INTRODUCTION

When considering software organization, software reliability or software modularity, objectoriented technology is currently the most popular way to meet all those requirements. On the other hand, there is substantially less consensus about the performance of object-oriented language. Many high-level, object-oriented languages do not have a good reputation for runtime performance. For many people, achieving the best runtime performance requires using C language or even assembly code.

Our results from working on the SmartEiffel and Lisaac compilers indicate that the previous assertion is far from obvious. When the application is very small, it is highly likely that C or assembly code is the best choice. As soon as the application is of medium or large size, we believe that a high-level, object-oriented language would be the best candidate, knowing that the compiler is a crucial ingredient for success. Without claiming that object-oriented programming eliminates all of the disadvantages, we now believe that C could be omitted in many situations in order to improve productivity. This article presents our compilation strategy, which is suitable for several object-oriented languages. This efficient strategy is the result of many years of effort, first on the SmartEiffel compiler (formerly called SmallEiffel) and then on the Lisaac compiler. Both whose foundation in designs and implementations are deeply focused on ensuring runtime efficiency.

Context of our work: the SmartEiffel and Lisaac background

The work on the Lisaac language [START_REF] Sonntag | Lisaac: the power of simplicity at work for operating system[END_REF][START_REF] Sonntag | Dynamic Inheritance: A powerful Mechanism for Operating System Design[END_REF] and compiler grew out of the work on the SmartEiffel compiler [START_REF] Zendra | Efficient Dynamic Dispatch without Virtual Function Tables. The SmallEiffel Compiler[END_REF]. From the beginning, the SmartEiffel compiler has used global analysis. Keeping the global compilation technique, Lisaac has added type flow optimizations, hence improving code customization. Both compilers assume knowledge of all the source code during compilation. Adding new source code during runtime is forbidden. Thanks to the encouraging results of SmartEiffel, we decided to focus mostly on static optimizations, leveraging global program analysis. From the language point of view, SmartEiffel and Lisaac consider all types of data, such as booleans, integers, and pixels, as true objects. Furthermore Lisaac, like Smalltalk [START_REF] Goldberg | Smalltalk-80, the Language and its Implementation[END_REF] or Self [START_REF] Ungar | Self: The Power of Simplicity[END_REF][START_REF] Chambers | The design and Implementation of the Self Compiler, an Optimizing Compiler for Object-Oriented Programming Languages[END_REF] also defines loops and conditional statements as part of the library. Block closures are also handled. Both languages are high-level, object-oriented languages featuring multiple inheritance. Being a prototype-based language, Lisaac is also a strongly typed language. Most of the work done for SmartEiffel and Lisaac concerns high-level, object-oriented optimizations. The compilation strategy for inheritance and dynamic dispatch is a key point for object-oriented languages. Type flow analysis, mixed together with code customization and inlining, allows us to statically bind many method calls and is also used to predict a possible null pointer inside arrays. Low-level optimizations such as register allocation or loop unrolling are supposed to be applied after our high-level compilation strategy, however to simplify the presentation, we use C as a target language.

Open-world vs. closed-world assumption

Compiling under the closed-world assumption (CWA) means that the compiler is able to access the entire source code of the application to compile. Under CWA, not only are the classes and methods of the application considered, but also the classes and methods of the libraries the application uses. Dead code, unused classes or unused methods, can be ignored and removed. Under CWA, no new code is supposed to be added after compilation time. Conversely, under the open-world assumption (OWA), new classes or subclasses may be added at any time. OWA is thus naturally associated with separate compilation, dynamic loading, and incremental development of code. As indicated in [START_REF] Chambers | Customization: Optimizing Compiler Technology for SELF, a Dynamically-Typed Object-Oriented Language[END_REF][START_REF] Dixon | A Fast Method Dispatcher for Compiled Languages with Multiple Inheritance[END_REF][START_REF] Vitek | Taming message passing: efficient method look-up for dynamically typed languages[END_REF][START_REF] Grove | A Framework for Call Graph Construction Algorithms[END_REF][START_REF] Zibin | Fast Algorithm for Creating Space Efficient Dispatching Tables with Application to Multi-Dispatching[END_REF], it is well-known that the main benefit of CWA is runtime efficiency. All method calls or attribute accesses can be
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Object layout and type ids selection. Branching code, switch, optimizations. customized prior to execution. Under CWA, multiple inheritance does not incur any overhead when compared to single inheritance. The code can be customized according to its real usage and dynamic dispatch can be implemented using a hard-coded dispatch mechanism.

It is possible to use CWA for languages such as C++, C# or for a large subset of Java (the most significant omissions are dynamic class loading and reflection as in [START_REF] Fitzgerald | Marmot: an optimizing compiler for Java[END_REF]). Using CWA is more problematic for languages such as Smalltalk, Self or Lisp because, in these dynamic languages, new source code is likely to be a result of computation. Even if the language allows dynamic source code creation, many written applications do not use that feature. As an example, a Lisp application which does not create new functions at runtime can be compiled under CWA.

Global overview of our compilation process

Following the SmartEiffel compiler's strategy [START_REF] Zendra | Efficient Dynamic Dispatch without Virtual Function Tables. The SmallEiffel Compiler[END_REF][START_REF] Collin | Type Inference for Late Binding. The SmallEiffel Compiler[END_REF][START_REF] Colnet | Compiler Support to Customize the Mark and Sweep Algorithm[END_REF][START_REF] Zendra | Coping with aliasing in the GNU Eiffel Compiler implementation[END_REF], the Lisaac compiler also performs a global program analysis. Therefore, all the live code is considered in order to maximize type analysis for each method call site. Thanks to type flow analysis the Lisaac compiler improves the type analysis of SmartEiffel by reducing the set of all possible types for each method call site as much as possible. Our compilation strategy features three major steps (figure 1):

First step. Gathering the live code. Using several passes, the goal of this first step is to gather enough code to ensure that all the reachable code is included. Roughly, each pass of this step performs a transitive closure of the call graph. During each pass, each expression is tagged with a set of possible dynamic types. Each pass makes the type set of each expression bigger and bigger until a fixed-point is reached. Adding a new dynamic type can make a new method attainable, which may eventually result in the addition of new types. Medium-size applications usually require 6 to 10 passes while large applications, such as the compiler itself, requires approximately 30 passes to reach a fixed-point.

Second step. Reduction and optimization of the live code. Using the dynamic type information gathered during step 1, dynamic dispatch is replaced with branching code in order to make new type flow information available. Then, each pass reconsiders all the live code in an attempt to remove the code which is no longer reachable or attempting to inline the reachable code. At the end of each pass the type set of each expression is increasingly more accurate by type-set reduction until reaching a fixed-point. The closer we get to the end of the process, the more precise our type analysis is. A fixed-point is reached when no further inlining or transforming is possible. For large-size applications such as the compiler itself, the number of passes varies between approximately 10 and 25.

Third step. Final target code generation. During this last step the field layouts into data structures representing objects are optimized. Objects which are not involved in dynamic dispatches are not equipped with the type id field. Only the used fields are generated and ordered to reduce object size. Even after these steps some dynamic dispatch may remain, so dynamic type ids are also selected during this final step to compact switch dispatch tables.

Article overview and major contributions of the article

Section 2 details how the reachable code is gathered during the first step of our compilation strategy. Section 2.1 starts with the rather classical transitive closure of the call graph with partial evaluation to collect a large superset of the live code. Section 2.2 presents our results for type analysis of variables. Section 2.3 presents our technique to predict types inside arrays, as well as its major impact on garbage collection inside arrays.

The second step of our strategy is detailed in section 3. Its major point is to take advantage of CWA in order to get rid of virtual function tables, shown in subsection 3.1, using branching code as a replacement. Subsection 3.2 is dedicated to method customization and presents the choices we made to avoid code explosion thanks to the Argument Type Set (ATS) customization of Lisaac. The measurements we present demonstrate the scalability of our approach. Then, our inlining strategy inside dispatch branching code is presented in subsection 3.3 along with its two major results: the perfect translation of ifTrue:ifFalse: (3.3.1) and the perfect translation of whileTrue: (3.3.2). The more traditional loop invariant detection is developed in subsection 3.4, followed by reference comparison in subsection 3.5. Finally, the branch merging transformation is presented in subsection 3.6.

Section 4 describes the third and final compilation step. The field order is selected in subsection 4.1, to reduce the size of objects. The effective global dispatch map is used to select type ids in order to optimize switch branching code in subsection 4.2. Section 5 is dedicated to benchmarking. The bootstrap of the SmartEiffel compiler, subsection 5.1, highlights the impact of dispatch branching code without type flow analysis on a large application. Then, in subsection 5.2, another large application, the bootstrap of the Lisaac compiler is presented this time with type flow analysis. Our experiments focus on late binding in subsection 5.3, cascading message sends on the same receiver in subsection 5.4, calls on the self variable in subsection 5.5 and method calls involving multiple inheritance in subsection 5.6. The impact of inlining is studied in subsection 5.7. Then, the last benchmark presented in 5.8 is a real MPEG2 production decoder. A hand-written C version is compared with a systematic translation into Lisaac code. Most of the related works are covered throughout the article and section 6 ends by presenting them. A description of our future work is given in section 7 and section 8 concludes.

FIRST STEP: GATHERING LIVE CODE

The first step in our strategy is essentially a partial evaluation [START_REF] Futamura | Partial Evaluation of Computation Process -An approach to a Compiler-Compiler[END_REF][START_REF] Consel | Tutorial Notes on Partial Evaluation[END_REF] of the program starting from the entry-point. The goal is to gather all the reachable code, even a rough superset of the reachable code, from the entire source code necessary to run the application. At the same Step 1, Pass 2: Unstable 'main'

Step 1, Pass 3. Stable (last pass). Gathered information time, all expressions are tagged with a set of possible dynamic types in order to follow method calls by dynamic dispatch simulation.

Transitive closure of the call graph

Using the the main function code as the starting point, the first step consists in developing and analyzing the call graph of the complete source code and then, computing the set of all possible dynamic types that can occur at runtime. Let us take into consideration the simplistic car/truck example given in figure 2 where the entry point of the graph is the main method. Any unreachable code is simply ignored and thus never compiled, avoiding the cost of unnecessary compilation. For instance, the no access method in figure 2 is never gathered. The reachable methods are stored and, each time a new possible dynamic type for the receiver is encountered, customized accordingly. Genericity as well as multiple inheritance are processed during the first step. Genericity is treated by code duplication followed by code customization, simply taking into account effective generic parameters. Thanks to CWA it is easy to know each possible generic derivation as well as all the possible dynamic types. Each time a method call site is visited, the lookup mechanism is simulated according to inheritance rules. For all possible dynamic types of the receiver, the corresponding method is reached, and may be, in case of a new one, customized and collected. Finally, the overhead of multiple inheritance only impacts compilation time (impact of CWA on multiple inheritance is detailed in [START_REF] Ducournau | Empirical Assessment of Object-Oriented Implementations with Multiple Inheritance and Static Typing[END_REF]). Computation of the transitive closure of the call graph requires several passes until it reaches a fixed-point. Each time a pass encounters new code or when a pass adds a new possible dynamic type for an expression, yet another pass will have to be performed. A fixed-point is reached when a pass adds neither new code nor new dynamic type. This gives us a superset of the reachable code as well as a superset of the possible dynamic types for each expression. For the example in figure 2, there are 3 passes and, when a fixed-point is reached, the set of possible dynamic types for data is {null, car, bike, truck}. As a consequence of the method call data.print, methods car print, bike print, and truck print are reachable and, consequently, added in the set of gathered methods. Note that there is no data flow analysis during step 1: data flow analysis would have removed bike and null from the set of data. During our first compilation step, the goal is to gather, as quickly as possible, a rough superset of the live code. Thanks to the data flow analysis of step 2, bike and null will then be removed from that set. Still in figure 2, the dynamic types for the is four boolean local variable is {true, false}. As the control flow statements are defined in the library as in Smalltalk or Self, methods true if else and false if else are gathered too, as any other ordinary methods. Our measurements presented in figure 3 indicate that during step 1 the number of passes vary in a logarithmic manner as a function of the code size. On the entire code of our Lisaac compiler, consisting of 53,000 lines of code, we have 29 dependency passes before reaching a fixed-point.

Data type analysis for variables

The SmartEiffel compiler carries out its type inference without type flow analysis, using a Rapid Type Analysis (RTA) algorithm [START_REF] Bacon | Fast Static Analysis of C++ Virtual Function Calls[END_REF]. Type analysis is based on the inheritance hierarchy directly available in the source code. It gives, for each static type, a superset of all the possible dynamic types. During step 1, the Lisaac compiler uses the same information to initialize its data, then, in order to have a better dynamic type analysis, the Lisaac compiler adds extra type flow information. The list of possible dynamic types is no longer computed for each static type, but distinctively for each variable introduced in the live code, namely instance variables, formal parameters, local and global variables. For each variable, the list of assignments to that variable is recorded and internally represented as a directed graph where variables are the nodes and assignments are the arcs. Possible leaf vertices of the directed graph are: constant values, explicit object identifiers, objects creations and the null value. A method call is a labeled vertex giving access to the sub-graph of this method. The transitive closure of the directed graph of assignments gives all the possible dynamic types for each attribute, each formal argument and each local variable and, consequently, all the possible dynamic types for each expression. To summarize, during step 1, we are using RTA as a flow-insensitive interprocedural type analysis for all live methods. Flow-sensitive analysis only occurs during step 2. Both type flow analysis can be related to CFA [START_REF] Neil | Jones Flow analysis of lambda expressions[END_REF][START_REF] Shivers | Olin Control-flow analysis in Scheme[END_REF].

As for constant values, the null value, denoting the absence of object, is a leaf vertex of the directed graph of assignments. Finally each expression can be classified into three categories: either an expression can sometimes be null, can never be null, or is always null. This information is useful to know if an expression may cause a call on null error. Measurements performed on the complete source code of the Lisaac compiler shown in figure 4 indicate that 53.5% (i.e. 33.5% + 20%) of variables are monomorphic variables. All other variables, 46.5% (i.e. 46% + 0.5%) are polymorphic. Thus, only 46.5% of variables require dynamic dispatch if they are used as the target of certain method calls. The accuracy of type analysis is essential in reducing the execution time overhead of dynamic dispatch. As shown in section 5.3, most method call sites are usually statically resolved. From the language design point of view, it is easier to predict types when the language is statically typed and when the initialization policy of the language does not leave place for uncertainty. For example, in Lisaac and SmartEiffel, non-initialized data gets a default value. Another good language design decision is with Java and C# whereas the programmer must initialize all local variables and all instance variables have default values, avoiding any uninitialized piece of memory.

Data type analysis and garbage collection optimization of arrays

To perform global type flow analysis, array read-write operations rely on the built-in native array[e] abstract data type. The native array[e] abstract data type was first introduced in SmartEiffel to avoid uninitialized cells and to optimize garbage collection. This abstract data type is a kind of array list: some capacity is given as an argument of the constructor and the filling up is made progressively, cell by cell from left to right (see figure 5). For type flow analysis, Lisaac considers the whole used part as a single cell. Actually, we adapted the array smashing method of [START_REF] Blanchet | A static analyser for large safety-critical software[END_REF] for type flow analysis. To summarize, as soon as one cell is possibly assigned with an object of type a, all cells of the used part are considered as potential holders of objects of type a. Although the information collected for native arrays lacks index sensitivity, it allows us to conclude whether an element can have a null value or not. Since null is considered as a particular type, the absence of the dynamic null type inside an array is a significant piece of information. Any method call applied on an element of this array is statically guaranteed to not be null, therefore there will be no call on null error. Measurements performed on the Lisaac compiler, shown in figure 6, indicate that 27.4% of arrays are monomorphic. This result is not as good as the one we obtained for variables (figure 4), but this is not surprising as most arrays are stored in long-life variables (i.e. attributes or globals), which are accessible from many locations. Still in figure 6, arrays containing only null values are empty hash-maps. Most garbage collector algorithms [START_REF] Jones | Garbage Collection[END_REF] need to scan through all the accessible objects, like the copying-collector or the mark-and-sweep garbage collectors. For instance, the mark-andsweep collector must walk through all accessible arrays during the mark phase. As a result of our filling-up strategy, the supply memory area of arrays (figure 5) is unreachable. Our GC (SmartEiffel and Lisaac) uses this knowledge to avoid scanning of that area. This makes the GC faster and prevents it from accidentally marking inaccessible objects. Furthermore, the type flow information of the array elements can be integrated to the GC as it is already the case for the objects' attributes [START_REF] Colnet | Compiler Support to Customize the Mark and Sweep Algorithm[END_REF]. SmartEiffel generates a specialized and precise marking function for every object type and excludes interpretation during execution. We equipped the source code of the SmartEiffel garbage collector in order to examine the impact of arrays on memory footprint. To have a indicative execution we are using the entire source code of the SmartEiffel compiler itself, which is 180,000 lines of Eiffel source code during its own bootstrap. The self recompilation of the compiler is a very good benchmark since it uses a lot of arrays and requires approximately 330 Mb of memory during the process. Furthermore, the garbage collector is triggered 32 times while compiling the compiler. For the following measurements, only arrays of references are considered, since other arrays, for example arrays of integers or arrays of characters, are not directly concerned by our type flow analysis technique. Additionally, the SmartEiffel garbage collector does not even scan the content of arrays of scalars. We modified the marking procedure for the content of arrays to count the number of marked arrays during one recompilation. The measurement shows that the GC processes 6,399,198 arrays. The total size of the corresponding used area scanned is of 12,548,963 cells. As the total capacity of processed arrays is of 21,714,957 cells and since the supply area is not scanned, the GC avoids scanning 9,165,994 cells, which signifies a gain of 42% [START_REF] Colnet | Paper in French: Analyse simple de types dans les tableaux et optimisation du ramasse-miettes[END_REF].

SECOND STEP: OPTIMIZING THE CLOSED WORLD

Due to the results of the previous step, we can begin working in a closed world: the internal representation of the source code we are working on is a superset of the reachable code. Each expression has a finite set of possible dynamic types including the information regarding the null value. At this time, the gathered information is pessimistic and the goal of the second step is to refine it. During the second compilation step we carry out a number of optimizations, among which we will mention: those who have an important impact on the runtime and those related to object-oriented languages. Special treatment of operating system dedicated features which are specific to Lisaac, are beyond the scope of this article. Only general purpose optimizations are described here.

Dispatch branching code and general survey of step 2

Needless to say that the implementation of late binding is crucial for the performance of objectoriented languages. The most popular implementation relying on a Virtual Function Table (VFT) [START_REF] Ellis | The Annotated C++ Reference Manual[END_REF][START_REF] Driesen | The Direct Cost of Virtual Function Calls in C++[END_REF] is often used for languages such as Java, C# or C++. Figure 7(a) illustrates the necessary indirect function call of the VFT implementation. Each value of the table is a function pointer leading to indirect calls. Figure 7(b) illustrates the dispatch branching code previously introduced in SmartEiffel [START_REF] Zendra | Efficient Dynamic Dispatch without Virtual Function Tables. The SmallEiffel Compiler[END_REF]. This implementation, which is only possible under CWA, allows inlining or transforming of static calls inside each case branch. As we obtained exceptional results with the SmartEiffel compiler, we decided that for the Lisaac compiler to experiment with a similar strategy, using more inlining and code customization, and to add data flow information. Internally, the abstract representation of dynamic dispatch is a switch-like representation similar to the one presented in figure 7(b). The most significant reason for this choice is the possibility to perform inlining inside case branches. As the same type of internal switch statement is also used for any written switch statement of the users source code, the type flow analysis is performed indifferently. The type set information for each expression gathered during step 1 is used to build the dispatch branching code. This internal representation of the code constitutes the initial state of step 2. Step 2 is composed of passes on the entire code, to inline or to transform the code, also using data flow analysis, making as many passes as necessary to reach a fixed-point. A fixed-point is reached when a complete traversal of the code is performed without any transformation.

The most common code transformation occurs inside the case branches of the dispatch branching code. Indeed, in such a case branch, the receiver's dynamic type is resolved and the corresponding static call is a candidate for inlining or transforming. Simple data flow techniques also allow code simplification as shown in figure 8, with the previously used car/truck example. Now that we have given an overview of step 2, the next subsection presents the method customization issue before a detailed presentation of the inlining strategy (subsection 3.3), loop invariant detection (subsection 3.4), reference comparisons (subsection 3.5), and dispatch branch merging (subsection 3.6). All the transformations performed during step 2 allow us to better specialize the code and, when possible, to reduce the dynamic type sets. For instance, the dynamic type set of data in figure 8 shrinks progressively during the passes of step 2. While the type sets are only growing during passes of step 1, the opposite happens during passes of step 2; the type sets get smaller and smaller. 

Method customization

Method customization consist in the definition of a new version of a method, adapted to the characteristics of the calling site. Thereafter the customized method is only used for calls with the same characteristics as the original calling site. Methods are customized in a way that impacts the size of the generated code as well as the level of specialization of that code. The more the code is specialized, the more it can be transformed efficiently. On the other hand, too much specialization makes the code so large that one cannot expect to translate very large applications. Let us first review the SmartEiffel strategy.

3.2.1. Customization according to the receiver only (SmartEiffel) Customization according to the type of the receiver only consists in the definition of one customized method for each possible dynamic type of the receiver [START_REF] Zendra | Efficient Dynamic Dispatch without Virtual Function Tables. The SmallEiffel Compiler[END_REF][START_REF] Bacon | Fast Static Analysis of C++ Virtual Function Calls[END_REF][START_REF] Dean | Optimization of object-oriented programs using static class hierarchy analysis[END_REF]. No possible variation of the arguments type intervene. Hence, for one given method which can be called polymorphically, the number of actually defined customized methods is equal to the number of possible dynamic types for the receiver. The body of each customized method is specialized for only one dynamic type, making each call on the self variable direct static calls. Inside the body, when the method called is small enough, it can be inlined or, in the best case, statically computed. A typical example is the static computation of a boolean expression which makes one branch of an if then else statement unreachable. This results in additional dead code elimination and may impact call sites outside of that method body. In such a case, a new traversal of the entire code is performed to take into account possible simplifications: receiver type-set reduction or extra inlinings. For that reason, the specialization of method bodies is performed as early as possible, not only during final code generation. As shown in the example of figure 9, two different methods are created using the inheritance tree. One version of m is called when the dynamic type of the receiver is A and the other when the dynamic type of the receiver is B. Each version of m can be called with all possible types for the argument (i.e. the static ARGU M EN T type). The SmartEiffel strategy, while perfectly scalable, lacks specialization on arguments to take advantage of the gathered information.

Customization with Cartesian

Product Algorithm (Self / Agesen) The Cartesian Product Algorithm (CPA) for the Self language [START_REF] Chambers | Customization: Optimizing Compiler Technology for SELF, a Dynamically-Typed Object-Oriented Language[END_REF][START_REF] Agesen | The Cartesian Product Algorithm: Simple and Precise Type Inference of Parametric Polymorphism[END_REF] customizes methods for all possible types of the receiver, but also for all possible types of the arguments. This results in a better specialization of method bodies because calls on formal parameters are also specialized. Unfortunately, more customized methods need to be developed. Invocation of methods is also made more difficult because the dynamic types of arguments are involved in the dispatch mechanism together with the dynamic type of the receiver. As shown in figure 9, the receiver type set is {A, B} and the set of the possible argument types is {C, D, E}. Therefore there are 2 × 3 versions of method m which are created. With CPA, each customized method is highly specialized. Before calling a method, one must dispatch not only with the type of target but also with the types of arguments. The CPA strategy is a flexible and dynamic approach designed under the Open World Assumption (OWA). The main drawback of this approach is that it creates too many customizations. In the example given in figure 9, the method customization {B}.m({E}) is not necessary under CWA.

Argument Type Sets (ATS) customization (Lisaac)

Argument Type Set (ATS) customization of Lisaac is a trade-off between receiver only customization of SmartEiffel (3.2.1) and generalized CPA customization of Self (3.2.2). For a given call site, ATS uses the type set of the receiver as well as the type set of each effective argument. The number of customized methods that are possibly called, matches the number of possible types of the target at that call site. All customized methods of that call site have the same signature for arguments. Actually, each argument is tagged with the possible type set for that argument at that call site. By doing so, only the dynamic type of the receiver is involved in the dispatch mechanism. The type information gathered for arguments at a given call site is enclosed in the bodies of the corresponding customized methods. A pool of customized methods is updated throughout the compilation process. As soon as a simplification occurs to a method body, a complete traversal of the code is necessary to take into account possible modifications in other methods.

A customized method is shared by two call sites only if the type sets for all effective arguments are identical. Step 1

Lisaac code

Step 2

Step 3

Figure 10. Steps to compile the library defined if then else conditional into the best possible C code.

Transformation inside dynamic branching code

By its very nature, VFT usage implies making indirect calls to true functions, even for a simple field access. To permit inlining of simple operations, we are obliged to use either an if then else balance tree or a switch statement. For polymorphic calls with only two possibilities, Lisaac uses a simple if then else (see 3. 

2).

A block closure is an anonymous function or an anonymous procedure that is saved along with the current bindings from enclosing blocks for later invocation. When it cannot be statically resolved, a block closure is typically implemented by saving both the function and any activation records that contain variables referenced by the function. The closure creates additional implicit references to the bindings closed over and hence must be accounted for in any memory management scheme (i.e. closures are as costly as true objects). The closure itself is an object that must be managed and may have either a dynamic extent or an indefinite extent depending on whether it is only used by inner blocks of the creating block or passed out of the creating block. Because dynamic closure management is very costly both in terms of memory and execution time for calling the delayed code [START_REF] Shao | Space-Efficient Closure Representations[END_REF], we have designed our inlining strategy to maximize static resolution of block closures. Our inlining algorithm features six possibilities according to the encountered call:

Case #1: The call is a tail-recursive call. In such a situation, the call is favorably replaced with a goto statement at the beginning of the enclosing method. By doing so, the enclosing function is no longer recursive and is thus a possible candidate for subsequent situations. Note that it is not possible, in the general case, to remove tail-recursion when using VFTs.

Case #2: The called method is recursive. The static call to the corresponding method is left unchanged. The rationale is that the stack is convenient to implement the recursion. While inlining may be possible under unusual conditions, we prefer to not inline here. When a lexical closure is part of the call, we have to manage runtime structures to capture the context. Usually this situation is quite rare and the catch is more commonly reduced to the current receiver.

Case #3: A lexical closure is used in receiver and/or some arguments. A lexical closure may for example use a local variable of the enclosing context. Inlining makes available the usage of that closure into the current context. Applying transitive transformations without encountering the previous case #2 allows a static implementation of closures.

Case #4: The method call is unique. Thanks to CWA, case #4 is straightforward and avoids the unnecessary function definition with the unique associated method call.

Case #5: The method called is small enough. A compiler option provides the ability to select the right balance between either performance or binary code size. The default value is the result of the experimentation presented in section 5.7.

Case #6: All other cases. In all other situations the call is a direct static call to the function.

Transformation of the if then else conditional

As in Smalltalk or Self, the Lisaac if then else statement is defined in the library, not in the actual language. In the boolean class, this conditional statement is actually an abstract method consisting of two arguments, both of closure type. The first argument represents the then part and the second argument the else part. There are two definitions of this method, one in the true class and the other in the false class. The definition of the true class only executes the then closure while the definition of the false class only executes the else closure. For efficiency reasons, Smalltalk and Self compilers use a special treatment with hard-coded primitives to handle similar if then else conditional statements. As a result of our compilation strategy without VFTs and the transformation rules we selected, it is not necessary to handle conditional statements of this type with a special case inside the compiler. We are thus able to obtain the best possible translation without using any compiler tricks, by simply applying our general compilation scheme. Figure 10 details all steps of the compilation process for an if then else statement. Dynamic dispatch on the boolean value is first translated with a two branch switch, one for true, the other one for false. The last step replaces the switch with a hard-coded if statement. As a result, the generated code is as efficient as hand-written C code. Notice that the transformation of a two branch switch into a simple conditional statement occurs, generally, not only for booleans, but for all two element type sets dispatch call sites.

Transformation of the while do loop

As for conditional statements, all loop statements are defined in the library and are not part of the actual langage. Once more, applying our general compilation strategy allows us to obtain the best translation, even for loop statements.

As an example, figure 11 details of the steps necessary to translate the while do statement.

During the cascade of transformations, applying case #1, for the tail-recursive call, leads to the goto loop. The apparent final step reaches the corresponding while statement. Again, the translation to hand-written C code is reached.

Loop invariant detection

Loop invariant detection is better achieved when the body of the loop is fully defined as it is the case under CWA. For example, let us consider the following C++ like piece of code:

STRING string; // Declaration of the string attribute void method() { int j; this->string = new STRING(); this->string->length = 5; this->string->storage = "Hello"; j = 0; while (j < this->string->length) { io->put char(this->string->storage[j]); j ++; }; } In the previous code, string is the attribute of the this object. In a C++ like language, the put char() method can have access to the this pointer and thus is able to modify the length and/or the storage attribute. Under CWA, the compiler is aware of the put char() method invoked on the io object. If put char() does not modify the attributes of string, the previous method code can be optimized as follows, using constant propagation and loop invariant extraction: void method() { int j; this->string = new STRING(); this->string->length = 5; this->string->storage = "Hello"; j = 0; { char *tmp=this->string->storage; while (j < 5) { io->put char(tmp[j]); j ++; }; }; } Then, the five steps loop can be traditionally unrolled into:

void method() {
this->string = new STRING(); this->string->length = 5; this->string->storage = "Hello"; io->put char('H'); io->put char('e'); io->put char('l'); io->put char('l'); io->put char('o'); }

Optimization of reference comparisons

Method customization obviously implies more code as it creates new specialized code. For instance, within any method, the receiver (i.e. self or this), cannot be null and has exactly one determined dynamic type. When a polymorphic method call site is broken up with the corresponding dispatch branching code, the non null target expression also gets one unique possible dynamic type within each case branch of the switch. Remarkably, we observed that many reference comparisons became constant, i.e. either always true or always false, leading to code removal or at least to code reduction. Indeed, it is not common for a programmer to consciously write an == expression (or a != expression) which is always true or always false. It is quite common, in object-oriented software, to write a template method pattern [START_REF] Gamma | Design Patterns: Elements of Reusable Object-Oriented Software[END_REF] with a comparison expression which becomes statically computable in some subclasses. As each expression is tagged with the set of all the possible dynamic types, the null value being a possible element of the set, rules to decide when a comparison expression is constant or not constant are as follows. In this instance we will take into consideration a comparison of the form constants. Categories (4) and ( 5) are the direct consequence of type flow analysis as previously explained. Category (3) is for similar access to the same data, the same variable or the same field access on both sides of the comparison operator. As most comparisons are involved in if then else statements, detecting a constant comparison makes it possible to remove either the then block or the else block. This type of code removal contributes to offset the code size explosion due to method customization. The comparisons of category (2) in figure 12 are part of the removed dead code. As a result, 49.2% of comparisons disappear and only 50.8%, category [START_REF] Chambers | The design and Implementation of the Self Compiler, an Optimizing Compiler for Object-Oriented Programming Languages[END_REF], are part of the executable.

Branch merging

Invariant reference detection is used to merge sequential switch dispatchs when two or more sequential method call sites apply to the same unchanged receiver expression. When the dynamic type of the receiver cannot change, it is possible to merge the dispatching code itself in order to avoid having multiple dynamic type selections. An example of this would be as follows: 

THIRD STEP: BACK-END OPTIMIZATIONS

The final step of our compilation strategy is dedicated to back-end optimizations. In order to simplify this presentation, the target language is represented by the C language.

Rearranging data

As compiler writers, we are undeniably involved in language design. A decision made during the design of the language may have drastic effects at compile-time. Allowing the compiler to change the order of the fields within a structure or an object makes several optimizations possible. In contrast, such a decision is a constraint for programmers. A suitable balance between compiler writer constraints and language designer requests must be attained. As with SmartEiffel and Lisaac, the programmer cannot rely on field order to write his code. As the attributes of objects can be shifted or even removed by the compiler, it is not permitted to have a pointer pointing towards the interior of a structure. Structures or objects must always be pointed to globally. Consequently, the compiler is able to rearrange the fields of a structure to fit within the memory layout and minimize memory fragmentation. The same type of data reorganization can also be applied on local variables in order to save stack space. The example in figure 14 presents a structure with four fields named a, b, c and d. When the order of the original source code is kept unchanged the total memory size needed is 16 bytes with 5 bytes of unused memory padding. When reorganized as shown on the right side of figure 14, the total size for entire structure is 12 bytes with only 1 byte of unused memory padding. While keeping the alignment, the rearranged structures are noticeably shorter and may fit better into a processor's cache. In a reduced data structure, the maximum number of lost bytes is equal to the size of a processor-word -1 and the lost bytes do not depend on the number of fields. For instance, on a 32-bit processor (4 bytes), the maximum loss is 3 bytes no matter what the number and size of fields are. On a 64-bit processor, the maximum loss of memory is 7 bytes per structure. More commonly, let 2 P be the size in bytes of a machine word (P = 2 for a 32-bit processor). Assuming the fields are sorted by increasing size into the structure, a memory lost occurs when the size of fields changes. Changing size from 2 i to the next size 2 i+1 implies a maximal loss of 2 i . Changing sizes from 2 i to 2 j , with j > i, induces a loss of j-1 k=i 2 k . As a consequence, the total loss using words of size 2 p is :

p-1 k=0 2 k , that is, 2 p -1.

Dynamic type id selection and switch optimization

The traditional translation of switch statements into assembly code relies on a jump address table indexed with the switched value. Let byte count be the number of byte processor's words, the pseudo assembly generated code for a switch statement is:

static void *jump table[] = {&id T1,&id T2,&id T3}; (1) index := receiver->id -first case id (2) if ((unsigned)index > last case id) then (3) goto default case (4) endif (5)
goto (jump table[index * byte count]) id T1: T1 method(receiver); goto after dispatch; id T2: T2 method(receiver); goto after dispatch; id T3: T3 method(receiver); goto after dispatch; [START_REF] Chambers | The design and Implementation of the Self Compiler, an Optimizing Compiler for Object-Oriented Programming Languages[END_REF] default case: ... after dispatch:

...

As the switched value is the integer dynamic type id, the compiler is able to select id sets to optimize the generated assembly code. Due to CWA and global analysis all the possible switch sites are known at compile-time. The dynamic type sets involved in method calls are naturally segregated into different families of objects. As an example, an application using fruit and vehicles probably will not combine those objects. As a consequence, some method calls are dispatching only fruit while other method calls are dispatching only vehicles. No method call handles fruit and vehicles at the same time. It is thus possible to reuse the same ids in the fruit object family and in the vehicles object family. The id only needs to identify the object inside its family, not globally. Our numbering strategy is similar to selector coloring [START_REF] Dixon | A Fast Method Dispatcher for Compiled Languages with Multiple Inheritance[END_REF][START_REF] André | Optimizing Method Search with Lookup Caches and Incremental Coloring[END_REF] and is the inverse of selector table indexing [START_REF] Driesen | Selector Table Indexing and Sparse Arrays[END_REF][START_REF] Driesen | Minimizing Row Displacement Dispatch Tables[END_REF]. Because of the switch implementation, the goal of the type id numbering is, firstly to minimize the jump table size and, secondly to try to use values as small as possible, the best being to start at 0. When the smallest number of a family is close enough to zero, it is possible to remove the subtraction instruction (1) of the switch assembly code. The used heuristic gives the priority to the largest families which are then sorted according to frequency of written method calls. When a family is completely separated from other families (i.e. when all the types of a family are never used in other families), the numbering can start at 0. If one same type is used in several families, its id is selected to be unique across families, and minimized as much as possible. While we are implementing dynamic dispatch all cases are associated with one dynamic type and nothing else can happen. It is not possible to go out of range of the jump table. The default case is thus useless and removed (the lines (2), (3), ( 4) and (6) are removed).

Dynamic type id selection on the compiler example

Measurements on the Lisaac compiler indicate that 315 types of objects may exist at runtime. Amongst those 315 possible dynamic types, only 120 are involved in dynamic dispatch or subtype testing (on subtype testing see references [START_REF] Palacz | Java subtype tests in real-time[END_REF][START_REF] Ducournau | Perfect Hashing as an Almost Perfect Subtype Test[END_REF]). Dynamic types which are not involved in dynamic dispatch or subtype testing are not numbered and corresponding objects do not have the id field (object size reduced). On the compiler example, non-identified types represent 62% of dynamic types. We have also remarked that most applications have a similar important ratio of types which are not involved in dynamic dispatch. Numbering of the 120 dynamic types involved in dynamic dispatch is presented in figure 15. The upper section of the figure indicates that id 0 is used for 13 different types, that id 1 is used for 12 different types, etc. The lower section of figure 15 gives the distribution of dispatch call sites. There are 10,664 dispatched call sites or subtype tests. Each horizontal line represents a family of call sites and a continuous line indicates that there is no break in the dispatch sequence. The largest family of call sites has 8,044 members that represent 75.43% of call sites and this family operates in the range [0 -1] of ids. Most of them are if then else dispatch call sites (see 3.3.1). As one can discern, the result is remarkable and there are few breaks in sequences. Also note that 46 call sites (0.43%) operate on the complete ids distribution.

EXPERIMENTS

Our compilation strategy is a combination of several ideas and techniques. Optimizations performed in a given pass may interact with other optimizations in the same or other passes [START_REF] Lee | Understanding the behavior of compiler optimizations[END_REF]. As one optimization may expose opportunities for another optimization, measuring the impact of a single aspect of the compilation process is very difficult. For example, it is not that simple to disable type flow analysis on collections to measure the sole impact of that aspect.

Bootstrap of the SmartEiffel compiler

The bootstrap of the SmartEiffel compiler (detailed results published in [START_REF] Collin | Type Inference for Late Binding. The SmallEiffel Compiler[END_REF]) is summarized in figure 16. Each step compiles the same 50,000 lines of Eiffel source code. The first compiler on

SmartEiffel compiler

Eiffel S compiler

SmartEiffel#0 compiler 35s 56s 540s the left-hand side is the Eiffel/S 1.3 commercial compiler which works under the open world assumption with a VFT implementation of the dynamic dispatch. The far left compilation step is running the algorithms and data structures of Eiffel/S. The remaining compilation steps are running the algorithms and data structures of SmartEiffel. The binary code of SmartEiffel#0 is using the VFTs that are coming from the Eiffel/S translation. SmartEiffel#0 is also using the Eiffel/S runtime libraries for memory allocation as well as the Eiffel/S objects layout. The compilation step from SmartEiffel#0 to the first stabilized SmartEiffel compiler, the step where the fixed-point is reached, is the best place to perform the comparison. Because SmartEiffel does not perform type flow analysis, the 1.6 speed gain factor of figure 16 is the gain obtained with RTA [START_REF] Bacon | Fast Static Analysis of C++ Virtual Function Calls[END_REF] and dynamic branching code [START_REF] Zendra | Efficient Dynamic Dispatch without Virtual Function Tables. The SmallEiffel Compiler[END_REF][START_REF] Collin | Type Inference for Late Binding. The SmallEiffel Compiler[END_REF].

Bootstrap of the Lisaac compiler

The previous versions of the Lisaac compiler were written in SmartEiffel. In order to bootstrap, we translated the source code of the compiler into Lisaac code. The Lisaac compiler is a considerably large application of approximately 53,000 lines of Lisaac source code. We compare in figure 17 the latest version of the Lisaac compiler written in SmartEiffel (Lisaac SE ) with the first bootstrapped version of the Lisaac compiler (Lisaac LI ). Since the translation was systematically performed, the comparison applies on the same algorithms with similar structures. The Lisaac SE binary is produced by the SmartEiffel compiler which does not feature type flow analysis whereas Lisaac SE does. As a result, the number of monomorphic method calls has improved from 91% to 98.3%. As shown in figure 17, the percentage of extra monomorphic method calls represents polymorphic method calls leading to the same code for each branch of the dispatching code. Such polymorphic method calls are replaced with direct static calls and accordingly considered as monomorphic call sites. Most of the extra monomorphic call sites are read/write operations of a field within a structure with the same displacement properties (details in [START_REF] Zendra | Efficient Dynamic Dispatch without Virtual Function Tables. The SmallEiffel Compiler[END_REF]). The memory footprint gain which is of 32.8% in figure 17, is mostly due to the data structure compaction algorithm we had presented in section 4.1. The runtime gain of 12.6% derives from better type analysis. Owing to this criteria, the Lisaac LI compiler is more effective than the Lisaac SE compiler.

Late binding benchmarks, horizontal and vertical inheritance

Benchmarking only late binding appears to be quite difficult due to the involvement of several factors, such as the level of polymorphism, dynamic predictability of the target or even the depth of the inheritance graph. Furthermore, most processor architectures are now using some sort of Branch History Table (BHT) mechanism, which allows numerous conditional branches to be predicted when the same type of target is used repeatedly. Indeed, it is a well-known property of polymorphism that generally, the receiver type at a polymorphic call site does not vary substantially [START_REF] Hölzle | Adaptative optimization for Self: reconciling high performance with exploratory programming[END_REF]. BHT is thus used as a memory of the last receiver type, which may be considered as a type of inline caching performed by the processor (inline caching is an optimization technique that was first developed for Smalltalk [START_REF] Deutsch | Efficient Implementation of the Smalltalk-80 System[END_REF][START_REF] Ungar | What Price Smalltalk?[END_REF]). The horizontal benchmark in figure 18 is dedicated to late binding. Actually, this benchmark is not a single program, but a set of programs depending on N , the number of subclasses stemming from the parent class. For instance, when N is 128, the parent class has 128 different subclasses with 128 different methods and all of the 128 objects are mixed together into an array of 128 slots. Since N varies from 2 to 512, all types of polymorphism are considered. Furthermore, there are two different main programs, both having one polymorphic dispatch site embedded in a long-time loop. The Unpredictable main randomly shuffles the receiver amongst the N possibilities, making the dispatch method call truly unpredictable. Conversely, the Predictable main, does not shuffle the receiver as much. Only two types of receivers are used repeatedly, making the predictable benchmark more reliable [START_REF] Driesen | Message Dispatch on Pipelined Processors[END_REF]. To have a meaningful comparison, the C++ code always uses the virtual for all methods. There are only virtual methods both in SmartEiffel and Lisaac. Runtime results make it clear that the dispatch branching code is scalable in comparison with the VFT results of C++. In comparison with SmartEiffel, Lisaac is superior because the dispatch branching code itself is inlined. For an unpredictable situation, only C++ is time-constant even when N becomes voluminous. With over 512 types to dispatch, even Lisaac is outperformed by C++ however such a megamorphic call is clearly unrealistic (for megamorphic call sites, see [START_REF] Driesen | Message Dispatch on Pipelined Processors[END_REF][START_REF] Hölzle | Optimizing dynamically-typed object-oriented languages with polymorphic inline caches[END_REF][START_REF] Aigner | Elimination Virtual Function Calls in C++ Programs[END_REF]). Note that we have not mentioned the results of Java here because each Java virtual machine we have tried were outperformed. The performance time was between 30-50 times slower than C++ (in [START_REF] Pizlo | High-level Programming of Embedded Hard Real-Time Devices[END_REF] they report a 10-100 factor compared to C).

Polymorphic Call sites Lisaac

The vertical inheritance benchmark of figure 19 also uses a N variable number of classes varying from 2 to 512 and, as in the previous benchmark, two different main programs, one unpredictable and one predictable. In the vertical benchmark, one unique method defined in the parent class is vertically inherited by all of the N subclasses. The C++ source code uses the virtual keyword. That is not that important, but the gcc compiler we used, gcc 4.4.1, was unable to compile more than 128 classes due to an internal limitation of the compiler for inheritance depth. The inadequate results of SmartEiffel in the unpredictable situation of figure 19 is due to the fact that the unique inherited method from parent is actually duplicated in each child offshoot. SmartEiffel generates the dispatch branching code for the call. Lisaac is able to detect that the inherited method is always identical. All the dispatch branching code is thus avoided and the method is inlined. As in the horizontal benchmark, the C++ compiler generates a VFT for the call. The gains come only from the processor caching mechanisms. 

Automatic cascading method calls

In figure 20, the array accessed inside the loop contains 512 different instances of 512 different classes. The dispatch branching code taken into account for each method call being performed on the same receiver, hence it is therefore unique (subsection 3.6). Because of the VFTs, the C++ compiler is unable to efficiently take into account the dispatching code.

Call on the self (or the this) variable

The purpose of the benchmark of figure 21 is to measure the benefits obtained for method calls on the self (or the this) variable. In this family of programs, the number of method calls on self increases with N . Following the number of method calls on self, the number of defined subclasses increase to redefine inherited methods: child 1 redefines only m1, child 2 redefines only m2, child 3 redefines only m3, etc. The unpredictable main randomly shuffles the receiver among the N possibilities. As a result of the receiver customization technique previously presented in section 3.2.1, both SmartEiffel and Lisaac have excellent results compared with C++. Actually, the execution time of C++ is so slow that we had to use a logarithmic scale.

When N equals 256, Lisaac's runtime is 80 times shorter than the one for C++. Evidently, C++ treats method calls on the this receiver the same as for ordinary method calls, starting the dispatch process, again and again, from scratch.

Multiple inheritance

The purpose of the benchmark of figure 22 is to measure the dynamic dispatch when multiple inheritance is involved. In this family of programs, the number of multiple inheritance links is increasing with N : grandchild 1 has 1 parent, grandchild 2 has 2 parents, grandchild 3 has 3 parents, . . . grandchild n has N parents. The main loop randomly picks up a grandchild i from an array in order to launch the inherited method from parent. The C++ source code uses the virtual keyword both for inheritance and methods. For runtime results, even if SmartEiffel performs better (see upper left curve of figure 22), results of C++ are not completely unsatisfactory. We detected something never encountered in any previous benchmarks: the executable size of C++ grows dramatically with the value of N . To investigate this point, we measured the data and the text segment of the generated executables for all values of N (see lower curves of figure 22). As shown in the figure, it appears that the problem of C++ arises in the text segment part of the executable, clearly indicating that the tables used for the multiple parents are growing larger with the value of N (this confirms the results mentioned in [START_REF] Privat | Link-Time Static Analysis for Efficient Separate Compilation of Object-Oriented Languages[END_REF]).

Impact of the inlining level of small functions

The inlining level of small functions (i.e. case #5 of our inlining strategy described in section 3.3), can be selected manually thanks to a compiler option. Figure 23 shows the impact of the inlining level on binary code size while compiling the Lisaac compiler itself. After reaching a minimum inlining level of 10, the curve increases linearly. Because the Lisaac compiler is written in an object-oriented way and contains numerous methods with several polymorphic method calls, it is quite likely that several other object-oriented applications will have a similar behavior. Thus, we decided that 10 is a good tradeoff for the inlining level default value.

The MPEG2 benchmark

In order to have another significant benchmark, we translated an entire M peg2 decoder, originally written in C, into Lisaac. We performed a mechanical translation of the original C code, approximately 10,000 lines of C code. In order to get a significant runtime, we used an 80M b video file as input. Four versions were created, one for each of the following output formats: YUV, SIF, TGA and PPM. Figure 24 shows the runtime of the C code compared to the Lisaac code. The C code generated by the Lisaac compiler was compiled with the same C compiler and options. As for the YUV conversion, Lisaac is much slower than C. Amazingly, all the other conversions (SIF, TGA and PPM) require to first compute the YUV conversion. The time used for the YUV conversion is indicated on each conversion in order to exhibit the remarkable results for the remainder of the computation (figure 24).

RELATED WORK

MLton (http://www.mlton.org/) is an open-source, whole-program, optimizing Standard ML compiler. Regardless of the fact that MLton is for the SML functional language (i.e. non objectoriented), MLton is very similar to Lisaac: CWA, aggressive dead-code elimination, untagged and unboxed native integers, unboxed native arrays, etc. Furthermore, MLton is very similar to Lisaac in the way closures are inlined.

Work presented in [START_REF] Corney | Type Test Elimination using Typeflow Analysis[END_REF] introduce the concepts of type flow analysis and detail its use in reducing runtime overhead in Oberon-2 [START_REF] Mössenböck | The Programming Language Oberon-2[END_REF]. Their main goal is to eliminate irrelevant dynamic type tests. The type flow analysis of Lisaac is notably more complete in order to handle all kinds of variables of object-oriented languages (see section 2.2). Furthermore, we introduce in section 2.3 an innovative approach to handle type of elements within arrays. This is a key point of our strategy because it allows us to perform a real global program analysis.

The Vortex compiler [START_REF] Dean | Vortex: An Optimizing Compiler for Object-Oriented Languages[END_REF] is a language-independent optimizing compiler for object-oriented languages. There are front-ends for Cecil, C++, Java, and Modula-3. Vortex is an excellent tool to quantify the benefits of object-oriented optimizations. Actually, most Vortex optimizations are present in the Lisaac compiler and the type flow analysis of Lisaac is both intra-procedural and inter-procedural. Vortex provides selective recompilation while Lisaac does not. Rather than specializing exhaustively, Vortex is guided by dynamic profile data to selectively specialize only heavily-used methods. Techniques in Vortex such as profile-guided optimizations and selective recompilation might be profitably added to our compilation strategy.

The type inference carried out for the Self language in [START_REF] Agesen | Type Inference of Self: Analysis of objects with Dynamic and Multiple Inheritance[END_REF] is similar to the Lisaac approach: each expression is considered separately. Their algorithm doesn't work on the full transitive closure graph, but on a fragment only. The code generation is then performed by using this fragment before doing an inference on a larger fragment. This method is less expensive in terms of memory because it is an incremental process. On the other hand, the number of possible dynamic type for one call site is never static, even at code generation time. Our approach requires a superset of all the possible dynamic types for each method call.

Marmot [START_REF] Fitzgerald | Marmot: an optimizing compiler for Java[END_REF] is an optimizing compiler for a large subset of Java. Marmot is intended primarily as a high quality research platform. Marmot performs a class hierarchy analysis [START_REF] Dean | Optimization of object-oriented programs using static class hierarchy analysis[END_REF] and a complete program analysis. It takes verified bytecode as input instead of Java source code and it still uses VFT. Marmot's object-oriented optimizations are implemented using a combination of inter-module flow-insensitive and per-method flow-sensitive techniques. Contrary to our methods, flow analysis is not globally performed. The authors also indicate that optimum performance is best achieved under the CWA. The stack allocation optimization of Marmot improves locality and reduces garbage collection overhead by allocating objects with bounded lifetimes on the stack rather than on the heap. Such a stack allocation should be added in our compilation strategy. Marmot offers a choice of three garbage collection schemes: a conservative collector, a copying collector, and a generational copying collector.

As presented in [START_REF] Glew | Type-Safe Method Inlining[END_REF], staying type-safe when inlining a virtual method may cause problems between the receiver's static and dynamic type. However, with our approach, the dynamic type dispatching is realized before inlining and thus the problem does not even exist. In [START_REF] Palsberg | Object-Oriented Type Inference[END_REF] a global program analysis with type inference is performed on a Smalltalk like language. Yet the graph contains all the type information that can be derived from the program without keeping track of null values or flow analyzing the contents of the instance variables. The collected information is close to the RTA algorithm applied on static type languages.

The Fiji VM [START_REF] Pizlo | High-level Programming of Embedded Hard Real-Time Devices[END_REF] compiles Java bytecode to C for Embedded Hard Real-Time Devices also using the CWA. Fiji features many similarities with Lisaac: type propagation both intraand inter-procedural using a static single assignment (SSA) intermediate representation. In addition Fiji takes into account multi-threading with a concurrent real-time garbage collector. The major difference is that Fiji still uses VFTs.

FUTURE WORK

We have learned from Eiffel the fundamental aspects of design by contract to make the code more readable, to validate it and to ease debugging. We are now experimenting with design by contract as a possible source of information for the compiler to optimize the code. Roughly, the main idea is to make the assumption that pre-conditions, post-conditions, and invariants that are written by the programmer are always correct and may be trusted by the compiler. We hope that combining the information gathered by data/type flow analysis will allow better code optimization. When considered valid, design by contract information could be used to perform high-level optimizations. Static detection of contract violations is also something we want to investigate. While the distribution of computation over the network can be reasonably achieved thanks to library support, efficient access to local multi-core power is an important point we need to address. We are currently working on a brand new concurrency model, compatible with our compilation strategy, also using CWA, allowing safe usage of multithreading.

CONCLUSION

The compilation strategy we presented is the result of a long project on two real-size compilers, SmartEiffel being historically the precursor of the advanced compilation strategy of Lisaac. While both compilers work under CWA, Lisaac adds type flow analysis, also looking inside arrays with a simple technique (subsection 2.3). As a consequence, the type flow analysis is not blocked while reading references of objects from arrays, making a truly global type flow analysis possible. Global type flow analysis combined with code customization allows us to predict the dynamic type of numerous method calls. For instance, in the whole Lisaac compiler, 98% of method calls are statically resolved and replaced with static calls (subsection 5.2). To tackle the explosion of code size, we set up our ATS method customization strategy together with transformation rules inside the dispatch branching code (subsections 3.2.3 and 3.3). As an important result, inlining of closures as well as tail recursion removal allow a perfect translation of the library defined control statements (subsections 3.3.1 and 3.3.2). Our compilation strategy could be used for most object-oriented, class-based or prototype-based languages, assuming the availability of the whole source code of the application. Throughout the article, compiler writers may find useful measurements to guide their decisions when they have to choose amongst optimizations.
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 1 Figure 1. Global overview of our three steps compilation process.
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 4 Figure 4. Data type analysis for the variables of the Lisaac compiler source code after step 1.
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 8 Figure 8. The car/truck example during step 2 (constant folding, inlining and data flow).
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 9 Figure 9. Example to compare the customization of some method m with one argument.
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 31 . When there are more possibilities, Lisaac generates a switch statement to allow a constant time selection (see 4.
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 11 Figure 11. Steps to compile the library defined while do loop into the best possible C code.

  a == b or a != b where S a and S b are the corresponding type sets. When S a = S b = {null}, the comparison expression is constant, thus, a == b always yields true and a != b always yields false. The second situation making a comparison constant occurs when S a ∩ S b = ∅. The intersection of S a and S b being the empty set, a == b always yields false and a != b always yields true. Under all other circumstances, the comparison cannot be statically determined. Measurements on the Lisaac compiler are presented in figure 12. During the parsing of the whole source code of the Lisaac compiler, 7,418 comparisons are encountered, but only 2,645 of those written comparisons are reachable. The latter, as a result of inheritance and code customization are then transformed into 9,215 comparisons. Still in figure 12, the comparison categories from (1) to (5) disappear. Category (1) represents comparisons of integer constants or character
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 12 Figure 12. Static evaluation of a == b or a != b.
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 13 Figure 13. Branch merging distribution during bootstrap of Lisaac.
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 14 Figure 14. Rearranging a data structure can avoid many memory fragmentation.
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 15 Figure 15. Numbering of dynamic types involved in dynamic dispatch on the Lisaac compiler example.
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 16 Figure 16. The bootstrap of SmartEiffel indicates a speed factor gain of 1.6 (56s/35s = 1.6).
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 17 Figure 17. Lisaac SE vs. Lisaac LI . The Lisaac SE compiler is the early version of the Lisaac compiler written in SmartEiffel. The Lisaac LI compiler is the first bootstrapped Lisaac compiler, written in Lisaac and recompiled with itself. As we applied a systematical translation of the SmartEiffel source code of Lisaac SE to obtain Lisaac LI , the comparison applies on the same algorithms.
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 18 Figure 18. Horizontal inheritance benchmark where N is the number of objects, from 2 to 512.
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 23 Figure 23. Impact of the inlining level on the binary size of the Lisaac compiler itself.
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 24 Figure 24. MPEG2 runtime benchmark.
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  Figure 6. Distribution of arrays in the Lisaac compiler after step 1. Only 27.4% of arrays are monomorphic.
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  Figure 19. Vertical inheritance benchmark where N is the number of objects, from 2 to 512.
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		inherit	30					
	CHILD_1							
						crash		
		inherit	20					
	CHILD_2					C++	Lisaac
		inherit	10					
	CHILD_3		2	8	32	128	512	N
	CHILD_N							
				time	Predictable		
	1_000_000_000.times { main <-Unpredictable MAIN	1_000_000_000.times { main <-Predictable MAIN	10 20	(seconds)	C++	Lisaac SmartEiffel crash
	array.item(random).method;	array.item(random & 1).method;						
	};	};	2	8	32	128	512	N

  Figure 20. Branch merging of Lisaac compared with C++. The slope variation highlights the gain.

					runtime					
	Automatic cascading-calls detection.	(seconds)	150				
						135				
						120					C++
	MAIN					105				
	main <-500_000_000.times {				90				
	receiver := array.item(random);				75				
	receiver.method1; receiver.method2;			Same receiver	60					Lisaac
	receiver.method3;			for all calls.		45				
	... ...		Dispatching code is factorized.	30					cascading
	receiver.methodN;				15					factor
	};									
							1	2	3	4	5	6	7	8	9 10	N
	PARENT method tmp <-tmp := self.m1(tmp) tmp := self.m2(tmp) . . . tmp := self.mN(tmp) tmp	m1 tmp <-tmp + 1 m2 tmp <-tmp + 2 . . . tmp + N mN tmp <-		( logarithmic scale )	32 64 128 256		time (seconds)	C++
							16			
				inherit						
							8				SmartEiffel
	CHILD_1 m1 tmp <-	CHILD_2 m2 tmp <-	CHILD_3 m3 tmp <-	CHILD_N mN tmp <-		4				Lisaac
	tmp + 1+1	tmp + 2+2	tmp + 3+3	tmp + N+N					
							2			
	MAIN main <-						1			
	200_000_000.times {								
	tmp := array.item(random).method(tmp);			0.5			
	}; tmp.print;						0	2	4	8	16	32 ( logarithmic scale ) 128 256 64	N

512

Figure
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  Multiple inheritance benchmark where N is the number of multiple inheritance links.

					PARENT													
					dta:INTEGER		m1 tmp <-							
											dta := dta + 1						
					method tmp <-		tmp + dta							
					tmp := self.m1(tmp)										
					tmp := self.m2(tmp)	m2 tmp <-							
					. . .					dta := dta + 2						
					tmp := self.mN(tmp)	tmp + dta							
					tmp					. . . mN tmp <-dta := dta + N						32	time (seconds)
											tmp + dta							
																				16	C++
										inherit									Lisaac
																				8	SmartEiffel
		CHILD_1			CHILD_2				CHILD_N					
		dta1:INTEGER		dta2:INTEGER		dtaN:INTEGER			4
		m1 tmp <-			m2 tmp <-			...	mN tmp <-				
		dta1 := dta1 + 1	dta2 := dta2 + 1		dtaN := dtaN + 1			2
		tmp + dta1			tmp + dta2			tmp + dtaN				
															...					1
																				0.5
	GRANDCHILD_1	GRANDCHILD_2	...		GRANDCHILD_N		
		MAIN																	0	2	4	8	16	32	64	128 256	N
		main <-																
		1_000_000.times {														
		tmp := array.item(random).method(tmp);								
		};																		
		tmp.print;																
																		N		
	C++											SmartEiffel	Lisaac	256		C++	Lisaac
																		128	
																		64			SmartEiffel
																		32		
																		16		
																		8		
																		4		
	data segment														2			text segment
	128	64	32	16	8	4	2	1	256	128	64	32	16	8	4	2	1	0	0	1 2 4 8 16 32 64 128 256 1 2 4 8
			Mega-bytes						Kilo-bytes							Kilo-bytes	Mega-bytes
	Figure 22.																

receiver.method 1; receiver.method 2;
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Actually, this merging optimization renders Smalltalk's cascading method calls notation automatic. This type of multiple method calls on the same target is quite frequent with object-oriented programming. Measurements taken on the Lisaac compiler indicates that 11% of polymorphic method calls are averted (see details of distribution in figure 13).