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Abstract

A critical aspect of managing lithium-ion battery packs in electric vehicle applications is accurately determining the State of Charge
(SoC). There are several methods available to estimate it, including coulomb counting with direct evaluation, Open circuit voltage,
kalman filter with adaptive approach, particle filter, as well as fuzzy logic and data-based approach. In this paper, we use the state
of charge data already computed by a data-driven approach and combine it with an ontology of a battery pack. The built ontology
models the battery pack, taking into account the topology, types of cells and their organization inside. To make an exact estimation,
different strategies of balance control of the cells are considered. SWRL rules are used to compute the state of charge of the whole
battery pack. Matlab Simulink multi-physics model of a lithium-ion battery is used to provide simulated data for the experiments.
The given model is evaluated based on regression metrics showing its performance.
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1. Introduction

Reducing environmental pollution and combating climate change has never been more challenging. Lithium-ion
(Li-ion) batteries are increasingly being used in electric vehicles and renewable energy applications [14]. To meet the
demands for high energy and power requirements in various applications, lithium-ion battery packs are often com-
posed of multiple cells that are connected in parallel and series. This configuration not only provides a durable and
carbon-free solution in usage, but also allows for the optimization of performance by adjusting the pack voltage and
capacity to meet specific application requirements [4]. In order to maintain the reliability and safety of the entire bat-
tery pack system, a battery management system (BMS) is implemented. This system is responsible for monitoring and
controlling various parameters such as cell voltage, temperature, and SoC (State-of-Charge), as well as balancing the
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charge and discharge of individual cells within the pack [7]. There are various factors that can impede the performance
of the battery pack, including chemical impurities and unequal utilization of individual cells.

To control the cells in their operation, the BMS requires several pieces of information related to the battery. While
voltage, current and temperature are easily accessible via a series of sensors, SoC and SoH (State-of-Health) are cell
state quantities that cannot be directly measured.

The SoC refers to the remaining amount of energy in the battery cells of the battery energy storage system [29]. SoC
cannot be measured directly as a physical quantity. Rather, it can only be estimated by measuring strongly correlated
proxy quantities such as current, voltage, and temperature, with current being the most influential [20]. Typically,
SoC is expressed as a value in the range of 0 to 1, or 0 to 100%, and it is defined in the literature as the ratio of
the available amount of charge to the maximum amount of charge of the battery. The prediction of the SoC for the
whole pack is more difficult because it must take into account several other constraints not considered on the cell
level. Indeed, BMS operate SoC balancing among the battery cells to ensure the high operability of the system by
avoiding overcharging/discharging of cells. An accurate estimation of the SoC of a battery can increase its remaining
useful life (RuL) and prevent high Depth of Discharge (DoD) to avoid potential battery failure in the future [30].
The capacity of the whole battery pack is determined by the cell with the lowest capacity. This is because the cell
with the lowest capacity will be the first to be completely discharged when the pack is discharged. Similarly, during
charging, charging stops when the cell with the maximum available capacity is full, even if the other cells are not yet
fully charged. Therefore, the problem of cell measure inconsistencies limits the total and the remaining capacity of
the pack, which affects the SoC of the entire battery pack. Imbalanced cells are one of the most important parameters
in the life of the battery to monitor, since without a balancing system, the voltages of the individual cells move away
from each other over time [25].

To the best of our knowledge, there is no proposed approach using the existing battery domain ontologies for the
prediction of the SoC value under several configurations. In this paper, we provide the following contributions: (i)
a new ontological-based model that extends BattINFO ontology [1] with new properties; (ii) New SWRL (Seman-
tic Web Rule Language) rules based on the SoC prediction equations; (iii) a prediction model that exploits theses
SWRL rules to compute the SoC value under several configurations (e.g. active or passive BMS); (iv) the OntoSoC is
experimentally evaluated and validated on simulated data.

2. Background and related works

2.1. Data driven related works for State of Charge modeling

Car manufacturers must take into account the battery’s lifetime when developing clean vehicles. This involves
studying the aging of electric vehicle batteries, which is a crucial aspect. Battery aging can be caused by various
factors such as usage patterns, temperature, and the state of charge. Therefore, it is important to understand the aging
process and its impact on the battery’s performance over time. This knowledge can help manufacturers optimize
the battery design and management strategies to extend its lifespan and ensure optimal performance throughout the
vehicle’s lifetime. A few machine-learning approaches have been proposed to analyze battery signals to predict SoC,
SoH and battery capacity. Most of these approaches rely on recurrent [10, 21] or convolutional neural network [27]
to predict the SoC, the RUL (Remaining Useful Life) or the future SoH curves. The main limit of these approaches
is that they rely on previous cycle information to make the future prediction. Additionally, these approaches claim
a large volume of historical data to be accurate in their prediction, and they focus on single cells rather than at the
battery pack level.

To effectively use battery packs in electric vehicles, it is important to accurately estimate their SoC and SoH, which
directly affects their performance. However, due to the inherent variability in battery cells, estimating the SoC and
SoH of a battery pack is more complex than for a single cell. In this direction, several works attempted to predict
the SoC and SoH of the battery pack. Among these works, Zang et al. [31] propose the usage of a filter-unscented
Kalman-based filter algorithm to identify the parameters of the battery pack and forecast current SoC. In particu-
lar, the extended Kalman filter is applied to update the battery pack parameters by real-time measured data, while
the unscented Kalman filter is used to predict the battery pack SoC. Mawonou et al. have proposed another strategy
to compute the battery pack SoC [22]. The assumption of the paper is that for an operating battery pack, only the
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charge and discharge of individual cells within the pack [7]. There are various factors that can impede the performance
of the battery pack, including chemical impurities and unequal utilization of individual cells.

To control the cells in their operation, the BMS requires several pieces of information related to the battery. While
voltage, current and temperature are easily accessible via a series of sensors, SoC and SoH (State-of-Health) are cell
state quantities that cannot be directly measured.

The SoC refers to the remaining amount of energy in the battery cells of the battery energy storage system [29]. SoC
cannot be measured directly as a physical quantity. Rather, it can only be estimated by measuring strongly correlated
proxy quantities such as current, voltage, and temperature, with current being the most influential [20]. Typically,
SoC is expressed as a value in the range of 0 to 1, or 0 to 100%, and it is defined in the literature as the ratio of
the available amount of charge to the maximum amount of charge of the battery. The prediction of the SoC for the
whole pack is more difficult because it must take into account several other constraints not considered on the cell
level. Indeed, BMS operate SoC balancing among the battery cells to ensure the high operability of the system by
avoiding overcharging/discharging of cells. An accurate estimation of the SoC of a battery can increase its remaining
useful life (RuL) and prevent high Depth of Discharge (DoD) to avoid potential battery failure in the future [30].
The capacity of the whole battery pack is determined by the cell with the lowest capacity. This is because the cell
with the lowest capacity will be the first to be completely discharged when the pack is discharged. Similarly, during
charging, charging stops when the cell with the maximum available capacity is full, even if the other cells are not yet
fully charged. Therefore, the problem of cell measure inconsistencies limits the total and the remaining capacity of
the pack, which affects the SoC of the entire battery pack. Imbalanced cells are one of the most important parameters
in the life of the battery to monitor, since without a balancing system, the voltages of the individual cells move away
from each other over time [25].

To the best of our knowledge, there is no proposed approach using the existing battery domain ontologies for the
prediction of the SoC value under several configurations. In this paper, we provide the following contributions: (i)
a new ontological-based model that extends BattINFO ontology [1] with new properties; (ii) New SWRL (Seman-
tic Web Rule Language) rules based on the SoC prediction equations; (iii) a prediction model that exploits theses
SWRL rules to compute the SoC value under several configurations (e.g. active or passive BMS); (iv) the OntoSoC is
experimentally evaluated and validated on simulated data.

2. Background and related works

2.1. Data driven related works for State of Charge modeling

Car manufacturers must take into account the battery’s lifetime when developing clean vehicles. This involves
studying the aging of electric vehicle batteries, which is a crucial aspect. Battery aging can be caused by various
factors such as usage patterns, temperature, and the state of charge. Therefore, it is important to understand the aging
process and its impact on the battery’s performance over time. This knowledge can help manufacturers optimize
the battery design and management strategies to extend its lifespan and ensure optimal performance throughout the
vehicle’s lifetime. A few machine-learning approaches have been proposed to analyze battery signals to predict SoC,
SoH and battery capacity. Most of these approaches rely on recurrent [10, 21] or convolutional neural network [27]
to predict the SoC, the RUL (Remaining Useful Life) or the future SoH curves. The main limit of these approaches
is that they rely on previous cycle information to make the future prediction. Additionally, these approaches claim
a large volume of historical data to be accurate in their prediction, and they focus on single cells rather than at the
battery pack level.

To effectively use battery packs in electric vehicles, it is important to accurately estimate their SoC and SoH, which
directly affects their performance. However, due to the inherent variability in battery cells, estimating the SoC and
SoH of a battery pack is more complex than for a single cell. In this direction, several works attempted to predict
the SoC and SoH of the battery pack. Among these works, Zang et al. [31] propose the usage of a filter-unscented
Kalman-based filter algorithm to identify the parameters of the battery pack and forecast current SoC. In particu-
lar, the extended Kalman filter is applied to update the battery pack parameters by real-time measured data, while
the unscented Kalman filter is used to predict the battery pack SoC. Mawonou et al. have proposed another strategy
to compute the battery pack SoC [22]. The assumption of the paper is that for an operating battery pack, only the
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limiting cells’ SoCs and voltages are relevant. The first approach consists of the detection of limiting cells based on
voltage and current measurement to reduce the computational burden. The second is an improvement of the existing
”bar-delta” approach developed. According to the authors, both of these approaches lead to significant improvement
in limiting cell detection, computational burden reduction and accuracy. All the aforementioned approaches rely on
time series data to predict battery SoH or SoC. Their main limitation is that do not rely on knowledge model to cap-
ture all the electronic specificity of battery to predict. In this paper, we intend to extend existing battery ontlogy to
to help in SoC prediction. To the best of our knowledge, there has been relatively little development of ontologies
dedicated to batteries and battery manufacturing. Currently, two coupled ontologies exist. The Battery Interface On-
tology (BattINFO) [1] and the Battery Value Chain Ontology (BVCO) [3] are both the main ontologies of the domain.
BattINFO is designed to cover all knowledge related to the battery cell itself. This encompasses various aspects such
as electrochemistry, battery characteristics, characterization techniques, observations, and modeling approaches. The
BVCO describes the processes, materials, and equipment used in the value chain related to battery manufacturing and
recycling. BVCO imports BattINFO to provide a single consistent description of a battery cell and supplements it
with knowledge related to battery materials mining and processing, the battery manufacturing process steps, as well
as battery second life and recycling processes. Both BattINFO and BVCO use the top-level European Materials and
modeling Ontology (EMMO), which allows them to integrate with other domain ontologies stemming from EMMO.

2.2. State of Charge computing related works

In the literature, battery modeling can be classified into various categories depending on the level of detail and
complexity. Some of the common categories include lumped parameter models [23], electrochemical models [2],
equivalent circuit models [9], and physics-based models [19]. Another category, data-driven models, has recently
grasped attention. Data-driven models cut across all areas and have been demonstrated in the context of materials
discovery and lifetime estimation [12]. An alternative but complementary perspective, which captures the multi-scale
nature of the tools available, considers that models can be used to predict properties from structure, predict perfor-
mance from properties, or make decisions off the basis of predicted performance [13]. The model of a battery pack
can be simplified by a practical model, assuming that the intrinsic imbalances of the cells and elements of the pack do
not affect the characteristics of the battery. It is also possible to model a battery pack, by assembling the series-parallel
configuration of a single cell’s model [15].

The SoC of a battery at a given moment is the ratio between the available charge at that moment and the rated
capacity [18]. Efficient use of the battery requires monitoring the different parameters, such as the SoC and the tem-
perature. The SoC of a battery can not be measured with sensors, thus a variety of approaches are proposed to obtain
accurate and robust SoC estimation in real-time, we list the most popular approaches in the literature : The coulomb
counting method is the most commonly used method for SoC’s estimation. The SoC is estimated by measuring the
discharge current of the battery and integrating it over time [24]. The SoC is computed by the following equation:

S oC(t) = S oC0(t0) − η
Cn

∫ t

t0
I(t)dt (1)

where S oC0(t0) is the initial SoC, Cn represents the battery capacity, η represents the coulombic efficiency, and I(t) is
the instantaneous discharge current of the battery.

Open circuit voltage (OCV) method has high precision and is easily implementable for SoC estimation. In this
method, the OCV SoC relation is derived from the stepwise measurement of OCV for different values of SoC [16].

Two main classes of battery ageing exist : model-based methods, aiming to model the physical aspects of the
battery to predict its behaviour, and data-driven approaches, which use historical ageing data in order to make a
prediction. Data-driven models are currently thriving, as more and more data become available. The main advantage
of these approaches are their simplicity, since no deep understanding of the electro-chemical processes of the battery
is needed. The model-based methods are used in conjunction with adaptive filters and state estimation algorithms.
The most prominent algorithms include Kalman filters with all its variants of dual Kalman filtering: Extended Kalman
Filter (EKF), Unscented Kalman Filter (UKF), Particle Filter (PF) [28].

The data-driven approaches often require the use of machine learning (ML) models to establish a correlation from
the data. Among well-used models, the neural network model[5]. The fuzzy logic approach is an extension of Boolean
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logic that offers flexibility in a statement. This approach formalizes human reasoning using causal rules [6]. Despite,
being mentioned, the problem of Cells’ SoC inequality has not been seriously investigated. Ko et al. [15] have shown
the possibility of accurate modeling of a battery pack by taking into account the global influences of unbalances and
packaging elements. The proposed method adopts a practical model structure, which gives a fast computation in the
battery management system. In addition, since the suggested method uses cell information without a manufactured
battery pack, it can be useful for modeling optimal battery packs.

2.3. Battery State of Charge computing methods

Several Battery Management System (BMS) controls the batteries by estimating the SoC. BMS also applies con-
trol techniques to equalize the SoC of unbalanced cells. To avoid any overcharge or over-discharge of the batteries
connected in series, it is necessary to limit the SoC between 0 and 100 %. This condition must be ensured for all the
batteries to guarantee safety and long life. The relation between the pack’s SoC and the cell parameters with the con-
dition of the different balance control strategies is explained as the cell with the minimum remaining capacity is the
first to be over-discharged and the cell with the minimum chargeable capacity is the first to be overcharged. Assuming
p1 the first cell to be discharged and p2 the first cell to be charged, the SoC and the capacity of the cells connected in
series are computed as follows [32]:

S oCs =



S oCp1.Cp1

S oCp1.Cp1+(1−S oCP2).Cp2
without balance

S oCp1 passive balance
S oCp1+S oCp2

2 active balance

(2)

Cs =



S oCp1.Cp1 + (1 − S oCP2) .Cp2 without balance

Cp1 passive balance
Cp1+Cp2

2 active balance

(3)

where S oCp1 and S oCp2 are respectively the SoC of p1 and p2. Cp1 and Cp2 is the capacity of p1 and p2. min(Cr) is
the remaining cell capacity, SoC(t) is the state of charge at time t, C(t) is the cell capacity.

In the case of a parallel connection, we suppose that each row connected in series is a supercell. The state of charge
of the pack in parallel, denoted S oCp, is computed as follows:

S oCp =

np
i=1 S oCS CSnp

i=1 CS
. (4)

The battery pack capacity, denoted Cp, is computed as follows:

Cp =

np
i=1

CS (5)

3. OntoSoC : an ontology-based approach for battery pack SoC estimation

This section first provides an overview of the general architecture of the proposed approach and then details its
main components as well as the interaction among them.
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nature of the tools available, considers that models can be used to predict properties from structure, predict perfor-
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can be simplified by a practical model, assuming that the intrinsic imbalances of the cells and elements of the pack do
not affect the characteristics of the battery. It is also possible to model a battery pack, by assembling the series-parallel
configuration of a single cell’s model [15].

The SoC of a battery at a given moment is the ratio between the available charge at that moment and the rated
capacity [18]. Efficient use of the battery requires monitoring the different parameters, such as the SoC and the tem-
perature. The SoC of a battery can not be measured with sensors, thus a variety of approaches are proposed to obtain
accurate and robust SoC estimation in real-time, we list the most popular approaches in the literature : The coulomb
counting method is the most commonly used method for SoC’s estimation. The SoC is estimated by measuring the
discharge current of the battery and integrating it over time [24]. The SoC is computed by the following equation:
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where S oC0(t0) is the initial SoC, Cn represents the battery capacity, η represents the coulombic efficiency, and I(t) is
the instantaneous discharge current of the battery.

Open circuit voltage (OCV) method has high precision and is easily implementable for SoC estimation. In this
method, the OCV SoC relation is derived from the stepwise measurement of OCV for different values of SoC [16].

Two main classes of battery ageing exist : model-based methods, aiming to model the physical aspects of the
battery to predict its behaviour, and data-driven approaches, which use historical ageing data in order to make a
prediction. Data-driven models are currently thriving, as more and more data become available. The main advantage
of these approaches are their simplicity, since no deep understanding of the electro-chemical processes of the battery
is needed. The model-based methods are used in conjunction with adaptive filters and state estimation algorithms.
The most prominent algorithms include Kalman filters with all its variants of dual Kalman filtering: Extended Kalman
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The data-driven approaches often require the use of machine learning (ML) models to establish a correlation from
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logic that offers flexibility in a statement. This approach formalizes human reasoning using causal rules [6]. Despite,
being mentioned, the problem of Cells’ SoC inequality has not been seriously investigated. Ko et al. [15] have shown
the possibility of accurate modeling of a battery pack by taking into account the global influences of unbalances and
packaging elements. The proposed method adopts a practical model structure, which gives a fast computation in the
battery management system. In addition, since the suggested method uses cell information without a manufactured
battery pack, it can be useful for modeling optimal battery packs.

2.3. Battery State of Charge computing methods

Several Battery Management System (BMS) controls the batteries by estimating the SoC. BMS also applies con-
trol techniques to equalize the SoC of unbalanced cells. To avoid any overcharge or over-discharge of the batteries
connected in series, it is necessary to limit the SoC between 0 and 100 %. This condition must be ensured for all the
batteries to guarantee safety and long life. The relation between the pack’s SoC and the cell parameters with the con-
dition of the different balance control strategies is explained as the cell with the minimum remaining capacity is the
first to be over-discharged and the cell with the minimum chargeable capacity is the first to be overcharged. Assuming
p1 the first cell to be discharged and p2 the first cell to be charged, the SoC and the capacity of the cells connected in
series are computed as follows [32]:

S oCs =
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where S oCp1 and S oCp2 are respectively the SoC of p1 and p2. Cp1 and Cp2 is the capacity of p1 and p2. min(Cr) is
the remaining cell capacity, SoC(t) is the state of charge at time t, C(t) is the cell capacity.

In the case of a parallel connection, we suppose that each row connected in series is a supercell. The state of charge
of the pack in parallel, denoted S oCp, is computed as follows:

S oCp =

np
i=1 S oCS CSnp

i=1 CS
. (4)

The battery pack capacity, denoted Cp, is computed as follows:

Cp =

np
i=1

CS (5)

3. OntoSoC : an ontology-based approach for battery pack SoC estimation

This section first provides an overview of the general architecture of the proposed approach and then details its
main components as well as the interaction among them.



2258 Ala Eddine Hamouni  et al. / Procedia Computer Science 225 (2023) 2254–2263

Ala Eddine Hamouni / Procedia Computer Science 00 (2023) 000–000

Fig. 1: The OntoSoC approach.

3.1. Overview of the proposed approach

The main objective of OntoSoC is the estimation of the battery pack SoC from voltage, current and temperature
values. The approach combines data-driven methods as well as knowledge-based methods to represent the battery pack
structure as well as known equations to determine the SoC of cell modules. At first, the SoC of each cell is estimated
by a convolutional neural network (CNN) model [11] using as input the voltage (V), current (I) and temperature (T)
of each cell. Once all SoCs are calculated, these values are inserted into our ontology and processed by a reasoner
using SWRL rules, based on the existing equations introduced in section 2.3, to determine the battery pack SoC.
Furthermore, the SoC of the battery pack is calculated considering the different possible configurations of the BMS
(passive balance, active balance or no balance). The main components of our proposal are shown in Figure 1. In the
following, the proposed semantic model is detailed, as well as the implemented SWRL rules.

3.2. OntoSoC ontology for battery pack SoC estimation

The semantic model shown in Figure 2 is based on the Battery Interface Ontology (BattINFO) [8]. BattINFO
provides a chemistry-neutral description of Li-ion batteries to support data interoperability and artificial intelligence
workflows. It also provides concepts and relations to describe the architecture of a battery pack. The BattINFO also
allows representing how the cells are organized inside a battery pack through object properties.

Although BattINFO is mainly focused on the representation of chemical aspects of batteries, this ontology provides
concepts and relations that can be reused to represent certain information about batteries, mainly regarding the archi-
tecture of a battery pack. In the following, we present these concepts and relations and also detail the concepts and
relations added to the model to allow the estimation of the SoC of the battery pack. In particular, the added concepts
serve to consider whether the BMS applies a control balance strategy as well as properties to represent the state of
charge of the cells as well as the pack. In red font, the concepts and relations added for our purpose can be seen and
are detailed below, while in black font the concepts reused from the BattINFO ontology are shown. For reasons of
space and ease of reading, it was decided not to include the BattINFO prefixes in the figure or in the rules.

The word battery could be used to designate a battery cell or to designate a battery pack. Humans can easily under-
stand the difference from the context, while machines are not able to make this difference. To distinguish these two
concepts, BattINFO defines both BatteryPack and BatteryCell a subclass of Battery with the relation hasPart

which indicates that a BatteryPack contains BatteryCell. The BatteryCell class is further subdivided into sub-
classes based on cell shape such as ButtonCell, CylindricalCell, DryCell, etc. The Connection class contains
two instances, Serie and Parallel that allow representing how the cells or modules are connected to each other in
a pack. Another important concept is the BMS class which represents the BMS that controls the battery, this fact is
represented using the has Battery relation. The BMS may or may not implement a control balancing strategy, and
this control can be Passive or Active, as explained in section 2. The equations previously presented for the calcu-
lation of the SoC of a battery pack require knowing which cell has the maximum SoC value as well as which cell has
the minimum SoC value. This is represented by the relations minimum SoC and maximum SoC, respectively. In order
to represent the way cells or modules are connected within a pack, the relation has connection is used. Finally,
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Fig. 2: Main concepts and relations of the OntoSoC ontology (in red font the concepts and relations added and in black font the concepts reused
from BattINFO).

the has DoD, has Capacity and has SoC data properties are key to our approach as they are used to indicate and
calculate the SoC of each cell but also of the whole pack. The first one represents the DoD of a battery which is
detailed in the next subsection, the second one allows for representing the capacity of a battery and the last one allows
for representing the SoC of a battery. In particular, the data property has SoC is the one used when inserting in our
ontology the SoC value estimated by the CNN models for each cell that composes a battery pack.

The OntoSoC ontology is evaluated to check that it does not contain pitfalls and that it covers all the requirements
identified in the introduction to calculate the SoC of a battery pack. In order to detect common mistakes done when
developing ontologies we have used OOPS! [26]. The OntoSoC ontology is evaluated according to the following
three categories: (i) Structural dimension focuses on mistakes detection on syntax and formal semantics; (ii) Func-
tional dimension considers the intended use and functionality of the proposed ontology; and (iii) Usability-profiling
dimension evaluates the level of ease of communication when different users use the same ontology. The evaluation
of the OntoSoC ontology with OOPS! has yield some minor pitfalls, that do not affect the consistency, reasoning or
applicability of the ontology.

3.3. OntoSoC SWRL rules for battery pack SoC estimation

SWRL rules facilitate expert knowledge representation in terms of OWL concepts to deliver more powerful de-
ductive reasoning capabilities than those of OWL [17]. The SWRL rules used for battery pack SoC estimation are
described below. These rules are based on the equations presented in the previous section and differentiate the cases
in which different balancing modes are implemented, as well as the cell capacity and the type of connection present in
the pack. These rules can be integrated into the BMS to perform state of charge estimation of the pack by combining
a predictive model to determine the SoC of each cell.
The SWRL rule 6 allows calculating the value of depth of discharge (DoD) of a cell in a pack. DoD is equal to 1-
SoC e.g. if the SoC=0.6 then DoD=0.4. As long as the value of the SoC of a cell is known, then DoD can be easily
calculated with a simple substraction: DoD = 1-SoC.

BatteryCell(?x) ∧ has SoC(?x,?w) ∧ subtract(?b,1,?w)→ has DoD(?x,?b) (6)

The SWRL rule 7 allows the estimation of the SoC and capacity of a battery pack whose cells or modules are connected
in series and the BMS controlling the pack does not implement any balancing control. This rule is based on the first
case of equation 2 and the first case of equation 3.

BatteryPack(?p) ∧ has Connection(?p,Serie) ∧ has Battery(?bms,?p)∧
NoBalancingControl(?bms) ∧ maximum SoC(?p,?cmax) ∧ minimum SoC(?p,?cmin)∧

has SoC(?cmax,?socmax) ∧ has SoC(?cmin,?socmin) ∧ has Capacity(?cmin,?capcellmin)∧
multiply(?m1,?capcellmin,?socmin) ∧ has Capacity(?cmax,?capcellmax)∧

has DoD(?cmax,?DoD) ∧ multiply(?m2,?capcellmax,?DoD) ∧ add(?r,?m1,?m2)∧
divide(?SoCP,?m1,?r)→ has SoC(?p,?SoCP) ∧ has Capacity(?p,?r)

(7)
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provides a chemistry-neutral description of Li-ion batteries to support data interoperability and artificial intelligence
workflows. It also provides concepts and relations to describe the architecture of a battery pack. The BattINFO also
allows representing how the cells are organized inside a battery pack through object properties.

Although BattINFO is mainly focused on the representation of chemical aspects of batteries, this ontology provides
concepts and relations that can be reused to represent certain information about batteries, mainly regarding the archi-
tecture of a battery pack. In the following, we present these concepts and relations and also detail the concepts and
relations added to the model to allow the estimation of the SoC of the battery pack. In particular, the added concepts
serve to consider whether the BMS applies a control balance strategy as well as properties to represent the state of
charge of the cells as well as the pack. In red font, the concepts and relations added for our purpose can be seen and
are detailed below, while in black font the concepts reused from the BattINFO ontology are shown. For reasons of
space and ease of reading, it was decided not to include the BattINFO prefixes in the figure or in the rules.
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stand the difference from the context, while machines are not able to make this difference. To distinguish these two
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which indicates that a BatteryPack contains BatteryCell. The BatteryCell class is further subdivided into sub-
classes based on cell shape such as ButtonCell, CylindricalCell, DryCell, etc. The Connection class contains
two instances, Serie and Parallel that allow representing how the cells or modules are connected to each other in
a pack. Another important concept is the BMS class which represents the BMS that controls the battery, this fact is
represented using the has Battery relation. The BMS may or may not implement a control balancing strategy, and
this control can be Passive or Active, as explained in section 2. The equations previously presented for the calcu-
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the has DoD, has Capacity and has SoC data properties are key to our approach as they are used to indicate and
calculate the SoC of each cell but also of the whole pack. The first one represents the DoD of a battery which is
detailed in the next subsection, the second one allows for representing the capacity of a battery and the last one allows
for representing the SoC of a battery. In particular, the data property has SoC is the one used when inserting in our
ontology the SoC value estimated by the CNN models for each cell that composes a battery pack.

The OntoSoC ontology is evaluated to check that it does not contain pitfalls and that it covers all the requirements
identified in the introduction to calculate the SoC of a battery pack. In order to detect common mistakes done when
developing ontologies we have used OOPS! [26]. The OntoSoC ontology is evaluated according to the following
three categories: (i) Structural dimension focuses on mistakes detection on syntax and formal semantics; (ii) Func-
tional dimension considers the intended use and functionality of the proposed ontology; and (iii) Usability-profiling
dimension evaluates the level of ease of communication when different users use the same ontology. The evaluation
of the OntoSoC ontology with OOPS! has yield some minor pitfalls, that do not affect the consistency, reasoning or
applicability of the ontology.

3.3. OntoSoC SWRL rules for battery pack SoC estimation

SWRL rules facilitate expert knowledge representation in terms of OWL concepts to deliver more powerful de-
ductive reasoning capabilities than those of OWL [17]. The SWRL rules used for battery pack SoC estimation are
described below. These rules are based on the equations presented in the previous section and differentiate the cases
in which different balancing modes are implemented, as well as the cell capacity and the type of connection present in
the pack. These rules can be integrated into the BMS to perform state of charge estimation of the pack by combining
a predictive model to determine the SoC of each cell.
The SWRL rule 6 allows calculating the value of depth of discharge (DoD) of a cell in a pack. DoD is equal to 1-
SoC e.g. if the SoC=0.6 then DoD=0.4. As long as the value of the SoC of a cell is known, then DoD can be easily
calculated with a simple substraction: DoD = 1-SoC.

BatteryCell(?x) ∧ has SoC(?x,?w) ∧ subtract(?b,1,?w)→ has DoD(?x,?b) (6)

The SWRL rule 7 allows the estimation of the SoC and capacity of a battery pack whose cells or modules are connected
in series and the BMS controlling the pack does not implement any balancing control. This rule is based on the first
case of equation 2 and the first case of equation 3.

BatteryPack(?p) ∧ has Connection(?p,Serie) ∧ has Battery(?bms,?p)∧
NoBalancingControl(?bms) ∧ maximum SoC(?p,?cmax) ∧ minimum SoC(?p,?cmin)∧

has SoC(?cmax,?socmax) ∧ has SoC(?cmin,?socmin) ∧ has Capacity(?cmin,?capcellmin)∧
multiply(?m1,?capcellmin,?socmin) ∧ has Capacity(?cmax,?capcellmax)∧

has DoD(?cmax,?DoD) ∧ multiply(?m2,?capcellmax,?DoD) ∧ add(?r,?m1,?m2)∧
divide(?SoCP,?m1,?r)→ has SoC(?p,?SoCP) ∧ has Capacity(?p,?r)

(7)
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In order to determine the capacity and SoC of a pack whose cells are connected in series and whose BMS implements a
passive balancing control, only the SoC and capacity values of the least charged cell are needed. The rule 8 implements
this scenario which corresponds to the second cases of equations 2 and 3.

BatteryPack(?p) ∧ minimum SoC(?p,?cmin) ∧ has Capacity(?cmin,?c) ∧ has SoC(?cmin,?soc)

∧has Battery(?bms,?p) ∧ Passive(?bms) ∧ has Connection(?p,Serie)

→ has SoC(?p,?soc) ∧ has Capacity(?p,?c)

(8)

Finally, to determine the SoC and capacity of a pack whose cells or modules are connected in series and whose BMS
implements an active balance control, the rule 9 is used. This rule uses the parameters of the most and least charged
cells to determine their capacity and SoC, as shown in the third case of equations 2 and 3.

BatteryPack(?p) ∧ minimum SoC(?p,?cmin) ∧ has Capacity(?cmin,?cmi)∧
has SoC(?cmin,?smin) ∧ maximum SoC(?p,?cmax) ∧ has Capacity(?cmax,?cma)∧

has SoC(?cmax,?smax) ∧ has Battery(?bms,?p) ∧ Active(?bms)∧
has Connection(?p,Serie) ∧ add(?r,?smin,?smax) ∧ divide(?SoCP,?r,2)∧

add(?w,?cmi,?cma) ∧ divide(?CapP,?w,2)→ has SoC(?p,?SoCP) ∧ has Capacity(?p,?CapP)

(9)

The associated rules for determining the SoC and capacity of cells or modules connected in series were presented
before (SWRL rules 8 and 9). Listing 1 shows the SPARQL1 query for determining the SoC and capacity of a pack
whose cells or modules are connected in parallel. It is based on the equations 4 and 5.

1 PREFIX ex: <http ://www.semanticweb.org/OntoSoC/#>

2 SELECT (?vt/?ct AS ?SoCP) ?ct

3 WHERE {

4 { SELECT ?b (sum(?v*?cc) AS ?vt)

5 WHERE {

6 ?b a ex:BatteryPack .

7 ?b ex:has_Part ?m .

8 ?m ex:has_Soc ?v .

9 ?m ex:has_Capacity ?cc .

10 }

11 GROUP BY(?b)

12 }

13 { SELECT ?b (sum(?c) AS ?ct)

14 WHERE {

15 ?b a ex:BatteryPack .

16 ?b ex:has_Part ?m .

17 ?m ex:has_Capacity ?c .

18 }

19 GROUP BY(?b)

20 }

21 }

Listing 1: SPARQL query for determining the SoC and capacity of a pack whose cells or modules are connected in parallel.

The following section presents an illustrative case study that shows the application of the proposed approach and
compares it with another approach.

4. Illustrative case study

In this study, we employed a model-based approach to compare it with the proposed data-based and knowledge-
based OntoSoC approach. The model-based approach uses an interactive method for battery model parameter esti-
mation, assuming that the observed battery parameters are equivalent to the actual battery parameters without any
measurement errors. We tested our approach on a 2016 BMW i8 plug-in hybrid vehicle with a 96 kW electric motor.

1 https://www.w3.org/TR/rdf-sparql-query/

Ala Eddine Hamouni / Procedia Computer Science 00 (2023) 000–000

Fig. 3: Representation of the scenario presented in the case study using the OntoSoC ontology.

Figure 3 shows the instantiation of this case using the OntoSoC ontology (for reasons of space and clarity not all
relations are shown). The high-voltage battery pack (B P) has a capacity of 21 Ah (7.1 kWh). It contains a total of
96 cells, arranged in one string (1P 96S), and subdivided into 6 series-connected modules (P C1,...,P C6) of 16
series-connected cells (C1-1,...,C6-16). The nominal voltage of the battery pack is 355 V. The cooling is achieved
by refrigerant (air conditioning), which also doubles to deliver the cabin climatic control.

The model parameters were obtained using the NEDC and WLTC driving cycles, and the accuracy and robustness
of the model were evaluated by comparing the simulated results with the experimental data from a different cycle
(WLTC) [9]. This allowed us to validate the model’s behavior under different current profiles. The SoC, battery
voltage, and battery current can be calculated using battery cell and pack models that combine mathematical and
multi-physics models. These models were developed in MATLAB Simulink. We assumed that every cell in the pack
was identical, balanced in climatic control, and connected in both series and parallel directions. In this study, we
considered the model-based approach as the ground truth, since it is highly reliable when the parameters are accurately
fixed.

The estimation error of the SoC for different balance control methods using the OntoSoC approach and the simula-
tion made on Matlab Simulink are shown in Table 1. The errors are computed using Root Mean Square Error (RMSE),
Mean Absolute Error (MAE) and the Mean Absolute Percentage Error (MAPE) measures [10]. These measures are
shown in the formulas below:
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The comparison is performed on 100 battery pack SoC values that were calculated from battery cell SoC values set
by an expert, i.e., 100 executions of the Matlab Simulink model and of our proposed OntoSoC model were made, based
on 96 SoC values for each cell (96 different values for each of the 100 executions), to obtain the SoC of the battery
pack. Once the 96 SoC values of each cell composing the B P battery pack are determined, they are inserted into the
OntoSoC ontology. Then it is determined and represented for each P C1 to P C6 modules what is the maximum and
minimum SoC values using the minimum SoC and maximum SoC properties. When this information is in the OntoSoC
ontology in addition to the balancing mode which is determined by the type of BMS (BMS B P a Active, BMS B P

a Passive and BMS B P a NoBalancingControl for each control mode), the reasoner is executed which implies
the execution of the SWRL rules presented in the previous section for the calculation of the SoC of the B P battery
pack, according to the balancing mode set up in each case (the three balancing modes were tested: without, passive
and active). At the end of the reasoning process, the SoC value for each P C1 to P C6 modules is obtained, and also
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In order to determine the capacity and SoC of a pack whose cells are connected in series and whose BMS implements a
passive balancing control, only the SoC and capacity values of the least charged cell are needed. The rule 8 implements
this scenario which corresponds to the second cases of equations 2 and 3.

BatteryPack(?p) ∧ minimum SoC(?p,?cmin) ∧ has Capacity(?cmin,?c) ∧ has SoC(?cmin,?soc)

∧has Battery(?bms,?p) ∧ Passive(?bms) ∧ has Connection(?p,Serie)

→ has SoC(?p,?soc) ∧ has Capacity(?p,?c)

(8)

Finally, to determine the SoC and capacity of a pack whose cells or modules are connected in series and whose BMS
implements an active balance control, the rule 9 is used. This rule uses the parameters of the most and least charged
cells to determine their capacity and SoC, as shown in the third case of equations 2 and 3.

BatteryPack(?p) ∧ minimum SoC(?p,?cmin) ∧ has Capacity(?cmin,?cmi)∧
has SoC(?cmin,?smin) ∧ maximum SoC(?p,?cmax) ∧ has Capacity(?cmax,?cma)∧

has SoC(?cmax,?smax) ∧ has Battery(?bms,?p) ∧ Active(?bms)∧
has Connection(?p,Serie) ∧ add(?r,?smin,?smax) ∧ divide(?SoCP,?r,2)∧

add(?w,?cmi,?cma) ∧ divide(?CapP,?w,2)→ has SoC(?p,?SoCP) ∧ has Capacity(?p,?CapP)

(9)

The associated rules for determining the SoC and capacity of cells or modules connected in series were presented
before (SWRL rules 8 and 9). Listing 1 shows the SPARQL1 query for determining the SoC and capacity of a pack
whose cells or modules are connected in parallel. It is based on the equations 4 and 5.

1 PREFIX ex: <http :// www.semanticweb.org/OntoSoC/#>

2 SELECT (?vt/?ct AS ?SoCP) ?ct

3 WHERE {

4 { SELECT ?b (sum(?v*?cc) AS ?vt)

5 WHERE {

6 ?b a ex:BatteryPack .

7 ?b ex:has_Part ?m .

8 ?m ex:has_Soc ?v .

9 ?m ex:has_Capacity ?cc .

10 }

11 GROUP BY(?b)

12 }

13 { SELECT ?b (sum(?c) AS ?ct)

14 WHERE {

15 ?b a ex:BatteryPack .

16 ?b ex:has_Part ?m .

17 ?m ex:has_Capacity ?c .

18 }

19 GROUP BY(?b)

20 }

21 }

Listing 1: SPARQL query for determining the SoC and capacity of a pack whose cells or modules are connected in parallel.

The following section presents an illustrative case study that shows the application of the proposed approach and
compares it with another approach.

4. Illustrative case study

In this study, we employed a model-based approach to compare it with the proposed data-based and knowledge-
based OntoSoC approach. The model-based approach uses an interactive method for battery model parameter esti-
mation, assuming that the observed battery parameters are equivalent to the actual battery parameters without any
measurement errors. We tested our approach on a 2016 BMW i8 plug-in hybrid vehicle with a 96 kW electric motor.
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pack. Once the 96 SoC values of each cell composing the B P battery pack are determined, they are inserted into the
OntoSoC ontology. Then it is determined and represented for each P C1 to P C6 modules what is the maximum and
minimum SoC values using the minimum SoC and maximum SoC properties. When this information is in the OntoSoC
ontology in addition to the balancing mode which is determined by the type of BMS (BMS B P a Active, BMS B P

a Passive and BMS B P a NoBalancingControl for each control mode), the reasoner is executed which implies
the execution of the SWRL rules presented in the previous section for the calculation of the SoC of the B P battery
pack, according to the balancing mode set up in each case (the three balancing modes were tested: without, passive
and active). At the end of the reasoning process, the SoC value for each P C1 to P C6 modules is obtained, and also
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Table 1: The estimated battery pack’s SoC prediction errors.

Balance control MAE RMSE MAPE

Without 0.0608 0.1903 0.0256
Active 0.0898 0.4135 0.0167
Passive 0.0412 0.1485 0.0891

the SoC of the B P battery pack. This is represented using the data property has SoC. In Figure 3, it can be seen that
the value of this property for B P is SoC, no concrete value is given since it was executed 100 times.

Table 1 compares the prediction made by OntoSoC to the prediction made by the model based approach previously
described [9]. Our postulate is that the model based approach is reliable but unfortunately very time consuming and
specific to only battery sizing. The MAE, RMSE and MAPE are used to capture how OntoSoC is able to follow the
model based approach. By comparing the obtained errors with the simulation values presented in Table 1 we can see
a difference in errors among the three control modes, with the lowest value for the passive mode. This difference is
due to the number of parameters involved in each mode, for example, the estimation of SoC’s pack with the active
mode and without control depends on two parameters: the first overcharged cell and the first over-discharged cell.
While with the passive mode, the SoC is calculated only from the parameters of the first overcharged cell as shown in
equations 2 and 3, which means that few SWRL rules are used in this method, compared to the other methods, which
reduces the calculation error. In general, it can be seen that our approach combining data-driven and knowledge-based
methods demonstrates acceptable accuracy compared to model-based methods that need to know certain parameters
beforehand to be highly reliable, a task that is not easy to perform.

5. Conclusion and future works
In this paper, an approach, named OntoSoC , to estimate the state of charge of a battery pack from voltage, current

and temperature values was developed. The OntoSoC apporach combines data-driven methods such as CNN models
which determine the SoC of cells, and knowledge-based methods such as the OntoSoC ontology to model the battery
pack architecture. Inspired by the existing battery SoC computing equations [32], the OntoSoC approach uses the
OntoSoC ontology with SWRL rules and queries to compute the SoC and capacity of a battery pack whose cells or
modules are connected in serie or in parallel. Furthermore, these rules and queries take into account whether or not
the battery BMS implements a balancing control strategy, and whether this control is active or passive.

The proposed OntoSoC approach was tested on a real use case, a 2016 BMW i8 plug-in hybrid vehicle with a 7
kWh battery and a 96 kW electric motor. Then, we compare it with an existing physical simulation model developed
in Matlab Simulink by the expert. Our use case demonstrates the feasibility of the OntoSoC approach to compute the
SoC and capacity of a high-voltage battery pack with a total of 96 cells, subdivided into 6 series-connected modules of
16 series-connected cells, under different balance control modes (without, passive, and active). As well as, we evaluate
the accuracy and robustness of our approach using regression metrics.

Future works will focus on improving the performance of our proposed approach and on its application to other
battery models and under different usage scenarios. Hence, in addition to the proposed SWRL rules, the reasoning
process of the OntoSoC ontology will be enhanced by adding new SWRL rules to consider other parameters that
have an impact on the state of charge, such as the SoH of the battery pack. Additionally, another direction consists on
combining our knowledge based model to trainable model based on transformer to increase the model’s precision.
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