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COMPILING OO LANGUAGES UNDER CLOSED WORLD ASSUMPTION 1

1. INTRODUCTION

When considering software organization, software reliability or software modularity, object-
oriented technology is currently the most popular way to meet all those requirements. On
the other hand, there is substantially less consensus about the performance of object-oriented
language. Many high-level, object-oriented languages do not have a good reputation for runtime
performance. For many people, achieving the best runtime performance requires using C
language or even assembly code.
Our results from working on the SmartEiffel and Lisaac compilers indicate that the previous

assertion is far from obvious. When the application is very small, it is highly likely that C
or assembly code is the best choice. As soon as the application is of medium or large size,
we believe that a high-level, object-oriented language would be the best candidate, knowing
that the compiler is a crucial ingredient for success. Without claiming that object-oriented
programming eliminates all of the disadvantages, we now believe that C could be omitted
in many situations in order to improve productivity. This article presents our compilation
strategy, which is suitable for several object-oriented languages. This efficient strategy is the
result of many years of effort, first on the SmartEiffel compiler (formerly called SmallEiffel)
and then on the Lisaac compiler. Both whose foundation in designs and implementations are
deeply focused on ensuring runtime efficiency.

1.1. Context of our work: the SmartEiffel and Lisaac background

The work on the Lisaac language [1, 2] and compiler grew out of the work on the
SmartEiffel compiler [3]. From the beginning, the SmartEiffel compiler has used global analysis.
Keeping the global compilation technique, Lisaac has added type flow optimizations, hence
improving code customization. Both compilers assume knowledge of all the source code during
compilation. Adding new source code during runtime is forbidden. Thanks to the encouraging
results of SmartEiffel, we decided to focus mostly on static optimizations, leveraging global
program analysis. From the language point of view, SmartEiffel and Lisaac consider all
types of data, such as booleans, integers, and pixels, as true objects. Furthermore Lisaac,
like Smalltalk [4] or Self [5, 6] also defines loops and conditional statements as part of
the library. Block closures are also handled. Both languages are high-level, object-oriented
languages featuring multiple inheritance. Being a prototype-based language, Lisaac is also a
strongly typed language. Most of the work done for SmartEiffel and Lisaac concerns high-level,
object-oriented optimizations. The compilation strategy for inheritance and dynamic dispatch
is a key point for object-oriented languages. Type flow analysis, mixed together with code
customization and inlining, allows us to statically bind many method calls and is also used to
predict a possible null pointer inside arrays. Low-level optimizations such as register allocation
or loop unrolling are supposed to be applied after our high-level compilation strategy, however
to simplify the presentation, we use C as a target language.

1.2. Open-world vs. closed-world assumption

Compiling under the closed-world assumption (CWA) means that the compiler is able to
access the entire source code of the application to compile. Under CWA, not only are the
classes and methods of the application considered, but also the classes and methods of the
libraries the application uses. Dead code, unused classes or unused methods, can be ignored
and removed. Under CWA, no new code is supposed to be added after compilation time.
Conversely, under the open-world assumption (OWA), new classes or subclasses may be added
at any time. OWA is thus naturally associated with separate compilation, dynamic loading,
and incremental development of code. As indicated in [7, 8, 9, 10, 11], it is well-known that
the main benefit of CWA is runtime efficiency. All method calls or attribute accesses can be
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Figure 1. Global overview of our three steps compilation process.

customized prior to execution. Under CWA, multiple inheritance does not incur any overhead
when compared to single inheritance. The code can be customized according to its real usage
and dynamic dispatch can be implemented using a hard-coded dispatch mechanism.
It is possible to use CWA for languages such as C++, C# or for a large subset of Java (the

most significant omissions are dynamic class loading and reflection as in [12]). Using CWA
is more problematic for languages such as Smalltalk, Self or Lisp because, in these dynamic
languages, new source code is likely to be a result of computation. Even if the language
allows dynamic source code creation, many written applications do not use that feature. As an
example, a Lisp application which does not create new functions at runtime can be compiled
under CWA.

1.3. Global overview of our compilation process

Following the SmartEiffel compiler’s strategy [3, 13, 14, 15], the Lisaac compiler also performs
a global program analysis. Therefore, all the live code is considered in order to maximize type
analysis for each method call site. Thanks to type flow analysis the Lisaac compiler improves
the type analysis of SmartEiffel by reducing the set of all possible types for each method call
site as much as possible. Our compilation strategy features three major steps (figure 1):

First step. Gathering the live code. Using several passes, the goal of this first step is to
gather enough code to ensure that all the reachable code is included. Roughly, each pass of
this step performs a transitive closure of the call graph. During each pass, each expression is
tagged with a set of possible dynamic types. Each pass makes the type set of each expression
bigger and bigger until a fixed-point is reached. Adding a new dynamic type can make a new
method attainable, which may eventually result in the addition of new types. Medium-size
applications usually require 6 to 10 passes while large applications, such as the compiler itself,
requires approximately 30 passes to reach a fixed-point.
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COMPILING OO LANGUAGES UNDER CLOSED WORLD ASSUMPTION 3

Second step. Reduction and optimization of the live code. Using the dynamic type
information gathered during step 1, dynamic dispatch is replaced with branching code in
order to make new type flow information available. Then, each pass reconsiders all the live
code in an attempt to remove the code which is no longer reachable or attempting to inline
the reachable code. At the end of each pass the type set of each expression is increasingly more
accurate by type-set reduction until reaching a fixed-point. The closer we get to the end of
the process, the more precise our type analysis is. A fixed-point is reached when no further
inlining or transforming is possible. For large-size applications such as the compiler itself, the
number of passes varies between approximately 10 and 25.

Third step. Final target code generation. During this last step the field layouts into data
structures representing objects are optimized. Objects which are not involved in dynamic
dispatches are not equipped with the type id field. Only the used fields are generated and
ordered to reduce object size. Even after these steps some dynamic dispatch may remain, so
dynamic type ids are also selected during this final step to compact switch dispatch tables.

1.4. Article overview and major contributions of the article

Section 2 details how the reachable code is gathered during the first step of our compilation
strategy. Section 2.1 starts with the rather classical transitive closure of the call graph with
partial evaluation to collect a large superset of the live code. Section 2.2 presents our results
for type analysis of variables. Section 2.3 presents our technique to predict types inside arrays,
as well as its major impact on garbage collection inside arrays.
The second step of our strategy is detailed in section 3. Its major point is to take advantage

of CWA in order to get rid of virtual function tables, shown in subsection 3.1, using branching
code as a replacement. Subsection 3.2 is dedicated to method customization and presents
the choices we made to avoid code explosion thanks to the Argument Type Set (ATS)
customization of Lisaac. The measurements we present demonstrate the scalability of our
approach. Then, our inlining strategy inside dispatch branching code is presented in subsection
3.3 along with its two major results: the perfect translation of ifTrue:ifFalse: (3.3.1) and
the perfect translation of whileTrue: (3.3.2). The more traditional loop invariant detection is
developed in subsection 3.4, followed by reference comparison in subsection 3.5. Finally, the
branch merging transformation is presented in subsection 3.6.
Section 4 describes the third and final compilation step. The field order is selected in

subsection 4.1, to reduce the size of objects. The effective global dispatch map is used to select
type ids in order to optimize switch branching code in subsection 4.2. Section 5 is dedicated
to benchmarking. The bootstrap of the SmartEiffel compiler, subsection 5.1, highlights the
impact of dispatch branching code without type flow analysis on a large application. Then,
in subsection 5.2, another large application, the bootstrap of the Lisaac compiler is presented
this time with type flow analysis. Our experiments focus on late binding in subsection 5.3,
cascading message sends on the same receiver in subsection 5.4, calls on the self variable in
subsection 5.5 and method calls involving multiple inheritance in subsection 5.6. The impact of
inlining is studied in subsection 5.7. Then, the last benchmark presented in 5.8 is a real MPEG2
production decoder. A hand-written C version is compared with a systematic translation into
Lisaac code. Most of the related works are covered throughout the article and section 6 ends by
presenting them. A description of our future work is given in section 7 and section 8 concludes.

2. FIRST STEP: GATHERING LIVE CODE

The first step in our strategy is essentially a partial evaluation [16, 17] of the program starting
from the entry-point. The goal is to gather all the reachable code, even a rough superset of
the reachable code, from the entire source code necessary to run the application. At the same
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Source code

’main’

is_four::{FALSE}

is_four::{FALSE,TRUE}

’TRUE_if_else’

data::{NULL,CAR}

data::{NULL}

data::{NULL,CAR,BIKE}

’print’

’FALSE_if_else’

data::{NULL,CAR,BIKE,TRUCK}

’CAR_print’  ’BIKE_print’

Step 1, Pass 1: Unstable

- data:VEHICLE;

- print <-

( data.print; );

- no_access <-

( "No compile".print; );

- main <-  

( + is_four:BOOLEAN;

  is_four := 4 > 2;        

  (is_four).if {               

    data := CAR;   

  } else {

    data := BIKE;  

  };

  print;                  

  data := TRUCK; 

  print;                  

);                          

’TRUCK_print’

’print’

’TRUE_if_else’ ’FALSE_if_else’

Step 1, Pass 2: Unstable

’main’

Step 1, Pass 3. Stable (last pass). Gathered information

Type sets  : is_four :: {FALSE, TRUE}

                   data :: {NULL, CAR, BIKE, TRUCK}

Gathered methods : {main, CAR_print, BIKE_print, TRUCK_print, TRUE_if_else, FALSE_if_else}

’CAR_print’  ’BIKE_print’

Unreachable Code

Figure 2. Step 1: Gathering live code on the car/truck example. The bold typeset indicates new
gathered information, new source code or some new possible dynamic types for some expressions.
Notice that the default value for reference variables is null and false for variable of type boolean.

time, all expressions are tagged with a set of possible dynamic types in order to follow method
calls by dynamic dispatch simulation.

2.1. Transitive closure of the call graph

Using the the main function code as the starting point, the first step consists in developing
and analyzing the call graph of the complete source code and then, computing the set of
all possible dynamic types that can occur at runtime. Let us take into consideration the
simplistic car/truck example given in figure 2 where the entry point of the graph is the
main method. Any unreachable code is simply ignored and thus never compiled, avoiding
the cost of unnecessary compilation. For instance, the no access method in figure 2 is never
gathered. The reachable methods are stored and, each time a new possible dynamic type for
the receiver is encountered, customized accordingly.
Genericity as well as multiple inheritance are processed during the first step. Genericity is

treated by code duplication followed by code customization, simply taking into account effective
generic parameters. Thanks to CWA it is easy to know each possible generic derivation as well
as all the possible dynamic types. Each time a method call site is visited, the lookup mechanism
is simulated according to inheritance rules. For all possible dynamic types of the receiver, the
corresponding method is reached, and may be, in case of a new one, customized and collected.
Finally, the overhead of multiple inheritance only impacts compilation time (impact of CWA
on multiple inheritance is detailed in [18]).
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Figure 3. Number of passes before reaching a fixed-point for some benchmarks.
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(3) Polymorphic, never null 83
(4) Polymorphic, possibly null 7,216

Figure 4. Data type analysis for the variables of the Lisaac compiler source code after step 1.

Computation of the transitive closure of the call graph requires several passes until it reaches
a fixed-point. Each time a pass encounters new code or when a pass adds a new possible
dynamic type for an expression, yet another pass will have to be performed. A fixed-point is
reached when a pass adds neither new code nor new dynamic type. This gives us a superset
of the reachable code as well as a superset of the possible dynamic types for each expression.
For the example in figure 2, there are 3 passes and, when a fixed-point is reached, the set
of possible dynamic types for data is {null, car, bike, truck}. As a consequence of the
method call data.print, methods car print, bike print, and truck print are reachable
and, consequently, added in the set of gathered methods. Note that there is no data flow
analysis during step 1: data flow analysis would have removed bike and null from the set of
data. During our first compilation step, the goal is to gather, as quickly as possible, a rough
superset of the live code. Thanks to the data flow analysis of step 2, bike and null will
then be removed from that set. Still in figure 2, the dynamic types for the is four boolean
local variable is {true, false}. As the control flow statements are defined in the library as in
Smalltalk or Self, methods true if else and false if else are gathered too, as any other
ordinary methods. Our measurements presented in figure 3 indicate that during step 1 the
number of passes vary in a logarithmic manner as a function of the code size. On the entire
code of our Lisaac compiler, consisting of 53,000 lines of code, we have 29 dependency passes
before reaching a fixed-point.

2.2. Data type analysis for variables

The SmartEiffel compiler carries out its type inference without type flow analysis, using a
Rapid Type Analysis (RTA) algorithm [19]. Type analysis is based on the inheritance hierarchy
directly available in the source code. It gives, for each static type, a superset of all the possible
dynamic types. During step 1, the Lisaac compiler uses the same information to initialize its
data, then, in order to have a better dynamic type analysis, the Lisaac compiler adds extra
type flow information. The list of possible dynamic types is no longer computed for each static
type, but distinctively for each variable introduced in the live code, namely instance variables,
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NATIVE_ARRAY[OBJ]

0 1 2 3 4 5 6 7 8 9

capacitysize

NULL ?? ?? ?? ?? ?? ??

OBJ_A OBJ_B OBJ_C

Uninitialized supply areaUsed area

Figure 5. Arrays are filled progressively from left to right in order to avoid uninitialized values.

formal parameters, local and global variables. For each variable, the list of assignments to that
variable is recorded and internally represented as a directed graph where variables are the
nodes and assignments are the arcs. Possible leaf vertices of the directed graph are: constant
values, explicit object identifiers, objects creations and the null value. A method call is a
labeled vertex giving access to the sub-graph of this method. The transitive closure of the
directed graph of assignments gives all the possible dynamic types for each attribute, each
formal argument and each local variable and, consequently, all the possible dynamic types for
each expression. To summarize, during step 1, we are using RTA as a flow-insensitive inter-
procedural type analysis for all live methods. Flow-sensitive analysis only occurs during step
2. Both type flow analysis can be related to CFA [20, 21].
As for constant values, the null value, denoting the absence of object, is a leaf vertex of the

directed graph of assignments. Finally each expression can be classified into three categories:
either an expression can sometimes be null, can never be null, or is always null. This
information is useful to know if an expression may cause a call on null error. Measurements
performed on the complete source code of the Lisaac compiler shown in figure 4 indicate that
53.5% (i.e. 33.5% + 20%) of variables are monomorphic variables. All other variables, 46.5%
(i.e. 46% + 0.5%) are polymorphic. Thus, only 46.5% of variables require dynamic dispatch if
they are used as the target of certain method calls. The accuracy of type analysis is essential
in reducing the execution time overhead of dynamic dispatch. As shown in section 5.3, most
method call sites are usually statically resolved. From the language design point of view, it is
easier to predict types when the language is statically typed and when the initialization policy
of the language does not leave place for uncertainty. For example, in Lisaac and SmartEiffel,
non-initialized data gets a default value. Another good language design decision is with Java
and C# whereas the programmer must initialize all local variables and all instance variables
have default values, avoiding any uninitialized piece of memory.

2.3. Data type analysis and garbage collection optimization of arrays

To perform global type flow analysis, array read-write operations rely on the built-in
native array[e] abstract data type. The native array[e] abstract data type was first
introduced in SmartEiffel to avoid uninitialized cells and to optimize garbage collection. This
abstract data type is a kind of array list: some capacity is given as an argument of the
constructor and the filling up is made progressively, cell by cell from left to right (see figure
5). For type flow analysis, Lisaac considers the whole used part as a single cell. Actually, we
adapted the array smashing method of [22] for type flow analysis. To summarize, as soon as
one cell is possibly assigned with an object of type a, all cells of the used part are considered as
potential holders of objects of type a. Although the information collected for native arrays
lacks index sensitivity, it allows us to conclude whether an element can have a null value
or not. Since null is considered as a particular type, the absence of the dynamic null type
inside an array is a significant piece of information. Any method call applied on an element of
this array is statically guaranteed to not be null, therefore there will be no call on null error.
Measurements performed on the Lisaac compiler, shown in figure 6, indicate that 27.4% of
arrays are monomorphic. This result is not as good as the one we obtained for variables (figure
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Polymorphic (total 72.5%)
Monomorphic (total 27.4%)

(3)
67

18.8%

(1)
81

22.7%

(4)
189
52.9%

(5)
3

0.8%

(2)
17
4.7%

(1) Scalar cells 81
(2) Monomorphic non null cells 17
(3) Polymorphic, never null cells 67
(4) Polymorphic, possibly null cells 189
(5) All null cells 3

Figure 6. Distribution of arrays in the Lisaac compiler after step 1. Only 27.4% of arrays are
monomorphic.

4), but this is not surprising as most arrays are stored in long-life variables (i.e. attributes
or globals), which are accessible from many locations. Still in figure 6, arrays containing only
null values are empty hash-maps.
Most garbage collector algorithms [23] need to scan through all the accessible objects, like

the copying-collector or the mark-and-sweep garbage collectors. For instance, the mark-and-
sweep collector must walk through all accessible arrays during the mark phase. As a result of
our filling-up strategy, the supply memory area of arrays (figure 5) is unreachable. Our GC
(SmartEiffel and Lisaac) uses this knowledge to avoid scanning of that area. This makes the GC
faster and prevents it from accidentally marking inaccessible objects. Furthermore, the type
flow information of the array elements can be integrated to the GC as it is already the case for
the objects’ attributes [24]. SmartEiffel generates a specialized and precise marking function
for every object type and excludes interpretation during execution. We equipped the source
code of the SmartEiffel garbage collector in order to examine the impact of arrays on memory
footprint. To have a indicative execution we are using the entire source code of the SmartEiffel
compiler itself, which is 180,000 lines of Eiffel source code during its own bootstrap. The self
recompilation of the compiler is a very good benchmark since it uses a lot of arrays and requires
approximately 330 Mb of memory during the process. Furthermore, the garbage collector is
triggered 32 times while compiling the compiler. For the following measurements, only arrays
of references are considered, since other arrays, for example arrays of integers or arrays of
characters, are not directly concerned by our type flow analysis technique. Additionally, the
SmartEiffel garbage collector does not even scan the content of arrays of scalars. We modified
the marking procedure for the content of arrays to count the number of marked arrays during
one recompilation. The measurement shows that the GC processes 6,399,198 arrays. The total
size of the corresponding used area scanned is of 12,548,963 cells. As the total capacity of
processed arrays is of 21,714,957 cells and since the supply area is not scanned, the GC avoids
scanning 9,165,994 cells, which signifies a gain of 42% [25].

3. SECOND STEP: OPTIMIZING THE CLOSED WORLD

Due to the results of the previous step, we can begin working in a closed world: the internal
representation of the source code we are working on is a superset of the reachable code. Each
expression has a finite set of possible dynamic types including the information regarding the
null value. At this time, the gathered information is pessimistic and the goal of the second step
is to refine it. During the second compilation step we carry out a number of optimizations,
among which we will mention: those who have an important impact on the runtime and
those related to object-oriented languages. Special treatment of operating system dedicated

Copyright © 2014;44:565-592 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2014;44:565-592
Prepared using speauth.cls DOI: 10.1002/spe



8 B. SONNTAG AND D. COLNET

method 

re
ce

iv
er

@

Virtual Function Table

T1_method(receiver)

T2_method(receiver)

T3_method(receiver)

T4_method(receiver)
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  case T4: T4_method(receiver)

static calls

(b)

Figure 7. Virtual Function Table vs. Dispatch Branching Code with type analysis.

features which are specific to Lisaac, are beyond the scope of this article. Only general purpose
optimizations are described here.

3.1. Dispatch branching code and general survey of step 2

Needless to say that the implementation of late binding is crucial for the performance of object-
oriented languages. The most popular implementation relying on a Virtual Function Table
(VFT) [26, 27] is often used for languages such as Java, C# or C++. Figure 7(a) illustrates
the necessary indirect function call of the VFT implementation. Each value of the table is a
function pointer leading to indirect calls. Figure 7(b) illustrates the dispatch branching code
previously introduced in SmartEiffel [3]. This implementation, which is only possible under
CWA, allows inlining or transforming of static calls inside each case branch. As we obtained
exceptional results with the SmartEiffel compiler, we decided that for the Lisaac compiler
to experiment with a similar strategy, using more inlining and code customization, and to
add data flow information. Internally, the abstract representation of dynamic dispatch is a
switch-like representation similar to the one presented in figure 7(b). The most significant
reason for this choice is the possibility to perform inlining inside case branches. As the same
type of internal switch statement is also used for any written switch statement of the users
source code, the type flow analysis is performed indifferently. The type set information for each
expression gathered during step 1 is used to build the dispatch branching code. This internal
representation of the code constitutes the initial state of step 2. Step 2 is composed of passes
on the entire code, to inline or to transform the code, also using data flow analysis, making
as many passes as necessary to reach a fixed-point. A fixed-point is reached when a complete
traversal of the code is performed without any transformation.
The most common code transformation occurs inside the case branches of the dispatch

branching code. Indeed, in such a case branch, the receiver’s dynamic type is resolved and the
corresponding static call is a candidate for inlining or transforming. Simple data flow techniques
also allow code simplification as shown in figure 8, with the previously used car/truck
example. Now that we have given an overview of step 2, the next subsection presents the
method customization issue before a detailed presentation of the inlining strategy (subsection
3.3), loop invariant detection (subsection 3.4), reference comparisons (subsection 3.5), and
dispatch branch merging (subsection 3.6). All the transformations performed during step 2
allow us to better specialize the code and, when possible, to reduce the dynamic type sets.
For instance, the dynamic type set of data in figure 8 shrinks progressively during the passes
of step 2. While the type sets are only growing during passes of step 1, the opposite happens
during passes of step 2; the type sets get smaller and smaller.
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COMPILING OO LANGUAGES UNDER CLOSED WORLD ASSUMPTION 9

main()
{ 
  data = CAR;  
  CAR_print(data);
  data = TRUCK;
  TRUCK_print(data);
}

main()
{ 
  CAR_print(CAR);
  TRUCK_print(TRUCK);
}

- data:VEHICLE;

- print <-
(
  data.print;
);

- main <-  
( + is_four:BOOLEAN;
  is_four := 4 > 2;        
  (is_four).if {               
    data := CAR;   
  } else {
    data := BIKE;  
  };
  print;                  
  data := TRUCK; 
  print;                  
);                          
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print()
{
  switch (data)
  case NULL: crash;
  case CAR: CAR_print(data);
  case BIKE: BIKE_print(data);
  case TRUCK: TRUCK_print(data);
}

main()
{ 
  is_four = 4 > 2;
  switch (is_four)
  case TRUE: data = CAR;
  case FALSE: data = BIKE;
  print();
  data = TRUCK;
  print();
}

print()
{
  switch (data)
  case NULL: crash;
  case CAR: CAR_print(data);  
  case TRUCK: TRUCK_print(data);
}

main()
{ 
  is_four = TRUE;
  switch (is_four)
  case TRUE: data = CAR;
  print();
  data = TRUCK;
  print();
}

NULL
TRUCK

CAR

TRUE

main()
{ 
  data = CAR;
  switch (data)
  case NULL: crash;
  case CAR: CAR_print(data);
  case TRUCK: TRUCK_print(data);
  data = TRUCK;
  switch (data)
  case NULL: crash;
  case CAR: CAR_print(data);
  case TRUCK: TRUCK_print(data);
}

CAR

TRUCK

Status before step 3

Step 2 transformations

co
nst

an
t 

fo
ld

in
g

data flow

Figure 8. The car/truck example during step 2 (constant folding, inlining and data flow).

RECEIVER

A B

ARGUMENT

C ED

inherit

Effective calls of method m in the live code (5 call sites):
{A}.m({C,D}) {A}.m({E})
{B}.m({C,D}) {B}.m({D})
{A,B}.m({C,D})

Needed Informations

Receiver only customiza-
tion of SmartEiffel; section
3.2.1; there are 2 versions
for method m:

Cartesian Product Algorithm
for Self; section 3.2.2; there
are 6 versions for method m:

Argument Type Sets cus-
tomization of Lisaac; sec-
tion 3.2.3; there are 4 ver-
sions for method m:

{A}.m({ARGUMENT }) {A}.m({C}) {B}.m({C}) {A}.m({C,D})
{B}.m({ARGUMENT }) {A}.m({D}) {B}.m({D}) {A}.m({E})

{A}.m({E}) {B}.m({E}) {B}.m({C,D})
{B}.m({D})

Figure 9. Example to compare the customization of some method m with one argument.

3.2. Method customization

Method customization consist in the definition of a new version of a method, adapted to the
characteristics of the calling site. Thereafter the customized method is only used for calls with
the same characteristics as the original calling site. Methods are customized in a way that
impacts the size of the generated code as well as the level of specialization of that code. The
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10 B. SONNTAG AND D. COLNET

more the code is specialized, the more it can be transformed efficiently. On the other hand,
too much specialization makes the code so large that one cannot expect to translate very large
applications. Let us first review the SmartEiffel strategy.

3.2.1. Customization according to the receiver only (SmartEiffel) Customization according to
the type of the receiver only consists in the definition of one customized method for each
possible dynamic type of the receiver [3, 19, 28]. No possible variation of the arguments type
intervene. Hence, for one given method which can be called polymorphically, the number of
actually defined customized methods is equal to the number of possible dynamic types for
the receiver. The body of each customized method is specialized for only one dynamic type,
making each call on the self variable direct static calls. Inside the body, when the method
called is small enough, it can be inlined or, in the best case, statically computed. A typical
example is the static computation of a boolean expression which makes one branch of an
if then else statement unreachable. This results in additional dead code elimination and may
impact call sites outside of that method body. In such a case, a new traversal of the entire
code is performed to take into account possible simplifications: receiver type-set reduction or
extra inlinings. For that reason, the specialization of method bodies is performed as early
as possible, not only during final code generation. As shown in the example of figure 9, two
different methods are created using the inheritance tree. One version of m is called when the
dynamic type of the receiver is A and the other when the dynamic type of the receiver is
B. Each version of m can be called with all possible types for the argument (i.e. the static
ARGUMENT type). The SmartEiffel strategy, while perfectly scalable, lacks specialization
on arguments to take advantage of the gathered information.

3.2.2. Customization with Cartesian Product Algorithm (Self / Agesen) The Cartesian
Product Algorithm (CPA) for the Self language [7, 29] customizes methods for all possible
types of the receiver, but also for all possible types of the arguments. This results in a
better specialization of method bodies because calls on formal parameters are also specialized.
Unfortunately, more customized methods need to be developed. Invocation of methods is also
made more difficult because the dynamic types of arguments are involved in the dispatch
mechanism together with the dynamic type of the receiver. As shown in figure 9, the receiver
type set is {A,B} and the set of the possible argument types is {C,D,E}. Therefore there are
2× 3 versions of method m which are created. With CPA, each customized method is highly
specialized. Before calling a method, one must dispatch not only with the type of target but also
with the types of arguments. The CPA strategy is a flexible and dynamic approach designed
under the Open World Assumption (OWA). The main drawback of this approach is that it
creates too many customizations. In the example given in figure 9, the method customization
{B}.m({E}) is not necessary under CWA.

3.2.3. Argument Type Sets (ATS) customization (Lisaac) Argument Type Set (ATS)
customization of Lisaac is a trade-off between receiver only customization of SmartEiffel (3.2.1)
and generalized CPA customization of Self (3.2.2). For a given call site, ATS uses the type set
of the receiver as well as the type set of each effective argument. The number of customized
methods that are possibly called, matches the number of possible types of the target at that
call site. All customized methods of that call site have the same signature for arguments.
Actually, each argument is tagged with the possible type set for that argument at that call
site. By doing so, only the dynamic type of the receiver is involved in the dispatch mechanism.
The type information gathered for arguments at a given call site is enclosed in the bodies of
the corresponding customized methods. A pool of customized methods is updated throughout
the compilation process. As soon as a simplification occurs to a method body, a complete
traversal of the code is necessary to take into account possible modifications in other methods.
A customized method is shared by two call sites only if the type sets for all effective arguments
are identical.
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COMPILING OO LANGUAGES UNDER CLOSED WORLD ASSUMPTION 11

switch (test) {
case TRUE :
  TRUE_if_else(test,closure_1,closure_2);
  break;
case FALSE :
  FALSE_if_else(test,closure_1,closure_2);
  break;
};

switch (test) {
case TRUE :
  CLOSURE_1_value(closure_1);
  break;
case FALSE :
  CLOSURE_2_value(closure_2);
  break;
};

switch (test) {
case TRUE :
  STRING_print("Yes");
  break;
case FALSE :
  STRING_print("No");
  break;
};

if (test==TRUE) {
  STRING_print("Yes");
} else {
  STRING_print("No");
};

Back to efficient
C code

Example

Two branches switch simplification

"if else" function in TRUE library

- self.if true_block else false_block <-
(
  true_block.value;  // Evaluation closure
);

test .if  { "Yes".print; }  else  { "No".print; };

true_block closure false_block closure

"if else" function in FALSE library

- self.if true_block else false_block <-
(
  false_block.value;  // Evaluation closure
);

test::{TRUE,FALSE}

Type prediction

true_block::{CLOSURE_1}

false_block::{CLOSURE_2}

Branching code

Inlining #1 (Case #3) Inlining #2 (Case #3)

next pass

Step 1

Lisaac code

Step 2

Step 3

Figure 10. Steps to compile the library defined if then else conditional into the best possible C code.

3.3. Transformation inside dynamic branching code

By its very nature, VFT usage implies making indirect calls to true functions, even for a simple
field access. To permit inlining of simple operations, we are obliged to use either an if then else
balance tree or a switch statement. For polymorphic calls with only two possibilities, Lisaac
uses a simple if then else (see 3.3.1). When there are more possibilities, Lisaac generates a
switch statement to allow a constant time selection (see 4.2).
A block closure is an anonymous function or an anonymous procedure that is saved along

with the current bindings from enclosing blocks for later invocation. When it cannot be
statically resolved, a block closure is typically implemented by saving both the function and
any activation records that contain variables referenced by the function. The closure creates
additional implicit references to the bindings closed over and hence must be accounted for in
any memory management scheme (i.e. closures are as costly as true objects). The closure itself
is an object that must be managed and may have either a dynamic extent or an indefinite
extent depending on whether it is only used by inner blocks of the creating block or passed
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12 B. SONNTAG AND D. COLNET

- self.while_do body <-
(
  (self.value).if {
    body.value;
    while_do body;
  };
);

"while_do" function in BLOCK library

BLOCK_while_do(self,body) 
{  tmp := BLOCK_value(self);
   switch (tmp) {
   case TRUE:
     BLOCK_value(body);
     BLOCK_while_do(Self,body);
     break;
   case FALSE:
     break;
};

BLOCK_while_do({j<10}, {j := j + 1;})

Tail-recursion (Case #1)

label:
 tmp := BLOCK_value(self);
 switch (tmp) {
 case TRUE:
   BLOCK_value(body);
   goto label;
   break;
 case FALSE:
   break;
 };

Inlining x 2 (case #3)
label:
 tmp := j < 10;
 switch (tmp) {
 case TRUE:
   j := j + 1;
   goto label;
   break;
 case FALSE:
   break;
 };

while (j<10) {
   j := j + 1;
};

Example

Lisaac code

{j<10} .while_do { j := j + 1; };

self body

Type prediction Branching code

Step 1

self::{CLOSURE_1}

body::{CLOSURE_2}

After ’if ’ resolution

Step 2

Back to efficient
C code

Detected ’while’ pattern

Step 3

tail
recursion

Two branches switch simplification

label:
  if (j < 10) {
     j := j + 1;
     goto label;
  };

Figure 11. Steps to compile the library defined while do loop into the best possible C code.

out of the creating block. Because dynamic closure management is very costly both in terms
of memory and execution time for calling the delayed code [30], we have designed our inlining
strategy to maximize static resolution of block closures.
Our inlining algorithm features six possibilities according to the encountered call:
Case #1: The call is a tail-recursive call. In such a situation, the call is favorably replaced

with a goto statement at the beginning of the enclosing method. By doing so, the enclosing
function is no longer recursive and is thus a possible candidate for subsequent situations. Note
that it is not possible, in the general case, to remove tail-recursion when using VFTs.
Case #2: The called method is recursive. The static call to the corresponding method is left

unchanged. The rationale is that the stack is convenient to implement the recursion. While
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COMPILING OO LANGUAGES UNDER CLOSED WORLD ASSUMPTION 13

inlining may be possible under unusual conditions, we prefer to not inline here. When a lexical
closure is part of the call, we have to manage runtime structures to capture the context. Usually
this situation is quite rare and the catch is more commonly reduced to the current receiver.
Case #3: A lexical closure is used in receiver and/or some arguments. A lexical closure

may for example use a local variable of the enclosing context. Inlining makes available the
usage of that closure into the current context. Applying transitive transformations without
encountering the previous case #2 allows a static implementation of closures.
Case #4: The method call is unique. Thanks to CWA, case #4 is straightforward and avoids

the unnecessary function definition with the unique associated method call.
Case #5: The method called is small enough. A compiler option provides the ability to select

the right balance between either performance or binary code size. The default value is the
result of the experimentation presented in section 5.7.
Case #6: All other cases. In all other situations the call is a direct static call to the function.

3.3.1. Transformation of the if then else conditional As in Smalltalk or Self, the Lisaac
if then else statement is defined in the library, not in the actual language. In the boolean class,
this conditional statement is actually an abstract method consisting of two arguments, both
of closure type. The first argument represents the then part and the second argument the else
part. There are two definitions of this method, one in the true class and the other in the false
class. The definition of the true class only executes the then closure while the definition of the
false class only executes the else closure. For efficiency reasons, Smalltalk and Self compilers
use a special treatment with hard-coded primitives to handle similar if then else conditional
statements. As a result of our compilation strategy without VFTs and the transformation rules
we selected, it is not necessary to handle conditional statements of this type with a special case
inside the compiler. We are thus able to obtain the best possible translation without using any
compiler tricks, by simply applying our general compilation scheme. Figure 10 details all steps
of the compilation process for an if then else statement. Dynamic dispatch on the boolean
value is first translated with a two branch switch, one for true, the other one for false. The
last step replaces the switch with a hard-coded if statement. As a result, the generated code
is as efficient as hand-written C code. Notice that the transformation of a two branch switch

into a simple conditional statement occurs, generally, not only for booleans, but for all two
element type sets dispatch call sites.

3.3.2. Transformation of the while do loop As for conditional statements, all loop statements
are defined in the library and are not part of the actual langage. Once more, applying our
general compilation strategy allows us to obtain the best translation, even for loop statements.
As an example, figure 11 details of the steps necessary to translate the while do statement.
During the cascade of transformations, applying case #1, for the tail-recursive call, leads to
the goto loop. The apparent final step reaches the corresponding while statement. Again, the
translation to hand-written C code is reached.

3.4. Loop invariant detection

Loop invariant detection is better achieved when the body of the loop is fully defined as it is
the case under CWA. For example, let us consider the following C++ like piece of code:

STRING string; // Declaration of the string attribute
void method() {

int j;
this->string = new STRING();
this->string->length = 5;
this->string->storage = ”Hello”;
j = 0;
while (j < this->string->length) {

io->put char(this->string->storage[j]);
j ++;

};
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14 B. SONNTAG AND D. COLNET

}

In the previous code, string is the attribute of the this object. In a C++ like language,
the put char() method can have access to the this pointer and thus is able to modify the
length and/or the storage attribute. Under CWA, the compiler is aware of the put char()
method invoked on the io object. If put char() does not modify the attributes of string,
the previous method code can be optimized as follows, using constant propagation and loop
invariant extraction:

void method() {
int j;
this->string = new STRING();
this->string->length = 5;
this->string->storage = ”Hello”;
j = 0;
{ char *tmp=this->string->storage;

while (j < 5) {
io->put char(tmp[j]);
j ++;

};
};

}

Then, the five steps loop can be traditionally unrolled into:

void method() {
this->string = new STRING();
this->string->length = 5;
this->string->storage = ”Hello”;
io->put char(’H’);
io->put char(’e’);
io->put char(’l’);
io->put char(’l’);
io->put char(’o’);

}

3.5. Optimization of reference comparisons

Method customization obviously implies more code as it creates new specialized code. For
instance, within any method, the receiver (i.e. self or this), cannot be null and has exactly
one determined dynamic type. When a polymorphic method call site is broken up with the
corresponding dispatch branching code, the non null target expression also gets one unique
possible dynamic type within each case branch of the switch. Remarkably, we observed that
many reference comparisons became constant, i.e. either always true or always false, leading
to code removal or at least to code reduction. Indeed, it is not common for a programmer to
consciously write an == expression (or a != expression) which is always true or always false.
It is quite common, in object-oriented software, to write a template method pattern [31] with
a comparison expression which becomes statically computable in some subclasses. As each
expression is tagged with the set of all the possible dynamic types, the null value being a
possible element of the set, rules to decide when a comparison expression is constant or not
constant are as follows. In this instance we will take into consideration a comparison of the form
a == b or a != b where Sa and Sb are the corresponding type sets. When Sa = Sb = {null}, the
comparison expression is constant, thus, a == b always yields true and a != b always yields false.
The second situation making a comparison constant occurs when Sa ∩ Sb = ∅. The intersection
of Sa and Sb being the empty set, a == b always yields false and a != b always yields true. Under
all other circumstances, the comparison cannot be statically determined. Measurements on
the Lisaac compiler are presented in figure 12. During the parsing of the whole source code
of the Lisaac compiler, 7,418 comparisons are encountered, but only 2,645 of those written
comparisons are reachable. The latter, as a result of inheritance and code customization are
then transformed into 9,215 comparisons. Still in figure 12, the comparison categories from
(1) to (5) disappear. Category (1) represents comparisons of integer constants or character
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(3)
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0.14%

(1) a and b are constant 2,668
(2) Dead code 1,376
(3) foo = foo 13
(4) Sa = Sb = {null} 81
(5) Sa ∩ Sb = ∅ 396
(6) Generated – Non static 4,681
Total number of comparisons 9,215

Figure 12. Static evaluation of a == b or a != b.

constants. Categories (4) and (5) are the direct consequence of type flow analysis as previously
explained. Category (3) is for similar access to the same data, the same variable or the same
field access on both sides of the comparison operator. As most comparisons are involved in
if then else statements, detecting a constant comparison makes it possible to remove either
the then block or the else block. This type of code removal contributes to offset the code size
explosion due to method customization. The comparisons of category (2) in figure 12 are
part of the removed dead code. As a result, 49.2% of comparisons disappear and only 50.8%,
category (6), are part of the executable.

3.6. Branch merging

Invariant reference detection is used to merge sequential switch dispatchs when two or more
sequential method call sites apply to the same unchanged receiver expression. When the
dynamic type of the receiver cannot change, it is possible to merge the dispatching code itself
in order to avoid having multiple dynamic type selections. An example of this would be as
follows:

receiver.method 1;
receiver.method 2;

If the local type analysis for receiver predicts a dynamic family type set
{A,B}, the following branching code on the left is merged into a single switch:

switch (receiver->id) {
case A:

A method 1(receiver); break;
case B:

B method 1(receiver); break;
};

switch (receiver->id) {
case A:

A method 2(receiver); break;
case B:

B method 2(receiver); break;
};

−−−−−→
merging

switch (receiver->id) {
case A:

A method 1(receiver);
A method 2(receiver);
break;

case B:
B method 1(receiver);
B method 2(receiver);
break;

};

Actually, this merging optimization renders Smalltalk’s cascading method calls notation
automatic. This type of multiple method calls on the same target is quite frequent with
object-oriented programming. Measurements taken on the Lisaac compiler indicates that 11%
of polymorphic method calls are averted (see details of distribution in figure 13).
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Figure 13. Branch merging distribution during bootstrap of Lisaac.
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Fields as they are in the source

char a

Figure 14. Rearranging a data structure can avoid many memory fragmentation.

4. THIRD STEP: BACK-END OPTIMIZATIONS

The final step of our compilation strategy is dedicated to back-end optimizations. In order to
simplify this presentation, the target language is represented by the C language.

4.1. Rearranging data

As compiler writers, we are undeniably involved in language design. A decision made during
the design of the language may have drastic effects at compile-time. Allowing the compiler
to change the order of the fields within a structure or an object makes several optimizations
possible. In contrast, such a decision is a constraint for programmers. A suitable balance
between compiler writer constraints and language designer requests must be attained. As with
SmartEiffel and Lisaac, the programmer cannot rely on field order to write his code. As the
attributes of objects can be shifted or even removed by the compiler, it is not permitted to
have a pointer pointing towards the interior of a structure. Structures or objects must always
be pointed to globally. Consequently, the compiler is able to rearrange the fields of a structure
to fit within the memory layout and minimize memory fragmentation. The same type of data
reorganization can also be applied on local variables in order to save stack space. The example
in figure 14 presents a structure with four fields named a, b, c and d. When the order of the
original source code is kept unchanged the total memory size needed is 16 bytes with 5 bytes
of unused memory padding. When reorganized as shown on the right side of figure 14, the
total size for entire structure is 12 bytes with only 1 byte of unused memory padding. While
keeping the alignment, the rearranged structures are noticeably shorter and may fit better
into a processor’s cache. In a reduced data structure, the maximum number of lost bytes is
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equal to the size of a processor-word - 1 and the lost bytes do not depend on the number of
fields. For instance, on a 32-bit processor (4 bytes), the maximum loss is 3 bytes no matter
what the number and size of fields are. On a 64-bit processor, the maximum loss of memory is
7 bytes per structure. More commonly, let 2P be the size in bytes of a machine word (P = 2
for a 32-bit processor). Assuming the fields are sorted by increasing size into the structure,
a memory lost occurs when the size of fields changes. Changing size from 2i to the next size
2i+1 implies a maximal loss of 2i. Changing sizes from 2i to 2j, with j > i, induces a loss of∑j−1

k=i 2
k. As a consequence, the total loss using words of size 2p is :

∑p−1

k=0
2k, that is, 2p − 1.

4.2. Dynamic type id selection and switch optimization

The traditional translation of switch statements into assembly code relies on a jump address
table indexed with the switched value. Let byte count be the number of byte processor’s
words, the pseudo assembly generated code for a switch statement is:

static void *jump table[] = {&id T1,&id T2,&id T3};

(1) index := receiver->id - first case id
(2) if ((unsigned)index > last case id) then
(3) goto default case
(4) endif
(5) goto (jump table[index * byte count])

id T1: T1 method(receiver); goto after dispatch;
id T2: T2 method(receiver); goto after dispatch;
id T3: T3 method(receiver); goto after dispatch;

(6) default case:
...

after dispatch:
...

As the switched value is the integer dynamic type id, the compiler is able to select id sets to
optimize the generated assembly code. Due to CWA and global analysis all the possible switch
sites are known at compile-time. The dynamic type sets involved in method calls are naturally
segregated into different families of objects. As an example, an application using fruit and
vehicles probably will not combine those objects. As a consequence, some method calls are
dispatching only fruit while other method calls are dispatching only vehicles. No method call
handles fruit and vehicles at the same time. It is thus possible to reuse the same ids in the fruit
object family and in the vehicles object family. The id only needs to identify the object inside
its family, not globally. Our numbering strategy is similar to selector coloring [8, 32] and is the
inverse of selector table indexing [33, 34]. Because of the switch implementation, the goal of
the type id numbering is, firstly to minimize the jump table size and, secondly to try to use
values as small as possible, the best being to start at 0. When the smallest number of a family
is close enough to zero, it is possible to remove the subtraction instruction (1) of the switch

assembly code. The used heuristic gives the priority to the largest families which are then
sorted according to frequency of written method calls. When a family is completely separated
from other families (i.e. when all the types of a family are never used in other families), the
numbering can start at 0. If one same type is used in several families, its id is selected to
be unique across families, and minimized as much as possible. While we are implementing
dynamic dispatch all cases are associated with one dynamic type and nothing else can happen.
It is not possible to go out of range of the jump table. The default case is thus useless and
removed (the lines (2), (3), (4) and (6) are removed).

4.3. Dynamic type id selection on the compiler example

Measurements on the Lisaac compiler indicate that 315 types of objects may exist at runtime.
Amongst those 315 possible dynamic types, only 120 are involved in dynamic dispatch or
subtype testing (on subtype testing see references [35, 36]). Dynamic types which are not
involved in dynamic dispatch or subtype testing are not numbered and corresponding objects
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Figure 15. Numbering of dynamic types involved in dynamic dispatch on the Lisaac compiler example.

do not have the id field (object size reduced). On the compiler example, non-identified types
represent 62% of dynamic types. We have also remarked that most applications have a similar
important ratio of types which are not involved in dynamic dispatch. Numbering of the 120
dynamic types involved in dynamic dispatch is presented in figure 15. The upper section of the
figure indicates that id 0 is used for 13 different types, that id 1 is used for 12 different types,
etc. The lower section of figure 15 gives the distribution of dispatch call sites. There are 10,664
dispatched call sites or subtype tests. Each horizontal line represents a family of call sites and
a continuous line indicates that there is no break in the dispatch sequence. The largest family
of call sites has 8,044 members that represent 75.43% of call sites and this family operates in
the range [0 - 1] of ids. Most of them are if then else dispatch call sites (see 3.3.1). As one can
discern, the result is remarkable and there are few breaks in sequences. Also note that 46 call
sites (0.43%) operate on the complete ids distribution.

5. EXPERIMENTS

Our compilation strategy is a combination of several ideas and techniques. Optimizations
performed in a given pass may interact with other optimizations in the same or other passes
[37]. As one optimization may expose opportunities for another optimization, measuring the
impact of a single aspect of the compilation process is very difficult. For example, it is not that
simple to disable type flow analysis on collections to measure the sole impact of that aspect.

5.1. Bootstrap of the SmartEiffel compiler

The bootstrap of the SmartEiffel compiler (detailed results published in [13]) is summarized in
figure 16. Each step compiles the same 50,000 lines of Eiffel source code. The first compiler on
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Figure 16. The bootstrap of SmartEiffel indicates a speed factor gain of 1.6 (56s/35s = 1.6).

the left-hand side is the Eiffel/S 1.3 commercial compiler which works under the open world
assumption with a VFT implementation of the dynamic dispatch. The far left compilation step
is running the algorithms and data structures of Eiffel/S. The remaining compilation steps are
running the algorithms and data structures of SmartEiffel. The binary code of SmartEiffel#0
is using the VFTs that are coming from the Eiffel/S translation. SmartEiffel#0 is also using
the Eiffel/S runtime libraries for memory allocation as well as the Eiffel/S objects layout. The
compilation step from SmartEiffel#0 to the first stabilized SmartEiffel compiler, the step where
the fixed-point is reached, is the best place to perform the comparison. Because SmartEiffel
does not perform type flow analysis, the 1.6 speed gain factor of figure 16 is the gain obtained
with RTA [19] and dynamic branching code [3, 13].

5.2. Bootstrap of the Lisaac compiler

The previous versions of the Lisaac compiler were written in SmartEiffel. In order to bootstrap,
we translated the source code of the compiler into Lisaac code. The Lisaac compiler is
a considerably large application of approximately 53,000 lines of Lisaac source code. We
compare in figure 17 the latest version of the Lisaac compiler written in SmartEiffel (LisaacSE)
with the first bootstrapped version of the Lisaac compiler (LisaacLI). Since the translation
was systematically performed, the comparison applies on the same algorithms with similar
structures. The LisaacSE binary is produced by the SmartEiffel compiler which does not
feature type flow analysis whereas LisaacSE does. As a result, the number of monomorphic
method calls has improved from 91% to 98.3%. As shown in figure 17, the percentage of extra
monomorphic method calls represents polymorphic method calls leading to the same code
for each branch of the dispatching code. Such polymorphic method calls are replaced with
direct static calls and accordingly considered as monomorphic call sites. Most of the extra
monomorphic call sites are read/write operations of a field within a structure with the same
displacement properties (details in [3]). The memory footprint gain which is of 32.8% in figure
17, is mostly due to the data structure compaction algorithm we had presented in section
4.1. The runtime gain of 12.6% derives from better type analysis. Owing to this criteria, the
LisaacLI compiler is more effective than the LisaacSE compiler.

5.3. Late binding benchmarks, horizontal and vertical inheritance

Benchmarking only late binding appears to be quite difficult due to the involvement of several
factors, such as the level of polymorphism, dynamic predictability of the target or even the
depth of the inheritance graph. Furthermore, most processor architectures are now using some
sort of Branch History Table (BHT) mechanism, which allows numerous conditional branches
to be predicted when the same type of target is used repeatedly. Indeed, it is a well-known
property of polymorphism that generally, the receiver type at a polymorphic call site does
not vary substantially [38]. BHT is thus used as a memory of the last receiver type, which
may be considered as a type of inline caching performed by the processor (inline caching is an
optimization technique that was first developed for Smalltalk [39, 40]).
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Figure 17. LisaacSE vs. LisaacLI . The LisaacSE compiler is the early version of the Lisaac compiler

written in SmartEiffel. The LisaacLI compiler is the first bootstrapped Lisaac compiler, written in
Lisaac and recompiled with itself. As we applied a systematical translation of the SmartEiffel source

code of LisaacSE to obtain LisaacLI , the comparison applies on the same algorithms.

PARENT
method <- 
abstract;

CHILD_N
method <- 
"n".print;

CHILD_2
method <- 
"2".print;

CHILD_1
method <- 
"1".print;

inherit

CHILD_3
method <- 
"3".print;

Unpredictable MAIN
main <- 
1_000_000_000.times {
  array.item(random).method;
};
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Unpredictable

Predictable MAIN
main <- 
1_000_000_000.times {
  array.item(random & 1).method;
};

Figure 18. Horizontal inheritance benchmark where N is the number of objects, from 2 to 512.

The horizontal benchmark in figure 18 is dedicated to late binding. Actually, this benchmark
is not a single program, but a set of programs depending on N , the number of subclasses
stemming from the parent class. For instance, when N is 128, the parent class has 128
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PARENT
method <- "Hi".print;

CHILD_1

CHILD_2

CHILD_N

inherit   

CHILD_3
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C++Predictable MAIN
main <- 
1_000_000_000.times {
  array.item(random & 1).method;
};

Unpredictable MAIN
main <- 
1_000_000_000.times {
  array.item(random).method;
};

crash

crash

Figure 19. Vertical inheritance benchmark where N is the number of objects, from 2 to 512.

different subclasses with 128 different methods and all of the 128 objects are mixed together
into an array of 128 slots. Since N varies from 2 to 512, all types of polymorphism are
considered. Furthermore, there are two different main programs, both having one polymorphic
dispatch site embedded in a long-time loop. The Unpredictable main randomly shuffles the
receiver amongst the N possibilities, making the dispatch method call truly unpredictable.
Conversely, the Predictable main, does not shuffle the receiver as much. Only two types of
receivers are used repeatedly, making the predictable benchmark more reliable [41]. To have
a meaningful comparison, the C++ code always uses the virtual keyword for all methods.
There are only virtual methods both in SmartEiffel and Lisaac. Runtime results make it clear
that the dispatch branching code is scalable in comparison with the VFT results of C++. In
comparison with SmartEiffel, Lisaac is superior because the dispatch branching code itself
is inlined. For an unpredictable situation, only C++ is time-constant even when N becomes
voluminous. With over 512 types to dispatch, even Lisaac is outperformed by C++ however
such a megamorphic call is clearly unrealistic (for megamorphic call sites, see [41, 42, 43]).
Note that we have not mentioned the results of Java here because each Java virtual machine
we have tried were outperformed. The performance time was between 30-50 times slower than
C++ (in [44] they report a 10-100 factor compared to C).
The vertical inheritance benchmark of figure 19 also uses a N variable number of classes

varying from 2 to 512 and, as in the previous benchmark, two different main programs, one
unpredictable and one predictable. In the vertical benchmark, one unique method defined in
the parent class is vertically inherited by all of the N subclasses. The C++ source code uses
the virtual keyword. That is not that important, but the gcc compiler we used, gcc 4.4.1,
was unable to compile more than 128 classes due to an internal limitation of the compiler for
inheritance depth. The inadequate results of SmartEiffel in the unpredictable situation of figure
19 is due to the fact that the unique inherited method from parent is actually duplicated in
each child offshoot. SmartEiffel generates the dispatch branching code for the call. Lisaac is
able to detect that the inherited method is always identical. All the dispatch branching code
is thus avoided and the method is inlined. As in the horizontal benchmark, the C++ compiler
generates a VFT for the call. The gains come only from the processor caching mechanisms.
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Figure 20. Branch merging of Lisaac compared with C++. The slope variation highlights the gain.

PARENT
method tmp <- 
tmp := self.m1(tmp)
tmp := self.m2(tmp)
. . .
tmp := self.mN(tmp)
tmp

CHILD_N
mN tmp <- 
tmp + N+N

CHILD_2
m2 tmp <- 
tmp + 2+2

CHILD_1
m1 tmp <- 
tmp + 1+1

inherit

CHILD_3
m3 tmp <- 
tmp + 3+3

MAIN
main <- 
200_000_000.times {
  tmp := array.item(random).method(tmp);
};
tmp.print;
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Figure 21. Call on self / this inside a template method pattern [31].

5.4. Automatic cascading method calls

In figure 20, the array accessed inside the loop contains 512 different instances of 512 different
classes. The dispatch branching code taken into account for each method call being performed
on the same receiver, hence it is therefore unique (subsection 3.6). Because of the VFTs, the
C++ compiler is unable to efficiently take into account the dispatching code.

5.5. Call on the self (or the this) variable

The purpose of the benchmark of figure 21 is to measure the benefits obtained for method calls
on the self (or the this) variable. In this family of programs, the number of method calls on
self increases with N . Following the number of method calls on self, the number of defined
subclasses increase to redefine inherited methods: child 1 redefines only m1, child 2 redefines
only m2, child 3 redefines only m3, etc. The unpredictable main randomly shuffles the receiver
among the N possibilities. As a result of the receiver customization technique previously
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CHILD_1
dta1:INTEGER

m1 tmp <- 
dta1 := dta1 + 1
tmp + dta1

inherit

MAIN
main <- 
1_000_000.times {
  tmp := array.item(random).method(tmp);
};
tmp.print;

PARENT
dta:INTEGER

method tmp <- 
tmp := self.m1(tmp)
tmp := self.m2(tmp)
. . .
tmp := self.mN(tmp)
tmp

m1 tmp <- 
dta := dta + 1
tmp + dta

m2 tmp <-
dta := dta + 2
tmp + dta
. . .
mN tmp <-
dta := dta + N
tmp + dta

CHILD_2
dta2:INTEGER

m2 tmp <- 
dta2 := dta2 + 1
tmp + dta2

CHILD_N
dtaN:INTEGER

mN tmp <- 
dtaN := dtaN + 1
tmp + dtaN

...

GRANDCHILD_1 GRANDCHILD_2 GRANDCHILD_N...
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Figure 22. Multiple inheritance benchmark where N is the number of multiple inheritance links.

presented in section 3.2.1, both SmartEiffel and Lisaac have excellent results compared with
C++. Actually, the execution time of C++ is so slow that we had to use a logarithmic scale.
When N equals 256, Lisaac’s runtime is 80 times shorter than the one for C++. Evidently, C++

treats method calls on the this receiver the same as for ordinary method calls, starting the
dispatch process, again and again, from scratch.

5.6. Multiple inheritance

The purpose of the benchmark of figure 22 is to measure the dynamic dispatch when multiple
inheritance is involved. In this family of programs, the number of multiple inheritance links is
increasing with N : grandchild 1 has 1 parent, grandchild 2 has 2 parents, grandchild 3
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Figure 23. Impact of the inlining level on the binary size of the Lisaac compiler itself.

has 3 parents, . . .grandchild n has N parents. The main loop randomly picks up a
grandchildi from an array in order to launch the inherited method from parent. The
C++ source code uses the virtual keyword both for inheritance and methods. For runtime
results, even if SmartEiffel performs better (see upper left curve of figure 22), results of C++

are not completely unsatisfactory. We detected something never encountered in any previous
benchmarks: the executable size of C++ grows dramatically with the value of N . To investigate
this point, we measured the data and the text segment of the generated executables for all
values of N (see lower curves of figure 22). As shown in the figure, it appears that the problem
of C++ arises in the text segment part of the executable, clearly indicating that the tables
used for the multiple parents are growing larger with the value of N (this confirms the results
mentioned in [45]).

5.7. Impact of the inlining level of small functions

The inlining level of small functions (i.e. case #5 of our inlining strategy described in section
3.3), can be selected manually thanks to a compiler option. Figure 23 shows the impact of
the inlining level on binary code size while compiling the Lisaac compiler itself. After reaching
a minimum inlining level of 10, the curve increases linearly. Because the Lisaac compiler is
written in an object-oriented way and contains numerous methods with several polymorphic
method calls, it is quite likely that several other object-oriented applications will have a similar
behavior. Thus, we decided that 10 is a good tradeoff for the inlining level default value.

5.8. The MPEG2 benchmark

In order to have another significant benchmark, we translated an entire Mpeg2 decoder,
originally written in C, into Lisaac. We performed a mechanical translation of the original
C code, approximately 10,000 lines of C code. In order to get a significant runtime, we used
an 80Mb video file as input. Four versions were created, one for each of the following output
formats: YUV, SIF, TGA and PPM. Figure 24 shows the runtime of the C code compared to
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Figure 24. MPEG2 runtime benchmark.

the Lisaac code. The C code generated by the Lisaac compiler was compiled with the same C
compiler and options. As for the YUV conversion, Lisaac is much slower than C. Amazingly,
all the other conversions (SIF, TGA and PPM) require to first compute the YUV conversion.
The time used for the YUV conversion is indicated on each conversion in order to exhibit the
remarkable results for the remainder of the computation (figure 24).

6. RELATED WORK

MLton (http://www.mlton.org/) is an open-source, whole-program, optimizing Standard ML
compiler. Regardless of the fact that MLton is for the SML functional language (i.e. non object-
oriented), MLton is very similar to Lisaac: CWA, aggressive dead-code elimination, untagged
and unboxed native integers, unboxed native arrays, etc. Furthermore, MLton is very similar
to Lisaac in the way closures are inlined.
Work presented in [46] introduce the concepts of type flow analysis and detail its use in

reducing runtime overhead in Oberon-2 [47]. Their main goal is to eliminate irrelevant dynamic
type tests. The type flow analysis of Lisaac is notably more complete in order to handle all
kinds of variables of object-oriented languages (see section 2.2). Furthermore, we introduce
in section 2.3 an innovative approach to handle type of elements within arrays. This is a key
point of our strategy because it allows us to perform a real global program analysis.
The Vortex compiler [48] is a language-independent optimizing compiler for object-oriented

languages. There are front-ends for Cecil, C++, Java, and Modula-3. Vortex is an excellent tool
to quantify the benefits of object-oriented optimizations. Actually, most Vortex optimizations
are present in the Lisaac compiler and the type flow analysis of Lisaac is both intra-procedural
and inter-procedural. Vortex provides selective recompilation while Lisaac does not. Rather
than specializing exhaustively, Vortex is guided by dynamic profile data to selectively specialize
only heavily-used methods. Techniques in Vortex such as profile-guided optimizations and
selective recompilation might be profitably added to our compilation strategy.
The type inference carried out for the Self language in [49] is similar to the Lisaac approach:

each expression is considered separately. Their algorithm doesn’t work on the full transitive
closure graph, but on a fragment only. The code generation is then performed by using this
fragment before doing an inference on a larger fragment. This method is less expensive in terms
of memory because it is an incremental process. On the other hand, the number of possible

Copyright © 2014;44:565-592 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2014;44:565-592
Prepared using speauth.cls DOI: 10.1002/spe

http://www.mlton.org/


26 B. SONNTAG AND D. COLNET

dynamic type for one call site is never static, even at code generation time. Our approach
requires a superset of all the possible dynamic types for each method call.
Marmot [12] is an optimizing compiler for a large subset of Java. Marmot is intended

primarily as a high quality research platform. Marmot performs a class hierarchy analysis
[28] and a complete program analysis. It takes verified bytecode as input instead of Java
source code and it still uses VFT. Marmot’s object-oriented optimizations are implemented
using a combination of inter-module flow-insensitive and per-method flow-sensitive techniques.
Contrary to our methods, flow analysis is not globally performed. The authors also indicate that
optimum performance is best achieved under the CWA. The stack allocation optimization of
Marmot improves locality and reduces garbage collection overhead by allocating objects with
bounded lifetimes on the stack rather than on the heap. Such a stack allocation should be
added in our compilation strategy. Marmot offers a choice of three garbage collection schemes:
a conservative collector, a copying collector, and a generational copying collector.
As presented in [50], staying type-safe when inlining a virtual method may cause problems

between the receiver’s static and dynamic type. However, with our approach, the dynamic
type dispatching is realized before inlining and thus the problem does not even exist. In [51] a
global program analysis with type inference is performed on a Smalltalk like language. Yet the
graph contains all the type information that can be derived from the program without keeping
track of null values or flow analyzing the contents of the instance variables. The collected
information is close to the RTA algorithm applied on static type languages.
The Fiji VM [44] compiles Java bytecode to C for Embedded Hard Real-Time Devices

also using the CWA. Fiji features many similarities with Lisaac: type propagation both intra-
and inter-procedural using a static single assignment (SSA) intermediate representation. In
addition Fiji takes into account multi-threading with a concurrent real-time garbage collector.
The major difference is that Fiji still uses VFTs.

7. FUTURE WORK

We have learned from Eiffel the fundamental aspects of design by contract to make the code
more readable, to validate it and to ease debugging. We are now experimenting with design by
contract as a possible source of information for the compiler to optimize the code. Roughly, the
main idea is to make the assumption that pre-conditions, post-conditions, and invariants that
are written by the programmer are always correct and may be trusted by the compiler. We
hope that combining the information gathered by data/type flow analysis will allow better code
optimization. When considered valid, design by contract information could be used to perform
high-level optimizations. Static detection of contract violations is also something we want to
investigate. While the distribution of computation over the network can be reasonably achieved
thanks to library support, efficient access to local multi-core power is an important point we
need to address. We are currently working on a brand new concurrency model, compatible
with our compilation strategy, also using CWA, allowing safe usage of multithreading.
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8. CONCLUSION

The compilation strategy we presented is the result of a long project on two real-size compilers,
SmartEiffel being historically the precursor of the advanced compilation strategy of Lisaac.
While both compilers work under CWA, Lisaac adds type flow analysis, also looking inside
arrays with a simple technique (subsection 2.3). As a consequence, the type flow analysis
is not blocked while reading references of objects from arrays, making a truly global type
flow analysis possible. Global type flow analysis combined with code customization allows
us to predict the dynamic type of numerous method calls. For instance, in the whole Lisaac
compiler, 98% of method calls are statically resolved and replaced with static calls (subsection
5.2). To tackle the explosion of code size, we set up our ATS method customization strategy
together with transformation rules inside the dispatch branching code (subsections 3.2.3 and
3.3). As an important result, inlining of closures as well as tail recursion removal allow a
perfect translation of the library defined control statements (subsections 3.3.1 and 3.3.2). Our
compilation strategy could be used for most object-oriented, class-based or prototype-based
languages, assuming the availability of the whole source code of the application. Throughout
the article, compiler writers may find useful measurements to guide their decisions when they
have to choose amongst optimizations.
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