view, establish the existence of equilibria in a game
between different altruistic dynasty members and characterize their properties.
Our paper is different, as we assume that agents exhibit family altruism.

In our setting, each agent derives utility from her own consumption and the
disposable income of her offspring. This approach has two advantages: there
is no conflict about consumption at different dates, while at the same time all
dynasty members are not equivalent to a single infinitely lived agent. Thus, the
assumption of family altruism allows one to gain new perspectives and under-
standing.7 Our contribution here is to clarify the mechanisms by which family

6The term “paternalistic” emphasizes that the altruist values the consumption of the oth-
ers, irrespective of their preferences. However, sometimes paternalistic altruism also refers
to the situation where bequests are treated as a consumption good, and the altruistic agent
derives pleasure directly from the act of giving (“joy-of-giving” or “warm glow giving”).

7For the analysis of fiscal policy in models with family altruism, see, among others, Lam-
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altruism is positively related to economic growth.
Second, this paper contributes to the analysis of growth models with agents

who differ in their degree of altruism. Michel and Pestieau (1998; 1999), Smet-
ters (1999) and Mankiw (2000) study the effectiveness of fiscal policy under
heterogeneous dynastic altruism. The very general result is that Ricardian
equivalence also holds in heterogeneous agents models in the long run. However,
government policies typically lead to a redistribution of income from the less
altruistic agents (poor) to the more altruistic agents (rich) and an increase in
inequality within society, which is not observed in representative agent models.
Palivos (2005) shows that monetary policy under heterogeneous altruism also
leads to substantial distributional effects. Reichlin (2020) considers the OLG
model with heterogeneous dynastic altruism and highlights the difficulties with
standard social welfare criteria in this setting.8

Our paper differs from previous studies in two important respects. To the
best of our knowledge, this is the first paper to study heterogeneous family
altruism. Furthermore, we focus on inequality across societies, distinguishing
between the case where a cross-country Kuznets curve holds and the case where
there is no trade-off between growth and inequality.
The paper is organized as follows. In Section 2 we present the model and

define equilibria. Section 3 provides main results and their discussion. Section 4
concludes. All the proofs are relegated to the Appendix.

2 The model

We consider a closed market economy with households and firms. As usual,
their fundamentals are given by preferences, technology and endowments. In
this section, we describe the consumer’s and the producer’s programs (individual
level) and define dynamic general equilibrium (aggregate level).

2.1 Households

Time is discrete and runs from t = 0 to infinity. The economy is populated by
successive generations of agents. Each agent lives for one period, gives birth to
one offspring and supplies one unit of labor. Population is constant over time,
and the population size is normalized to 1.
Population consists of two types of agents indexed by i = 1, 2. The share of

type i in population is πi, with π1 + π2 = 1. Agents are identical within each
type. The agent and her offspring are always of same type, so population shares
are constant over time. A disposable income of type i agent is defined as a sum
of the wage bill, wt, identical across types, and the current value of bequest left
by her parent, bit. Out of this, an agent consumes c

i
t ≥ 0 and leaves bit+1 ≥ 0

to her offspring as a bequest. Since the case of negative bequests is hard to

brecht et al. (2006) and Borissov and Kalk (2020).
8See also Pakhnin (2023) for the discussion of similar problems with social welfare under

heterogeneous time preferences.
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justify on either a juridical or empirical ground, we assume that bequests are
non-negative.9 Formally, the budget constraint of the type i agent has the form

cit + bit+1 ≤ Rtbit +wt

where Rt is the interest factor.
Each agent cares about her consumption and the disposable income of her

offspring. The relative preference for the offspring’s disposable income with
respect to own consumption is naturally interpreted as a degree of altruism.
Formally, the preferences of type i agent are represented by the following utility
function:

ln cit + βi ln
�
Rt+1b

i
t+1 +wt+1

�

where βi > 0 is the degree of altruism of type i agent.
Throughout the paper, we assume that agents are heterogeneous in terms of

altruism: type 1 agents are less altruistic, while type 2 agents are more altruistic.
Assumption 1 β2 > β1.
Note that our approach to model heterogeneous altruism significantly dif-

fers from the previous studies (e.g., Michel and Pestieau, 1998, or Reichlin,
2020). The existing literature considers dynastic altruism and assumes that
agents weigh the offspring’s utility in their own utility function. The long-run
properties of the models with dynastic altruism are analogous to that of the
many-agent Ramsey model in the spirit of Becker (1980), where the intertem-
poral utility function of a single dynasty is an infinite-horizon discounted sum
of instantaneous utilities. The advantage of our approach where agents exhibit
family altruism is twofold. First, an agent can ignore the unknown preferences
of her unborn offspring when making her decisions. Second, the long-run dy-
namics of our model are different from those of a many-agent Ramsey model
and better fit some evidence.
Thus, a type i agent living in period t solves the maximization problem:

max
cit,b

i
t+1

�
ln cit + βi ln

�
Rt+1b

i
t+1 +wt+1

��
(1)

cit + bit+1 ≤ Rtbit +wt

with cit ≥ 0 and bit+1 ≥ 0. The following lemma characterizes the necessary and
sufficient conditions for the solution to the utility maximization problem.

Lemma 1 (Utility maximization) A non-negative pair
�
cit, b

i
t+1

�
is a solu-

tion to problem (1) if and only if there exists µit ≥ 0 such that µitb
i
t+1 = 0, and

the following conditions hold:

1

cit
=

βiRt+1
Rt+1bit+1 +wt+1

+ µit (2)

cit + bit+1 = Rtb
i
t + wt (3)

9Negative bequests would mean that offsprings have to pay parents’ debts.
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2.2 Firms

In every period, the economy produces a unique good which is either consumed
or invested. There is a large number of identical small price-taking firms. Tech-
nology of every firm is given by the neoclassical production function F (K,N),
where K is the stock of capital and N is the labor input. Capital fully de-
preciates each period, which is justified by the length of the period (the life
span). Throughout the paper, we assume that F (K,N) satisfies the standard
assumptions.
Assumption 2 The production function is continuous, concave and homo-

geneous of degree one.
Firm j in period t maximizes the profit:

max
Kjt,Njt

[F (Kjt, Njt)−RtKjt −wtNjt ]

whereKjt and Njt are the demands for capital and labor, and the interest factor
Rt coincides with the interest rate (because of the complete capital deprecia-
tion). The next lemma characterizes the necessary and sufficient conditions for
the solution to the profit maximization problem.

Lemma 2 (Profit maximization) The following conditions are necessary and
sufficient to profit maximization:

f ′ (kt) = Rt (4)

f (kt)− ktf ′ (kt) = wt (5)

where kt = kjt ≡ Kjt/Njt is the capital intensity and f (kt) ≡ F (kt, 1) is the
production function in intensive form common to every firm.

Since the size of population is normalized to one, the aggregate capital Kt
coincides with capital per capita kt:

Kt =
�

j

Kjt
Njt

Njt = kt
�

j

Njt = kt

We introduce the price functions:

R (kt) ≡ f ′ (kt) (6)

w (kt) ≡ f (kt)− ktf ′ (kt) (7)

and the income ratio (labor income over capital income):

γ (kt) ≡
w (kt)

ktR (kt)
=

1− α (kt)

α (kt)

where

α (kt) ≡
ktf

′ (kt)

f (kt)

is the capital share in total income.
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2.3 Temporary, intertemporal and steady-state equilibria

The definitions of equilibria in our model are fairly standard. First, we define a
temporary equilibrium where each agent maximizes her utility, each firm max-
imizes its profit, and the capital market clears, meaning that bequests become
the capital involved in the production.

Definition 3 (Temporary equilibrium) Given the bequests bit ≥ 0 left by

agents in period t−1, and the capital stock kt = π1b
1
t+π2b

2
t , a vector

��
cit, b

i
t+1

�2
i=1
, kt+1

�

is a time-t temporary equilibrium if:
(i) for any i,

�
cit, b

i
t+1

�
is a solution to the utility maximization problem (1)

where (Rt, wt) = (R(kt), w (kt)) and (Rt+1, wt+1) = (R (kt+1) , w (kt+1)), and
the functions R and w are given by (6) and (7);

(ii) kt+1 = π1b
1
t+1 + π2b

2
t+1.

Second, we define an intertemporal equilibrium as a sequence of temporary
equilibria.

Definition 4 (Intertemporal equilibrium) Given the initial bequests bi0 ≥
0 and the capital stock k0 = π1b

1
0 + π2b

2
0, a sequence

��
cit, b

i
t+1

�2
i=1
, kt+1

�∞

t=0

is an intertemporal equilibrium if
��
cit, b

i
t+1

�2
i=1
, kt+1

�
is a time-t temporary

equilibrium for any t ≥ 0.

Lemmas 1—2 and Definition 4 allow us to obtain the dynamic system repre-
senting an intertemporal equilibrium.

Proposition 5 (Dynamic system) The dynamics of bequests in an intertem-
poral equilibrium are given by

bit+1 =
1

1 + βi
max

�
0, βiR (kt)

�
bit + ktγ (kt)

�
− kt+1γ (kt+1)

	
(8)

for i = 1, 2, with kt = π1b1t + π2b2t , and the initial condition
�
b10, b

2
0

�
.

Equation (8) is a two-dimensional dynamic system in the variables
�
b1t , b

2
t

�
.

We observe that these variables are predetermined because bequests b10 and b
2
0

are given. Since kt+1 ≡

2
i=1 πib

i
t+1, we also have the dynamics of capital stock:

kt+1 =
2�

i=1

πi
1 + βi

max
�

0, βiR (kt)
�
bit + ktγ (kt)

�
− kt+1γ (kt+1)

	

A steady-state equilibrium is naturally defined.

Definition 6 (Steady state) A vector
��
ci, bi

�2
i=1
, k
�

is a steady-state equi-

librium if k > 0 and the sequence
��
cit, b

i
t+1

�2
i=1
, kt+1

�∞

t=0
with

�
cit, b

i
t+1

�
=

�
ci, bi

�
and kt+1 = k for any i = 1, 2 and any t ≥ 0 is an intertemporal equilib-

rium starting from
�
b1, b2

�
.
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The following proposition determines the steady state.

Proposition 7 (Steady-state equilibrium) Assume that k > 0. The steady-
state bequests bi are given by

bi = kγ (k) max

�
0,

βiR (k)− 1

1 + βi − βiR (k)

�
(9)

where the steady-state capital stock k is a solution to the following equation:

γ (k)
2�

i=1

πi max

�
0,

βiR (k)− 1

1 + βi − βiR (k)

�
= 1 (10)

Note that, for any k, bi is increasing, possibly not strictly, in βi. Therefore,
if a steady state exists, the more altruistic agents leave higher steady-state
bequests than the less altruistic agents, b2 > b1.

2.4 Local dynamics

Let k be the steady-state capital stock. Consider the local dynamics of bequests
in a neighborhood of a steady state. By (9), the steady-state bequests for agents
of type i are positive if and only if

1

βi
< R (k) < 1 +

1

βi
(11)

Because of Assumption 1, we have 1/β2 < 1/β1. Then it follows from (11) that
there are two possible cases: (1) 1/β1 < R (k) < 1 + 1/β2, and (2) 1/β2 <
R (k) < min {1/β1, 1 + 1/β2}.
Case (1) If 1/β1 < R (k) < 1 + 1/β2, then both the more and the less

altruistic agents leave bequests. Local dynamics are given by

b1t+1 =
β1R

�
π1b

1
t + π2b

2
t

� �
b1t +

�
π1b

1
t + π2b

2
t

�
γt
�
−
�
π1b

1
t+1 + π2b

2
t+1

�
γt+1

1 + β1
(12)

b2t+1 =
β2R

�
π1b1t + π2b2t

� �
b2t +

�
π1b1t + π2b2t

�
γt
�
−
�
π1b1t+1 + π2b2t+1

�
γt+1

1 + β2
(13)

where γt = γ
�
π1b

1
t + π2b

2
t

�
.

Case (2) If 1/β2 < R (k) < min {1/β1, 1 + 1/β2}, then, according to (11),
b1 = 0, and only the more altruistic agents leave bequests. Local dynamics are
given by b1t+1 = 0 and

b2t+1 =
β2R

�
π2b

2
t

� �
b2t + π2b

2
tγ
�
π2b

2
t

��
− π2b2t+1γ

�
π2b

2
t+1

�

1 + β2
(14)
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3 Main results

In this section, we focus on the case of a Cobb-Douglas technology. Suppose
that the production function is given by

F (K,N) = AKαN1−α

Then f(kt) = Akαt , and the price functions (6) and (7) take the form

R (kt) = αAkα−1t (15)

w (kt) = (1− α)Akαt (16)

The capital share in total income and the income ratio are constant:

α (kt) = α and γ (kt) = γ =
1− α
α

(17)

and the dynamic system (8) becomes

bit+1 =
1

1 + βi
max

�
0, βiR (kt)

�
bit + γkt

�
− γkt+1

	

with kt = π1b
1
t + π2b

2
t . The transition dynamics of capital stock are given by

kt+1 =
2�

i=1

πi
1 + βi

max
�

0, βiR (kt)
�
bit + γkt

�
− γkt+1

	

3.1 Steady state and convergence

Let π ≡ π2 be the share of the more altruistic agents in total population, which
is our measure of altruism. Let also

δ ≡ 1

β1
− 1

β2

be the altruism gap (the inverse of βi captures the selfishness), which is our
measure of altruism heterogeneity.
We introduce two critical interest rates:

R1 ≡ 1

2


1 + α+

1

β1
+

1

β2
−
�

(δ + α− 1)
2

+ 4δπ (1− α)

�
(18)

R2 ≡ 1

β2
+

1

1 + γπ
(19)

Denote by

δ∗ ≡ 1

1 + γπ
(20)

a threshold value of altruism heterogeneity which will play an important role
below. The following proposition characterizes the steady-state equilibrium.
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Proposition 8 (Steady-state equilibrium) (1) Suppose that δ < δ∗. Then
there exists a unique steady-state equilibrium characterized by the interest rate
R1. The steady-state equilibrium is given by

�
c11, b

1
1, c

2
1, b

2
1, k1

�
, where

c11 =
γk1

β1 + 1− β1R1
and c21 =

γk1
β2 + 1− β2R1

b11 = γk1
β1R1 − 1

β1 + 1− β1R1
and b21 = γk1

β2R1 − 1

β2 + 1− β2R1
(21)

k1 =


αA

R1

� 1
1−α

(2) Suppose that δ ≥ δ∗. Then there exists a unique steady-state equilibrium
characterized by the interest rate R2. The steady-state equilibrium is given by�
c12, b

1
2, c

2
2, b

2
2, k2

�
, where

c12 =
γk2
β2


1 +

β2
1 + γπ

�
and c22 =

k2
β2

1 + γπ

π

b12 = 0 and b22 =
k2
π

(22)

k2 =


αA

R2

� 1
1−α

Proposition 8 implies that our model admits two types of steady-state equi-
libria which depend on the difference between the more and the less altruistic
agents. First, if agents of both types have rather similar degrees of altruism
(the measure of altruism heterogeneity δ does not exceed the threshold value
δ∗), then both types of agents make positive bequests in the steady-state equi-
librium. Intuitively, in this case, the more altruistic agents, who are the primary
savers in the model, do not leave very high bequests, and the resulting interest
rate is sufficiently high to allow the less altruistic agents to also leave bequests.
Second, if the altruism gap between the more and the less altruistic agents

is sufficiently large (δ ≥ δ∗), then only the more altruistic agents leave positive
bequests in the steady-state equilibrium: b22 > 0 = b12. Intuitively, in this case
the more altruistic agents are so altruistic that they leave a substantial amount
of bequests which drives the interest rate down. The interest rate becomes too
low and induce the less altruistic agents to leave no bequests.
Note that in both cases, in the steady-state equilibrium, the more altruistic

agents leave higher bequests and have higher income. However, they do not
necessarily have a higher consumption level. If the steady-state interest rate
is greater than 1, then the more altruistic agents consume more than the less
altruistic agents. However, if the steady-state interest rate is lower than 1, which
holds, in particular, when the degree of altruism of the more altruistic agents is
large enough, then the less altruistic agents enjoy a higher level of consumption.
The role of a steady-state equilibrium is highlighted by the following impor-

tant result which demonstrates that every intertemporal equilibrium converges
to the steady state.
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Proposition 9 (Global convergence) Let
��
cit, b

i
t+1

�2
i=1
, kt+1

�∞

t=0
be an in-

tertemporal equilibrium.
(1) Suppose that δ < δ∗. Then, b1t > 0 and b2t > 0 for all t ≥ 1, and the in-

tertemporal equilibrium converges to the steady-state equilibrium
�
c11, c

2
1, b

1
1, b

2
1, k1

�

defined in part (1) of Proposition 8.
(2) Suppose that δ ≥ δ∗. Then intertemporal equilibrium converges to the

steady-state equilibrium
�
c12, c

2
2, b

1
2, b

2
2, k2

�
defined in part (2) of Proposition 8.

If δ = δ∗, then either b1t = 0 for all t ≥ 1 or b1t converges to 0. If δ > δ∗, then
there exists t0 such that b1t = 0 for all t ≥ t0.

According to Proposition 9, the steady-state equilibrium is globally stable.
To provide a numerical illustration of this property, we compute the speed of
convergence which depends on the modulus of eigenvalues of the linearized dy-
namic system.
Case (1) of Propositions 8 and 9.
Since 1/β1 < R1 < 1 + 1/β2, both the more and the less altruistic agents

leave bequests and dynamics follow (12)-(13) with constant γt given by (17):

b1t+1 =
β1R (kt)

�
b1t + γkt

�
− γkt+1

1 + β1
(23)

b2t+1 =
β2R (kt)

�
b2t + γkt

�
− γkt+1

1 + β2
(24)

where kt = π1b
1
t + π2b

2
t .

We define the saving shares:

zi ≡
πibi1

π1b11 + π2b21
=
πibi1
k1

(25)

with i = 1, 2.

Lemma 10 (Local dynamics) Dynamics (23)-(24) are locally approximated
by the following system




db1t+1
b1
1

db2t+1
b2
1



 = J




db1t
b1
1

db2t
b2
1



 (26)

where J is the Jacobian matrix:

J =

�
(1 + β1 + γπ1) z1 γπ1z2

γπ2z1 (1 + β2 + γπ2) z2

�−1

�
β1R1 [1 + (1− α) (π1 − z1)] z1 β1R1 (1− α) (π1 − z1) z2
β2R1 (1− α) (π2 − z2) z1 β2R1 [1 + (1− α) (π2 − z2)] z2

�

and

z ≡ z2 = π
1− α
α

β2R1 − 1

1 + β2 − β2R1
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is the saving share of the more altruistic agents. The trace and the determinant
of J are given by

T = R1

�

1−
1− αβ1β2 − π (1− α) (β2 − β1) 1+αβ2−β2R11+β2−β2R1

(1 + αβ1) (1 + β2)− π (1− α) (β2 − β1)

�

(27)

D = R21
αβ1β2

(1 + αβ1) (1 + β2)− π (1− α) (β2 − β1)
(28)

and its eigenvalues by

λ1 =
�
T −

�
T 2 − 4D

�
/2 and λ2 =

�
T +

�
T 2 − 4D

�
/2 (29)

Global convergence implies local convergence (both the eigenvalues are in-
side the unit circle in the Argand-Gauss plane). A constructive proof of local
convergence can be also provided noticing that |λ1| < 1 and |λ2| < 1 if and
only if the pair (T,D) lie in the interior of the triangle defined by D > −T − 1,
D > T −1 and D < 1. Using expressions (27)-(28) for trace and determinant, it
is possible to prove that when both types of agents leave bequests, these three
inequalities are always jointly verified.

Proposition 11 (Local stability when less altruistic agents leave bequests)
The steady state (21) (part (1) of Proposition 8) is locally stable.

Since the initial condition
�
b10, b

2
0

�
is given (predetermined), local stability

means that there is a unique equilibrium trajectory starting from this initial
condition towards the steady state, provided that

�
b10, b

2
0

�
lies in a neighborhood

of the steady state. In other terms, the equilibrium (transition) is locally unique.
In order to illustrate convergence in this case, we fix the parameter values

as follows: α = 0.33, π = 0.5, β1 = 0.5, β2 = 0.6. Using (18), we obtain
R1 = 2.1273 and, thus, 2 = 1/β1 < R1 < 1 + 1/β2 = 2.667. Using (27)
and (28), we obtain T = 1.0739 and D = 0.24685. The eigenvalues given by
(29), λ1 = 0.33333 and λ2 = 0.74054, are both inside the unit circle (sink). The
smaller their modulus, the faster the convergence to the steady state, coherently
with Proposition 9.
Case (2) of Propositions 8 and 9. Since 1/β2 < R2 < 1/β1, only the more

altruistic agents leave bequests.

Proposition 12 (Local stability when less altruistic agents leave no bequests)
Dynamics are given by

b2t+1 = b2t
R
�
πb2t
�

R2
(30)

and are locally approximated by the following equation

db2t+1
b22

= α
db2t
b22

(31)

The steady state (22) (part (2) of Proposition 8) is locally stable.
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The eigenvalue is given by λ = α. The trajectory locally converges to the
steady state because 0 < α < 1. Moreover, the lower is the capital share in
total income, the faster is the convergence.

3.2 Altruism and economic growth

Proposition 9 allows us to focus on the properties of the steady-state equilibrium.
We now study the effect of altruism on economic growth in our model. For this,
we analyze how the steady-state capital stock depends on the level of altruism
and on altruism heterogeneity.
To study the impact of the level of altruism, we employ the share of the

more altruistic agents in total population, π, as a measure of altruism. Given
β1 and β2, the higher is π, the more altruistic is society as a whole.
Let us introduce the threshold value of altruism which corresponds to the

threshold value of altruism heterogeneity (20):

π∗ ≡ α

1− α
1− δ
δ

(32)

The impact of π on the steady-state capital stock k∗ is characterized as follows.

Proposition 13 (Capital stock and altruism) The steady-state capital stock
k∗ is continuous and monotonically increasing in π. For π < π∗, we have
k∗ = k1, while for π ≥ π∗, k∗ = k2.

This result shows that the more altruistic is society as a whole, the higher
is the steady-state capital stock. Since the more altruistic agents leave higher
bequests in the steady state, an increase in π, which reduces the share of the
less altruistic agents with low bequests, reduces the steady-state interest rate
and increases capital accumulation and output. Thus, more altruism implies
higher level of aggregate income.
Proposition 13 is illustrated in Figure 1 with α = 0.33, β1 = 0.5, β2 = 0.75,
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A = 1. For each π, we have k∗ = max {k1, k2}.

Fig. 1 Steady-state capital stock and altruism

To study the impact of the altruism heterogeneity, we employ social hetero-
geneity in terms of altruism as a measure. Given π and the average of 1/βi, the
standard deviation of 1/βi is a relevant measure of altruism heterogeneity.
Let β̄ be the weighted harmonic mean of β1 and β2:

1

β̄
=

1− π
β1

+
π

β2

Then, the variance of 1/β1 and 1/β2 is given by:

σ2 = (1− π)


1

β1
− 1

β̄

�2
+π


1

β2
− 1

β̄

�2
= π (1− π)


1

β1
− 1

β2

�2
= π (1− π) δ2

Therefore, σ, the standard deviation of 1/βi, is directly proportional to the
altruism gap δ, which can be used as a relevant indicator of altruism hetero-
geneity.
The impact of δ on the steady-state capital stock k∗ is characterized as

follows.

Proposition 14 (Capital stock and heterogeneity) The steady-state cap-
ital stock k∗ is continuous and is monotonically increasing in δ. For δ < δ∗,
k∗ = k1, while for δ ≥ δ∗, k∗ = k2.

Thus, increasing altruism heterogeneity, that is, the standard deviation σ
of 1/βi around their mean 1/β̄, increases the steady-state capital stock. The
reason is that a mean-preserving shift implies a higher degree of altruism for
the more altruistic agents, and a lower degree of altruism for the less altruistic
agents. When primary savers become even more altruistic, they leave much
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higher bequests, pulling the steady-state interest rate down and promoting cap-
ital accumulation. This effect is more pronounced for δ ≥ δ∗, when the less
altruistic agents does not leave bequests. However, even when the less altruistic
agents reduce their bequests as a result of lower degree of altruism, the overall
effect remains positive. In other words, higher altruism heterogeneity always
leads to a higher level of aggregate income.
Proposition 14 is illustrated in Fig. 2 with α = 0.33, β̄ = 0.75, π = 0.4,

A = 1. For each δ, we have k∗ = max {k1, k2}.

Fig. 2 Steady-state capital stock and altruism heterogeneity

3.3 Altruism and income inequality

Consider now the effect of the level of altruism and of the altruism heterogeneity
on the steady-state income inequality.
It is natural to represent the level of social inequality by the Gini index

applied to income distribution. The following proposition characterizes the Gini
index of income inequality in the steady-state equilibrium.

Proposition 15 (Gini index) (1) Suppose that δ < δ∗. The Gini index in
the steady-state equilibrium

�
c11, b

1
1, c

2
1, b

2
1, k1

�
is given by

G1 =
2δπ(1− π)

1− α+ (2π − 1) δ +
�

(δ + α− 1)2 + 4δπ (1− α)
(33)

(2) Suppose that δ ≥ δ∗. The Gini index in the steady-state equilibrium�
c12, b

1
2, c

2
2, b

2
2, k2

�
is given by G2 = α (1− π).

The impact of the level of altruism π on the steady-state Gini index G∗,
given β1 and β2, is characterized as follows.
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Proposition 16 (Gini index and altruism) The steady-state Gini index G∗

is continuous in π. For π < π∗, G∗ = G1, while, for π ≥ π∗, G∗ = G2.
(1) Suppose that δ < min {1, 2 (1− α)}. Then there exists a threshold share

of the more altruistic agents, π̃ ≤ π∗, such that for π < π̃, G∗ is increasing in
π, while for π ≥ π̃, G∗ is decreasing in π. When δ < 1− α, G∗ (0) = 0, while,
when δ > 1− α, G∗ (0) = 1− (1− α) /δ > 0.

(2) Suppose that δ ≥ min {1, 2 (1− α)}. Then, G∗ is decreasing in π.

Proposition 16 suggests that there are three regimes of the steady-state Gini
index, which are determined by the interplay between the level of altruism and
altruism heterogeneity. The first regime occurs when altruism heterogeneity is
low, δ < 1− α. In this case, when π is very low or very high, the population is
almost constituted by the same type of agents (less altruistic or more altruistic,
respectively). Since the population is almost homogeneous up to a small minor-
ity of different agents, the social inequalities are close to zero. When π takes
values in the middle of the range, the shares of the rich (the more altruistic
agents who leave higher bequests) and the poor (the less altruistic agents) are
similar, which drives up social inequality.
Thus, in this regime, the dependence of the steady-state level of inequality

on the average level of altruism has a rather symmetric inverted U-shape. The
first regime is illustrated in Figure 3, where we set α = 0.33, β1 = 0.5, β2 = 0.75.
For each π, we have G∗ = min {G1, G2}.

Fig. 3 Steady-state Gini index and altruism: low heterogeneity

The second regime occurs when altruism heterogeneity is moderate, 1−α <
δ < min {1, 2 (1− α)}. In this case, when π is very low, the level of inequality
is positive. Due to the altruism gap, the population is not homogeneous. Even
though the share of the more altruistic agents is small, their income is large
enough to significantly affect inequality. Similarly to the first regime, an increase
in π increases the level of inequality. When π is already high, then, irrespective
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of whether the less altruistic agents leave bequests or not, a further increase in π
would make a larger share of population richer, which reduces social inequalities.
Therefore, in this regime, the dependence of the steady-state Gini index

on the level of altruism has an asymmetric inverted U-shape which is shifted
upwards for low levels of altruism. The second regime is illustrated in Figure
4, where we set α = 0.33, β1 = 0.45, β2 = 0.75. For each π, we have G∗ =
min {G1, G2}.

Fig. 4 Steady-state Gini index and altruism: moderate heterogeneity

The third regime occurs when altruism heterogeneity is sufficiently high,
δ ≥ min {1, 2 (1− α)}. When the difference between the more and the less
altruistic agents is very high, then the highest possible level of inequality is
observed in societies consisting of only the less altruistic agents, and inequality
is decreasing with the level of altruism. Intuitively, in this regime, even if the
less altruistic agents leave some bequests, the amount of these bequests is very
low and has almost no impact on their income. An increase in the share of the
more altruistic agents unambiguously decreases inequality, as a larger share of
population becomes rich.
The third regime of the steady-state Gini index is illustrated in Figure 5,

where we set α = 0.6, β1 = 0.45, β2 = 0.75. For each π, we have G∗ =
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min {G1, G2}.

Fig. 5 Steady-state Gini index and altruism: high heterogeneity

Comparing Proposition 13 and part (1) of Proposition 16, we observe that
if altruism heterogeneity is low or moderate, then the resulting dependence of
the steady-state level of inequality on the steady-state level of income is non-
monotonic, which is consistent with the cross-country Kuznets curve.
Consider three countries (A, B, C) which differ in their average levels of

altruism (πA > πB > πC) but are identical in every other respect. Then
country A would have the highest aggregate income in the steady-state, and
country C the lowest (k∗A > k

∗
B > k

∗
C). At the same time, high-income country

A would have the lowest income inequality in the steady state, while middle-
income country B the highest (G∗B > G

∗
C > G

∗
A).

Moreover, for moderate altruism heterogeneity, according to Figure 4, the
low-income country A and middle-income country B would have very close Gini
indices (because of the asymmetric inverted U-shape), which is consistent with
empirical evidence (see Table 1).
Comparing Proposition 13 and part (2) of Proposition 16, we can see that

if altruism heterogeneity is high, there is no trade-off between economic growth
and social inequality. The more altruistic is society as a whole, the higher is the
steady-state capital stock, and the lower is the steady-state Gini index. Higher
aggregate income is accompanied with lower level of inequality.
These results suggest that heterogeneous altruism is an important mecha-

nism contributing to the tendency of high-income countries to have lower levels
of income inequality.
Consider now the impact of the altruism heterogeneity on the steady-state

Gini index. Fix π and β̄. The following proposition characterizes the dependence
of G∗ on δ.
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Proposition 17 (Gini index and heterogeneity) The steady-state Gini in-
dex G∗ is continuous and non-decreasing in δ. For δ < δ∗, G∗ = G1 and G∗ is
strictly increasing in δ. For δ ≥ δ∗, G∗ = G2 and is independent of δ.

Comparing Propositions 14 and 17, we draw the following conclusions. When
agents of both types have similar degrees of altruism, there is the growth-
inequality trade-off in terms of altruism heterogeneity. When δ is sufficiently
low, the higher is altruism heterogeneity (or, equivalently, the higher is the
standard deviation σ), the higher is inequality, and the higher is aggregate in-
come. However, when δ is sufficiently high, this trade-off disappears: a further
increase in altruism heterogeneity would increase the steady-state capital stock,
but would not affect the steady-state Gini index. In terms of altruism hetero-
geneity, there exists a maximum possible steady-state Gini index which is equal
to α (1− π).
Proposition 17 is illustrated in Fig. 6 with α = 0.33, π = 0.65. For each δ,

we have G∗ = min {G1, G2}.

Fig. 6 Steady-state Gini index and altruism heterogeneity

3.4 Altruism and welfare

Finally, we consider the effect of altruism on welfare in the steady state. We
analyze how the steady-state utilities of both types of agents depend on the
level of altruism. We focus on individual utilities instead of a social welfare
function for two reasons. First, in this paper, we have a positive instead of
a normative approach. We do not need to compare welfare along alternative
equilibrium paths. Second, when agents have heterogeneous degrees of altruism,
social welfare criteria are problematic (see Reichlin, 2020, among others). For
these reasons, we study separately the steady-state utility levels of the more and
the less altruistic agents.
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According to (1), in the steady-state equilibrium
�
c1j , b

1
j , c

2
j , b

2
j , kj

�
with j =

1, 2, the utility of type i agent is given by

U ij = ln cij + βi ln
�
cij + bij

�

Propositions 8 and 13 imply that the steady-state utility of type i agent,
U i, is continuous, and for π < π∗ we have U i = U i1, while for π ≥ π∗ we have
U i = U i2. The following proposition shows how the steady-state utility levels
depend on the level of altruism.

Proposition 18 (Agents’ utilities and altruism) (1) The steady-state util-
ity of the less altruistic agents U1 is continuous in π, strictly decreasing for any
π < π̌ and strictly increasing for any π > π̌ where π̌ ≤ π∗ is a threshold.

(2) The utility of the more altruistic agents U2 is continuous and strictly
decreasing in π.

Therefore, the steady-state utility of the less altruistic agents is U-shaped:
U1 is decreasing in π for low levels of altruism and increasing in π for high levels
of altruism. On the contrary, the steady-state utility of the more altruistic agents
is always decreasing in π.
Intuitively, the higher is the share of the more altruistic agents π, the lower

is the amount of bequest left by a single agent. Indeed, the higher is π, the
lower is the interest rate, which reduces individual’s incentive to save.10 The
disposable income of the more altruistic agents is determined mainly by be-
quests. Therefore, their consumption also tends to decrease, which lowers their
steady-state utility. For the more altruistic agents, the optimal level of altruism
is always π = 0.
Differently, the disposable income of the less altruistic agents is determined

mainly by the wage bill which is increasing in π together with output. For
low levels of altruism, the wages are low and bequests play some role for these
agents, so their steady-state levels of consumption and utility decrease in π,
similar to those of the more altruistic agents. However, after a certain threshold
level, the role of bequests for the less altruistic agents becomes negligible, and a
further increase in π would increase their steady-state levels of consumption and
utility. This effect is evident for very high levels of altruism, π ≥ π∗, when the
less altruistic agents leave no bequests and consume their wages, but it could
also be observed already for moderate levels of π. Thus, for the less altruistic
agents the optimal level of altruism is either π = 0 or π = 1.
Proposition 18 is illustrated in Fig. 7 for the less altruistic agents and in Fig.

10Recall, however, that since the more altruistic agents leave higher bequests than the less
altruistic agents, higher π leads to an increase in aggregate steady-state capital stock. Even
though agents leave lower bequests, the total amount of bequests is growing because of the
higher share of those who save more.
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8 for the more altruistic agents with α = 0.64, β1 = 0.495, β2 = 0.75, A = 1.

Fig. 7 Less altruistic agents’ welfare and altruism

Fig. 8 More altruistic agents’ welfare and altruism

4 Concluding remarks

In this paper, we argue that altruism heterogeneity is a possible mechanism
that provides an additional explanation of why income inequality differs between
countries. We develop and analyze a simple growth model with agents who differ
in their degree of altruism. The novelty of our approach rests on combining the
assumption of family altruism (we consider agents who leave bequests taking
care of the disposable income of their offsprings) with the assumption of agents’
heterogeneity (we consider two types of agents: the one being more altruistic,
the other less).
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We prove that every path of bequests and capital converges to a unique
steady-state equilibrium and study the properties of a steady state. Our re-
sults suggest that the effects of the level of altruism and altruism heterogeneity
depend on the difference between the more and the less altruistic agents.
When altruism heterogeneity is low, we observe a Kuznets curve linking

different steady-state levels of income to the steady-state levels of inequality.
An increase in the average level of altruism which implies an increase in aggre-
gate income, at first is associated with growing inequality, as the share of the
more altruistic agents who leave higher bequests increases. However, after some
threshold level of altruism, further increase in aggregate income is accompanied
with falling inequality, as the larger share of population becomes rich. Also,
when altruism heterogeneity is low, an increase in altruism heterogeneity leads
to both higher aggregate income and higher income inequality.
However, when altruism heterogeneity is sufficiently high, any trade-off be-

tween growth and inequality disappears. An increase in the level of altruism
would increase aggregate income and decrease the level of inequality. Further-
more, an increase in altruism heterogeneity leads to a higher steady-state capital
stock and does not affect the level of steady-state inequality.
There are also several opportunities for further theoretical research. First,

altruism heterogeneity is an important factor for policy implications. When
designing policies related to income redistribution or social welfare programs,
one should take into account the empirically relevant fact that individuals have
different degrees of altruism and hence respond differently to different incentives.
Future research could introduce redistributive fiscal policies through bequest
taxation, public debt and social security or more general social welfare programs.
Second, it is natural to assume that agents’ degrees of altruism are not con-

stant but change over time depending on the relative wealth of agents. This case
of endogenous altruism has lately received considerable attention (see, among
others, Das, 2007; Rapoport and Vidal, 2007). It is also interesting to under-
stand the consequences of endogenous altruism in our framework. Overall, we
believe that our approach and results contribute to the understanding of the
role of heterogeneous altruism in economic growth and income inequality.

5 Appendix

Proof of Lemma 1
Let νit and µ

i
t be the Lagrange multipliers of the budget constraint and non-

negativity bequest constraint respectively. Maximizing the Lagrangian function
of the Kuhn-Tucker program

ln cit + βi ln
�
Rt+1b

i
t+1 +wt+1

�
+ νit

�
Rtb

i
t + wt − cit − bit+1

�
+ µitb

i
t+1

we find a system of first-order conditions:

1

cit
= νit =

βiRt+1
Rt+1bit+1 +wt+1

+ µit
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jointly with νit ≥ 0, Rtb
i
t + wt − cit − bit+1 ≥ 0, νit

�
Rtb

i
t +wt − cit − bit+1

�
= 0,

and µit ≥ 0, bit+1 ≥ 0, µitb
i
t+1 = 0. Since νit = 1/cit > 0, we obtain (2) and (3).

The reduced utility function v
�
cit
�
≡ ln cit+βi ln

�
Rt+1

�
Rtb

i
t +wt − cit

�
+wt+1

�

is strictly concave: v′′
�
cit
�

= −(cit)
−2−βi

�
bit+1 +wt+1/Rt+1

�−2
< 0. Then the

first-order conditions are necessary and sufficient to utility maximization.
Proof of Lemma 2
The first-order conditions are: f ′ (kjt) = Rt and f (kjt) − kjtf ′ (kjt) = wt,

where f (kjt) ≡ F (kjt, 1) is the average productivity. Since all firms share the
same technology, f ′ (kjt) = Rt implies that the capital intensity is the same for
any firm: kjt = kt. Then profit maximization entails conditions (4) and (5).
Proof of Proposition 5
Consider equations (2)-(3) (with bit+1 ≥ 0, µit ≥ 0 and µitb

i
t+1 = 0) together

with equations (6)-(7) where kt = π1b1t + π2b2t .
If µit > 0, then bit+1 = 0. If bit+1 > 0, then µit = 0, and

βiRt+1
Rt+1bit+1 +wt+1

=
1

cit
=

1

Rtbit +wt − bit+1
that is

(1 + βi) b
i
t+1 = βiR (kt)

�
bit + kt

w (kt)

ktR (kt)

�
− kt+1

w (kt+1)

kt+1R (kt+1)

bit+1 =
1

1 + βi

�
βiR (kt)

�
bit + ktγ (kt)

�
− kt+1γ (kt+1)

�

Proof of Proposition 7
We observe that at the steady state,

(1 + βi) b
i = max

�
0, βiR (k) bi + [βiR (k)− 1] kγ (k)

	

with i = 1, 2 and k = π1b
1 + π2b

2.
In order to have positive bequests for type i, we need (11). In order to have

positive bequests for both types, we need

1

β1
< R (k) < 1 +

1

β2

Then the steady-state capital stock is a solution to the following equation in the
unknown k:

k =
2�

i=1

πib
i = kγ (k)

2�

i=1

πi max

�
0,

βiR (k)− 1

1 + βi − βiR (k)

�

that is (10).
Proof of Proposition 8
Let R (k) = R be the steady-state interest rate and bi ≥ 0 be the steady-state

bequests, which are solutions to the following equation:

(1 + βi) b
i = max

�
0, βiRb

i + (βiR− 1) γk
	

(34)
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If R ≤ 1/βi, then equation (34) has a unique solution: b
i = 0.

If R > 1/βi, then b
i is positive, and we have

bi = γk
βiR− 1

1 + βi − βiR
(35)

Therefore, if 1/βi < R < 1+1/βi, equation (34) has a unique solution given
by (35). If R ≥ 1 + 1/βi, equation (34) has no solutions.
For 1/β2 < R < 1 + 1/β2, according to (9), we have

bi

k
= γmax

�
0,

βiR− 1

1 + βi − βiR

�

Observing that π1b
1/k+π2b

2/k = 1, we have that the steady-state interest rate
R is a solution to the following equation:

ρ (R) ≡ π1 max

�
0,

β1R− 1

1 + β1 − β1R

�
+ π2 max

�
0,

β2R− 1

1 + β2 − β2R

�
=

1

γ

Note that ρ (R) is a continuous function which is increasing in R with
ρ (1/β2) = 0 and limR→(1+1/β2)

− ρ (R) = +∞. Then there exists a solution R
to the equation ρ (R) = 1/γ, and this solution is such that 1/β2 < R < 1+1/β2.
Three cases are possible: (1) 1/β1 < R < 1 + 1/β2; (2) 1/β2 < R ≤ 1/β1 <
1 + 1/β2; and (3) 1/β2 < R < 1 + 1/β2 ≤ 1/β1.
Consider first Cases (2) and (3). Since in both cases R ≤ 1/β1, we have

ρ (R) = π
β2R− 1

1 + β2 − β2R
≡ ρ2 (R)

The solution to the equation ρ2 (R) = 1/γ is given by

R =
1

β2
+

1

1 + γπ
≡ R2

This solution is the steady-state interest rate if and only if R2 ≤ 1/β1, which
is equivalent to δ ≥ δ∗. Since f ′ (k) = R, the capital stock corresponding to this
steady state is

k2 ≡

αA

R2

� 1
1−α

In this case we also have b12 = 0 and b22 = k2/π. Further,

c12 = (1− α)Akα2 = k2 (1− α)Akα−12 = γk2R2

while

c22 = (1− α)Akα2 +
(R2 − 1) k2

π
=
k2
π

(γπR2 +R2 − 1) =
k2
π

1 + γπ

β2
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When ρ (1/β1) < 1/γ, which is equivalent to δ < δ∗, we are in the conditions
of Case (1). We have

ρ (R) = (1− π)
β1R− 1

1 + β1 − β1R
+ π

β2R− 1

1 + β2 − β2R
≡ ρ1 (R)

The steady-state interest rate R is a solution to the equation ρ1 (R) = 1/γ,
which can be written as

(1− π)
β1R− 1

1 + β1 − β1R
+ π

β2R− 1

1 + β2 − β2R
=

1

γ

or, equivalently, as

β1β2 (1 + γ)R2 − [(1 + γ) (β1 + β2) + (2 + γ)β1β2]R

+ (1 + γ + β1 + β2 + β1β2 + γ [(1− π)β2 + πβ1]) = 0

Noticing that γ = (1− α) /α, we obtain

R±1 =
1

2


1 + α+

1

β1
+

1

β2
±
�

(δ + α− 1)2 + 4δπ (1− α)

�

Let D (π) ≡ (δ + α− 1)2 + 4δπ (1− α). It is easily seen that D(π) is in-
creasing in π, and

D (0) = (δ + α− 1)2 (36)

D (π∗) = (1− δ + α)2 (37)

D (1) = (δ + 1− α)2 (38)

where π∗ is given by (32).
Let us show that

R−1 ≤ 1 +
1

β2
≤ R+1

Indeed, the first inequality is true whenever
�
D (π) ≥ δ + α − 1, while the

second inequality is true whenever
�
D (π) ≥ 1−α− δ. Both these inequalities

hold when D (π) ≥ (δ + α− 1)
2
, which follows from (36).

Denote R1 ≡ R−1 . Then the corresponding steady-state capital stock is

k1 =


αA

R1

� 1
1−α

Since 1/β1 < R1 < 1 + 1/β2, at the steady state we have for i = 1, 2,

bi1 = γk1
βiR1 − 1

1 + βi − β1R1
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and

ci1 = (1− α)Akα1 + (R1 − 1) bi1 = γk1αAk
α−1
1 + γk1

(R1 − 1) (βiR1 − 1)

βi + 1− βiR1

= γk1

�
R1 +

(R1 − 1) (βiR1 − 1)

βi + 1− βiR1

�
=

γk1
βi + 1− βiR1

Proof of Proposition 9
(0) Consider a sequence

�
b1t , b

2
t , kt

�∞
t=0
. Fix t. Let λit ≡ bit/kt. Let λ1t+1, λ2t+1

be such that for i = 1, 2,

λit+1kt+1 =
βiR (kt) kt

�
λit + γ

�
− γkt+1

1 + βi

We observe that, at this stage of the proof, λit+1 may lie outside of the
interval (0, 1/πi). We have


λit+1 +

γ

1 + βi

�
kt+1 =

βiR (kt) kt
�
λit + γ

�

1 + βi

and, therefore,
λ2t+1 + γ

1+β2

λ1t+1 + γ
1+β1

=
β2
β1

1 + β1
1 + β2

λ2t + γ

λ1t + γ

Since we need π1λ
1
t + π2λ

2
t = 1, we study the following equation

ζ
�
λ2t+1

�
≡

λ2t+1 + γ
1+β2

1−π2λ2t+1
π1

+ γ
1+β1

=
β2
β1

1 + β1
1 + β2

λ2t + γ
1−π2λ2t
π1

+ γ
≡ ξ

�
λ2t
�

(39)

Functions ζ and ξ are increasing in the interval (0, 1/π2).
Notice that, given λ2t , equation (39) has a solution λ

2
t+1 ∈ (0, 1/π2) if and

only if b1t+1, b
2
t+1 > 0. More precisely, let λ2t+1 be solution to (39) in (0, 1/π2),

bit+1 = λit+1kt+1 and

λ1t+1 =
1

π1
− π2
π1
λ2t+1

with

kt+1 =
2�

i=1

πi
�
βiR (kt)

�
bit + γkt

�
− γkt+1

�

1 + βi

= ktR (kt)
2�

i=1

πiβi

�
bit
kt

+ γ
�

1 + βi
− γkt+1

2�

i=1

πi
1 + βi
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that is

kt+1 = ktR (kt)


2
i=1

πiβi(λit+γ)
1+βi

1 + γ

2
i=1

πi
1+βi

(40)

Let us prove that each solution to the equation ζ (λ) = ξ (λ) in (0, 1/π2)
corresponds to a steady state where both bequests are strictly positive. Indeed,
let λ2∗ be a solution to equation ζ (λ) = ξ (λ) in this interval and

λ1∗ =
1

π1
− π2
π1
λ2∗

Let the sequence
�
b̂1t , b̂

2
t , k̂t

�
be such that b̂10 = λ1∗k0 and b̂10 = λ2∗k0. Let

λit = b̂it/k̂t, for every i and t ≥ 0. By induction, we obtain λit = λi∗ and

b̂it = λi∗k̂t, for every t ≥ 0.
From (40), we have

�

1 + γ
2�

i=1

πi
1 + βi

�

k̂t+1 = αf
�
k̂t

� 2�

i=1

πiβi
�
λi∗ + γ

�

1 + βi

since k̂tR
�
k̂t
�

= αAk̂αt = αf
�
k̂t
�
.

Therefore,

k̂t+1 = αf
�
k̂t
� 
2

i=1

πiβi(λi∗+γ)
1+βi

1 + γ

2
i=1

πi
1+βi

= αSf
�
k̂t
�

where

S ≡

2
i=1

πiβi(λi∗+γ)
1+βi

1 + γ

2
i=1

πi
1+βi

is a constant.
Since f

�
k̂t
�

= Ak̂αt with α ∈ (0, 1) and k̂t+1 = αSf
�
k̂t
�
with αS constant,

it is known that k̂t monotonically converges to some capital level k
∗.

(1) Consider part (1) of Proposition 8. We want to prove that:
(1.1) For any 0 ≤ λ2t ≤ 1/π2, there exists a unique λ

2
t+1 ∈ (0, 1/π2) such

that ζ
�
λ2t+1

�
= ξ

�
λ2t
�
.

(1.2) There exists a unique λ2∗ ∈ (0, 1/π2) which solves ζ (λ) = ξ (λ).
(1.1) To prove the first claim, we show that ζ (0) < ξ (0) ≤ ξ

�
λ2t
�
, and

ζ (1/π2) > ξ (1/π2) ≥ ξ
�
λ2t
�
.

We have ζ (0) < ξ (0) is equivalent to

γ
1+β2

1
π1

+ γ
1+β1

<
β2
β1

1 + β1
1 + β2

γ
1
π1

+ γ
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that is to

1 + γπ1 <
β2
β1

(1 + β1 + γπ1)

which is always true since β2 > β1 > 0.
The inequality ζ (1/π2) > ξ (1/π2) is equivalent to

1
π2

+ γ
1+β2
γ

1+β1

>
β2
β1

1 + β1
1 + β2

1
π2

+ γ

γ

that is to
1

1 + γπ2
>

1

β1
− 1

β2

which is true because, in this case, δ < δ∗.
Therefore, ζ (0) < ξ (0) ≤ ξ

�
λ2t
�
and ζ (1/π2) > ξ (1/π2) ≥ ξ

�
λ2t
�
.

Hence, there exists 0 < λ2t+1 < 1/π2 such that ζ
�
λ2t+1

�
= ξ

�
λ2t
�
. The

strict monotonicity of function ζ ensures the uniqueness. Let λ2t+1 = ϕ
�
λ2t
�
be

the unique solution to ζ
�
λ2t+1

�
= ξ

�
λ2t
�
. The function ϕ is continuous in the

interval (0, 1/π2) and strictly increasing, with ϕ (0) > 0 and ϕ (1/π2) < 1/π2.
This means that starting from any initial pair

�
b10, b

2
0

�
with at least one positive

bequest, bequests b1t and b
2
t are both strictly positive for any t ≥ 1.

(1.2) Let us focus on the second claim, which is determinant in the proof of
convergence. As a preliminary step, we observe that any solution in (0, 1/π2) to
equation λ = ϕ (λ) corresponds to a steady state, which, according to Proposi-
tion 8, is unique. We obtain also the uniqueness of λ2∗, a solution to λ = ϕ (λ).
The uniqueness of the solution ensures that we have ϕ (λ) > λ on

�
0, λ2∗

�

and ϕ (λ) < λ on
�
λ2∗, 1/π2

�
. Then, if 0 ≤ λ20 < λ2∗, the sequence

�
λ2t
�∞
t=0
is

increasing and converges to λ2∗, and, in the opposite case λ20 > λ
2∗, this sequence

is decreasing and converges to λ2∗. We can therefore ensure the convergence of�
λ1t , λ

2
t

�
to
�
λ1∗, λ2∗

�
.

This implies also the convergence of
�
b1t , b

2
t

�
to
�
b11, b

2
1

�
. Indeed, we observe

that

kt+1 = ktR (kt)


2
i=1

πiβi(λit+γ)
1+βi

1 + γ

2
i=1

πi
1+βi

= αf (kt)


2
i=1

πiβi(λit+γ)
1+βi

1 + γ

2
i=1

πi
1+βi

= αStf (kt)

where

St ≡

2
i=1

πiβi(λit+γ)
1+βi

1 + γ

2
i=1

πi
1+βi

By the convergence of λit to λ
i∗, we obtain

St → S ≡

2
i=1

πiβi(λi∗+γ)
1+βi

1 + γ

2
i=1

πi
1+βi
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Fix any 0 < ε < S. There exists T such that S − ε < St < S + ε for any
t ≥ T .
Let

�
k̄t
�∞
t=T

and (kt)
∞

t=T be defined as

k̄T = kT = kT

k̄t+1 = α (S + ε) f
�
k̄t
�

= αA (S + ε) k̄αt
kt+1 = α (S − ε) f (kt) = αA (S − ε) kαt

By induction, we have kt ≤ kt ≤ k̄t, for every t ≥ T . Clearly,

lim
t→∞

k̄t = [αA (S + ε)]
1

1−α and lim
t→∞

kt = [αA (S − ε)]
1

1−α

Hence we obtain

lim
t→∞

sup kt ≤ [αA (S + ε)]
1

1−α and lim
t→∞

inf kt ≥ [αA (S − ε)]
1

1−α

Since ε is arbitrary, we have

lim
t→∞

kt = (αAS)
1

1−α

The convergence of kt implies the convergence of b
i
t and c

i
t. Therefore, the se-

quence
�
c1t , c

2
t , b

1
t , b

2
t , kt

�∞
t=0
converges to the values defined in part (1) of Propo-

sition 8.
(2) Consider part (2) of Proposition 8 and suppose that δ > δ∗.
(2.1) First, we prove the existence of some t such that b2t ≥ b1t .
Assume the contrary: b1t > b

2
t for every t ≥ 0.

(2.1.1) We prove that b2t+1 > 0 for every t ≥ 0. Indeed, assume the contrary,
b2t+1 = 0 for some t. Then, from b1t+1 > b

2
t+1 = 0, we have

β1R(kt)(b
1
t + γkt) ≥ γkt+1 ≥ β2R(kt)(b

2
t + γkt)

for some t, that is

b2t + γkt ≤
β1
β2

�
b1t + γkt

�

or, equivalently,
β1
β2
>
λ2t + γ

λ1t + γ

We know that b2t+1 > 0 if the equation ζ
�
λ2t+1

�
= ξ

�
λ2t
�
has a solution in

the interval (0, 1/π2). We already have ζ (0) < ξ (0) < ξ
�
λ2t
�
. We will verify

that ζ (1/π2) > ξ
�
λ2t
�
. Indeed, we have

ζ


1

π2

�
=

1
π2

+ γ
1+β2
γ

1+β1

>
1 + β1
1 + β2

=
β1
β2

β2
β1

1 + β1
1 + β2

>
λ2t + γ

λ1t + γ

β2
β1

1 + β1
1 + β2

= ξ
�
λ2t
�
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Hence, equation ζ
�
λ2t+1

�
= ξ

�
λ2t
�
has a solution in (0, 1/π2). Therefore,

λ2t+1 > 0 and b2t+1 > 0, a contradiction. Then, b2t+1 > 0 for every t ≥ 0 under
the assumption that b1t > b

2
t for every t ≥ 0.

(2.1.2) Since b1t+1 > b2t+1 > 0 for every t ≥ 0, using the same arguments

as in the preliminary part of the proof, we have 0 < λit < 1/π2 for any t ≥ 0.
Moreover, this sequence is monotonic and converges to a solution to equation
ζ (λ) = ξ (λ). Hence, equation ζ (λ) = ξ (λ) has a solution in the interval
(0, 1/π2). As proven in the preliminary part, this implies the existence of a
steady state with positive bequests: a contradiction with the second part of
Proposition 8.
Hence, there exists some t0 such that b2t0 ≥ b1t0 .
(2.2) We will prove that b2t ≥ b1t for every t ≥ t0. Indeed, since β/ (1 + β) is

increasing in β and 1/ (1 + β) is decreasing, we have

β2R (kt0)
�
b2t0 + γkt0

�
− γkt0+1

1 + β2
≥ β2R (kt0)

�
b1t0 + γkt0

�
− γkt0+1

1 + β2

≥ β1R (kt0)
�
b1t0 + γkt0

�
− γkt0+1

1 + β1

This implies b2t0+1 ≥ b1t0+1. By induction, we have b2t ≥ b1t for every t ≥ t0.
(2.3) We prove the existence of some t1 ≥ t0 such that b1t1 = 0. Assume the

contrary: b2t ≥ b1t > 0 for any t ≥ t0. This implies the existence of a steady
state with strictly positives bequests: a contradiction. Therefore, there exists
t1 ≥ t0 such that bt1 = 0.
(2.4) Now, we prove that b1t = 0 for every t ≥ t1. Assume the contrary: there

is some t ≥ t1 such that b1t = 0 and b1t+1 > 0. In this case, both b1t+1 and b
2
t+1 are

strictly positive. Since b1t = 0, we have λ2t = 1/π2. Using the same arguments
as in part (1) with b1t+1, b

2
t+1 > 0, we find that λ2t+1 = ϕ

�
λ2t
�
> λ2t = 1/π2, a

contradiction.
Hence, b1t = 0 for every t ≥ t1. Therefore, the sequence

�
b1t , b

2
t

�
converges to�

0, b22
�
in Proposition 8.

(3) Consider the cutting-edge case, where δ = δ∗. Consider functions ζ and
ξ defined as in part (1) of the proof. We observe that, for any λ ∈ [0, 1/π2],
we have ζ (λ) ≤ ξ (λ), with equality if and only if λ = 1/π2. Using the same
arguments as in part (2) of the proof, we have b2t > 0 for every t ≥ 1. Now, we
consider two cases: either b10 = 0 or b10 > 0.
In the first case, following the same line of arguments as in part (2) of the

proof, we have b1t = 0 for any t ≥ 1 and the solution converges to the one
described in Proposition 8.
In the second case, we have 0 < λ20 < 1/π2. Using arguments in part (1)

of the proof, we have 0 < λ10 < λ
1
2 < 1/π2. By induction we obtain that the

sequence
�
λ2t
�
t≥1
is strictly increasing and converges to the unique solution to

ζ (λ) = ξ (λ), that is 1/π2. A direct consequence of this is that λ
1
t converges

to 0. As in part (2), the convergence of λ1t to 0 and of λ2t to 1/π2 implies the
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convergence of
�
b1t , b

2
t , kt

�
. It is easy to compute that they converge to the values

defined in part (1) of Proposition 8.
Proof of Lemma 10
We observe that, in this case, according to Proposition 8, the steady-state

interest rate is given by (18).
We linearize the dynamic system (23)—(24) where kt = πib

i
t + πjb

j
t around

the steady state
�
b11, b

2
1

�
to obtain

(1 + βi + γπi) db
i
t+1 + γπjdb

j
t+1

=


πi
k1
εR (k1)βiR (k1)

�
(1 + γπi) b

i
1 + γπjb

j
1

�
+ βiR (k1) (1 + γπi)

�
dbit

+


πj
k1
εR (k1)βiR (k1)

�
(1 + γπi) b

i
1 + γπjb

j
1

�
+ βiR (k1) γπj

�
dbjt

where k1 = π1b11 + π2b21 is the steady-state capital and

εR (kt) ≡
ktR′ (kt)

R (kt)
= α− 1 (41)

is the elasticity of the interest rate.
Setting R1 = R (k1) and noticing that, at the steady state, the saving share

of type i agents (25) is given by

zi = γπi
βiR1 − 1

1 + βi − βiR1
with, clearly, z1 + z2 = 1, we find

(1 + βi + γπi) zi
dbit+1
bi1

+ γπizj
dbjt+1

bj1

= βiR1 [1 + (1− α) (πi − zi)] zi
dbit
bi1

+ βiR1 (1− α) (πi − zi) zj
dbjt

bj1

with i = 1, 2 and j = i. In matrix terms, we get (26). Linearizing this system
around the steady state (21), we obtain the eigenvalues (29), where T and D
are given by expressions (27) and (28).
Proof of Proposition 11
Denote the saving share of the more altruistic agents by z ≡ z2. Note that,

in this case, the steady-state interest rate is such that

1

β1
< R1 < 1 +

1

β2
(42)

The steady state is a sink (two eigenvalues inside the unit circle) if and
only if the pair (T,D) lies in the stability triangle defined by the inequalities
D > −T − 1, D > T − 1 and D < 1.
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Let us show that (1.1) D > 0 and T > 0 (implying D > −T − 1); (1.2)
D > T − 1; (1.3) D < 1.
(1.1) Notice that D > 0 because (1 + αβ1) (1 + β2)−π (1− α) (β2 − β1) > 0

and

T = R1
(1 + αβ1) (1 + β2)− 1− [αz + (1− α)π] (1− α) (β2 − β1)

(1 + αβ1) (1 + β2)− π (1− α) (β2 − β1)

+R1
αβ1β2

(1 + αβ1) (1 + β2)− π (1− α) (β2 − β1)

≥ R1

�
(1 + αβ1) (1 + β2)− 1− (1− α) (β2 − β1)
(1 + αβ1) (1 + β2)− π (1− α) (β2 − β1)

+
αβ1β2

(1 + αβ1) (1 + β2)− π (1− α) (β2 − β1)

�

= R1

�
β1 + αβ2 + 2αβ1β2

(1 + αβ1) (1 + β2)− π (1− α) (β2 − β1)

�
> 0

because αz + (1− α)π ≤ 1.
(1.2) We want to prove that D > T − 1.
According to (27) and (28), D > T − 1 is equivalent to

(R1 − 1) [(1 + αβ1) (1 + β2)− αβ1β2R1]−R1+(π −R1 [αz + (1− α)π]) (1− α) (β2 − β1) < 0

Using the expression for z, we obtain

αβ1β2R
2
1 − (β2 + αβ1 + 2αβ1β2)R1 + (1 + αβ1) (1 + β2)

+π (1− α) (β2 − β1)
�
(1− α)

β2R1
1 + β2 − β2R1

− 1

�

> 0 (43)

The steady state R1 is solution to

(1− π)
β1R1 − 1

1 + β1 − β1R1
+ π

β2R1 − 1

1 + β2 − β2R1
=

α

1− α
that is to

β1β2R
2
1 = (β1 + β2 + β1β2 + αβ1β2)R1+π (1− α) (β2 − β1)−(1 + β2) (1 + αβ1)

Thus, at the steady state R = R1, (43) becomes

α [(β1 + β2 + β1β2 + αβ1β2)R1 + π (1− α) (β2 − β1)− (1 + β2) (1 + αβ1)]

− (β2 + αβ1 + 2αβ1β2)R1 + (1 + αβ1) (1 + β2)

+π (1− α) (β2 − β1)
�
(1− α)

β2R1
1 + β2 − β2R1

− 1

�
> 0

or, equivalently, X2 − 2PX + (1 + β2)P > 0, where X ≡ β2R1 and

P ≡ 1 + β2 + π (β1 − β2)
1− α

1 + αβ1
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The roots are X± = P±
�
P 2 − (1 + β2)P . Thus, X

2−2PX+(1 + β2)P >
0 if P 2 − (1 + β2)P < 0.
We observe that P < 1 + β2 because of Assumption 1. Moreover, P > 0 if

and only if

π <
1 + αβ1
1− α

1 + β2
β2 − β1

According to (42),

β1 >
β2

1 + β2

and

1 + αβ1
1− α

1 + β2
β2 − β1

>
1 + αβ1
1− α

1 + β2

β2 − β2
1+β2

=
1 + αβ1
1− α


1 + β2
β2

�2
> 1

Hence,

π ≤ 1 <
1 + αβ1
1− α

1 + β2
β2 − β1

and P > 0.
Summing up, we have 0 < P < 1 + β2, which implies P

2 − (1 + β2)P < 0,
that is X2 − 2PX + (1 + β2)P > 0 or, equivalently, (43), that is D > T − 1.
(1.3) Finally, let us prove that D < 1.
According to (28), D < 1 is equivalent to

R21 <
(1 + αβ1) (1 + β2)

αβ1β2
−π 1− α

α


1

β1
− 1

β2

�
=

(1 + αβ1) (1 + β2)

αβ1β2
−δπ 1− α

α

that is to
αβ1β2R

2
1 < (1 + αβ1) (1 + β2)− δπβ1β2 (1− α) (44)

According to (42),

R21 <


1 +

1

β2

�2
<


1 +

1

β1

�
1 +

1

β2

�

Thus, (44) is verified if

αβ1β2


1 +

1

β1

�
1 +

1

β2

�
≤ (1 + αβ1) (1 + β2)− δπβ1β2 (1− α)

or, equivalently, if ψ (α) ≡ (1 + αβ1) (1 + β2)−δπβ1β2 (1− α)−α (1 + β1) (1 + β2) ≥
0.
We observe that ψ (1) = 0 and ψ (0) > 0 is equivalent to π < (1 + β2) / (β2 − β1),

which always holds since π ∈ [0, 1].
Since the function ψ is affine, we have also ψ (α) ≥ 0 for any α ∈ [0, 1].

Then, D < 1.
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Proof of Proposition 12
Dynamics are given by

b2t+1 =
β2R

�
π2b2t

� �
b2t + π2b2tγ

�
− π2b2t+1γ

1 + β2

that is by

b2t+1 =
β2 (1 + πγ)

1 + β2 + πγ
R
�
πb2t
�
b2t

since π ≡ π2.
We observe that, in this case, according to Proposition 8, the steady-state

interest rate is given by

R2 ≡
1

β2
+

1

1 + γπ

Thus, dynamics reduce to (30).
Linearizing the one-dimensional dynamics (30) around the steady state

�
b21,R2

�
,

we obtain the eigenvalue:

db2t+1
b22

=

�
R
�
πb22
�

R2
+
πb22R

′
�
πb22
�

R2

�
db2t
b22

= [1 + εR (k2)]
db2t
b22

since k2 = πb22 and R2 = R (k2). The elasticity of the interest rate εR (k2) =
α− 1 is given by (41).
Therefore, (31) holds and, since α ∈ (0, 1), dynamics locally converge to the

steady state b22 from the initial condition b
2
0 around the steady state. The steady

state is locally stable.
Proof of Proposition 13
Denote

R1 (π) ≡ 1 + α

2
+

1

2


1

β1
+

1

β2

�
− 1

2

�
(δ + α− 1)2 + 4δπ (1− α)

R2 (π) ≡ 1

β2
+

1

1 + γπ

and consider the impact of π on the steady-state interest rate.
Condition δ < δ∗ is equivalent to π < π∗. Thus, there are three cases: (1) if

π∗ > 1, which is equivalent to δ < α, then R∗ (π) = R1 (π); (2) if 0 < π∗ ≤ 1,
then R∗ (π) = R1 (π) for π < π∗ and R∗ (π) = R2 (π) for π ≥ π∗; and (3) if
π∗ ≤ 0, which is equivalent to δ ≥ 1, then R∗ (π) = R2 (π).
When 0 < π∗ ≤ 1 and π = π∗, by (37) and the fact that δ < 1 we have

R1 (π∗) =
1

2

�
1 + α+

1

β1
+

1

β2
−
�
D(π∗)

�
=

1

2


1

β1
+

1

β2
+ δ

�
=

1

β1

R2 (π∗) =
1

β2
+

1

1 + 1−δ
δ

=
1

β2
+ δ =

1

β1
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Therefore, R∗ (π) is continuous. It follows that k∗ is also continuous in π. Since
both R1 (π) and R2 (π) are decreasing in π, k∗ is increasing in π.
Proof of Proposition 14
Let D (δ) ≡ (δ + α− 1)

2
+ 4δπ (1− α). Denote

R1 (δ) ≡ 1 + α

2
+

1

β̄
+

2π − 1

2
δ − 1

2

�
D (δ)

R2 (δ) ≡ 1

β̄
− (1− π) δ +

1

1 + γπ

and consider the impact of δ on the steady-state interest rate.
Since δ∗ given by (20) corresponds to π∗ given by (32), it is easily seen from

(37) that

D (δ∗) =


1 + α− 1

1 + γπ

�2

Therefore, R∗ (δ) is continuous, since

R1 (δ∗) =
1

β̄
+

1

2

�
1 + α+

2π − 1

1 + γπ
−
�
D (δ∗)

�
=

1

β̄
+

π

1 + γπ

R2 (δ∗) =
1

β̄
+

π

1 + γπ

Notice that

R′2 (δ) ≡ π − 1 < 0

R′1 (δ) ≡ 2π − 1

2
− δ + α− 1 + 2π (1− α)

2
�
D(δ)

< 0

Indeed, R′1 (δ) < 0 if and only if

(2π − 1)
�
D(δ) < (1− α) (2π − 1) + δ (45)

When 2π − 1 < 0, inequality (45) becomes

(1− 2π)

�
δ2 + (1− α)2 − 2δ (1− α) (1− 2π) > (1− α) (1− 2π)− δ

If δ > (1− α) (1− 2π), the inequality holds. If δ < (1− α) (1− 2π), it is
equivalent to

(1− 2π)
2
�
δ2 + (1− α)

2 − 2δ (1− α) (1− 2π)
�
> [(1− α) (1− 2π)− δ]2

that is to (1− 2π)2 [δ − 2 (1− α) (1− 2π)] > δ−2 (1− α) (1− 2π), which holds
since 1− 2π < 1 and δ < (1− α) (1− 2π) < 2 (1− α) (1− 2π).
When 2π − 1 > 0, inequality (45) becomes

(2π − 1)2
�
δ2 + (1− α)2 + 2δ (1− α) (2π − 1)

�
< [δ + (1− α) (2π − 1)]2
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that is (2π − 1)
2 �δ2 + 2δ (1− α) (2π − 1)

�
< δ2 + 2δ (1− α) (2π − 1), which is

true since 2π − 1 < 1.
Since k∗ is inversely related to R∗, it follows that k∗ is increasing in δ.
Proof of Proposition 15
The level of social inequality in terms of income in the steady-state equilib-

rium is represented by the Gini index:

G = 2

� 1

0

[x− g (x)] dx

where g : [0, 1] → [0, 1] is the Lorenz curve.
Let us introduce the Lorenz curve by considering a population of n individ-

uals.
The individual i earns a revenue yi. These individuals are ordered: yi ≤ yi+1

for i = 1, . . . , n. We have a finite sequence of points
�
xi, zi

�n
i=0
with

�
x0, z0

�
≡

(0, 0) and

�
xi, zi

�
≡
�
i

n
,


i
j=1 y

j


n
j=1 y

j

�

Clearly, (xn, zn) = (1, 1).
We connect any pair of successive points by a segment. The union of this

segment is the Lorenz curve. The Gini index is the ratio between the area A1
between the linear sequence (i/n, i/n)ni=0 and the Lorenz sequence

�
xi, zi

�n
i=0
,

and the area A2 = 1/2 under the linear sequence (i/n, i/n)ni=0.
In our case, there are n1 individuals with revenue y

1 and n2 individuals with
revenue equal to y2 with n1 + n2 = n and

π1 ≡
n1

n1 + n2

is the share of agents of type 1 in total population.
Thus, the Gini index is given by

G ≡ A1
A2

=

� 1
0 [x− g (x)]dx

1/2

where g is a continuous Lorenz curve:

g (x) =

n1y
1

n1y1+n2y2

n1
n1+n2

x if 0 ≤ x ≤ n1
n1 + n2

g (x) =
n1y1

n1y1 + n2y2
+

1− n1y
1

n1y1+n2y2

1− n1
n1+n2


x− n1

n1 + n2

�
if π1 < x ≤ 1

that is

g (x) =
y1

π1y1 + π2y2
x if 0 ≤ x ≤ π1

g (x) =
π1y

1 + (x− π1) y2
π1y1 + π2y2

if π1 < x ≤ 1
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We obtain

G = 2

� 1

0

[x− g (x)] dx = 2

� π1

0

[x− g (x)] dx+

� 1

π1

[x− g (x)] dx

�

= 2

� 1

0

xdx− 2

�� π1

0

g (x) dx+

� 1

π1

g (x) dx

�
(46)

Since

� 1

0

xdx =
1

2
� π1

0

g (x) dx =
y1

π1y1 + π2y2
π21
2

� 1

π1

g (x) dx =
π1y

1 − π1y2
π1y1 + π2y2

(1− π1) +
y2

π1y1 + π2y2
1

2

�
1− π21

�

using (46), we find

G =
π1π2

�
y2 − y1

�

π1y1 + π2y2

The income of type i agent is given by yi = Rbi+w (k) = Rbi+(1− α)Akα.
Consider the two parts of Proposition 8.
(1) We have yi1 = R1bi1 + (1− α)Akα1 and

G1 =
π1π2

�
y21 − y11

�

π1y11 + π2y21

Observing that R1 = αAkα−11 and

bi1
γk1

=
R1 − 1

βi

1 + 1
βi
−R1

with i = 1, 2, and using yi1 = R1b
i
1 + (1− α)Akα1 , we obtain

G1 = π1π2
R1

b21
γk1

−R1 b11
γk1

αAkα−11 + π1R1
b1
1

γk1
+ π2R1

b2
1

γk1

= π1π2

1
β1
− 1

β2

1−R1 + π2
β1

+ π1
β2

that is (33).
(2) We have

y12 = R2b
1
2 + (1− α)Akα2 = (1− α)Akα2

y22 = R2b
2
2 + (1− α)Akα2 = R2

k2
π2

+ (1− α)Akα2
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and

G2 =
π1π2

�
y22 − y12

�

π1y12 + π2y22
= π1

R2k2
(1− α)Akα2 +R2k2

Since R2 = αAkα−12 , we find

G2 = π1
αAkα−12 k2

(1− α)Akα2 + αAkα−12 k2
= απ1

Proof of Proposition 16
Let

G1 (π) ≡ 2δπ(1− π)

1− α+ (2π − 1) δ +
�

(δ + α− 1)
2

+ 4δπ (1− α)

G2 (π) ≡ α (1− π)

We have G2 (π∗) = α (1− π∗), and, by (37),

G1 (π∗) =
2δπ∗ (1− π∗)

1− α+ (2π∗ − 1) δ +
�
D(π∗)

=
2δπ∗ (1− π∗)

1− α+ (2π∗ − 1) δ + 1− δ + α

=
δπ∗ (1− π∗)
1− δ + δπ∗

=
1

1 + γ
(1− π∗) = α (1− π∗)

since δπ∗ = (1− δ) /γ. Therefore, G∗ (π) is continuous.
To analyze the shape of G1 (π), denote G1 (π) = n (π) /d (π), where

n (π) ≡ 2δπ (1− π)

d (π) ≡ 1− α+ δ (2π − 1) +
�
D (π)

Since

n′ (π) = 2δ (1− 2π)

d′ (π) = 2δ

�

1 +
1− α
�
D (π)

�

(47)

we have

G′1 (π) = 2δ

(1− 2π) d (π)− 2δπ (1− π)

�
1 + 1−α√

D(π)

�

d (π)2
(48)

Now we have to distinguish between two cases.
(1) Suppose that δ < 1− α. Then G1 (0) = G1 (1) = 0. We show that there

exists a unique π̂ such that for π < π̂, G1 (π) is monotonically increasing in π,
while for π ≥ π̂, G1 (π) is monotonically decreasing in π.
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Indeed, after some algebra, equation G′1 (π) = 0 can be written as L (π) =
R (π), where

L (π) ≡ (1− α− δ) 1− 2π

2δπ

R (π) ≡ π
�
D (π) + (1− α) (3π − 1)
�
D (π) + 1− α− δ

=

�
D (π) + (1− α)

�
3− 1

π

�
√
D(π)

π + 1−α−δ
π

Since δ < 1−α, we have 1−α−δ > 0. Then, L (π) is convex and decreasing
with L (0+) = +∞, L (1/2) = 0 and L(1) = − (1− δ − α) / (2δ) < 0.
Further, R (π) is increasing. Indeed,

�
D (π)+(1− α) (3− 1/π) is increasing

in π, while
�
D (π)/π + (1− α− δ) /π is decreasing in π. By (36),

R (0) = −1

2

1− α
1− α− δ < 0 and R


1

2

�
=

1

2

�
D (1/2) + 1− α

�
D (1/2) + 1− α− δ

> 0

Therefore, in this case there exists a unique value 0 < π̂ < 1/2 such that
L (π̂) = R (π̂), or G′1 (π̂) = 0. Moreover, for π < π̂, L (π) > R (π), so that
G1 (π) is increasing, while for π > π̂, L (π) < R (π), and G1 (π) is decreasing.
When δ < α, we have π∗ > 1, and hence, as in the proof of Proposition 13,

we have G∗ (π) = G1 (π). In this case the threshold level of π, up to which G∗

is increasing and after which G∗ is decreasing, is π̂. Similarly, when α < δ ≤ 1,
for π < π∗ we have G∗ (π) = G1 (π), while for π ≥ π∗, we have G∗ (π) = G2 (π).
In this case, the threshold level of π is π̃ ≡ min{π̂, π∗}.
(2) Suppose that δ > 1− α. By Bernoulli’s rule,

G1 (0) =
n′ (0)

d′ (0)
=
δ + α− 1

δ
> 0 = G1 (1)

Moreover, in this case G1 (0) < α = G2 (0) if and only if δ < 1.
The second case have two subcases.
(2.1) Suppose that 1− α < δ < 2 (1− α). Then we show that G′1 (0+) > 0

and G′1 (1−) < 0, so there exists an interior π̂ = arg max0≤π≤1G1 (π).
Indeed, using (38) and (48), we obtain

G′1 (1) = − δ

1− α+ δ
< 0

Applying the Bernoulli’s rule to (48), we get

G′1
�
0+
�

= 2δ lim
π→0+

−2d (π) + (1− 2π) d′ (π)− 2δ (1− 2π)

�
1 + 1−α√

D(π)

�
+ 4δ2 (1− α)

2 π(1−π)

D(π)
3
2

2d (π) d′ (π)

= lim
π→0+

−d (π)
�
D (π) + 2δ2 (1− α)

2 π(1−π)
D(π)

d (π)
�
1− α+

�
D (π)

�
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In this case, by (36),
�
D (0) = δ+α−1 > 0. Applying again the Bernoulli’s

rule, we have

G′1
�
0+
�

= lim
π→0+

−d′ (π)
�
D (π)− d (π) D′(π)

2
√
D(π)

+ 2δ2 (1− α)2 (1−2π)D(π)−π(1−π)D
′(π)

D(π)2

d′ (π)
�
1− α+

�
D (π)

�
+ d (π) D′(π)

2
√
D(π)

=
2 (1− α)− δ
δ + α− 1

Thus, for 1− α < δ < 2 (1− α), G′1 (0+) > 0.
(2.2) Suppose that δ ≥ 2 (1− α). We have just seen that in this case

G′1 (0+) ≤ 0. Let us show that G′1 (π) < 0 for all π > 0. By (48), this is
equivalent to

π (1− π) d′ (π) > (1− 2π) d (π)

Since d (0) = 0, it is sufficient to check that for all π > 0,

[π (1− π) d′ (π)]
′
> [(1− 2π) d (π)]′

that is 2d (π) > −π (1− π) d′′ (π) or 2d (π) > π (1− π) |d′′ (π)|, since d′′ (π) < 0.
Or, equivalently, it is sufficient to show that

��
D (π)− (δ + α− 1) + 2δπ

�
[D (π)]

3
2 > 2π (1− π) δ2 (1− α)2

It is easy to see that

�
D (π)− (δ + α− 1) >

2δπ (1− α)
�
D (π)

and, since δ ≥ 2 (1− α) > 1− α,
�
D (π) =

�
(δ + α− 1)2 + 4δπ (1− α) > δ − (1− α) ≥ 1− α

Therefore,

��
D (π)− (δ + α− 1) + 2δπ

�
D (π)

3
2

=
��
D (π)− (δ + α− 1)

�
D (π)

3
2 + 2δπD (π)

3
2 >

2δπ (1− α)
�
D (π)

D (π)
3
2 + 2δπD (π)

3
2

= 2δπD (π)
�
1− α+

�
D (π)

�
> 2δπ (1− α)2 [1− α+ δ − (1− α)] = 2πδ2 (1− α)2

≥ 2π (1− π) δ2 (1− α)2

Again, as in the proof of Proposition 13, in both cases (2.1) and (2.2), when
δ < α, we have G∗ (π) = G1 (π). When α < δ ≤ 1, for π < π∗ we have
G∗ (π) = G1 (π), while for π ≥ π∗, we have G∗ (π) = G2 (π). When δ > 1, we
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have π∗ ≤ 0, and hence G∗ (π) = G2 (π). Thus, if 1−α < δ < min {1, 2 (1− α)},
then G∗ (π) has an inverted-U shape. If δ ≥ min {1, 2 (1− α)}, then G∗ (π) is
decreasing in π.
Proof of Proposition 17
Let

G1 (δ) =
2δπ(1− π)

1− α+ (2π − 1) δ +
�

(δ + α− 1)2 + 4δπ (1− α)

We have G2 (δ∗) = α (1− π), and

G1 (δ∗) =
2δ∗π (1− π)

1− α+ (2π − 1)δ∗ +
�
D(δ∗)

=
2δ∗π (1− π)

1− α+ (2π − 1)δ∗ + 1 + α− δ∗

=
δ∗π (1− π)

1− (1− π)δ∗
=

π (1− π)

1 + γπ − 1 + π
= α (1− π)

since γ = (1− α) /α. Therefore, G∗ (δ) is continuous.
Let us show that G′1 (δ) > 0. Indeed,

G′1 (δ) =
2π (1− π)

�
1− α+ δ (2π − 1) +

�
D (δ)

�2

�

1− α+
�
D (δ)− δD′ (δ)

2
�
D (δ)

�

and

1− α+
�
D (δ)− δD′ (δ)

2
�
D (δ)

=
1− α
�
D (δ)

��
D (δ) +

D (δ)− δ (δ + α− 1)

1− α − 2δπ

�

=
1− α
�
D(δ)

�
2δπ +

�
D (δ)− (δ + α− 1)

�
> 0

since, by (36),
�
D (δ) ≥ δ + α− 1.

Proof of Proposition 18
In the steady state j = 1, 2, for agent i = 1, 2, we obtain

U i′j (π) =
ci′j (π)

cij (π)
+ βi

ci′j (π) + bi′j (π)

cij (π) + bij (π)
(49)

In the following, for simplicity, we omit the argument π. We have U i′j = 0 if
and only if

ci′j
cij

�

1 + (1 + βi)
cij
bij

�

+ βi
bi′j
bij

= 0 (50)

(1) Focus on the first steady state. For π < π∗, the utilities of the more
and the less altruistic agents are given by U21 and U

1
1 respectively. Consider the

steady-state equilibrium
�
c11, b

1
1, c

2
1, b

2
1, k1

�
. Recall that R′1 (π) < 0 and

k′1 (π)

k1 (π)
= − 1

1− α
R′1 (π)

R1 (π)
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Furthermore, by part (1) of Proposition 8,

ci1
bi1

=
1

βiR1 − 1
(51)

and hence
bi′1
bi1

=
ci′1
ci1

+
βiR

′
1

βiR1 − 1
(52)

On the other hand,

ci′1
ci1

=
k′1
k1

+
βiR

′
1

βi + 1− βiR1
=
R′1
R1


βiR1

βi + 1− βiR1
− 1

1− α

�
(53)

Using (49), (50), (51), (52) and (53), after some algebra, we have

U i′1 =
R′1
R1

�
βi (1 + βi)R1
1 + βi − βiR1

− 1 + αβi
1− α

�

Since R′1 (π) < 0, we obtain that U i′1 (π) < 0 if and only if

βi (1 + βi)R1
1 + βi − βiR1

− 1 + αβi
1− α > 0

or, equivalently,

R1 (π) >
1 + βi
βi

1 + αβi
2− α+ βi

(54)

Note that the right-hand side of this inequality depends on βi and hence is
different for different types of agents.
(1.1) Consider the utility of the less altruistic agents. We have

U1′1 (π) < 0 ⇔ R1 (π) >
1 + β1
β1

1 + αβ1
2− α+ β1

Define a critical value of the level of altruism π̂ as a solution to the equation

R1 (π) =
1 + β1
β1

1 + αβ1
2− α+ β1

Since R1 (π) is strictly decreasing, this solution is unique.
Define also a critical value for the capital share in total income:

α∗ ≡ 1

1 + β1 + β21

There are two cases.
(1.1.1) π∗ < π̂. This case holds when

R1 (π∗) > R1 (π̂) ⇔ 1

β1
>

1 + β1
β1

1 + αβ1
2− α+ β1
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or, equivalently, α < α∗. Since R1 (π) is strictly decreasing, for all π < π∗ we
have

R1 (π) > R1 (π∗) > R1 (π̂) =
1 + β1
β1

1 + αβ1
2− α+ β1

and hence U1′1 (π) < 0 for all π < π∗.
(1.1.2) π̂ < π∗. This case holds if and only if

R1 (π∗) =
1

β1
< R1 (π̂) =

1 + β1
β1

1 + αβ1
2− α+ β1

or, equivalently, α > α∗.
In this case, for all π < π̂, we have

R1 (π) > R1 (π̂) =
1 + β1
β1

1 + αβ1
2− α+ β1

and, according to (54), U1′1 (π) < 0 for all π < π̂.
Conversely, for all π > π̂ we have

R1 (π) < R1 (π̂) =
1 + β1
β1

1 + αβ1
2− α+ β1

and hence U1′1 (π) > 0 for all π̂ < π < π∗.
(1.2) Consider now the more altruistic agents. We have

R1 (π∗) ≥ R1 (1) = α+
1

β2
=

1 + αβ2
β2

>
1 + αβ2
β2

1 + β2
1 + β2 + 1− α =

1 + β2
β2

1 + αβ2
2 + β2 − α

Since R1 (π) is strictly decreasing in π, it follows that U21
′ (π) < 0 for all π ≤ π∗.

(2) Focus now on the second steady state. For π ≥ π∗, the utilities of the less
and the more altruistic agents are given by U12 and U

2
2 respectively. Consider

the steady-state equilibrium
�
c12, b

1
2, c

2
2, b

2
2, k2

�
.

Recall that

R′2 (π) = − γ

(1 + γπ)
2

k′2 (π)

k2 (π)
=

1

(1 + γπ)2
1

αR2 (π)
> 0

(2.1) For the less altruistic agents,

U12 = ln c1t+β1 ln
�
R2b

1
2 +w2

�
= ln c12+β1 lnw2 = (1 + β1) lnw2 = (1 + β1) ln [(1− α)Akα2 ]

since c12 = γR2k2 = (1− α)Akα2 = w2. Since k2 is strictly increasing in π,
U12 (π) is strictly increasing as well, that is U1′2 (π) > 0 for all π ≥ π∗.
(2.2) For the more altruistic agents, we have

b2′2
b22

=
k′2
k2
− 1

π
= − 1

πR2

�

R2 −
π

α (1 + γπ)2

�

(55)
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Note that b22 is strictly decreasing in π. Indeed, b
2′
2 < 0 because

R2 −
π

α (1 + γπ)
2 =

1

β2
+

1

1 + γπ
− π (1 + γ)

(1 + γπ)
2 =

1

β2
+

1− π
(1 + γπ)

2 > 0

Moreover,
c22
b22

=
1 + γπ

β2
(56)

and hence

c2′2
c22

=
b2′2
b22

+
γ

1 + γπ
= − 1

π (1 + γπ)R2

�
R2 −

π

α (1 + γπ)

�
(57)

Therefore, using (49), (55), (56) and (57), and taking into account (19), we
obtain

U2′2 =
c2′2
c22

+ β2
c2′2 + b2′2
c22 + b22

=
b22

c22 + b22


c2′2
c22

�
1 + (1 + β2)

c22
b22

�
+ β2

b2′2
b22

�

= − 1

π

b22
c22 + b22

�
1

β2
+

1 + (1− π) (1 + β2)

1 + πγ

�

Hence, U2′2 (π) < 0 for any π ≥ π∗.
Summing up the results for both steady states, we conclude the following.
Less altruistic agents.
(1) Case π < π∗, where the utility is given by U1 = U11 . If α < α

∗, then
U1′ (π) < 0. If α > α∗, then U1′ (π) < 0 for 0 < π < π̂ and U1′ (π) > 0 for
π̂ < π < π∗ with U1 (π̂) = minU1 (π).
(2) Case π ≥ π∗, where the utility is given by U1 = U12 . Here U

1′
2 (π) > 0.

Therefore, there is a threshold π̌ defined as follows:

π̌ ≡ π∗ if α ≤ α∗

π̌ ≡ π̂ < π∗ if α > α∗

such that U1 is continuous at π = π̌, strictly decreasing for π < π̌, strictly
increasing for π > π̌.
More altruistic agents.
(1) Case π < π∗, where the utility is given by U2 = U21 . Here, U

2
1
′ (π) < 0.

(2) Case π ≥ π∗, where the utility is given by U2 = U22 . Here, U
2′
2 (π) < 0.

Therefore, U2 is strictly decreasing for all π.
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