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Complex embeddings, Toeplitz operators and

transitivity of optimal holomorphic extensions.

Siarhei Finski

Abstract. In a setting of a complex manifold with a fixed positive line bundle and a sub-

manifold, we consider the optimal Ohsawa-Takegoshi extension operator, sending a holomorphic

section of the line bundle on the submanifold to the holomorphic extension of it on the ambient

manifold with the minimal L2-norm. We show that for a tower of submanifolds in the semiclassi-

cal setting, i.e. when we consider a large tensor power of the line bundle, the extension operators

satisfy transitivity property modulo some small defect, which can be expressed through Toeplitz

type operators. We calculate the first significant term in the asymptotic expansion of this “transi-

tivity defect”. As a byproduct, we deduce the composition rules for Toeplitz type operators, the

extension and restriction operators, and calculate the second term in the asymptotic expansion of

the optimal constant in the semi-classical version of Ohsawa-Takegoshi extension theorem.
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1 Introduction

One of the main goals of this paper is to prove that for a tower of submanifolds, transitivity property

is satisfied for Ohsawa-Takegoshi extension operator, sending a holomorphic section on the sub-

manifold to the holomorphic extension of it on the ambient manifold with the minimal L2-norm,

modulo some small error, which can be expressed through Toeplitz type operators.

More precisely, we fix two (not necessarily compact) complex manifolds X, Y of dimensions

n and m respectively. We fix also a complex embedding ι : Y → X , a positive line bundle (L, hL)
over X and an arbitrary Hermitian vector bundle (F, hF ) over X . In particular, we assume that for

the curvature RL of the Chern connection on (L, hL), the closed real (1, 1)-differential form

ω :=

√
−1

2π
RL (1.1)

is positive. We denote by gTX the Riemannian metric on X induced by ω as follows

gTX(·, ·) := ω(·, J ·), (1.2)

where J : TX → TX is the complex structure on X . We denote by gTY the induced metric on Y .

We assume throughout the whole article that the triple (X, Y, gTX), and the Hermitian vector

bundles (L, hL), (F, hF ) are of bounded geometry in the sense of Definitions 2.4, 2.8.

This means that we assume uniform lower bounds rX , rY > 0 on the injectivity radii of X , Y ,

the existence of the geodesic tubular neighborhood of Y of uniform size r⊥ > 0 in X , and some

uniform bounds on related curvatures and the second fundamental form of the embedding.

Now, we fix some positive (with respect to the orientation given by the complex structure)

volume forms dvX , dvY on X and Y . For smooth sections f, f ′ of Lp ⊗ F over X , we define the

L2-scalar product using the pointwise scalar product 〈·, ·〉h induced by hL and hF as follows

〈

f, f ′〉
L2(X)

:=

∫

X

〈

f(x), f ′(x)
〉

h
dvX(x). (1.3)

Similarly, using dvY , we introduce the L2-scalar product for sections of ι∗(Lp ⊗ F ) over Y . We

denote by L2(X,Lp ⊗ F ), L2(Y, ι∗(Lp ⊗ F )) the spaces of L2-sections of Lp ⊗ F over X and Y .

Given a continuous smoothing linear operator K : L2(X,Lp ⊗ F ) → L2(X,Lp ⊗ F ), the

Schwartz kernel theorem guarantees the existence of the Schwartz kernel, K(x1, x2) ∈ (Lp ⊗
F )x1 ⊗ (Lp ⊗ F )∗x2; x1, x2 ∈ X , evaluated with respect to dvX , i.e.

(Ks)(x1) =

∫

X

K(x1, x2) · s(x2)dvX(x2), s ∈ L2(X,Lp ⊗ F ). (1.4)

Similarly, we define the Schwartz kernels K1(y, x), K2(x, y), x ∈ X , y ∈ Y , for smoothing

operators K1 : L
2(X,Lp ⊗ F ) → L2(Y, ι∗(Lp ⊗ F )), K2 : L

2(Y, ι∗(Lp ⊗ F )) → L2(X,Lp ⊗ F )
with respect to the volume forms dvX and dvY respectively.

For a Hermitian vector bundle (E, hE) over X , we denote

C
∞
b (X,E) :=

{

f ∈ C
∞(X,E) : for any k ∈ N, there is C > 0, such that |∇kf | ≤ C

}

, (1.5)

where ∇ is the connection induced by the Chern connection on E and the Levi-Civita connection

on TX , and | · | is the norm induced by the metrics gTX , hE .
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Assume that for the Riemannian volume forms dvgTX , dvgTY of (X, gTX), (Y, gTY ), we have

dvgTX

dvX
,
dvX
dvgTX

∈ C
∞
b (X),

dvgTY

dvY
,
dvY
dvgTY

∈ C
∞
b (Y ). (1.6)

We denote by H0
(2)(X,L

p ⊗ F ) and H0
(2)(Y, ι

∗(Lp ⊗ F )) the vector spaces of holomorphic

sections of Lp ⊗ F over X and Y respectively with bounded L2-norm. In [9, (4.1)], by relying

on the bounded geometry assumption, we proved that the restriction to Y of any L2-holomorphic

section, defined on X , has finite L2-norm. In other words, the operator

ResY |X
p : H0

(2)(X,L
p ⊗ F ) → H0

(2)(Y, ι
∗(Lp ⊗ F )), f 7→ f |Y , (1.7)

is well-defined. By extending Ohsawa-Takegoshi theorem, in [9, Theorem 4.1], cf. [19], [18], [6,

§13], [7], we established that there is p1 ∈ N, such that (1.7) is surjective for any p ≥ p1. The

right inverse of this restriction, defined for p ≥ p1 by taking the holomorphic extension with the

minimal L2-norm, is called the (Ohsawa-Takegoshi) extension operator, and it is denoted by

EX|Y
p : H0

(2)(Y, ι
∗(Lp ⊗ F )) → H0

(2)(X,L
p ⊗ F ). (1.8)

We identify the normal bundle NX|Y of Y in X as an orthogonal complement of TY in TX
(with respect to gTX), so that we have the following orthogonal decomposition

TX|Y → TY ⊕NX|Y . (1.9)

We denote by gN
X|Y

the metric on NX|Y induced by gTX , and let P
X|Y
N be the induced projection

from TX|Y to NX|Y . By an abuse of notation, we denote the induced projection from (TX|Y )∗ to

(NX|Y )∗ by the same symbol.

For y ∈ Y , ZN ∈ N
X|Y
y , let R ∋ t 7→ expXy (tZN) ∈ X be the geodesic in X in the direction

ZN . Bounded geometry condition means, in particular, that this map induces a diffeomorphism of

r⊥-neighborhood of the zero section in NX|Y with a tubular neighborhood U of Y in X .

Using this diffeomorphism, we define κ
X|Y
N : U → R+ as the only function verifying

dvX = κ
X|Y
N · dvY ∧ dvNX|Y , (1.10)

where dvNX|Y is the relative Riemannian volume form on (NX|Y , gN
X|Y

). We have κ
X|Y
N |Y = 1 if

dvX = dvgTX , dvY = dvgTY . (1.11)

Let us now fix a tower of submanifolds Y
ι1−֒→ W

ι2−֒→ X , ι := ι2 ◦ ι1 of dimensions m, l and

n respectively. In addition to the volume forms dvX , dvY , we fix a positive volume form dvW
on W , verifying assumptions, similar to (1.6) with respect to the metric gTW induced by gTX .

We assume, moreover, that the triples (X,W, gTX), (W,Y, gTW ) are of bounded geometry in the

sense of Definition 2.4. We denote by rX (resp. rW ) the scalar curvature of X (resp. W ), and let

Λω[R
F ] ∈ End(F ) be the contraction of the curvature of the Chern connection of (F, hF ) with the

Kähler form ω. We denote by Λι∗2ω[R
F ] ∈ End(ι∗2F ) the analogous contraction defined on W .

We denote by (NX|Y )(1,0), (NX|Y )(0,1) the holomorphic, antiholomorphic components of

NX|Y ⊗C, corresponding to
√
−1 and −

√
−1 eigenspaces of the induced complex structure action.
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Theorem 1.1. There are p1 ∈ N
∗, C > 0, such that for any p ≥ p1, we have

∥

∥

∥
EX|Y
p − EX|W

p ◦ EW |Y
p

∥

∥

∥
≤ C · p−n−m+1

2 , (1.12)

where ‖ ·‖ denotes the operator norm. Moreover, under the assumptions (1.11) and dvW = dvgTW ,

∥

∥

∥
EX|Y
p − EX|W

p ◦ EW |Y
p

∥

∥

∥
∼ C0 · p−

n−m+3
2 , (1.13)

where the constant C0 ≥ 0 is defined as follows

C0 :=
1√
π
sup
y∈Y

∥

∥

∥

1

8π
∂NW |Y

(

r
X
y − r

W
y

)

· IdFy
− 1

2π
√
−1

∇1,0

NW |Y

(

Λω[R
F
y ]− Λι∗2ω[R

F
y ]
)

∥

∥

∥
, (1.14)

where the operator ∂NW |Y : C ∞(Y ) → C ∞(Y, (NW |Y )(1,0)∗) is defined by the composition P
W |Y
N ◦

∂, the operator ∇1,0

NW |Y : C ∞(Y,End(ι∗F )) → C ∞(Y, (NW |Y )(1,0)∗ ⊗ End(ι∗F )) is similarly

defined by the composition P
W |Y
N ◦ ∇1,0 for the (1, 0)-component ∇1,0 of the Chern connection on

End(F ), endowed with the induced Hermitian metric, and the norm is considered as a norm of an

element from (NW |Y )(1,0)∗ ⊗ End(ι∗F ) with the induced metric.

Remark 1.2. a) In [9, Theorem 1.1], we obtained that, as p→ ∞,

∥

∥EX|Y
p

∥

∥ ∼ sup
y∈Y

κ
X|Y
N (y)

1
2 · p−n−m

2 . (1.15)

Hence, (1.12) means that the “defect of transitivity” for the extension operator is of lower order of

magnitude than the operator itself. We call this property asymptotic transitivity.

b) Bounded geometry condition implies that C0 is a finite number.

c) The estimate (1.12) alone can be obtained directly from [9, Theorem 1.1] and some local

calculations, following from Section 2.4.

The main goal of this paper is to give a more precise asymptotic description of the sequence

of operators E
X|Y
p − E

X|W
p ◦ E

W |Y
p : H0

(2)(Y, ι
∗(Lp ⊗ F )) → H0

(2)(X,L
p ⊗ F ), p ≥ p1. Remark

that for different p, those operators act on different spaces, so the phrase “asymptotic description”

itself has to be explained. For this, we introduce below Toeplitz type operators.

Let H0,Y⊥
(2) (X,Lp ⊗ F ) be the vector space of L2-holomorphic functions which are orthogo-

nal (with respect to the L2-scalar product (1.3)) to L2-holomorphic functions vanishing along Y .

Denote by B
X|Y⊥
p , BX

p the orthogonal projections from L2(X,Lp ⊗ F ) to H0,Y⊥
(2) (X,Lp ⊗ F ) and

H0
(2)(X,L

p⊗F ) respectively. The operatorBX
p (resp. B

X|Y⊥
p ) will be called the Bergman projector

(resp. orthogonal Bergman projector). We extendE
X|Y
p toL2(Y, ι∗(Lp⊗F )) as f 7→ (E

X|Y
p ◦BY

p )f .

Now, for a section f ∈ C
∞
b (X,End(F )), we associate a sequence of linear operators TXf,p ∈

End(L2(X,Lp ⊗ F )), p ∈ N, called Berezin-Toeplitz operator, by

TXf,p(g) := BX
p (f · BX

p g). (1.16)

We define the sequences of operators T
Y |X
f,p

: L2(X,Lp ⊗ F ) → L2(Y, ι∗(Lp ⊗ F )), T
X|Y
f,p

:
L2(Y, ι∗(Lp ⊗ F )) → L2(X,Lp ⊗ F ), p ∈ N, by

T
Y |X
f,p

:= ResY |X
p ◦ TXf,p ◦ (BX

p − BX|Y⊥
p ), T

X|Y
f,p

:= (BX
p −BX|Y⊥

p ) ◦ TXf,p ◦ EX|Y
p . (1.17)
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As we show in Proposition 4.8, the asymptotic study of operators T
Y |X
f,p , T

X|Y
f,p , fundamental to

this paper, reduces to their study for some functions f , polynomial-like in the normal directions to

Y . To describe those functions precisely, we fix a smooth function ρ : R+ → [0, 1], satisfying

ρ(x) =

{

1, for x < 1
4
,

0, for x > 1
2
.

(1.18)

Let π : NX|Y → Y be the natural projection. We fix g ∈ C ∞
b (Y, Symk(NX|Y )∗ ⊗ End(ι∗F )), k ∈

N, and construct a section {g} ∈ C ∞(NX|Y , π∗End(ι∗F )), polynomial in the vertical directions,

as follows {g}(y, ZN) := g(y) · Z⊗k
N , y ∈ Y , ZN ∈ N

X|Y
y .

Recall that we introduced a diffeomorphism of r⊥-neighborhood of the zero section in NX|Y

with a tubular neighborhood U of Y in X after (1.9). By an abuse of notation, we denote by

π : U → Y the projection (y, ZN) 7→ y induced by π and the above diffeomorphism. Over U , we

identify L, F to π∗(ι∗L), π∗(ι∗F ) by the parallel transport with respect to Chern connections along

the geodesic [0, 1] ∋ t 7→ (y, tZN) ∈ X , |ZN | < r⊥. From now on, we use those identifications

implicitly. For fixed p ∈ N
∗, over U , we define the section ⟪g⟫ ∈ C

∞
b (X,End(F )) as

⟪g⟫(y, ZN) := p
k
2 · ρ

( |ZN |
r⊥

)

· {g}(y, ZN), (1.19)

where the norm |ZN |, is taken with respect to gN
X|Y

. Away from U , we extend ⟪g⟫ by zero. We

extend the operator ⟪·⟫ linearly to ⊕∞
k=0C

∞
b (Y, Symk(NX|Y )∗ ⊗ End(ι∗F )).

Definition 1.3. A sequence of linear operators T Yp ∈ End(L2(Y, ι∗(Lp ⊗ F ))), p ∈ N, (resp.

T
Y |X
p : L2(X,Lp⊗F ) → L2(Y, ι∗(Lp⊗F )), TX|Y

p : L2(Y, ι∗(Lp⊗F )) → L2(X,Lp⊗F )) verifying

BY
p ◦ T Yp ◦BY

p = T Yp (resp. BY
p ◦ T Y |X

p ◦ (BX
p −B

X|Y⊥
p ) = T

Y |X
p , (BX

p −B
X|Y⊥
p ) ◦ TX|Y

p ◦BY
p =

T
X|Y
p ), is called a Toeplitz operator with exponential decay (resp. of type Y |X , X|Y ) if there is

a sequence fi ∈ C ∞
b (Y,End(ι∗F )) (resp. ghi ∈ ⊕∞

k=0C
∞
b (Y, Sym2k+j(NX|Y )(1,0)∗ ⊗ End(ι∗F )),

gai ∈ ⊕∞
k=0C

∞
b (Y, Sym2k+j(NX|Y )(0,1)∗ ⊗ End(ι∗F )), where j ∈ {1, 2} is of the same parity as

i), and c > 0, p1 ∈ N∗, such that for any k, l ∈ N, there is C > 0, such that for any p ≥ p1, the

Schwartz kernels, evaluated with respect to dvX , dvY , for y1, y2 ∈ Y , x ∈ X , satisfy

∣

∣

∣
T Yp (y1, y2)−

k
∑

r=0

p−rT Yfr ,p(y1, y2)
∣

∣

∣

C l
≤ Cpm−k+ l

2 · exp
(

− c
√
p · distY (y1, y2)

)

,

∣

∣

∣
TX|Y
p (x, y1)−

k
∑

r=0

p−
r
2T

X|Y
⟪ghr ⟫,p

(x, y1)
∣

∣

∣

C l
≤ Cpm+ l−k

2 · exp
(

− c
√
p · distX(x, y1)

)

,

∣

∣

∣
T Y |X
p (y1, x)−

k
∑

r=0

p−
r
2T

Y |X
⟪gar⟫,p

(y1, x)
∣

∣

∣

C l
≤ Cpn+

l−k
2 · exp

(

− c
√
p · distX(y1, x)

)

,

(1.20)

where the pointwise C
l-norm at a point (y1, y2) ∈ Y × Y is the sum of the norms induced by

hL, hF and gTX , evaluated at (y1, y2), of the derivatives up to order l with respect to the connection

induced by the Chern connections on L, F and the Levi-Civita connection on TY , and similar

notations are used for the other two norms at points (y1, x) ∈ Y × X and (x, y1) ∈ X × Y . The

sections fi (resp. ghi , gai ) will later be denoted by [TXp ]i (resp. [T
X|Y
p ]i, [T

Y |X
p ]i). We alternatively

call the above operators Toeplitz type operators (with exponential decay).
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Remark 1.4. a) In Proposition 2.12, we show that (1.20) implies that for any k ∈ N, there is C > 0,

such that for any p ≥ p1, we have ‖T Yp −∑k

r=0 p
−rT Yfr ,p‖ ≤ Cp−k, ‖TX|Y

p −∑k

r=0 p
− r

2T
X|Y
⟪ghr ⟫,p

‖ ≤
Cp−

n−m+k
2 , ‖T Y |X

p −
∑k

r=0 p
− r

2T
Y |X
⟪gar⟫,p

‖ ≤ Cp
n−m−k

2 . In particular, the sequence of operators T Yp ,

p ∈ N, forms a Toeplitz operator in the sense of Ma-Marinescu [13, §7].

b) As we show in Corollary 3.6, our definition ultimately doesn’t depend on the choice of ρ.

c) In Corollary 3.12, we show that the sections fi, i ∈ N, (resp. ghi , gai ), verifying (1.20), are

uniquely defined. Hence, the notation [·]i, i ∈ N, from Definition 1.3 is well-defined.

To state our main result, we place ourselves in the notations and assumptions of Theorem 1.1.

Theorem 1.5. The sequence of operators

Dp := EX|Y
p − EX|W

p ◦ EW |Y
p , p ∈ N, (1.21)

forms a Toeplitz operator with exponential decay of type X|Y . Moreover, we have [Dp]0 = 0.

Also, under the assumptions (1.11) and dvW = dvgTW , we have [Dp]1 = 0, [Dp]2 = 0, [Dp]3 ∈
C ∞
b (Y, (NX|Y )(1,0)∗ ⊗ End(ι∗F )), for n ∈ (NX|W )(1,0), [Dp]3 · n = 0, and for n ∈ (NW |Y )(1,0):

[Dp]3 · n =
1

8π

∂

∂n
·
(

r
X − r

W
)

· IdF − 1

2π
√
−1

∇End(E)
n

(

Λω[R
F ]− Λι∗2ω[R

F ]
)

. (1.22)

To get a better understanding of Theorem 1.5 and its relation with Theorem 1.1, let us

now state asymptotic formulas for the operators, introduced in Definition 1.3. For g ∈
⊕∞
k=0C

∞
b (Y, Symk(NX|Y )∗ ⊗ End(ι∗F )), using the coordinate system as in (1.19), we define the

sequence of operators M
X|Y
g,p : L2(Y, ι∗(Lp ⊗ F )) → L2(X,Lp ⊗ F ) by

(MX|Y
g,p f)(y, ZN) = ⟪g⟫(y, ZN) · exp

(

− p
π

2
|ZN |2

)

· (BY
p f)(y), (1.23)

where f ∈ L2(Y, ι∗(Lp ⊗F )) and the norm |ZN |, ZN ∈ NX|Y , is taken with respect to gN
X|Y

. We

also define an operator M
Y |X,†
g,p : L2(X,Lp ⊗ F ) → L2(Y, ι∗(Lp ⊗ F )), p ∈ N, as follows

(MY |X,†
g,p f)(y) = pn−m ·BY

p π∗

(

⟪g⟫(y, ZN) ·exp
(

−pπ
2
|ZN |2

)

·f(y, ZN) ·dvNX|Y (ZN)
)

, (1.24)

where we implicitly identified the restriction of f ∈ L2(X,Lp ⊗ F ) to U with an element from

L2(U, π∗ι∗(Lp⊗F )), and π∗ is the integration over the fibers ofNX|Y . Remark that the integration

is well-defined because the function ⟪g⟫ has support in a small tubular neighborhood of Y .

Theorem 1.6. There is p1 ∈ N∗, such that for any gh ∈ ⊕∞
k=1C

∞
b (Y, Symk(NX|Y )(1,0)∗ ⊗

End(ι∗F )), ga ∈ ⊕∞
k=1C

∞
b (Y, Symk(NX|Y )(0,1)∗ ⊗ End(ι∗F )), there is C > 0, such that for any

p ≥ p1, the following bounds hold

∥

∥T
X|Y
⟪gh⟫,p

−M
X|Y
gh,p

∥

∥ ≤ Cp−
n−m+1

2 ,
∥

∥T
Y |X
⟪ga⟫,p −M

Y |X,†
ga,p

∥

∥ ≤ Cp
n−m−1

2 . (1.25)

Remark 1.7. a) In Proposition 3.15, we show that for nonzero g ∈ ⊕∞
k=0C

∞
b (Y, Symk(NX|Y )∗ ⊗

End(ι∗F )), there are C1, C2 > 0, which can be written explicitly in terms of g, such that, as

p→ ∞, we have
∥

∥MX|Y
g,p

∥

∥ ∼ C1p
−n−m

2 ,
∥

∥MY |X,†
g,p

∥

∥ ∼ C2p
n−m

2 . (1.26)

Hence, by (1.25), the operators M
X|Y
gh,p

, M
Y |X,†
ga,p , are asymptotic to T

X|Y
⟪gh⟫,p

and T
Y |X
⟪ga⟫,p respectively.

b) From Theorem 1.6 and Remark 1.7a), we see that Theorem 1.5 largely refines Theorem 1.1.
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Now, in a slightly different direction, in Theorems 4.1, 4.7, we show that for quasi-isometric

embeddings, the set of Toeplitz type operators is closed under taking adjoints, restrictions, exten-

sions and some products. This plays a crucial role in our approach to Theorem 1.5 and allows us to

generalize Theorem 1.5 to towers of embeddings of arbitrary length, see Corollary 5.8 for a precise

statement. As another direct consequence of our analysis, we obtain the following result.

Theorem 1.8. As p→ ∞, the following asymptotics holds

∥

∥ResY |X
p

∥

∥ ∼ sup
y∈Y

κ
X|Y
N (y)−

1
2 · pn−m

2 . (1.27)

Moreover, under assumption (1.11), as p→ ∞, we even have

∥

∥EX|Y
p

∥

∥− 1

p
n−m

2

∼ C3

p
n−m+2

2

,
∥

∥ResY |X
p

∥

∥− p
n−m

2 ∼ C4 · p
n−m−2

2 , (1.28)

where the constants C3, C4 are defined as follows

C3 := −1

2
inf
y∈Y

(

r
X
y − r

Y
y

8π
− λmax

(Λω[R
F
y ]− Λι∗ω[R

F
y ]

2π
√
−1

)

)

,

C4 :=
1

2
sup
y∈Y

(

r
X
y − r

Y
y

8π
− λmin

(Λω[R
F
y ]− Λι∗ω[R

F
y ]

2π
√
−1

)

)

,

(1.29)

where λmax and λmin are the values of the maximal and minimal eigenvalues.

Remark 1.9. a) The first asymptotics (1.28) corresponds to the calculation of the optimal constant

in Ohsawa-Takegoshi theorem. A less refined version was proved in [9, Theorem 1.1], see (1.15).

b) In particular, from (1.15) and (1.27), we see that the sequence of operators p
n−m

2 · EX|Y
p is

an asymptotic isometry if and only if κ
X|Y
N |Y = 1.

In conclusion, let us give here a brief outline of the proof of Theorem 1.5. It essentially consists

of three steps. The first step is to prove a characterization of Toeplitz type operators in terms of

the asymptotic expansion of their Schwartz kernels. We do this in Section 3.4 by relying on Ma-

Marinescu [14]. The second step consists in showing that the sequence Dp, p ≥ p1, from Theorem

1.5 satisfies the assumptions of this asymptotic characterizations. We do this in Theorem 4.1,

relying on the results from our previous article [9] on the asymptotics of the extension operator. In

the third step, we calculate the first significant term of the asymptotic expansion of Dp.

For more amenable calculations, in steps 1 and 2, instead of Dp, we study the asymptotics of

the sequence of operators ResW |X
p ◦Dp, which is related to Dp by the basic identity

EX|W
p ◦ ResW |X

p ◦Dp = Dp. (1.30)

In step 3, to study ResW |X
p ◦ Dp, and out of independent interest, in Section 4.2, for p ≥ p1, we

introduce the sequence of operators, denoted here byA
X|Y
p , which we call the multiplicative defect.

We show that the sequence of operators 1
pn−mA

X|Y
p , p ≥ p1, form a Toeplitz type operator with

weak exponential decay (see Definition 3.16, under mild quasi-isometry assumption, this notion

coincides with Definition 1.3, see Proposition 2.7), and the asymptotic expansion of it is related to

the asymptotic expansion of the Bergman kernel, studied previously by Tian [23], Zelditch [25],
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Catlin [4], Lu [12], Wang [24] and Dai-Liu-Ma [5]. By this and the calculation of the asymptotics

of Bergman kernel from [23], [12], [24] and [5], we calculate the first two terms of the asymptotic

expansion of 1
pn−mA

X|Y
p . Then a formula relating ResW |X

p ◦Dp and 1
pn−mA

X|Y
p , proved in Lemma

5.5, allows us to deduce from this calculation the first significant term of the asymptotic expansion

of ResW |X
p ◦Dp. Finally, the composition rules, established in Theorem 4.1.6 and (1.30) allow us

to pass from the asymptotic expansion of ResW |X
p ◦Dp to the asymptotic expansion of Dp, which

finishes the proof of the third step. We, finally, mention that the general strategy for dealing with

semi-classical limits here is inspired by Bismut [1] and Bismut-Vasserot [2].

This paper is organized as follows. In Section 2, we study the geometry of manifolds of

bounded geometry. In Section 3, we study the asymptotics of Toeplitz type operators and derive

asymptotic criteria for them. In Section 4, we study the algebraic properties of the set of Toeplitz

type operators: we show that it is closed under taking adjoints, restrictions, extensions and some

products. We study the adjoints of Toeplitz type operators and introduce multiplicative defect.

Finally, in Section 5, using those preparations, we prove Theorems 1.1, 1.5, 1.8 and generalize

Theorem 1.5 to towers of submanifolds of arbitrary length.

Notations. We use notations X, Y for complex manifolds and M,H for real manifolds. The

complex (resp. real) dimensions of X, Y (resp. M,H) are denoted here by n,m. An operator ι
always means an embedding ι : Y → X (resp. ι : H →M). We denote by ResY (resp. ResH ) the

restriction operator from X to Y (resp. M to H).

For a Riemannian manifold (M, gTM), we denote the Levi-Civita connection by ∇TM , by

RTM the curvature of it, and by dvgTM the Riemannian volume form. For a closed subset W ⊂M ,

r ≥ 0, let BM
W (r) be the ball of radius r around W .

For a fixed volume form dvM on M , we denote by L2(dvM , h
E) the space of L2-sections of E

with respect to dvM and hE . When dvM = dvgTM , we also use the notation L2(gTM , hE). When

there is no confusion about the data, we also use the simplified notation L2(M,E) or L2(M).
For n ∈ N∗, we denote by dvCn the standard volume form on Cn. We view Cm (resp. Rm)

embedded in Cn (resp. Rn) by the first m coordinates. For Z ∈ Rk, we denote by Zl, l =
1, . . . , k, the coordinates of Z. If Z ∈ R2n, we denote by zi, i = 1, . . . , n, the induced complex

coordinates zi = Z2i−1 +
√
−1Z2i. We frequently use the decomposition Z = (ZY , ZN), where

ZY = (Z1, . . . , Z2m) and ZN = (Z2m+1, . . . , Z2n). For a fixed frame (e1, . . . , e2n) in TxX , x ∈ X ,

(resp. y ∈ Y ) we implicitly identify Z (resp. ZY , ZN ) to an element in TxX (resp. TyY , N
X|Y
y ) by

Z =

2n
∑

i=1

Ziei, ZY =

2m
∑

i=1

Ziei, ZN =

2n
∑

i=2m+1

Ziei. (1.31)

If the frame ei satisfies the condition

Je2i−1 = e2i, (1.32)

we denote ∂
∂zi

:= 1
2
(e2i−1 −

√
−1e2i),

∂
∂zi

:= 1
2
(e2i−1 +

√
−1e2i), and identify z, z to vectors in

TxX ⊗R C as follows

z =

n
∑

i=1

zi ·
∂

∂zi
, z =

n
∑

i=1

zi ·
∂

∂zi
. (1.33)

Clearly, in this identification, Z = z + z. We define zY , zY ∈ TyY ⊗R C, zN , zN ∈ N
X|Y
y ⊗R C

in a similar way. We sometimes further decompose ZN = (ZNW |Y , ZNX|W ) for ZNW |Y ∈ R2(l−m),
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ZNX|W ∈ R
2(n−l), m ≤ l ≤ n, and use the analogous identifications. Sometimes, we use the

notation ZW := (ZY , ZNW |Y ).
For α = (α1, . . . , αk) ∈ Nk, B = (B1, . . . , Bk) ∈ Ck, we write by

|α| =
k

∑

i=1

αi, α! =

k
∏

i=1

(αi)!, Bα =

k
∏

i=1

Bαi

i . (1.34)
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finished in CMLS, where author benefited from the support of CNRS and École Polytechnique.
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2 Bounded geometry and local trivializations

The main goal of this section is to study the geometry of manifolds of bounded geometry. More

precisely, in Section 2.1, we recall the definitions manifolds (resp. pairs of manifolds, vector

bundles) of bounded geometry and the quasi-isometry assumption. In Section 2.2, we study the

convergence of exponential integrals on manifolds of bounded geometry. In Section 2.3, we re-

call some results comparing geodesic and Fermi coordinates and related trivializations of vector

bundles. Finally, in Section 2.4, we extend those results to towers of submanifolds.

2.1 Introduction to bounded geometry condition

In this section, we recall the definitions of manifolds (resp. pairs of manifolds, vector bundles)

of bounded geometry. We also recall the basic facts about the second fundamental form and the

quasi-isometry assumption. For more detailed overview, refer to [8], [20], [10], cf. [9].

Definition 2.1. We say that a Riemannian manifold (M, gTM) is of bounded geometry if the fol-

lowing two conditions are satisfied.

(i) The injectivity radius of (M, gTM) is bounded below by a positive constant rM .

(ii) For the Riemann curvature tensorRTM ofM , we haveRTM ∈ C ∞
b (M,Λ2T ∗M⊗End(TM)).

Remark 2.2. By Hopf-Rinow theorem, the condition (i) implies that (M, gTM) is complete.

Now, let (H, gTH) be an embedded submanifold of (M, gTM), gTH := gTM |H . We identify

the normal bundle NM |H of H in M to an orthogonal complement of TH in TM as in (1.9). We

denote by gN
M|H

the metric on NM |H induced by gTM . We denote by P
M |H
N : TM |H → NM |H ,

P
M |H
H : TM |H → TH , the projections induced by (1.9). Clearly, ∇NM|H

:= P
M |H
N ∇TM |H

defines a connection on NM |H . We define the second fundamental form AM |H ∈ C ∞(H, T ∗H ⊗
End(TM |H)) by

AM |H := ∇TM |H −∇TH ⊕∇NM|H

. (2.1)

Recall that the mean curvature νM |H ∈ C ∞(H,NM |H) of ι is defined as follows

νM |H :=
1

m

m
∑

i=1

AM |H(ei)ei, (2.2)
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where the sum runs over an orthonormal basis of (TH, gTH). The following statement about the

second fundamental form will be used throughout the whole article.

Proposition 2.3. The second fundamental form satisfies the following properties.

1. It takes values in skew-symmetric endomorphisms of TM |H , interchanging TH and NM |H .

2. For any U, V ∈ TH , we have AM |H(U)V = AM |H(V )U .

Assume, moreover, that (M, gTM) is Kähler. Then the following holds.

3. AM |H commutes with the action of the complex structure.

4. For any U ∈ TH , V ∈ TM , U = u+ u, V = v + v, u, v ∈ T 1,0M , we have

AM |H(U)v = AM |H(u)v, AM |H(U)v = AM |H(u)v, if V ∈ NM |H ,

AM |H(U)v = AM |H(u)v, AM |H(U)v = AM |H(u)v, if V ∈ TH.
(2.3)

5. We have νM |H = 0.

Proof. The proof is straightforward, so we only highlight the main ideas. The point 1 is a conse-

quence of the fact that the Levi-Civita connection preserves the Riemannian metric and the well-

known fact that P
M |H
H ∇TMP

M |H
H = ∇TH . The point 2 is a consequence of the fact that the Levi-

Civita connection has no torsion. The point 3 follows from the fact that for Kähler manifolds, the

complex structure is parallel with respect to the Levi-Civita connection, cf. [13, Theorem 1.2.8].

The point 4 is an easy consequence of points 1, 2, 3. Let us now establish point 5. By point 4,

AM |H(JU)JU = JAM |H(JU)U = JAM |H(U)JU = −AM |H(U)U. (2.4)

The point 5 now follows from this observation by choosing an orthonormal frame (e1, . . . , en) in

(TM, gTM), such that for i = 1, . . . , n
2
, the condition (1.32) is satisfied.

Definition 2.4. We say that the triple (M,H, gTM) is of bounded geometry if the following condi-

tions are fulfilled.

(i) The manifold (M, gTM) is of bounded geometry.

(ii) The injectivity radius of (H, gTH) is bounded below by a positive constant rH .

(iii) There is a collar around H (a tubular neighborhood of fixed radius), i.e. there is r⊥ > 0
such that for any x, y ∈ H , the normal geodesic balls B⊥

r⊥
(x), B⊥

r⊥
(y), obtained by the application

of the exponential mapping to vectors, orthogonal to H , of norm bounded by r⊥, are disjoint.

(iv) The second fundamental form, AM |H , satisfies AM |H ∈ C ∞
b (H, T ∗M |H ⊗ End(TM |H)).

We will now introduce a coordinate system in M near a fixed point in H , which is particularly

well-adapted to the study of triples of bounded geometry. We fix a point y0 ∈ H and an orthonor-

mal frame (e1, . . . , em) (resp. (em+1, . . . , en)) in (Ty0H, g
TH
y0

) (resp. in (N
M |H
y0 , gN

M|H

y0
)). For

Z = (ZH , ZN), ZH ∈ Rm, ZN ∈ Rn−m, ZH = (Z1, . . . , Zm), ZN = (Zm+1, . . . , Zn), |ZH | ≤ rH ,

|ZN | ≤ r⊥, we define a coordinate system ψ
M |H
y0 : BRm

0 (rH)× BRn−m

0 (r⊥) → M by

ψM |H
y0

(ZH , ZN) := expMexpH
y0

(ZH )(ZN(ZH)), (2.5)

where ZN(ZH) is the parallel transport of ZN ∈ N
M |H
y0 along expHy0(tZH), t = [0, 1], with respect

to the connection ∇NM|H
on NM |H . The coordinates ψ

M |H
y0 are called the Fermi coordinates at y0.

Their importance comes from the following proposition.



Complex embeddings and Toeplitz operators 11

Proposition 2.5 ( [20, Lemma 3.9], [10, Theorem 4.9]). For any triple (M,H, gTM) of bounded

geometry, for any r0 > 0, there is Dk > 0, such that for any y0 ∈ H , l = 0, . . . , k, we have

‖gij‖C l(BRn

0 (r0)) ≤ Dk, ‖gij‖C l(BRn

0 (r0)) ≤ Dk. (2.6)

where gij , i, j = 1, . . . , n, are the coefficients of the metric tensor ψ∗
y0
gTM , and gij are the coeffi-

cients of the inverse matrix.

Remark 2.6. a) In particular, for a triple of bounded geometry (M,H, gTM), the Riemannian man-

ifold (H, gTH) has bounded geometry.

b) Clearly, this result along with the assumption (1.6) imply that in the notations of (1.10), we

have κ
X|Y
N ∈ C ∞

b (U).

Now, recall that an embedding ι : H → M is called quasi-isometry if there are A,B > 0 such

that for any y1, y2 ∈ H , we have

distH(y1, y2) ≤ AdistM(ι(y1), ι(y2)) +B. (2.7)

In what follows, for brevity, we omit ι from the distance function. As an application of Proposition

2.5, we deduce the following result.

Proposition 2.7. Assume that a triple (M,H, gTM) is of bounded geometry and the embedding ι
is quasi-isometry. Then one can choose B = 0 in (2.7).

Proof. The proof consists in considering three different cases. First, we assume that the points

y1, y2 ∈ H satisfy distH(y1, y2) > 2B. Then, by (2.7), we have B
A

≤ distM(y1, y2). Hence, we

have AdistM(y1, y2) +B ≤ 2AdistM(y1, y2).
Now, let r0 be as in Proposition 2.5. We denote r1 := min{r0, rH , r⊥}, where r0, rH , r⊥

are as in Proposition 2.5 and Definitions 2.1, 2.4. Assume that the points y1, y2 ∈ H satisfy
r1
2

≤ distH(y1, y2) ≤ B
A

. The geodesic between y1 and y2 in M has to either pass inside the
r1
2

-tubular neighborhood of H or outside. In the latter case, we clearly have distM(y1, y2) ≥ r1.

To treat the former case, we denote by Γy, y ∈ H , the set {expMy (ZN) : ZN ∈ N
M |H
y , |ZN | ≤

r1
2
}. Bounded geometry condition means, in particular, that those sets do not intersect each other

for different y. From Proposition 2.5, we actually see that there is a constant c > 0, such that for any

y′1, y
′
2, verifying distH(y

′
1, y

′
2) =

r1
2

, we have dist(Γy′1,Γy′2) ≥ c. Then, since we always stay inside

the r1
2

-tubular neighborhood of H , and r1
2

≤ distH(y1, y2), we deduce that distM(y1, y2) ≥ c.
Overall, we deduce that we can find a constant C > 0, such that whenever y1, y2 ∈ H satisfy
r1
2
≤ distH(y1, y2) ≤ B

A
, we have distM(y1, y2) ≥ CdistH(y1, y2).

Now, it is only left to treat the last case, where the points y1, y2 ∈ H satisfy distH(y1, y2) ≤
r1
2

. But in this case, directly from Proposition 2.5, we can find a constant C > 0, such that

distM(y1, y2) ≥ CdistH(y1, y2). Hence, in all cases, B can be taken to be equal to 0.

Finally, we recall the last definition related to bounded geometry.

Definition 2.8. Let (E,∇E, hE) be a Hermitian vector bundle with a fixed Hermitian connection

over a manifold (M, gTM) of bounded geometry. We say that (E,∇E, hE) is of bounded geometry

if RE ∈ C ∞
b (M,Λ2T ∗M ⊗ End(E)).

If (E, hE) is a Hermitian vector bundle over a complex manifold, we say that it is of bounded

geometry if (E,∇E, hE) is of bounded geometry for the Chern connection ∇E on (E, hE).
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2.2 Convergence of exponential integrals for triples of bounded geometry

The main goal of this section is to study convergence of exponential integrals for triples of bounded

geometry. More precisely, fix a triple (M,H, gTM) of bounded geometry. We conserve the nota-

tions from Definition 2.4.

Proposition 2.9 ( [9, Corollary 3.3]). There are c, C ′ > 0, which depend only on n, m, rM , rN , r⊥
and sup-norm on RTM , RTH , AM |H , such that for any y0 ∈ H , l > c, the following bound holds

∫

H

exp
(

− ldistM(y0, y)
)

dvgTH (y) <
C ′

lm
. (2.8)

Let (E, hE) be a Hermitian vector bundle over M and D is an operator acting on L2(H, ι∗E).
Assume that there are c > 0, l as in Proposition 2.9 and C > 0, such that for any y1, y2 ∈ H , the

Schwartz kernel of D, evaluated with respect to dvgTH , satisfies the bound

∣

∣

∣
D(y1, y2)

∣

∣ ≤ Clm exp
(

− ldistM(y1, y2)
)

. (2.9)

Corollary 2.10. For C ′ > 0 as in Proposition 2.9, we have ‖D‖ ≤ CC ′.

Proof. From Proposition 2.9 and (2.9), we deduce that there is C ′ > 0, as in Proposition 2.9, such

that for any y0 ∈ H , we have

∫

H

∣

∣D(y0, y)
∣

∣dvH(y) ≤ CC ′,

∫

H

∣

∣D(y, y0)
∣

∣dvH(y) ≤ CC ′. (2.10)

We conclude directly from (2.10) and Young’s inequality for integral operators, cf. [22, Theorem

0.3.1] applied for p, q = 2, r = 1 in the notations of [22].

Now, let c > 0 be as in Proposition 2.9. Let Di, i = 1, . . . , r, be operators acting on

L2(H, ι∗E), such that for some l ≥ 2c, C > 0, the bound (2.9) holds for D := Di.

Corollary 2.11 ( [9, Lemma 3.1] ). The Schwartz kernel Dr+1(y1, y2) of the operator Dr+1 :=
D1 ◦D2 ◦ · · · ◦Dr, evaluated with respect to dvgTH , is well-defined and for any y1, y2 ∈ H and it

satisfies the bound (2.9) for D := Dr+1, l :=
l
2
, C := (C ′)rCr for C ′ as in Proposition 2.9.

Now, in addition to the triple (M,H, gTM) of bounded geometry, we consider a Riemannian

manifold (K, gTK) with an embedding ι1 : M → K, such that ι∗1g
TK = gTM . We assume,

moreover, that the triple (K,M, gTK) is of bounded geometry. Let (E, hE) be a Hermitian vector

bundle over M and D : L2(H, ι∗E) → L2(M,E) be a fixed linear operator. Assume that there

is c > 0 as in Proposition 2.9 and C > 0, such that for some l ≥ c and any y ∈ H , x ∈ M , the

Schwartz kernel of D, evaluated with respect to dvgTH , satisfies the bound

∣

∣D(x, y)
∣

∣ ≤ Clm exp
(

− ldistK(x, y)
)

. (2.11)

Proposition 2.12. There is C ′ > 0, which depends on the same data as constants from Proposition

2.9 and the analogous data on (K,M, gTK), such that

‖D‖ ≤ C ′C

l
n−m

2

. (2.12)
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Remark 2.13. Clearly, Corollary 2.10 is a special case of Proposition 2.12 for M := H .

Proof. First of all, let us establish this result for K := M . We consider the exponential map

exp
M |H
N : NM |H → M . As M is complete, see Remark 2.2, the map exp

M |H
N is surjective. We

consider a subset V ofNM |H , consisting of points u ∈ NM |H , such that dist(exp
M |H
N (u), Y ) = |u|,

where |u| is the norm of u with respect to the induced metric on NM |H .

We let δ = min{infx,T sec(x, T ),−1}, where sec(x, T ) is the sectional curvature of (M, gTM),
evaluated at x ∈ M for the two-dimensional subspace T ∈ TxM of the tangent bundle, and the

infimum is taken over all possible choices of x and T . Bounded geometry condition implies that δ
is a finite constant. For r > 0, we denote sδ(r) :=

1

|δ|
1
2
sinh(|δ| 12 r) and cδ(r) := s′δ(r). Then from

the result of Heintze-Karcher [11, Corollary 3.3.1], we obtain that for u ∈ V , |u| = t, t > 0,

∣

∣ det(d exp
M |H
N )u

∣

∣ ≤
(sδ(t)

t

)n−m−1

·
(

cδ(t)−
〈

νM |H , u
〉

· sδ(t)
)n

, (2.13)

where νM |H was defined in (2.2). In particular, due to bounded geometry assumption, we obtain

that there are c, C ′ > 0, as in Proposition 2.9, such that

∣

∣ det(d exp
M |H
N )u

∣

∣ ≤ C ′ exp(ct). (2.14)

Using this fact and Remark 2.6b), we deduce that there is C > 0 such that for any f ∈
L2(H, ι∗E), we have

‖Df‖2L2 ≤ C

∫

V

exp(c|u|)·

·
(

lm
∫

H

exp
(

− ldistM(y1, exp
M
y2
(u))

)

f(y)dvgTH(y1)
)2

dv
N

M|H
y2

(u)dvgTH(y2). (2.15)

However, clearly, we have distM(y1, exp
M
y2
(u)) ≥ distM(Y, expMy2 (u)). But by the definition of the

subset V , we have distM(Y, expMy2 (u)) = distM(y2, exp
M
y2
(u)) = |u|. From this and (2.15), for

l ≥ 8c, we obtain that

‖Df‖2L2 ≤ C

∫

V

exp
(

− l

2
|u|

)

·

·
(

lm
∫

H

exp
(

− l

8
distM(y1, y2)

)

f(y)dvgTH(y1)
)2

dv
N

M|H
y2

(u)dvgTH(y2). (2.16)

From the boundness of the exponential integral, for any y ∈ Y , we obtain that
∫

V ∩NM|H
y

exp(− l

2
|u|)dv

N
M|H
y

(u) ≤ C

ln−m
. (2.17)

By combining with (2.16), it gives us

‖Df‖2L2 ≤ C

ln−m

∫

H

(

lm
∫

H

exp
(

− l

4
distM(y1, y2)

)

f(y)dvgTH(y1)
)2

dvgTH (y2). (2.18)

Now, from Corollary 2.10, we obtain that there is C > 0, verifying
∫

H

(

lm
∫

H

exp
(

− l

4
distM(y1, y2)

)

f(y)dvgTH(y1)
)2

dvgTH (y2) ≤ C‖f‖2L2. (2.19)
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A combination of (2.18) and (2.19) finishes the proof for the case K := M . An easy verification

shows that all the constants can be chosen as described in the statement of the proposition we are

proving. The proof of the general case reduces to the case considered above through the use of the

tubular neighborhood of M in K in the same way as in the proof of [9, Corollary 3.3].

2.3 Fermi and geodesic coordinates; related trivializations of vector bundles

In this section, we recall some results comparing geodesic and Fermi coordinates and trivializations

of vector bundles adapted to those coordinate systems. We place ourselves in the setting of a triple

(M,H, gTM) of bounded geometry.

Let us fix x0 ∈ M and an orthonormal frame (e1, . . . , en) of (Tx0M, gTMx0 ). We define the map

φMx0 : R
n →M , x0 ∈M , as follows

φMx0(Z) := expMx0(Z). (2.20)

Define the constant R > 0 as follows

R := min
{rM

2
,
rH
4
,
r⊥
4

}

. (2.21)

Assume now x0 = y0, where y0 ∈ H and let (e1, . . . , en) be as in (2.5). Recall that Fermi coordi-

nates ψ
M |H
y0 were defined in (2.5). Clearly, there is a (unique) diffeomorphism h

M |H
y0 : BRn

0 (R) →
Rn, h

M |H
y0 (0) = 0, such that the following identity holds

ψM |H
y0

= φMy0 ◦ h
M |H
y0

. (2.22)

We recall that AM |H ∈ C ∞(H, T ∗H ⊗End(TM |H)) was defined in (2.1). Let an auxiliary section

BM |H ∈ C
∞(H, Sym2(T ∗M |H)⊗ TM |H), for Z ∈ TM |H , be defined as

BM |H(Z) := BM |H(Z,Z) :=
1

2
AM |H(ZH)ZH + AM |H(ZH)ZN . (2.23)

Proposition 2.14 ( [9, Proposition 2.18] ). The diffeomorphism h
M |H
y0 admits the Taylor expansion

hM |H
y0

(Z) = Z +BM |H(Z) +O(|Z|3). (2.24)

Moreover, the derivatives of h
M |H
y0 are bounded uniformly on y0 ∈ Y , |Z| ≤ R.

In the second part of this section, we recall the comparison between two trivializations of vector

bundles, done using parallel transport adapted to the above coordinate systems.

We fix an orthonormal frame f1, . . . , fr ∈ (Ex0 , h
E
x0
). Let f̃ ′

1
M , . . . , f̃ ′

r
M be a frame of E

over BM
x0
(rM), obtained by the parallel transport of f1, . . . , fr along the curve φMx0(tZ), t ∈ [0, 1],

Z ∈ Tx0M , |Z| < rM . Assume now x0 = y0, where y0 ∈ H and let (e1, . . . , en) be as in (2.5). We

define f̃
M |H
1 , . . . , f̃

M |H
r by the parallel transport of f1, . . . , fr with respect to the connection ∇E ,

first along the path ψ
M |H
y0 (tZY , 0), t ∈ [0, 1], and then along the path ψ

M |H
y0 (ZY , tZN), t ∈ [0, 1],

ZY ∈ R2m, ZN ∈ R2(n−m), |ZY | < rY , |ZN | < r⊥.

Let ξ
M |H
E be the unique smooth function over BM

y0
(R), with values in End(Cr), such that

ξ
M |H
E (0) = 0, and the following identity holds

(f̃
M |H
1 , . . . , f̃M |H

r ) = exp(ξ
M |H
E ) · (f̃ ′

1
M , . . . , f̃ ′

r
M), (2.25)

where we view (f̃
M |H
1 , . . . , f̃

M |H
r ) and (f̃ ′

1
M , . . . , f̃ ′

r
M) as r × 1 matrices.
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Proposition 2.15 ( [9, Proposition 2.22] ). The following asymptotic holds

ξ
M |H
E (ψM |H

y0
(Z)) = O(|Z|2). (2.26)

Also, derivatives of ξ
M |H
E are bounded uniformly on y0 ∈ Y , |Z| ≤ R. If, moreover, we assume

that (E,∇E, hE) := (L,∇L, hL) is a line bundle, and that there is a skew-adjoint endomorphism

Q of TM , which is parallel with respect to ∇TM (i.e. ∇TMQ = 0), which commutes with AM |H ,

the restriction of which to H respects the decomposition (1.9), and such that for the curvature RL

of ∇L, and for any u, v ∈ TM , we have

√
−1

2π
RL(u, v) = gTM(Qu, v), (2.27)

then the following more precise bound holds

ξ
M |H
L (ψM |H(Z)) = −1

4
RL
y0

(

ZN , A
M |H(ZH)ZH

)

+O(|Z|4). (2.28)

Remark 2.16. Assume (M, gTM) is endowed with a complex structure J , and gTM is invariant

under the action of it. Assume, moreover, that (2.27) holds for Q := J as in (1.2). Then all the

requirements are satisfied for Q := J , cf. [9, Remark 2.23].

2.4 Towers of embeddings, associated coordinates and holonomies

In this section, we compare natural coordinate systems and trivializations of vector bundles associ-

ated to towers of submanifolds. More precisely, we fix a tower of (real) manifolds H →֒ K →֒ M
of dimensions m, l and n respectively. Endow M with the Riemannian metric gTM and induce the

metrics gTK and gTH on K and H . We fix y0 ∈ H and an orthonormal frame (e1, . . . , em) (resp.

(em+1, . . . , el), (el+1, . . . , en)) of (Ty0H, g
TH) (resp. (N

K|H
y0 , gN

K|H

y0
), (N

M |K
y0 , gN

M|K

y0
)). Recall that

Fermi coordinates were defined in (2.5). Clearly, there is a (unique) embedding σ : Rl → Rn,

σ(0) = 0, such that for any Z ∈ Rl, small enough, we have

ψM |H
y0

(σ(Z)) = ψK|H
y0

(Z). (2.29)

Proposition 2.17. The function σ satisfies σ(Z) = Z + O(|Z|2). Moreover, there is ǫ > 0, such

that the derivatives of σ are bounded uniformly on y0 ∈ H , |Z| ≤ ǫ.

Proof. From (2.22) and (2.29), we deduce

ψK|H
y0

(Z) = φMy0
(

hM |K(hK|H(Z))
)

. (2.30)

Hence, from (2.30), we infer

σ(Z) = (hM |H)−1
(

hM |K(hK|H(Z)
))

. (2.31)

From this and Proposition 2.14, we conclude.
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Next, we compare two natural trivializations of vector bundles for towers of submanifolds

associated to Fermi coordinates: one for the pair (M,H), another one for (K,H).
Let (E,∇E, hE) be a Hermitian vector bundle of bounded geometry and rank r over (M, gTM).

We fix an orthonormal frame f1, . . . , fr ∈ (Ey0, h
E
y0
). Recall that the frames f̃

M |H
1 , . . . , f̃

M |H
r ;

f̃
K|H
1 , . . . , f̃

K|H
r were defined before (2.25). Let τE be the (unique) function, defined in BM

y0
(R),

with values in End(Cr), such that τE(0) = 0, and

ResK(f̃
M |H
1 , . . . , f̃M |H

r ) = exp(τE) · (f̃K|H
1 , . . . , f̃K|H

r ), (2.32)

where we view ResK(f̃
M |H
1 , . . . , f̃

M |H
r ) and (f̃

K|H
1 , . . . , f̃

K|H
r ) as r × 1 matrices.

Proposition 2.18. In the notations of Proposition 2.15, the following asymptotic holds

τE(ψ
K|H(Z)) = O(|Z|2), τL(ψ

K|H(Z)) = O(|Z|4). (2.33)

Moreover, there is ǫ > 0, such that the derivatives of τE are bounded uniformly on y0 ∈ H , |Z| ≤ ǫ.

Proof. The proof is done by a repetitive use of Propositions 2.14, 2.15, 2.17. By (2.25), we have

(f̃
M |H
1 , . . . , f̃M |H

r ) = exp(ξ
M |H
E ) · (f̃ ′

1
M , . . . , f̃ ′

r
M),

(f̃ ′
1
M , . . . , f̃ ′

r
M) = exp(−ξM |K

E )(f̃
M |K
1 , . . . , f̃M |K

r ),

ResK(f̃
M |K
1 , . . . , f̃M |K

r ) = (f̃ ′
1
K , . . . , f̃ ′

r
K),

(f̃ ′
1
K , . . . , f̃ ′

r
K) = exp(−ξK|H

E )(f̃
K|H
1 , . . . , f̃K|H

r ).

(2.34)

Now, from (2.32) and (2.34), we obtain

exp(τE) = ResK
(

exp(ξ
M |H
E ) · exp(−ξM |K

E )
)

· exp(−ξK|H
E ). (2.35)

From Propositions 2.14, 2.15, 2.17, we deduce the first part of (2.33). Remark the basic identity

AM |K(U)V + AK|H(U)V = AM |H(U)V, for U, V ∈ TH. (2.36)

The second part is now obtained by the same means, one only has to use (2.36) in addition to

previous considerations.

We will now relate the Fermi coordinates for the pairs (M,K) and (M,H). Clearly, there is a

unique diffeomorphism υ : Rn → Rn, υ(0) = 0, so that for any Z ∈ Rn small enough, we have

ψM |K
y0

(υ(Z)) = ψM |H
y0

(Z). (2.37)

Proposition 2.19. The function υ has the following Taylor expansion

υ(Z) = Z +O(|Z|2). (2.38)

Moreover, there is ǫ > 0, such that the derivatives of υ are bounded uniformly on y0 ∈ H , |Z| ≤ ǫ.

Proof. By (2.22) and (2.37), we have

υ(Z) = (hM |K)−1
(

hM |H(Z)
)

. (2.39)

We conclude from Proposition 2.14 and (2.39).
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Our next goal is to compare two trivializations of a vector bundle: one associated to the trivial-

izations in Fermi coordinates for the pair (M,K), another one for (M,H). Let χE be the (unique)

function, defined over BM
y0
(R), with values in End(Cr), such that χE(0) = 0 and

(f̃
M |K
1 , . . . , f̃M |K

r ) = exp(χE) · (f̃M |H
1 , . . . , f̃M |H

r ), (2.40)

where we view (f̃
M |K
1 , . . . , f̃

M |K
r ) and (f̃

M |H
1 , . . . , f̃

M |H
r ) as r × 1 matrices.

Proposition 2.20. In the notations of Proposition 2.15, the following asymptotic holds

χE(ψ
M |H(Z)) = O(|Z|2), χL(ψ

M |H(Z)) = O(|Z|3). (2.41)

Moreover, there is ǫ > 0, such that the derivatives of χE , are bounded uniformly on y0 ∈ H ,

|Z| ≤ ǫ.

Proof. From (2.34), (2.37) and (2.40), we deduce that

exp(χE)(ψ
M |H(Z)) = exp(ξ

M |K
E )

(

ψM |K(υ(Z))
)

· exp(−ξM |H
E )(ψM |H(Z)). (2.42)

The result now follows Propositions 2.15, 2.20 and (2.42).

3 Asymptotics of Toeplitz type operators and kernel calculus

The main goal of this section is to study asymptotics of Schwartz kernels of Toeplitz type operators.

More precisely, in Section 3.1, we consider the model situation, for which an explicit formula for

the Schwartz kernels of Bergman projectors, the extension and restriction operators can be given.

We then study the composition rules for the operators with related kernels. Those results play the

foundational role in this article. In Section 3.2, we recall the asymptotics of Schwartz kernels of

Bergman projectors and the extension operator. In Section 3.3, we study the asymptotic expansion

of basic Toeplitz type operators, in particular, we establish Theorem 1.6. Finally, in Section 3.4,

we establish asymptotic characterization of Toeplitz type operators with exponential decay.

3.1 Model operators on the complex vector space

In this section, we consider the model situation, for which an explicit formula for the Schwartz

kernels of Bergman projectors, the extension and restriction operators can be given. We then use

those explicit formulas to give a description for compositions of operators, the Schwartz kernels

of which can be expressed using the above kernels. This section is motivated in many ways by the

works of Ma-Marinescu [15], [13] and Dai-Liu-Ma [5].

Endow Cn with the standard Riemannian metric and consider a trivialized holomorphic line

bundle L0 on Cn. We endow L0 with the Hermitian metric hL0 , given by

‖1‖hL0 (Z) = exp
(

− π

2
|Z|2

)

, (3.1)

where Z is the natural real coordinate on Cn, and 1 is the trivializing section of L0. An easy

verification shows that (3.1) implies that (1.2) holds in our setting. Recall that [13, §4.1.6] shows
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that the Kodaira Laplacian on C
∞(X,L0), multiplied by 2, which we denote here by L , and view

as an operator on C ∞(X) using the orthonormal trivialization by 1 exp(π
2
|Z|2) of L0, is given by

L =

n
∑

i=1

bib
+
i , (3.2)

where bi, b
+
i are creation and annihilation operators, defined as

bi = −2
∂

∂zi
+ πzi, b+i = 2

∂

∂zi
+ πzi. (3.3)

We verify easily that
[

g(z, z), bj
]

= 2
∂

∂zj
g(z, z). (3.4)

From [13, Theorem 4.1.20], we know that for a multiindex α ∈ Nn, the functions

bα
(

zβ exp(−π
2

n
∑

i=1

|zi|2)
)

, (3.5)

form vector spaces of orthogonal eigenvectors of L (viewed as sections of C ∞(X,L0) using

the above orthonormal trivialization) corresponding to the eigenvalues 4π
∑n

i=1 αi. From this,

cf. [14, Theorem 1.15], cf. [13, (4.1.84)], the Bergman kernel Pn of Cn is given by

Pn(Z,Z
′) = exp

(

− π

2

n
∑

i=1

(

|zi|2 + |z′i|2 − 2ziz
′
i

)

)

, for Z,Z ′ ∈ C
n. (3.6)

In particular, we deduce that

bj,zPn(Z,Z
′) = 2π(zj − z′j)Pn(Z,Z

′). (3.7)

Also, we see easily, cf. [9, (3.28), (3.29)], that Schwartz kernels of the orthogonal Bergman

kernel, P
⊥
n,m, corresponding to the projection onto holomorphic sections orthogonal to the holo-

morphic sections which vanish along Cm, and the L2-extension operator En,m, extending each

element from (kerL )|Cm to an element from kerL with the minimal L2-norm, are given by

P
⊥
n,m(Z,Z

′) = exp
(

− π

2

m
∑

i=1

(

|zi|2 + |z′i|2 − 2ziz
′
i

)

− π

2

n
∑

i=m+1

(

|zi|2 + |z′i|2
)

)

,

En,m(Z,Z
′
Y ) = exp

(

− π

2

m
∑

i=1

(

|zi|2 + |z′i|2 − 2ziz
′
i

)

− π

2

n
∑

i=m+1

|zi|2
)

.

(3.8)

We, finally, remark that the Schwartz kernel of the operator ResCm ◦ Pn is given by

Rn,m(ZY , Z
′) = exp

(

− π

2

m
∑

i=1

(

|zi|2 + |z′i|2 − 2ziz
′
i

)

− π

2

n
∑

i=m+1

|z′i|2
)

. (3.9)

Remark the trivial identity

Rn,m = E
∗
n,m. (3.10)

Now, a lot of calculations in this article will have something to do with compositions of opera-

tors having Schwartz kernels, given by the product of polynomials with the above kernels. For that

reason, the following lemma will be of utmost importance in what follows.
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Lemma 3.1. For any polynomialsA1(Z,Z
′), A2(Z,Z

′), Z,Z ′ ∈ R
2n, there is a polynomialA3 :=

Kn,m[A1, A2], the coefficients of which are polynomials of the coefficients of A1, A2, such that

(A1 · P⊥
n,m) ◦ (A2 · P⊥

n,m) = A3 · P⊥
n,m. (3.11)

Moreover, degA3 ≤ degA1 + degA2. Also, if both polynomials A1, A2 are even or odd (resp.

one is even, another is odd), then the polynomial A3 is even (resp. odd). Similarly, there is a

polynomial A′
3 := K′

n,m[A1, A2] with the same properties as A3, such that

(A1 · Pn) ◦ (A2 · P⊥
n,m) = A′

3 · P⊥
n,m. (3.12)

Also, for any polynomials A(Z,Z ′
Y ), D(ZY , Z

′
Y ), Z ∈ R2n, ZY , Z

′
Y ∈ R2m, there is a polynomial

A′′
3 := KEP

n,m[A,D] with the same properties as A3, such that

(A · En,m) ◦ (D · Pm) = A′′
3 · En,m. (3.13)

For polynomials B(Z,Z ′), C(ZY , Z
′), Z,Z ′ ∈ R2n, ZY ∈ R2m, the following identities hold

(B · Pn) ◦ (A · En,m) = (Kn,n[B,A] ◦ Resm) · En,m,
(B · P⊥

n,m) ◦ (A · En,m) = (Kn,m[B,A] ◦ Resm) · En,m,
(C · Rn,m) ◦ (A · En,m) = (Resm ◦ Kn,m[C,A] ◦Resm) · Pm,m,

(3.14)

Finally, for any polynomialsA4(Z,Z
′
W ), A5(ZW , Z

′
Y ), Z ∈ R2n, Z ′

Y ∈ R2m, ZW , Z
′
W ∈ R2l, there

is a polynomial A′′′
3 := KE

n,m[A4, A5], with the same properties as A3, such that

(A4 · En,l) ◦ (A5 · El,m) = A′′′
3 · En,m. (3.15)

Remark 3.2. The statement (3.11) for n = m is due to Ma-Marinescu [13, Lemma 7.1.1, (7.1.6)].

Proof. We decompose polynomials A1, A2 as follows

A1(Z,Z
′) =

∑

α

Zα
N · Aα1 (ZY , Z ′), A2(Z,Z

′) =
∑

α′

Aα
′

2 (Z,Z ′
Y )Z

′
N
α′

, (3.16)

where α, α′ ∈ N2(n−m) verify |α| ≤ degA1, |α′| ≤ degA2. In [9, (3.36)], we established the first

statement and proved that

Kn,m[A1, A2] =
∑

α

∑

α′

Zα
NZ

′
N
α′Kn,n[A

α
1 , A

α′

2 ]. (3.17)

Along the same lines, we obtained in [9, (3.38)] the second statement and

K′
n,m[A1, A2](Z,Z

′) =
∑

α′

Z ′
N
α′ · Kn,n[A1, A

α′

2 ](Z,Z ′
Y ). (3.18)

To get the third statement, we represent A(Z,Z ′
Y ) :=

∑

Zα
N · Aα(ZY , Z ′

Y ). Then, from (3.6)

and (3.8), the following equation holds

(Aα · En,m) ◦ (D · Pm) = exp
(

− π

2
|ZN |2

)

· (Aα · Pm) ◦ (D · Pm). (3.19)



Complex embeddings and Toeplitz operators 20

By this and (3.11), we clearly have (3.13) for

KEP
n,m[A,D] =

∑

α

Zα
N · Km,m[A

α, D]. (3.20)

Now, we note that an easy verification, based on (3.6), (3.8) and (3.9), shows that

(

(B · Pn) ◦ (A · En,m)
)

(Z,Z ′
Y ) =

(

(B · Pn) ◦ (A · Pn)
)

(Z,Z ′
Y ),

(

(B · P⊥
n,m) ◦ (A · En,m)

)

(Z,Z ′
Y ) =

(

(B · P⊥
n,m) ◦ (A · P⊥

n,m)
)

(Z,Z ′
Y ),

(

(C · Rn,m) ◦ (A · En,m)
)

(ZY , Z
′
Y ) =

(

(C · P⊥
n,m) ◦ (A · P⊥

n,m)
)

(ZY , Z
′
Y ).

(3.21)

This clearly implies (3.14) by (3.11) and (3.12).

It is now only left to prove the fifth statement. For this, for Z = (ZY , ZNW |Y , ZNX|W ),
ZY , Z

′
Y ∈ R2m, ZNW |Y ∈ R2(l−m), ZNX|W ∈ R2(n−l), Z ′

W ∈ R2l, ZW := (ZY , ZNW |Y ), we

decompose the polynomial A4 as follows

A4(Z,Z
′
W ) =

∑

α

Zα
NX|W · Aα4 (ZW , Z ′

W ). (3.22)

An easy verification shows that

(

(Aα4 ·En,l)◦(A5·El,m)
)

(Z,Z ′
Y ) = exp

(

−π
2
|ZNX|W |2

)

·
(

(Aα4 ·Pl)◦(A5·El,m)
)

(ZW , Z
′
Y ). (3.23)

From (3.14), we obtain

KE
n,m[A4, A5] =

∑

α

Zα
N · (Kl,l[A

α
4 , A5] ◦ Resm), (3.24)

which finishes the proof. The statements about the degrees of A3, etc., follow from the validity of

the corresponding statements for Kn,n, proved by Ma-Marinescu in [15] and expressions (3.17),

(3.18), (3.20), (3.22), (3.24).

From the above, we see that to compute the polynomials from Lemma 3.1, it suffices to give

an algorithm for the calculation of Kn,m. Below, we explain how to do this. Directly from the

definitions, we see that Kn,m[1 · P (Z ′), A] = Kn,m[1, P (Z) · A] for any polynomial A. Also, we

trivially have Kn,m[P (Z) ·A(Z,Z ′), A′(Z,Z ′)] = P (Z)Kn,m[A(Z,Z
′), A′(Z,Z ′)] for any polyno-

mials P,A,A′. Hence, it is enough to give an algorithm for the calculation of Kn,m where the first

argument is given by 1. For this, remark that for any i = 1, . . . , n, a, b ∈ N, we have

Kn,m[1, Pi(Z)z
a
i z

b
i ] = Kn,m[1, Pi(Z)] · Kn,m[1, z

a
i z

b
i ], (3.25)

where the polynomial Pi(Z) doesn’t depend on zi and zi. Hence, to understand Kn,m, it suffices to

know how to calculate it for polynomials zai z
b
i . We describe below the general formula.

Using (3.4) and (3.7), we see that for any a, b ∈ N, i ≤ n, we get

Pn ◦ (zai zbi · Pn) = Pn ◦
(

zai ·
( bi
2π

+ z′i
)bPn

)

. (3.26)
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Remark that by (3.5), we have Pn ◦ (bαzβ · Pn) = 0 as long as α 6= 0. Hence, from (3.4), we have

Pn ◦
(

zai · bkiPn
)

=

{

a!2k

(a−k)!z
a−k
i Pn, for a ≥ k,

0, otherwise.
(3.27)

From this, for i ≤ m, we deduce directly the following identity

Kn,m[1, z
a
i z

b
i ] =

∑

l+k=b

1

πk
a!b!

(a− k)!l!k!
za−ki z′i

l. (3.28)

Recall the following famous integral calculation: for z = x+
√
−1y, we have

∫

C

exp(−π|z|2)zazbdxdy = δab
a!

πa
. (3.29)

For m+ 1 ≤ i ≤ n, (3.29) shows that

Kn,m[1, z
a
i z

b
i ] = δab

a!

πa
. (3.30)

Corollary 3.3. Assume that for a polynomial A(Z,Z ′
Y ), Z ∈ R2n, Z ′

Y ∈ R2m, the following

equality holds Pn ◦ (A · En,m) ◦ Pm = A · En,m. Then A is a polynomial in z, z ′Y .

Proof. First of all, our assumption clearly implies that Pn ◦ (A · En,m) = A · En,m. Hence, from

(3.14), we deduce Kn,n[1, A] ◦ Resm = A. This along with (3.28) imply that A is a polynomial

in z and Z ′
Y . Now, again, our assumption implies that (A · En,m) ◦ Pm = A · En,m. Hence

KEP
n,n [A, 1] = A. This, in conjunction with (3.20) and (3.28), implies that A is a polynomial in z

and z′Y , which concludes the proof.

3.2 Schwartz kernels of Bergman projectors and extension operator

The main goal of this section is to recall the results about the asymptotics of Schwartz kernels of

Bergman projectors and the extension operator. We use notations from Section 1 and assume that

the triple (X, Y, gTX) is of bounded geometry. Let us recall first the results about the exponential

decay of those Schwartz kernels.

Theorem 3.4 (Dai-Liu-Ma [5, Theorem 4.18], Ma-Marinescu [17, Theorem 1]). There are c > 0,

p1 ∈ N∗, such that for any k ∈ N, there is C > 0, such that for any p ≥ p1, x1, x2 ∈ X , the

following estimate holds

∣

∣BX
p (x1, x2)

∣

∣

C k ≤ Cpn+
k
2 · exp

(

− c
√
p · dist(x1, x2)

)

, (3.31)

where C k-norm here is interpreted as in Definition 1.3.

Theorem 3.5 ( [9, Theorems 1.5, 1.8] ). There are c > 0, p1 ∈ N∗, such that for any k, l ∈ N,

there is C > 0, such that for any p ≥ p1, x1, x2 ∈ X , y ∈ Y , the following estimates hold

∣

∣EX|Y
p (x1, y)

∣

∣

C k ≤ Cpm+ k
2 exp

(

− c
√
p · dist(x1, y)

)

,
∣

∣BX|Y⊥
p (x1, x2)

∣

∣

C k ≤ Cpn+
k
2 exp

(

− c
√
p · (dist(x1, x2) + dist(x1, Y ) + dist(x2, Y ))

)

.
(3.32)
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Let us now give the first direct application of Theorems 3.4, 3.5. Assume that we start with two

different choices of functions ρ1, ρ2 as in (1.18), and form two different brackets ⟪·⟫1, ⟪·⟫2, as in

(1.19), corresponding to those choices.

Corollary 3.6. There is p1 ∈ N∗, such that for any g ∈ C ∞
b (Y, Symk(NX|Y )∗), k ∈ N, there are

c, C > 0, such that for any p ≥ p1, x ∈ X , y ∈ Y , we have

∣

∣

∣
T
X|Y
⟪g⟫1

(x, y)− T
X|Y
⟪g⟫2

(x, y)
∣

∣

∣

C l
≤ C exp

(

− c
√
p · (1 + dist(x, y))

)

,
∣

∣

∣
T
Y |X
⟪g⟫1

(y, x)− T
Y |X
⟪g⟫2

(y, x)
∣

∣

∣

C l
≤ C exp

(

− c
√
p · (1 + dist(x, y))

)

.
(3.33)

In particular, Definition 1.3 ultimately doesn’t depend on the choice of ρ.

Proof. Since the support of the function ρ1(
|ZN |
r⊥

)− ρ2(
|ZN |
r⊥

) is located away from a neighborhood

of Y , by the boundness of the function uk exp(−u), k ∈ N, u ∈ R+, we deduce from Theorem 3.5

that the following estimate for the Schwartz kernel is satisfied

(

(⟪g⟫1 − ⟪g⟫2) · Rp

)

(x, y) ≤ C · exp
(

− c
√
p · (1 + dist(x, y))

)

, (3.34)

where Rp is E
X|Y
p , BX

p or B
X|Y⊥
p . We conclude by Theorem 3.4, Corollary 2.11 and (3.34).

Theorem 3.5 shows that to understand fully the asymptotics of the Schwartz kernel of the

Bergman projector (resp. orthogonal Bergman projector and the extension operator), it suffices to

do so in a neighborhood of a fixed point on the diagonal of X (resp. Y ), embedded in X × X
(resp. X×X and X×Y ). Let us recall the results in this direction, showing that Schwartz kernels

of our operators are essentially equal, up to a recalling, to Schwartz kernel of the model operators

considered in Section 3.1. Before this, let us fix some notation.

We fix x0 ∈ X and an orthonormal frame (e1, . . . , e2n) of (Tx0X, g
TX
x0

), verifying (1.32). Recall

that geodesic coordinates were defined in (2.20). Define the function κXφ,x0 : B
R2n

0 (rX) → R, by

((φXx0)
∗dvX)(Z) = κXφ,x0dZ1 ∧ · · · ∧ dZ2n. (3.35)

Now, let x0 = y0, where y0 ∈ Y , and (e1, . . . , e2n) be as (2.5). Recall that Fermi coordinates were

defined in (2.5). Define the function κ
X|Y
ψ,y0

: BR2m

0 (rY )×BR2(n−m)

0 (r⊥) → R by

((ψX|Y
y0

)∗dvX)(Z) = κ
X|Y
ψ,y0

dZ1 ∧ · · · ∧ dZ2n. (3.36)

Recall that the function κ
X|Y
N was defined in (1.10). Clearly, for Z = (ZY , ZN) ∈ R2n, ZY ∈ R2m,

we have the following relation between different κ-functions

κ
X|Y
ψ,y0

(Z) = κ
X|Y
N (ψX|Y

y0
(Z)) · κYφ,y0(ZY ). (3.37)

Also, under assumptions (1.11), we have κ
X|Y
ψ,y0

(0) = κYφ,y0(0) = 1.

Recall that the second fundamental form AX|Y ∈ C ∞(Y, T ∗Y ⊗ End(TX|Y )) was defined in

(2.1). Recall that the functions Pn, P⊥
n,m, En,m, were defined in (3.6), (3.8).

We fix an orthonormal frame (f1, . . . , fr) of (Fy0 , h
F
y0
) and define the orthonormal frames

(f̃
X|Y
1 , . . . , f̃

X|Y
r ), (f̃ ′

1
X , . . . , f̃ ′

r
X), of (F, hF ) in a neighborhood of y0, as in Section 2.1.
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Notation. For g ∈ C
∞(X,F ), by an abuse of notation, we write g(φXy0(Z)) ∈ R

r, Z ∈ R
2n,

|Z| ≤ R, for coordinates of g in the frame (f̃ ′
1
X , . . . , f̃ ′

r
X). We identify g(φXy0(Z)) with an element

in Fy0 using the frame (f1, . . . , fr). Similarly, we denote by g(ψ
X|Y
y0 (Z)) ∈ Rr the coordinates

in the frame (f̃
X|Y
1 , . . . , f̃

X|Y
r ) and identify them with an element from Fy0 . Similar notations are

used for sections of F ∗, F ⊗ Lp, (F ⊗ Lp)∗, F ⊠ F ∗, etc.

Theorem 3.7. For any r ∈ N, y0 ∈ Y , there are J
X|Y
r (Z,Z ′) ∈ End(Fy0) polynomials in Z,Z ′ ∈

R2n, with the same parity as r and deg J
X|Y
r ≤ 3r, whose coefficients are polynomials in ω, RTX ,

AX|Y , RF , (dvX/dvgTX )±
1
2n , (dvY /dvgTY )±

1
2n , and their derivatives of order ≤ 2r, all evaluated

at y0, such that for the functions F
X|Y
r := J

X|Y
r · Pn over R2n × R2n, the following holds. There

are ǫ, c > 0, p1 ∈ N∗, such that for any k, l, l′ ∈ N, there exists C > 0, such that for any y0 ∈ Y ,

p ≥ p1, Z,Z
′ ∈ R

2n, |Z|, |Z ′| ≤ ǫ, α, α′ ∈ N
2n, |α|+ |α′| ≤ l, Q1

k,l,l′ := 3(n+ k + l′ + 2) + l:

∣

∣

∣

∣

∂|α|+|α′|

∂Zα∂Z ′α′

(

1

pn
BX
p

(

ψX|Y
y0

(Z), ψX|Y
y0

(Z ′)
)

−
k

∑

r=0

p−
r
2FX|Y

r (
√
pZ,

√
pZ ′)κ

X|Y
ψ (Z)−

1
2κ

X|Y
ψ (Z ′)−

1
2

)
∣

∣

∣

∣

C l′

≤ Cp−
k+1−l

2

(

1 +
√
p|Z|+√

p|Z ′|
)Q1

k,l,l′

exp
(

− c
√
p|Z − Z ′|

)

, (3.38)

where the C l′-norm is taken with respect to y0. Also, the following identity holds

J
X|Y
0 (Z,Z ′) = IdFy0

. (3.39)

Moreover, under the assumption (1.11), we have

J
X|Y
1 (Z,Z ′) = IdFy0

· π
(

g
(

zN , A
X|Y (zY − z′Y )(zY − z′Y )

)

+ g
(

z′N , A
X|Y (zY − z′Y )(zY − z′Y )

)

)

. (3.40)

Proof. For X = Y , the result is due to Dai-Liu-Ma [5] and the calculation of J
X|X
1 is due to

Ma-Marinescu [13, Remark 4.1.26]. The proof of the general case is done in [9, Theorem 5.5] by

relying on the result of [5] and some local calculations.

Theorem 3.8 ( [9, Theorem 1.6]). For any r ∈ N, y0 ∈ Y , there are polynomials J
X|Y,E
r (Z,Z ′

Y ) ∈
End(Fy0) in Z ∈ R

2n, Z ′
Y ∈ R

2m, with the same properties as in Theorem 3.7, such that for

F
X|Y,E
r := J

X|Y,E
r · En,m, the following holds.

There are ǫ, c > 0, p1 ∈ N∗, such that for any k, l, l′ ∈ N, there is C > 0, such that for

any y0 ∈ Y , p ≥ p1, Z = (ZY , ZN), ZY , Z
′
Y ∈ R2m, ZN ∈ R2(n−m), |Z|, |Z ′

Y | ≤ ǫ, α ∈ N2n,

α′ ∈ N
2m, |α|+ |α′| ≤ l, for Q2

k,l,l′ := 6(16(n+ 2)(k + 1) + l′) + 2l, the following bound holds

∣

∣

∣

∣

∂|α|+|α′|

∂Zα∂Z ′
Y
α′

(

1

pm
EX|Y
p

(

ψX|Y
y0

(Z), ψX|Y
y0

(Z ′
Y )
)

−
k

∑

r=0

p−
r
2FX|Y,E

r (
√
pZ,

√
pZ ′

Y )κ
X|Y
ψ (Z)−

1
2κYφ (Z

′
Y )

− 1
2

)
∣

∣

∣

∣

C l′
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≤ Cp−
k+1−l

2

(

1 +
√
p|Z|+√

p|Z ′
Y |
)Q2

k,l,l′

exp
(

− c
√
p
(

|ZY − Z ′
Y |+ |ZN |

)

)

, (3.41)

where the C l′-norm is taken with respect to y0. Also, the following identity holds

J
X|Y,E
0 (Z,Z ′

Y ) = IdFy0
· κX|Y

N (y0)
1
2 . (3.42)

Theorem 3.9 ( [9, Theorem 1.9]). For any r ∈ N, y0 ∈ Y , there are polynomials J
X|Y,⊥
r (Z,Z ′) ∈

End(Fy0), Z,Z
′ ∈ R

2n, with the same properties as in Theorem 3.7, such that for F
X|Y,⊥
r :=

J
X|Y,⊥
r · P⊥

n,m, the following holds.

There are ǫ, c > 0, p1 ∈ N∗, such that for any k, l, l′ ∈ N, there is C > 0, such that for

any y0 ∈ Y , p ≥ p1, Z = (ZY , ZN), Z
′ = (Z ′

Y , Z
′
N), ZY , Z

′
Y ∈ R2m, ZN , Z

′
N ∈ R2(n−m),

|Z|, |Z ′| ≤ ǫ, α, α′ ∈ N2n, |α|+ |α′| ≤ l, for Q3
k,l,l′ := 3(8(n+ 2)(k + 1) + l′) + l, we have

∣

∣

∣

∣

∂|α|+|α′|

∂Zα∂Z ′α′

(

1

pn
BX|Y⊥
p

(

ψX|Y
y0

(Z), ψX|Y
y0

(Z ′)
)

−
k

∑

r=0

p−
r
2FX|Y,⊥

r (
√
pZ,

√
pZ ′)κ

X|Y
ψ (Z)−

1
2κ

X|Y
ψ (Z ′)−

1
2

)
∣

∣

∣

∣

C l′

≤ Cp−
k+1−l

2

(

1 +
√
p|Z|+√

p|Z ′|
)Q3

k,l,l′

exp
(

− c
√
p
(

|ZY − Z ′
Y |+ |ZN |+ |Z ′

N |
)

)

, (3.43)

where the C l′-norm is taken with respect to y0. Also, we have

J
X|Y,⊥
0 (Z,Z ′) = IdFy0

. (3.44)

3.3 Basic Toeplitz type operators and their asymptotics

The main goal of this section is to study asymptotic expansions of basic Toeplitz type operators. In

particular, we prove Theorem 1.6 and give precise formulas for the constants C1, C2 from (1.26).

The following two lemmas will be crucial in what follows.

Lemma 3.10. Let (X, Y, gTX) be of bounded geometry. There is p1 ∈ N, such that for any

f ∈ C ∞
b (Y,End(ι∗F )), g ∈ ⊕∞

k=0C
∞
b (Y, Symk(NX|Y )∗ ⊗ End(ι∗F )), l ∈ N, there is C > 0,

such that for any p ≥ p1, the Schwartz kernels T Yf,p(y1, y2), T
X|Y
⟪g⟫,p(x, y1), T

Y |X
⟪g⟫,p(y1, x); x ∈ X ,

y1, y2 ∈ Y , of T Yf,p, T
X|Y
⟪g⟫,p, T

Y |X
⟪g⟫,p, evaluated with respect to dvY , dvY and dvX respectively, satisfy

∣

∣

∣
T Yf,p(y1, y2)

∣

∣

∣

C l
≤ Cpm+ l

2 · exp
(

− c
√
p · distY (y1, y2)

)

,
∣

∣

∣
T
X|Y
⟪g⟫,p(x, y1)

∣

∣

∣

C l
≤ Cpm+ l

2 · exp
(

− c
√
p · distX(x, y1)

)

,
∣

∣

∣
T
Y |X
⟪g⟫,p(y1, x)

∣

∣

∣

C l
≤ Cpn+

l
2 · exp

(

− c
√
p · distX(x, y1)

)

.

(3.45)

Proof. The first and third parts follow trivially from Theorem 3.4 and Corollary 2.11. The second

part is a consequence of Theorems 3.4, 3.5 and Corollary 2.11.

We fix y0 ∈ Y , a unitary frame (f1, . . . , fr) of (Fy0 , h
F
y0
) and use the notational conventions

introduced before Theorem 3.7.
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Lemma 3.11. For any f ∈ C
∞
b (Y,End(ι∗F )), (resp. g ∈ C

∞
b (Y, Symk(NX|Y )∗ ⊗ End(ι∗F )),

k ∈ N), y0 ∈ Y , r ∈ N, there are JYr,f(ZY , Z
′
Y ) ∈ End(Fy0) (resp. JEr,g(Z,Z

′
Y ) ∈ End(Fy0),

JRr,g(ZY , Z
′) ∈ End(Fy0)), polynomials in ZY , Z

′
Y ∈ R2m, Z,Z ′ ∈ R2n of the same parity as r

(resp. r + k), such that the coefficients of JYr,f (resp. JEr,g, J
R
r,g) lie in C ∞

b (Y,End(ι∗F )), and for

F Y
r,f := JYr,f · Pm (resp. FE

r,g := JEr,g · En,m, FR
r,g := JRr,g · Rn,m), the following holds.

There are ǫ, c > 0, p1 ∈ N
∗, such that for any k, l, l′ ∈ N, there are C,Q > 0, such that for

any y0 ∈ Y , p ≥ p1, Z,Z
′ ∈ R2n, Z = (ZY , ZN), Z

′ = (Z ′
Y , Z

′
N), ZY , Z

′
Y ∈ R2m, |Z|, |Z ′| ≤ ǫ,

α, α′ ∈ N2n, α0, α
′
0 ∈ N2m, |α|+ |α′

0|, |α0|+ |α′|, |α0|+ |α′
0| ≤ l, the following bounds hold

∣

∣

∣

∣

∂|α0|+|α′
0|

∂Zα0
Y ∂Z ′

Y
α′
0

(

1

pm
T Yp,f

(

φYy0(ZY ), φ
Y
y0
(Z ′

Y )
)

−
k

∑

r=0

p−
r
2F Y

r,f(
√
pZY ,

√
pZ ′

Y )κ
Y
φ (ZY )

− 1
2κYφ (Z

′
Y )

− 1
2

)
∣

∣

∣

∣

C l′

≤ Cp−
k+1−l

2

(

1 +
√
p|ZY |+

√
p|Z ′

Y |
)Q

exp(−c√p|ZY − Z ′
Y |), (3.46)

∣

∣

∣

∣

∂|α|+|α′|

∂Zα∂Z ′
Y
α′

(

1

pm
T
X|Y
⟪g⟫,p

(

ψX|Y
y0

(Z), φYy0(Z
′
Y )
)

−
k

∑

r=0

p−
r
2FE

r,g(
√
pZ,

√
pZ ′

Y )κ
X|Y
ψ (Z)−

1
2κYφ (Z

′
Y )

− 1
2

)
∣

∣

∣

∣

C l′

≤ Cp−
k+1−l

2

(

1 +
√
p|Z|+√

p|Z ′
Y |
)Q

exp(−c√p(|ZN |+ |ZY − Z ′
Y |)), (3.47)

∣

∣

∣

∣

∂|α|+|α′|

∂Zα
Y ∂Z

′α′

(

1

pn
T
Y |X
⟪g⟫,p

(

φYy0(ZY ), ψ
X|Y
y0

(Z ′)
)

−
k

∑

r=0

p−
r
2FR

r,g(
√
pZY ,

√
pZ ′)κYφ (ZY )

− 1
2κ

X|Y
ψ (Z ′)−

1
2

)
∣

∣

∣

∣

C l′

≤ Cp−
k+1−l

2

(

1 +
√
p|ZY |+

√
p|Z ′|

)Q

exp(−c√p(|Z ′
N |+ |ZY − Z ′

Y |)), (3.48)

where the C l′-norm is taken with respect to y0.
Moreover, we have J0,f (ZY , Z

′
Y ) = f(y0) and in the notations of (1.19), for gh ∈

C ∞
b (Y, Symk(NX|Y )(1,0)∗⊗End(ι∗F )) (resp. ga ∈ C ∞

b (Y, Symk(NX|Y )(0,1)∗⊗End(ι∗F ))), k ∈ N,

the polynomial JE
0,gh

(Z,Z ′
Y ) (resp. JR0,ga(ZY , Z

′)) depends only on zN (resp. zN ), it has degree k,

and as a section of Symk(NX|Y )(1,0)∗ ⊗ End(ι∗F ) (resp. Symk(NX|Y )(0,1)∗ ⊗ End(ι∗F )) over Y ,

it coincides with gh · κX|Y
N (y0)

1
2 (resp. ga · κX|Y

N (y0)
− 1

2 ) for k ≥ 1 and equal to 0 for k = 0.

Proof. We establish each of the three statements one by one. Remark first that Ma-Marinescu

in [15, Lemma 4.6] established the first part of this result for compact manifolds. We will now

describe why essentially the same proof holds for the first statement of Lemma 3.11 for functions

from C ∞
b (Y,End(ι∗F )) on manifolds of bounded geometry (Y, gTY ). Trivially, we have

T Yf,p(y1, y2) =

∫

Y

BY
p (y1, y3) · f(y3) · BY

p (y3, y2)dvY (y3). (3.49)
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Now, let ǫ > 0 be as in Theorem 3.7. We put ǫ0 := ǫ
2
. Let y0 ∈ Y and y1, y2 ∈ BY

y0
(ǫ0). We

decompose the integral in (3.49) into two parts: the first one over BY
y0
(ǫ), and the second one is

over its complement, which we denote by Q. Clearly, for y3 ∈ Q, we get

dist(y1, y3) + dist(y3, y2) ≥ ǫ. (3.50)

Hence, from Theorem 3.4, Proposition 2.9 and (1.6), we see that the contribution from the integra-

tion over Q is smaller than exp(−c√p(1 + dist(y1, y2))) for some constant c > 0. Consequently,

only the integration over BY
y0
(ǫ) is non-negligible. To evaluate it, we apply Theorem 3.4. We cal-

culate the integral over the pull-back with respect to the exponential map of our differential forms.

We use the notations introduced before Theorem 3.7. After the change of variables Z 7→ √
pZ, an

estimate, similar to the one which bounded the integral over Q, and the first part of Lemma 3.1,

applied for n := m, we see that (3.46) holds for

JYr,f :=
∑

a+b+|α|=r

∑

α

Km,m

[

JY |Y
a ,

∂αf(φYy0(ZY ))

∂Zα
Y

(0) · Z
α
Y

α!
· JY |Y

b

]

, (3.51)

where α runs through the set of multiindices N2m. From (3.39) and (3.51), we deduce the statement

about JY0,f . From (3.51), our bounded geometry assumption, the fact that f ∈ C
∞
b (Y,End(ι∗F ))

and the fact that the coefficients of J
Y |Y
r are polynomials in ω, RTY , RF , (dvY /dvgTY )±

1
2m , and

their derivatives of order ≤ 2r, we deduce that the coefficients of JYr,f lie in C ∞
b (Y,End(ι∗F )).

The statement about their parity follows from Lemma 3.1 and (3.51).

Now, let us establish the second part. The proof is absolutely analogous to the proof of the first

part. One only has to in addition to Theorems 3.4, 3.7 use Theorems 3.5, 3.8, 3.9. Again we use

the notations introduced before Theorem 3.7. We view the section {g}, constructed before (1.19),

as a function with values in End(Fy0). Clearly, for the function {g}, constructed before (1.19),

{g}(ψX|Y
y0 (ZY , ZN)) is polynomial in vertical directions; in other words

{g}
(

ψX|Y
y0

(ZY , ZN)
)

=
∑

β

gβ(φ
Y
y0
(ZY ))

Zβ
N

β!
, (3.52)

where β ∈ N2(n−m) runs through all the multiindices and the sum is finite. From the first and the

second equations of (3.14) and the reasoning, similar to the one before (3.51), we obtain that the

polynomials

JEr,g(Z,Z
′
Y ) :=

∑

α

∑

β

∑

a+b+|α|=r

(

Kn,n

[

JX|Y
a ,

∂αgβ(φ
Y
y0
(ZY ))

∂Zα
Y

(0) · Z
β
N

β!
· Z

α
Y

α!
· JX|Y,E

b

]

−Kn,m

[

JX|Y,⊥
a ,

∂αgβ(φ
Y
y0
(ZY ))

∂Zα
Y

(0) · Z
β
N

β!
· Z

α
Y

α!
· JX|Y,E

b

])

(Z,Z ′
Y ), (3.53)

where α runs through the multiindicesN2m, satisfy the second equation from (3.46). The statement

about the parity of JEr,g follows from (3.53) similarly as it was done in (3.51). The calculation of

JE0,g follows from (3.28), (3.39), (3.42), (3.44) and (3.53).

Now, let us establish the third part. The proof is absolutely analogous to the proof of the first

part. One only has to use Theorems 3.5, 3.9 in addition to Theorems 3.4, 3.7. More precisely, in

the notations (3.52), from (3.11) and (3.12), we obtain that the third equation from (3.46) holds for
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JRr,g(ZY , Z
′) :=

∑

α

∑

β

∑

a+b+|α|=r

(

Kn,n

[

JX|Y
a ,

∂αgβ(φ
Y
y0
(ZY ))

∂Zα
Y

(0) · Z
β
N

β!
· Z

α
Y

α!
· JX|Y

b

]

−K′
n,m

[

JX|Y
a ,

∂αgβ(φ
Y
y0
(ZY ))

∂Zα
Y

(0) · Z
β
N

β!
· Z

α
Y

α!
· JX|Y,⊥

b

])

(ZY , Z
′). (3.54)

The statement about the parity of JRr,g follows from (3.54) similarly as it was done in (3.51). The

calculation of JR0,g follows from (3.28), (3.39), (3.42), (3.44) and (3.54).

From Lemma 3.11, we obtain directly the following corollary.

Corollary 3.12. Assume that for f1, f2 ∈ C ∞
b (Y,End(ι∗F )), gh1 , g

h
2 ∈

⊕∞
k=1C

∞
b (Y, Symk(NX|Y )(1,0)∗⊗End(ι∗F )), ga1 , g

a
2 ∈ ⊕∞

k=1C
∞
b (Y, Symk(NX|Y )(0,1)∗⊗End(ι∗F )),

there are C > 0, p1 ∈ N∗, such that for any p ≥ p1, in the notations from Lemma 3.10,

∣

∣

∣
T Yf1,p(y1, y2)− T Yf2,p(y1, y2)

∣

∣

∣
≤ Cpm− 1

2 ,
∣

∣

∣
T
X|Y
⟪gh1 ⟫,p

(x, y1)− T
X|Y
⟪gh2 ⟫,p

(x, y1)
∣

∣

∣
≤ Cpm− 1

2 ,
∣

∣

∣
T
Y |X
⟪ga1⟫,p

(y1, x)− T
Y |X
⟪ga2⟫,p

(y1, x)
∣

∣

∣
≤ Cpn−

1
2 ,

(3.55)

for any x ∈ X , y1, y2 ∈ Y . Then we have f1 = f2, g
h
1 = gh2 , ga1 = ga2 . In particular, the notation

[·]i from Definition 1.3 is well-defined.

Proof. It follows directly from (3.46), (3.47), (3.48) and the precise descriptions of JY0,fi , J
E
0,ghi

,

JR0,gai for i = 1, 2, given in the end of Lemma 3.11.

Let us now describe the proof of Theorem 1.6. The idea of the proof is simple: we need to

verify that the first terms of the asymptotic expansions of the Toeplitz operators coincide with the

first terms of the asymptotic expansions of the corresponding operators (1.23), (1.24) and that the

Schwartz kernels of all the operators have exponential decay.

We conserve the notation from Section 1. We fix arbitrary g ∈
⊕∞
k=0C

∞
b (Y, Symk(NX|Y )∗ ⊗ End(ι∗F )), gh ∈ ⊕∞

k=1C
∞
b (Y, Symk(NX|Y )(1,0)∗ ⊗ End(ι∗F )),

ga ∈ ⊕∞
k=1C

∞
b (Y, Symk(NX|Y )(0,1)∗ ⊗ End(ι∗F )). For x ∈ X , y ∈ Y , let M

X|Y
g,p (x, y) (resp.

M
Y |X,†
g,p (y, x)) be the Schwartz kernel of M

X|Y
g,p (resp. M

Y |X,†
g,p ), evaluated with respect to dvY

(resp. dvX).

Lemma 3.13. There are c, C > 0, p1 ∈ N∗, such that for any p ≥ p1, x ∈ X , y ∈ Y , the following

estimates hold
∣

∣MX|Y
g,p (x, y)

∣

∣ ≤ Cpm exp
(

− c
√
p · dist(x, y)

)

,
∣

∣MY |X,†
g,p (y, x)

∣

∣ ≤ Cpn exp
(

− c
√
p · dist(x, y)

)

,
(3.56)

Proof. It follows trivially from Theorem 3.4, (1.23) and the fact that the function uk exp(−u) is

bounded for u ∈ R+ for any k ∈ N.

Proof of Theorem 1.6. We consider the Schwartz kernelM
X|Y
g,p (x, y) (resp. M

Y |X,†
g,0,p (y, x)) ofM

X|Y
g,p ,

(resp. M
Y |X,†
g,p , viewed as an operator acting on the sections with support in a r⊥-tubular neigh-

borhood of Y ) evaluated with respect to the volume form dvY (resp. dvY ∧ dvNX|Y ). We use the
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notational convention introduced before Theorem 3.7. From Theorem 3.7 and (1.23), (3.6), (3.8),

we conclude that there are ǫ, c, C,Q > 0, p1 ∈ N∗, such that for any y0 ∈ Y , p ≥ p1, Z,Z
′ ∈ R2n,

Z = (ZY , ZN), Z
′ = (Z ′

Y , Z
′
N), |Z|, |Z ′| ≤ ǫ, ZY , Z

′
Y ∈ R2m, the following bounds hold

∣

∣

∣

∣

1

pm
MX|Y

g,p

(

ψX|Y
y0

(Z), φYy0(Z
′
Y )
)

− {g}(y0,
√
pZN) · En,m(

√
pZ,

√
pZ ′

Y )κ
Y
φ (ZY )

− 1
2κYφ (Z

′
Y )

− 1
2

∣

∣

∣

∣

≤ Cp−
1
2

(

1 +
√
p|Z|+√

p|Z ′
Y |
)Q

exp
(

− c
√
p
(

|ZY − Z ′
Y |+ |ZN |

)

)

, (3.57)

∣

∣

∣

∣

1

pn
M

Y |X,†
g,0,p

(

φYy0(ZY ), ψ
X|Y
y0

(Z ′)
)

− {g}(y0,
√
pZ ′

N) ·Rn,m(
√
pZY ,

√
pZ ′)κYφ (ZY )

− 1
2κYφ (Z

′
Y )

− 1
2

∣

∣

∣

∣

≤ Cp−
1
2

(

1 +
√
p|ZY |+

√
p|Z ′|

)Q

exp
(

− c
√
p
(

|ZY − Z ′
Y |+ |Z ′

N |
)

)

. (3.58)

We denote now by M
Y |X,†
g,p (y, x) the Schwartz kernel of M

Y |X,†
g,p , evaluated with respect to dvX .

From Remark 2.6b), (3.37), (3.57) and (3.58), for Q0 := max{Q, deg g, deg gh, deg ga}, we then

obtain that in the same notations (but, probably, for a different choice of C), we have

∣

∣

∣

∣

1

pm
MX|Y

g,p

(

ψX|Y
y0

(Z), φYy0(Z
′
Y )
)

− κ
X|Y
N (y0)

1
2 · {g}(y0,

√
pZN) · En,m(

√
pZ,

√
pZ ′

Y )κ
X|Y
ψ (Z)−

1
2κYφ (Z

′
Y )

− 1
2

∣

∣

∣

∣

≤ Cp−
1
2

(

1 +
√
p|Z|+√

p|Z ′
Y |
)Q0

exp
(

− c
√
p
(

|ZY − Z ′
Y |+ |ZN |

)

)

, (3.59)

∣

∣

∣

∣

1

pn
MY |X,†

g,p

(

φYy0(ZY ), ψ
X|Y
y0

(Z ′)
)

− κ
X|Y
N (y0)

− 1
2 · {g}(y0,

√
pZ ′

N) · Rn,m(
√
pZY ,

√
pZ ′)κYφ (ZY )

− 1
2κ

X|Y
ψ (Z ′)−

1
2

∣

∣

∣

∣

≤ Cp−
1
2

(

1 +
√
p|ZY |+

√
p|Z ′|

)Q0

exp
(

− c
√
p
(

|ZY − Z ′
Y |+ |Z ′

N |
)

)

. (3.60)

By comparing (3.59) with the expansions from Lemma 3.11, there is Q1 ≥ 0, such that

∣

∣

∣

∣

M
X|Y
gh,p

(

ψX|Y
y0

(Z), φYy0(Z
′
Y )
)

− T
X|Y
⟪gh⟫,p

(

ψX|Y
y0

(Z), φYy0(Z
′
Y )
)

∣

∣

∣

∣

≤ Cpm− 1
2

(

1 +
√
p|Z|+√

p|Z ′
Y |
)Q1

exp
(

− c
√
p
(

|ZY − Z ′
Y |+ |ZN |

)

)

, (3.61)

∣

∣

∣

∣

M
Y |X,†
ga,p

(

φYy0(ZY ), ψ
X|Y
y0

(Z ′)
)

− T
Y |X
⟪ga⟫,p(φ

Y
y0
(ZY ), ψ

X|Y
y0

(Z ′)
)

∣

∣

∣

∣

≤ Cpn−
1
2

(

1 +
√
p|ZY |+

√
p|Z ′|

)Q1

exp
(

− c
√
p
(

|ZY − Z ′
Y |+ |Z ′

N |
)

)

. (3.62)

From Proposition 2.12, Lemma 3.13, (3.61) and (3.62), we finally deduce Theorem 1.6.

Let us now briefly describe how to calculate the asymptotics of the norms of operators M
X|Y
g,p

and M
Y |X,†
g,p . For this, the following lemma will be of crucial importance.
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Lemma 3.14. Let f ∈ C
∞
b (X,End(F )) be non-zero. Then the following asymptotics holds

‖TXf,p‖ ∼ sup
x∈X

‖f(x)‖. (3.63)

Moreover, we have
∥

∥TXf,p
∥

∥ ≤ sup
x∈X

‖f(x)‖, (3.64)

and if the above supremum is achieved in X , then there is C > 0, such that for p big enough

sup
x∈X

‖f(x)‖ − C√
p
≤

∥

∥TXf,p
∥

∥. (3.65)

Proof. Recall that for compact manifolds X , Bordemann-Meinrenken-Schlichenmaier [3, The-

orem 4.1] (for (F, hF ) trivial) and Ma-Marinescu [15, Theorem 3.19, (3.91)] (for any (F, hF ))
established (3.64) and (3.65). Essentially the same proof works in our more general situation. The

details are given in the end of the proof of [9, Theorem 1.1].

Now, let us introduce some further notations. We fix y0 ∈ Y and an orthogonal basis

w1, . . . , wn−m of (N
X|Y
y0 )(1,0), verifying ‖wi‖ = 1√

2
, i = 1, . . . , n − m. For example, take

wj = ∂
∂zj+m

, j = 1, . . . , n − m, where zi are the complex coordinates induced by Fermi coor-

dinates at y0. For any i, j ∈ N, we define the operator

Λω,= : Symi((NX|Y )(1,0)∗)⊗ Symj((NX|Y )(0,1)∗) → C, (3.66)

for multiindices α, β ∈ Nn−m, as follows

Λω,=
[

wα ⊗ wβ
]

=

{

1
π|β|β!, if α = β,

0, otherwise.
(3.67)

Clearly, this operator does not depend on the choice of the basis w1, . . . , wn−m. By linearity, we

extend Λω,=[·] to Symi((NX|Y )∗)⊗ End(ι∗F )⊗ C.

Proposition 3.15. The constants C1, C2 > 0 from (1.26) are given by

C1 = sup
y∈Y

(

κ
X|Y
N (y)

1
2 ·

∥

∥Λω,=
[

g∗y ⊗ gy
]
∥

∥

1
2

)

,

C2 = sup
y∈Y

(

κ
X|Y
N (y)−

1
2 ·

∥

∥Λω,=
[

gy ⊗ g∗y
]
∥

∥

1
2

)

.
(3.68)

Proof. The main idea of the proof is to reduce the calculation of the norms from (1.26) to the

calculation of the norms of some Toeplitz operators.

An easy calculation using (1.10) shows that for any f ∈ L2(Y, ι∗(Lp ⊗ F )), we have

∥

∥MX|Y
g,p f

∥

∥

L2(dvX )
=

∥

∥hg,p(y) · BY
p f

∥

∥

L2(dvY )
, (3.69)

where the section hg,p ∈ C ∞(Y,End(ι∗F )) satisfies
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hg,p(y)
2 :=

∫

R2(n−m)

κ
X|Y
N (y,

√
pZN) · exp(−pπ|ZN |2)·

· {g}(y,√pZN)∗ · {g}(y,
√
pZN) · ρ

( |ZN |
r⊥

)2

dZ2m+1 ∧ · · · ∧ dZ2n. (3.70)

By an easy calculation using (3.29), there is c > 0, such that, as p→ ∞, we have

hg,p(y)
2 =

κ
X|Y
N (y) · Λω,=[g(y)∗ ⊗ g(y)]

pn−m
+O

( 1

pn−m+ 1
2

)

. (3.71)

Now, let h ∈ C
∞(Y,End(ι∗F )) verifies h(y)2 = κ

X|Y
N (y) · Λω,=[g(y)∗ ⊗ g(y)]. Clearly,

bounded geometry condition and assumption g ∈ ⊕∞
k=0C

∞
b (Y, Symk(NX|Y )∗ ⊗ End(ι∗F )) im-

ply that h(y) ∈ C ∞
b (Y,End(ι∗F )). Trivially, Toeplitz operator T Yh,p satisfies

〈

T Yh,pf, f
〉

L2(dvY )
=

∥

∥h · BY
p f

∥

∥

L2(dvY )
. (3.72)

Thus, by (3.69), (3.71) and (3.72), we have

∥

∥MX|Y
g,p

∥

∥ =
1

p
n−m

2

∥

∥T Yh,p
∥

∥+O
( 1

p
n−m+1

2

)

. (3.73)

We deduce the first part of Proposition 3.15 by Lemma 3.14 and (3.73).

Now, to get the second part, let us first remark that the following formula holds

(MY |X,†
g,p )∗ = (κ

X|Y
N )−1 ·MX|Y

g∗,p . (3.74)

The proof now proceeds in the same way as the proof for the first part.

3.4 Asymptotic criteria for Toeplitz type operators

As we approach the study of Toeplitz operators with exponential decay through the asymptotic ex-

pansions of their Schwartz kernels, it is fundamental to find characterizations of the latter operators

in terms of the former asymptotic expansions. This is the main goal of this section.

To state and prove those characterizations in the generality we need, we will introduce a notion

of Toeplitz operators, which is weaker than the one from Definition 1.3.

Definition 3.16. A sequence of operators T Yp , (resp. T
Y |X
p , T

X|Y
p ), p ∈ N, as in Definition 1.3 is

called a Toeplitz operator with weak exponential decay (resp. of type Y |X , X|Y ) with respect to

Z if there is a sequence fi (resp. ghi , gai ), i ∈ N, as in Definition 1.3, such that the estimate (1.20)

holds, where on the right-hand side instead of distY (y1, y2) (resp. distX(x, y1), distX(y1, x)) we

put distZ(y1, y2) (resp. distZ(x, y1), distZ(y1, x)) for some Riemannian manifold (Z, gTZ) and

an embedding ι′ : X → Z, such that (ι′)∗gTZ = gTX , and such that the triple (Z,X, gTZ) is of

bounded geometry. To shorten, we sometimes omit the reference to Z. The coefficients of the

asymptotic expansions will still be denoted by [T Yp ]i, [T
Y |X
p ]i, [T

X|Y
p ]i, i ∈ N.

Remark 3.17. a) The analogue of Remark 1.4a) holds for this weaker notion of Toeplitz operators

due to Propositions 2.9, 2.12.

b) From Proposition 2.7, we conclude that if ι′ is quasi-isometry, the notions of Toeplitz op-

erators with weak exponential decay of types Y |X , X|Y with respect to Z coincide with the

corresponding non-weak notions.
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Theorem 3.18. Let (Y, gTY ) be of bounded geometry. Then a family of linear operators T Yp ∈
End(L2(Y, ι∗(Lp ⊗ F ))), p ∈ N, forms a Toeplitz operator with (resp. weak) exponential decay if

and only if the following conditions hold

1. For any p ∈ N, T Yp = BY
p ◦ T Yp ◦BY

p .

2. There is p1 ∈ N, such that for any l ∈ N, there is C > 0, such that for any p ≥ p1, the

Schwartz kernel T Yp (y1, y2); y1, y2 ∈ Y , of T Yp , evaluated with respect to dvY , satisfies

∣

∣

∣
T Yp (y1, y2)

∣

∣

∣

C l
≤ Cpm+ l

2 · exp
(

− c
√
p · distY (y1, y2)

)

, (3.75)

(

resp.

∣

∣

∣
T Yp (y1, y2)

∣

∣

∣

C l
≤ Cpm+ l

2 · exp
(

− c
√
p · distZ(y1, y2)

)

)

, (3.76)

where in the last equation we used the notations from Definition 3.16.

3. For any y0 ∈ Y , r ∈ N, there are IYr (ZY , Z
′
Y ) ∈ End(Fy0) polynomials in ZY , Z

′
Y ∈ R2m

of the same parity as r, such that the coefficients of IYr lie in C ∞
b (Y,End(ι∗F )), and for

Fr := IYr · Pm, the following holds. There are ǫ, c > 0, p1 ∈ N
∗, such that for any

k, l, l′ ∈ N, there are C,Q > 0, such that for any y0 ∈ Y , p ≥ p1, ZY , Z
′
Y ∈ R2m,

|ZY |, |Z ′
Y | ≤ ǫ, α, α′ ∈ N2m, |α|+ |α′| ≤ l, the following bound holds

∣

∣

∣

∣

∂|α|+|α′|

∂Zα
Y ∂Z

′
Y
α′

(

1

pm
T Yp

(

φYy0(ZY ), φ
Y
y0
(Z ′

Y )
)

−
k

∑

r=0

p−
r
2Fr(

√
pZY ,

√
pZ ′

Y )κ
Y
φ (ZY )

− 1
2κYφ (Z

′
Y )

− 1
2

)
∣

∣

∣

∣

C l′

≤ Cp−
k+1−l

2

(

1 +
√
p|ZY |+

√
p|Z ′

Y |
)Q

exp(−c√p|ZY − Z ′
Y |), (3.77)

where the C
l′-norm is taken with respect to y0.

Moreover, (3.77) is related to the expansion from Definition 1.3 by IY0 (0, 0) = [T Yp ]0.

Proof. The proof for Toeplitz operators with weak exponential decay is analogous to the proof for

Toeplitz operators with exponential decay, so we only concentrate on the proof of the former one.

First of all, let us assume that the sequence of operators T Yp , p ∈ N, forms a Toeplitz operator

with exponential decay. Then the first condition of Theorem 3.18 holds by definition. The second

holds due to Lemma 3.10. The third holds due to Lemma 3.11. The identity IY0 (0, 0) = [T Yp ]0
follows from Lemma 3.11. Overall, we obtain one direction of Theorem 3.18.

Let us now prove the opposite direction. Our proof is based on [14, Theorem 4.9], where

Ma-Marinescu proved the analogous theorem for compact manifolds and Toeplitz operators in

the sense of [13, §7], see Remark 1.4a). The first step of their proof shows that the polynomial

IY0 (ZY , Z
′
Y ) from Theorem 3.18 is constant, and hence equal to IY0 (0, 0). Their argument (which

doesn’t use the assumption on parity of IYr (ZY , Z
′
Y ), r ∈ N) adapts line by line in our non-compact

setting, except that the estimate [14, (4.47)] has to be replaced by Corollary 2.10.

Then Ma and Marinescu define a section f0 ∈ C ∞(Y,End(ι∗F )) as f0(y0) := IY0 (0, 0). Our

assumption on the coefficients of IYr implies that f0 ∈ C ∞
b (Y,End(ι∗F )). From Lemma 3.11, most
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notably the fact that IY0,f0(ZY , Z
′
Y ) = f0(y0), the fact that IY0 (ZY , Z

′
Y ) is constant and the choice

of f0, we see that all the assumptions of Theorem 3.18 are satisfied for the sequence of operators√
p · (T Yp − T Yf0,p), p ∈ N (except for the parity of IYr , which is now opposite to r).

By repeating this argument for
√
p · (T Yp − T Yf0,p) instead of T Yp , we conclude that the first

polynomial in Taylor-type expansion of
√
p · (T Yp − T Yf0,p), as in (3.77), is constant. It is, however,

of odd parity due to the parenthesized remark above. Hence, the first coefficient is equal to 0.

Due to this, we see that all the assumptions of Theorem 3.18 (now, even for the parity of IYr ) are

satisfied for the sequence of operators p · (T Yp − T Yf0,p), p ∈ N. In particular, the first equation of

(1.20) holds for k = 1 by (3.75), applied for p · (T Yp − T Yf0,p).
Now, to deduce the first equation of (1.20) for k ≥ 2, we need to repeat the same procedure

for the sequence of operators p · (T Yp − T Yf0,p), p ∈ N. By induction, we get a sequence fi ∈
C ∞
b (Y,End(ι∗F )), i ∈ N, which satisfies the first equation of (1.20) for any k ∈ N.

We will now describe the analogue of Theorem 3.18 for Toeplitz operators with exponential

decay of type X|Y .

Theorem 3.19. Let (X, Y, gTX) be a triple of bounded geometry. Then a family T
X|Y
p :

L2(Y, ι∗(Lp ⊗ F )) → L2(X,Lp ⊗ F ), p ∈ N, of linear operators forms a Toeplitz operator with

(resp. weak) exponential decay of type X|Y if and only if the following conditions are satisfied:

1. For any p ∈ N, T
X|Y
p = (BX

p − B
X|Y⊥
p ) ◦ TX|Y

p ◦BY
p .

2. There is p1 ∈ N∗, such that for any l ∈ N, there is C > 0, such that for any p ≥ p1, the

Schwartz kernel T
X|Y
p (x, y); x ∈ X , y ∈ Y , of T

X|Y
p , evaluated with respect to dvY , satisfies

∣

∣

∣
TX|Y
p (x, y)

∣

∣

∣

C l
≤ Cpm+ l

2 · exp
(

− c
√
p · dist(x, y)

)

, (3.78)

(

resp.

∣

∣

∣
TX|Y
p (x, y)

∣

∣

∣

C l
≤ Cpm+ l

2 · exp
(

− c
√
p · distZ(x, y)

)

)

, (3.79)

where in the last equation we used notations from Definition 3.16.

3. For any y0 ∈ Y , r ∈ N, there are IEr (Z,Z
′
Y ) ∈ End(Fy0) polynomials in Z ∈ R2n, Z ′

Y ∈
R2m of the same parity as r, such that the coefficients of IEr lie in C ∞

b (Y,End(ι∗F )), and

for FE
r := IEr · En,m, the following holds. There are ǫ, c > 0, p1 ∈ N

∗, such that for any

k, l, l′ ∈ N, there are C,Q > 0, such that for any y0 ∈ Y , p ≥ p1, Z ∈ R2n, Z ′
Y ∈ R2m,

|Z|, |Z ′
Y | ≤ ǫ, α ∈ N2n, α′ ∈ N2m, |α|+ |α′| ≤ l, we have

∣

∣

∣

∣

∂|α|+|α′|

∂Zα∂Z ′
Y
α′

(

1

pm
TX|Y
p

(

ψX|Y
y0

(Z), φYy0(Z
′
Y )
)

−
k

∑

r=0

p−
r
2FE

r (
√
pZ,

√
pZ ′

Y )κ
X|Y
ψ (Z)−

1
2κYφ (Z

′
Y )

− 1
2

)
∣

∣

∣

∣

C l′

≤ Cp−
k+1−l

2

(

1 +
√
p|Z|+√

p|Z ′
Y |
)Q

exp(−c√p(|ZN |+ |ZY − Z ′
Y |)). (3.80)

Moreover, in the notations of (1.19), for any y0 ∈ Y , the polynomial IE0 (Z,Z
′
Y ) depends only on

zN , and, as a section of ⊕∞
k=1Sym

k(NX|Y )(1,0)∗ ⊗ End(ι∗F ) over Y , it coincides with [T
X|Y
p ]0 ·

κ
X|Y
N (y0)

1
2 .
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Proof. As the proof for the weak version of Toeplitz operators is completely analogous to the proof

of non-weak version, we only concentrate on the former one.

First of all, let us assume that the sequence of operators T
X|Y
p , p ∈ N, forms a Toeplitz operator

with exponential decay of type X|Y . Then the first condition of Theorem 3.19 holds by definition.

The second holds due to Lemma 3.10. The third holds due to Lemma 3.11. The relation between

IE0 and [T
X|Y
p ]0 follows from Lemma 3.11. Overall, we obtain one direction of Theorem 3.19.

Let us now prove the opposite direction. From the first condition of Theorem 3.19 and Corol-

lary 3.3, we first deduce that in the notations of (3.80), IE0 (Z,Z
′
Y ) is a polynomial in z, z′Y . Let us

show that it only depends on zN .

Consider first the operator T Yp := ResY ◦ TX|Y
p . Of course T Yp = 0 due to our first assumption

on T
X|Y
p . From Lemma 3.11, we obtain as a consequence that IE0 (ZY , Z

′
Y ) = 0.

Now, let U be a smooth vector field, such that U |Y ∈ NX|Y , U(y0) =
∂
∂zj

, j = m + 1, . . . , n,

where z1, . . . , zn are the complex coordinates associated to Fermi coordinates. We consider the

sequence of operators T Yp,1 := 1√
p
ResY ◦ BX

p ◦ ∇UT
X|Y
p . This sequence of operators is well-

defined due to (1.7). It follows from (1.7) that T Yp,1, p ∈ N∗, satisfies the first condition from

Theorem 3.18. The second condition associated to the weak notion also holds for Z := X in

the notations of Definition 3.16 (remark that the strong version holds only under additional quasi-

isometry assumption, see Proposition 2.7. This technical caveat is one of the reasons why we need

to consider weak version of Toeplitz type operators).

An easy verification using (3.12) shows that T Yp,1 satisfies the third assumption of Theo-

rem 3.18 for IY0 (ZY , Z
′
Y ) := ( ∂

∂zj
IE0 )(ZY , Z

′
Y ). Hence, by the results of Theorem 3.18 and

its proof, we conclude that the sequence of operators T Yp,1, p ∈ N, forms a Toeplitz opera-

tor with weak exponential decay associated to X , and ( ∂
∂zj
IE0 )(ZY , Z

′
Y ) a constant. We con-

struct g′1 ∈ C ∞
b (Y, (NX|Y )(1,0)∗ ⊗ End(ι∗F )), so that for any n ∈ (N

X|Y
y0 )(1,0), we have

g′1 · n =
∑n

j=m+1(
∂
∂zj
IE0 )(0, 0) · nj , where nj are the coordinates of n in the basis ∂

∂zj
. We define

T
X|Y
p,1 := T

X|Y
p − (BX

p −B
X|Y⊥
p ) ◦ (⟪g′1⟫ · E

X|Y
p ). By Lemma 3.11, (3.80) and the remark after it,

we deduce that the asymptotic expansion (3.77) holds for T
X|Y
p := T

X|Y
p,1 and IE0 := P2I

E
0 , where

Pi, i ∈ N, is the projection onto the vector space of polynomials of degree ≥ i.
We then repeat the procedure for the pair of smooth vector fields U , V , verifying similar as-

sumptions as above, and the sequence of operators T Yp,2 :=
1
p
ResY ◦BX

p ◦∇U∇V T
X|Y
p,1 to construct

g′2 ∈ C ∞
b (Y, Sym2(NX|Y )(1,0)∗ ⊗ End(ι∗F )). Then, as before, we form the sequence of operators

T
X|Y
p,2 := T

X|Y
p,1 −(BX

p −BX|Y⊥
p )◦(⟪g′2⟫·E

X|Y
p ). By continuing in the same fashion, we construct the

sequence of elements g′k ∈ C ∞
b (Y, Symk(NX|Y )(1,0)∗ ⊗ End(ι∗F )), k ∈ N∗, and operators T

X|Y
p,k ,

k ∈ N, such that the asymptotic expansion (3.77) holds for T
X|Y
p := T

X|Y
p,k and IE0 := Pk+1I

E
0 .

Of course, since IE0 (Z,Z
′
Y ) is a polynomial, only a finite number of g′k, k ∈ N∗, is non-zero. We

put g0 :=
∑∞

i=1 g
′
i. Clearly, g0 has the same parity as IE0 . By the above, we see that the asymptotic

expansion (3.80) holds for T
X|Y
p := T

X|Y
p − (BX

p − B
X|Y⊥
p ) ◦ (⟪g0⟫ · EX|Y

p ) and IE0 := 0. Hence,

the same asymptotic expansion (3.80) holds for
√
p
(

T
X|Y
p − (BX

p −B
X|Y⊥
p ) ◦ (⟪g0⟫ · EX|Y

p )
)

. We

repeat the same procedure for the new sequence of operators and construct an element g1. Clearly,

by the assumptions on the parity of IEr , the parity of g1 is different from g0. By induction, we get a

sequence of elements gi, i ∈ N, which satisfy the second equation from (1.20), and the parities of

which are as we need.
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We are finally ready to treat the last type of Toeplitz operators with exponential decay.

Theorem 3.20. A family T
Y |X
p : L2(X,Lp ⊗ F ) → L2(Y, ι∗(Lp ⊗ F )), p ∈ N, of linear operators

forms a Toeplitz operator with exponential decay of type Y |X if and only if the following three

conditions are satisfied:

1. For any p ∈ N, T
Y |X
p = BY

p ◦ T Y |X
p ◦ (BX

p − B
X|Y⊥
p ).

2. There is p1 ∈ N∗, such that for any l ∈ N, there is C > 0, such that for any p ≥ p1, the

Schwartz kernel T
Y |X
p (y, x); x ∈ X , y ∈ Y , of T

Y |X
p , evaluated with respect to dvX , satisfies

∣

∣

∣
T Y |X
p (y, x)

∣

∣

∣

C l
≤ Cpn+

l
2 · exp

(

− c
√
p · dist(x, y)

)

, (3.81)

(

resp.

∣

∣

∣
T Y |X
p (y, x)

∣

∣

∣

C l
≤ Cpn+

l
2 · exp

(

− c
√
p · distZ(x, y)

)

)

, (3.82)

where in the last equation we used the notations from Definition 3.16.

3. For any y0 ∈ Y , r ∈ N, there are IRr (ZY , Z
′) ∈ End(Fy0) polynomials in ZY ∈ R

2m,

Z ′ ∈ R2n of the same parity as r, such that the coefficients of IRr lie in C ∞
b (Y,End(ι∗F )),

and for FR
r := IRr ·Rn,m, the following holds. There are ǫ, c > 0, p1 ∈ N∗, such that for any

k, l, l′ ∈ N, there are C,Q > 0, such that for any y0 ∈ Y , p ≥ p1, ZY ∈ R2m, Z ′ ∈ R2n,

|ZY |, |Z ′| ≤ ǫ, α ∈ N2m, α′ ∈ N2n, |α|+ |α′| ≤ l, we have

∣

∣

∣

∣

∂|α|+|α′|

∂Zα
Y ∂Z

′α′

(

1

pn
T Y |X
p

(

φYy0(ZY ), ψ
X|Y
y0

(Z ′)
)

−
k

∑

r=0

p−
r
2FR

r (
√
pZY ,

√
pZ ′)κYφ (ZY )

− 1
2κ

X|Y
ψ (Z ′)−

1
2

)
∣

∣

∣

∣

C l′

≤ Cp−
k+1−l

2

(

1 +
√
p|ZY |+

√
p|Z ′|

)Q

exp(−c√p(|Z ′
N |+ |ZY − Z ′

Y |)). (3.83)

Moreover, in the notations of (1.19) and (3.80), the polynomial IR0 (ZY , Z
′) depends only on

z′N , and as a section of ⊕∞
k=1Sym

k(NX|Y )(0,1)∗ ⊗ End(ι∗F ) over Y , it coincides with [T
Y |X
p ]0 ·

κ
X|Y
N (y0)

− 1
2 .

Clearly, Lemmas 3.10, 3.11 imply the first implication of Theorem 3.20. The proof of the

second implication will be given in Section 4.2, where we study adjoints of Toeplitz type operators.

4 Toeplitz type operators: algebraic properties and examples

The main goal of this section is to study algebraic properties of the set of Toeplitz type operators

and to construct some examples of those operators. More precisely, in Section 4.1, we show that

the set of Toeplitz type operators is closed under taking restrictions, extensions and some products.

In Section 4.2, we prove the analogous statement for the adjoints of Toeplitz type operators. To do

this and out of independent interest, we introduce a sequence of operators, so-called multiplicative

defect, which plays a crucial role in our approach to the main statements of this article. We also

prove that the multiplicative defect is itself a Toeplitz type operator with weak exponential decay.

Finally, in Section 4.3, we provide several examples of Toeplitz type operators.
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4.1 Products, extensions and restrictions of Toeplitz type operators

The main goal of this section is to show that the set of Toeplitz type operators with (weak) expo-

nential decay is closed under taking restrictions, extensions and some products.

To describe our main result, we fix some notations first. We have a natural isomoprhism

NX|Y → ι∗1N
X|W ⊕NW |Y . (4.1)

We extend the induced projection onto the NW |Y component to an operator on Symk(NX|Y )(1,0)∗,

and denote it by an abuse of notation P
W |Y
N . Recall that Λω,=[·] was defined in (3.66).

For k, k′ ∈ N∗, we fix g1 ∈ C ∞
b (Y, Symk(NX|Y )(1,0)∗ ⊗ End(ι∗F )), g′1 ∈

C ∞
b (Y, Symk′(NX|Y )(0,1)∗ ⊗ End(ι∗F )), g2 ∈ C ∞

b (Y, Symk(NW |Y )(1,0)∗ ⊗ End(ι∗1F )), g3 ∈
C ∞
b (W, Symk′(NX|W )(1,0)∗ ⊗ End(ι∗2F )). The main result of this section goes as follows.

Theorem 4.1. The sequences of operators

ResW ◦ TX|Y
⟪g1⟫,p

,1. ResW ◦ EX|Y
p − E

W |Y
p ,2.

for p ∈ N, form a Toeplitz operator with weak exponential decay of type W |Y with respect to X .

The sequence of operators

T
Y |X
⟪g′1⟫,p

◦ TX|Y
⟪g1⟫,p

,3.

for p ∈ N, forms a Toeplitz operator with weak exponential decay on Y with respect to X . Finally,

the sequences of operators

T
X|W
⟪g3⟫,p

◦ TW |Y
⟪g2⟫,p

,4. T
X|W
⟪g3⟫,p

◦ EW |Y
p ,5. E

X|W
p ◦ TW |Y

⟪g2⟫,p
,6.

T
X|Y
⟪g1⟫,p

◦ T Yf,p,7.

for p ∈ N, form Toeplitz operators with exponential decay of type X|Y . Moreover, we have

[

ResW ◦ TX|Y
⟪g1⟫,p

]

0
= P

W |Y
N (g1),1. [ResW ◦ EX|Y

p − E
W |Y
p ]0 = 0,2.

[T
Y |X
⟪g′1⟫,p

◦ TX|Y
⟪g1⟫,p

]0 = Λω,=
[

g′1 · g1
]

,3. [T
X|W
⟪g3⟫,p

◦ TW |Y
⟪g2⟫,p

]0 = ι∗1(g3) · g2,4.

[T
X|W
⟪g3⟫,p

◦ EW |Y
p ]0 = ι∗1(g3),5. [E

X|W
p ◦ TW |Y

⟪g2⟫,p
]0 = g2,6.

[T
X|Y
⟪g1⟫,p

◦ T Yf,p]0 = g1 · f.7.

Remark 4.2. In particular, from Proposition 2.7, if the embedding ι2 : W → X is quasi-isometry

then, in points 1 and 2, the related sequences of operators form Toeplitz type operator with expo-

nential decay. The same holds for the point 3 if the embedding ι : Y → X is quasi-isometry.

Proof. The proofs of all those statements proceed by the verification that relevant operators satisfy

the assumptions of Theorems 3.18 and 3.19.

For statements 1 and 2, the validity of the first condition from Theorem 3.19 follows from (1.7).

For statements 3, 4, 5, 6 and 7, the validity of the first condition from Theorems 3.18, 3.19 is direct.
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The weak version of the second condition for Z := X for statement 1 (resp. 2) follows trivially

from Lemma 3.10 (resp. Theorem 3.5). For statements 4, 5, 6 and 7, (resp. 3) the validity of the

second condition (resp. weak version of the second condition for Z := X) from Theorem 3.19

follows from Corollary 2.11 and Lemma 3.10.

Hence, it is only left to verify the third statement for each of the operators. This is slightly

more delicate, and will be done separately for each of the statements. By doing so, and employing

the relationship between the polynomials from the third condition of Theorems 3.18 and 3.19 and

the asymptotic expansions (1.20), we also establish the second part of Theorem 4.1.

Let us introduce the following notations first. For a function f : Rk → R and s > 0, we

denote by fs(Z), the function given by Z 7→ 1
s
f(sZ). For functions P (Z,Z ′), R(Z,Z ′), Z ∈ Rr,

Z ′ ∈ Re; r, e ∈ N∗, verifyingR(0, 0) 6= 0, and two functions f : Rr → Rr, g : Re → Re, verifying

f(Z) = Z +O(|Z|2), g(Z ′) = Z ′ +O(|Z ′|2), we decompose P (fs(Z), gs(Z
′)) as follows

P (fs(Z), gs(Z
′)) =

k
∑

i=0

P (f, g)[i](Z,Z
′)si +O(sk+1),

R(fs(Z), gs(Z
′))

R(Z,Z ′)
=

k
∑

i=0

R′(f, g)[i](Z,Z
′)si + O(sk+1),

(4.2)

where P (f, g)[i], R
′(f, g)[i] are functions, which do not depend on s. Clearly, P (f, g)[i], R

′(f, g)[i]
are polynomials if P is a polynomial and R is the exponential of a polynomial. When f (resp. g) is

the identity map, we write P (f, Z ′)[i] (resp. P (Z, g)[i]) for P (f, g)[i]. When P orR depend only on

Z or Z ′, we write P (f)[i](Z), P (g)[i](Z
′) and R′(f)[i](Z), R

′(g)[i](Z
′) for the above polynomials.

We use the notations introduced before Theorem 3.7. From (2.29) and (2.32), we deduce that

ResW ◦ TX|Y
⟪g1⟫,p

(

ψW |Y
y0

(ZW ), φYy0(Z
′
Y )
)

= T
X|Y
⟪g1⟫,p

(

ψX|Y
y0

(σ(ZW )), φYy0(Z
′
Y )
)

·
· exp(−pτL − τF )

(

ψW |Y
y0

(ZW )
)

. (4.3)

For k ∈ N, we decompose exp(−τF ), into power series expansion

exp(−τF )(ZW ) =
k

∑

i=0

exp(−τF )[i](ZW ) +O(|ZW |k+1), (4.4)

where exp(−τF )[i] are homogeneous polynomials in ZW of degree i. Using (2.28), we see that we

can decompose exp(−pτL) as follows

exp(−pτL)(ZW ) =
2k
∑

i=0

⌊ i
2
⌋

∑

j=0

√
pj exp(−pτL)[i,j](ZW ) +O(

√
pk+1|ZW |2k+1), (4.5)

where exp(−pτL)[i,j] are homogeneous polynomials in ZW of degree i, independent of p.

Recall that κ-functions were defined in (1.10), (3.35) and (3.36). Clearly, from (3.37), we have

κ
X|Y
ψ (σ(ZW )) = κ

W |Y
ψ (ZW ) · κX|Y

N (ψX|Y (σ(ZW ))) · κW |Y
N (ψW |Y (ZW ))−1 ·

κYφ (σY (ZW ))

κYφ (ZY )
, (4.6)

where σY is the horizontal component of σ.
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For k ∈ N, let us expand in a neighborhood of y0

κ
X|W
N (ψX|Y (σ(ZW )))−

1
2 =

k
∑

i=0

κ
X|W
N,[i] (σ)

− 1
2 (ZW ) +O(|ZW |k+1),

κ
W |Y
N (ψW |Y (ZW ))

1
2 =

k
∑

i=0

(κ
W |Y
N,[i] )

1
2 (ZW ) +O(|ZW |k+1),

(4.7)

where κ
X|W
N,[i] (σ)

− 1
2 (ZW ), (κ

W |Y
N,[i] )

1
2 (ZW ) are homogeneous polynomials of degree i.

We also decompose

(κYφ (σY (ZW ))

κYφ (ZY )

)− 1
2
=

k
∑

i=0

(κYφ (σY )

κYφ

)− 1
2

[i]
(ZW ) +O(|ZW |k+1), (4.8)

where (
κY
φ
(σY )

κY
φ

)
− 1

2

[i] (ZW ) are homogeneous polynomials of degree i. As σ(ZY , 0) = ZY , for any

i ∈ N∗, the polynomials (
κY
φ
(σY )

κY
φ

)
− 1

2

[i] (ZW ) divide ZNW |Y , where ZW = (ZY , ZNW |Y ), and we have

(
κY
φ
(σY )

κY
φ

)
− 1

2

[0] = 1. For r ∈ N, we now introduce

κ1cor,[r](ZW ) :=
∑

a+b+c=r

κ
X|Y
N,[a](σ)

− 1
2 (ZW ) · (κW |Y

N,[b])
1
2 (ZW ) ·

(κYφ (σY )

κYφ

)− 1
2

[c]
(ZW ). (4.9)

From (4.3), (4.4), (4.5), (4.6), (4.7) and (4.9), we deduce that the asymptotic expansion (3.80)

holds for X := W the operator T
X|Y
p := ResW ◦ TX|Y

⟪g1⟫,p
and the polynomials

IEr (ZW , Z
′
Y ) :=

∑

a+b+c+d+e+f=r

(Resl ◦ JEa,g1)(σ, Z
′
Y )[b] · (Resl ◦ (E ′

n,m(σ, Z
′
Y )[c]))·

· exp(−τF )[d](ZW ) ·
∑

i−j=e
exp(−pτL)[i,j](ZW ) · κ1cor,[f ](ZW ). (4.10)

From (4.5), we see that the second sum in (4.10) is finite. From this, we see that the first part of

the first statement of Theorem 4.1 follows from Theorem 3.19. The fact that the coefficients of IEr
are bounded with all their derivatives follows from Propositions 2.17, 2.18 and the corresponding

statement for the polynomials JEr,g1, r ∈ N, from Lemma 3.11. The statement about the parity of IEr
follows from the analogous statements for JEb,g1 from Lemma 3.11 and the fact that exp(−pτL)[i,j]
are non-zero only for even j. Now, from Propositions 2.17, 2.18, the expression for JE0,g1 from

Lemma 3.11 and (4.10), we deduce that for any ZW = (ZY , ZNW |Y ) ∈ R2l; ZY , Z
′
Y ∈ R2m

IE0 (ZW , Z
′
Y ) = g1(y0) · Z⊗k

NW |Y · κW |Y
N (y0)

1
2 . (4.11)

From this, we deduce by the last remark from Theorem 3.19 the first statement of the second part

of Theorem 4.1.

The proof for the second statement of the first part of Theorem 4.1 is completely analogous to

the proof for the first statement. One only has to realize that the asymptotic expansion (3.80) now

holds for the operators T
X|Y
p := ResW ◦ EX|Y

p −E
W |Y
p and the polynomials
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IEr (ZW , Z
′
Y ) :=

∑

a+b+c+d+e+f=r

(Resl ◦ JX|Y,E
a )(σ, Z ′

Y )[b] · (Resl ◦ (E ′
n,m(σ, Z

′
Y )[c]))·

· exp(−τF )[d](ZW ) ·
∑

i−j=e
exp(−pτL)[i,j](ZW ) · κ1cor,[f ](ZW )− JW |Y,E

r (ZW , Z
′
Y ). (4.12)

From (3.28), (4.12) and the expressions for J
X|Y,E
0 , J

W |Y,E
0 from Theorem 3.8, we conclude that

for Z = (ZY , ZN), we have

IE0 (ZW , Z
′
Y ) := 0. (4.13)

This establishes the second statement from the second part of Theorem 4.1 by the remark in the

end of Theorem 3.19.

Let us now treat the third statement from the first part of Theorem 4.1. Directly from Lemma

2.9, the last part of (3.14) and the analysis, similar to the one before (3.51), we conclude that the

expansion (3.77) holds for T Yp := T
Y |X
⟪g′1⟫,p

◦ TX|Y
⟪g1⟫,p

and

IYr :=
∑

a+b=r

Resm ◦ Kn,m

[

JRa,g′1 , J
E
b,g1

]

◦ Resm. (4.14)

From (3.30), (4.14) and the expression for JR0,g′1
, JE0,g1 from Lemma 3.11, we conclude that for any

ZY , Z
′
Y ∈ R2m, we have

J0(ZY , Z
′
Y ) := Λω,=

[

g′1 · g1
]

. (4.15)

The statement about the parity of IYr follows from the corresponding statements for JR
a,g′1

and JEb,g1
from Lemma 3.11 and the parity statement from Lemma 3.1. This establishes the third statement

from the first and the second parts of Theorem 4.1 by the last part of Theorem 3.18.

Let us now treat the fourth statement from the first part of Theorem 4.1. From (2.29) and (2.32),

for Z ∈ R2n, Z ′
W ∈ R2l, we deduce that

T
X|W
⟪g3⟫,p

(

ψX|Y
y0

(Z), ψW |Y
y0

(Z ′
W )

)

= exp
(

− p(ξ
W |Y
L )∗ − (ξ

W |Y
F )∗

)

(ψW |Y
y0

(Z ′
W ))·

· TX|W
⟪g3⟫,p

(

ψX|W
y0

(υ(Z)), φWy0 (h
W |Y (Z ′

W ))
)

· exp(−pχL − χF )(ψ
X|Y
y0

(Z)). (4.16)

From (2.22), (3.35) and (3.36), we deduce that

κ
W |Y
ψ (ZW ) = κWφ (hW |Y (ZW )) · (det Jac(hW |Y ))(ZW ). (4.17)

From (2.22) and (2.37), we deduce that

hX|W (υ(Z)) = hX|Y (Z). (4.18)

Hence by (4.17), we obtain

κ
X|W
ψ (υ(Z)) = κ

X|Y
ψ (Z) · (det Jac(h

X|W ))(υ(Z))

(det Jac(hX|Y ))(Z)
. (4.19)

For r ∈ N, we denote by (det Jac(hX|W ))(υ)
1
2

[r], (det Jac(hX|Y ))
− 1

2

[r] , (det Jac(hW |Y ))
1
2

[r]

the homogeneous polynomials of degree r, defined as in (4.7) from Taylor expansions of

(det Jac(hX|W ))(υ)
1
2 , (det Jac(hX|Y ))−

1
2 , (det Jac(hW |Y ))

1
2 . For r ∈ N, we now introduce
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κ2cor,[r](Z,Z
′
W ) :=

∑

a+b+c=r

(det Jac(hX|W ))(υ)
1
2

[a](Z) · (det Jac(hX|Y ))
− 1

2

[b] (Z)·

· (det Jac(hW |Y ))
1
2

[c](Z
′
W ). (4.20)

We use notations, similar to (4.4) and (4.5) for exp(−(ξ
W |Y
F )∗), exp(−χF ) and exp(−p(ξW |Y

L )∗),
exp(−pχL). From the analysis, similar to the one before (3.51), (4.3), (4.4) and (4.16), we deduce

that the asymptotic expansion (3.80) holds for the operator T
X|Y
p := T

X|W
⟪g3⟫,p

◦ TW |Y
⟪g2⟫,p

and the poly-

nomials

IEr :=
∑

a+b+c+d+e+f+g+h+k=r

KE
n,m

[

exp(−(ξ
W |Y
F )∗)[a](Z

′
W ) ·

∑

i−j=b
exp(−p(ξW |Y

L )∗)[i,j](Z
′
W )·

· JEc,g3(υ, hW |Y )[d] · E ′
n,l(υ, h

W |Y )[e] · exp(−χF )[f ](Z)·
·
∑

i−j=g
exp(−pχL)[i,j](Z) · κ2cor,[h](Z,Z ′

W ), JEk,g2

]

, (4.21)

where both sums run over a subset of natural numbers. From (2.28), similarly to the remark after

(4.5), we see that the second and the third sums in (4.21) are actually finite. The statement about

the parity of IEr follows from the analogous statements for JEd,g3 , JEh,g2 from Lemma 3.11 and the

parity statement from Lemma 3.1. From this, we see that the fourth part of the first statement of

Theorem 3.19 follows from Theorem 3.19. From (3.24), (3.28), (4.21) and the expressions for

JEr,g3 , JEr,g2, r ∈ N, from Lemma 3.11, we conclude that for Z = (ZY , ZN), ZY ∈ R2m, we have

IE0 (Z,Z
′
Y ) :=

(

ι∗1(g3) · g2
)

(y0) · Z⊗(k+k′)
N · κX|Y

N (y0)
1
2 , (4.22)

which establishes the fourth statement from the second part of Theorem 4.1 by the last part of

Theorem 3.19.

The proofs of the fifth and sixth statements are completely analogous to the proof of the fourth

one. The only difference is that the asymptotic expansion (3.80) holds for the operators T
X|Y
p :=

T
X|W
⟪g3⟫,p

◦ EW |Y
p , T

X|Y
p := E

X|W
p ◦ TW |Y

⟪g2⟫,p
and the polynomials

IEr :=
∑

a+b+c+d+e+f+g+h+k=r

KE
n,m

[

exp(−(ξ
W |Y
F )∗)[a](Z

′
W ) ·

∑

i−j=b
exp(−p(ξW |Y

L )∗)[i,j](Z
′
W )·

· JEc,g3(υ, h
W |Y )[d] · E ′

n,l(υ, h
W |Y )[e] · exp(−χF )[f ](Z)

·
∑

i−j=g
exp(−pχL)[i,j](Z) · κ2cor,[h](Z,Z ′

W ), J
W |Y,E
k

]

,

IEr :=
∑

a+b+c+d+e+f+g+h+k=r

KE
n,m

[

exp(−(ξ
W |Y
F )∗)[a](Z

′
W ) ·

∑

i−j=b
exp(−p(ξW |Y

L )∗)[i,j](Z
′
W )·

· JX|W,E
c (υ, hW |Y )[d] · E ′

n,l(υ, h
W |Y )[e] · exp(−χF )[f ](Z)

·
∑

i−j=g
exp(−pχL)[i,j](Z) · κ2cor,[h](Z,Z ′

W ), J
W |Y,E
k,g2

]

,

(4.23)
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respectively. The proofs of the parity statements are analogous. From (3.24), (3.28), (4.21) and the

expressions for J
X|W,E
0 , J

W |Y,E
0 , JE0,g3 , JE0,g2 , from Theorem 3.8 and Lemma 3.11, we conclude that

IE0 (Z,Z
′
Y ) := ι∗1(g3)(y0) · Z⊗k

N · κX|Y
N (y0)

1
2 ,

IE0 (Z,Z
′
Y ) := g2(y0) · Z⊗k′

N · κX|Y
N (y0)

1
2 ,

(4.24)

respectively. This establishes fifth and sixth statements from the second part of Theorem 4.1 by

the remark in the end of Theorem 3.19.

Let us now treat the seventh statement. Directly from Lemma 2.9, (3.13), the analysis, similar

to the one before (3.51), we conclude that (3.80) holds for T
X|Y
p := T

X|Y
⟪g1⟫,p

◦ T Yf,p and

IEr :=
∑

a+b=r

KEP
n,m

[

JEa,g1, J
Y
b,f

]

. (4.25)

The parity statement IEr holds by the same reasons as before. From (3.28), (4.25) and the expres-

sion for JE0,g1 , JY0,f from Lemma 3.11, we conclude that for Z = (ZY , ZN), we have

IE0 (Z,Z
′
Y ) := g1(y0) · Z⊗k

N · f · κX|Y
N (y0)

1
2 , (4.26)

which establishes the seventh statement from the second part of Theorem 4.1 by the last part of

Theorem 3.18.

4.2 Multiplicative defect and adjoints of Toeplitz type operators

The main goal of this section is to study the adjoints of Toeplitz type operators. For this, we

introduce the so-called multiplicative defect operator and study some of its properties. The operator

itself will be of fundamental importance to our calculations of the first significant term of the

asymptotic expansion of the transitivity defect, Dp, from Theorem 1.5.

Theorem 4.3. Assume that (X, Y, gTX) is of bounded geometry. Then there is p1 ∈ N∗, such that

for any p ≥ p1, there is a unique operator A
X|Y
p ∈ End(H0

(2)(Y, ι
∗(Lp ⊗ F ))), verifying

(ResY ◦BX
p )

∗ = EX|Y
p ◦ AX|Y

p . (4.27)

Moreover, the sequence of operators 1
pn−mA

X|Y
p , p ≥ p1, forms a Toeplitz operator with weak

exponential decay with respect to X , and we have [ 1
pn−mA

X|Y
p ]0 = κ

X|Y
N |−1

Y , where κ
X|Y
N was

defined in (1.10).

Remark 4.4. a) The sequence of operators 1
pn−mA

X|Y
p , will be later called “multiplicative defect”.

b) This theorem can be used to give an alternative proof of the main results from [9] bypassing

some of the technical difficulties, contained in [9, §2.5, §4].

Proof. First of all, let us establish the existence and uniqueness of A
X|Y
p for p big enough. Clearly,

it suffices to prove that the kernels and the images of the operators (ResY ◦BX
p )

∗ and E
X|Y
p coincide

for p big enough. First of all, we have

ker(ResY ◦BX
p )

∗ = (Im(ResY ◦BX
p ))

⊥. (4.28)
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Now, in [9, (4.1)], we established that ResY ◦ BX
p has its image inside of H0

(2)(Y, ι
∗(Lp ⊗ F )).

In [9, Theorem 4.4], by following the proof of Ohsawa-Takegoshi extension theorem, we proved

that there is p1 ∈ N, such that for any p ≥ p1, the image of ResY ◦ BX
p coincides exactly with

H0
(2)(Y, ι

∗(Lp ⊗ F )). From this, and (4.28), we see that the kernels of (ResY ◦ BX
p )

∗ and E
X|Y
p

coincide. Similar reasoning shows that the images of those operators coincide as well. In particular,

for p ≥ p1, there is a unique sequence of operators A
X|Y
p as in (4.27).

Now, let us establish that the sequence of operators 1
pn−mA

X|Y
p , p ≥ p1, forms a Toeplitz

operator with weak exponential decay. We do so by applying Theorem 3.18.

In fact, from (4.27) and the trivial fact ResY ◦ EX|Y
p = BY

p , we obtain the explicit formula

AX|Y
p = ResY ◦ (ResY ◦BX

p )
∗. (4.29)

Clearly, the first property from Theorem 3.18 follows from (1.7) and (4.29). The weak version of

the second property with respect to X follows from Theorem 3.4 and (4.29).

We will now show that the third property is a direct consequence of Theorem 3.7. For the

Taylor expansions of the κ-functions, we will use the same notation as in (4.7). From the fact that

ResY (f̃
X|Y
1 , . . . , f̃

X|Y
r ) = f̃ ′

1
Y , . . . , f̃ ′

r
Y and (3.37), we see directly that the expansion (3.77) holds

for T Yp := 1
pn−mA

X|Y
p and for the polynomials IYr (ZY , Z

′
Y ), ZY , Z

′
Y ∈ R2m, defined as follows

IYr (ZY , Z
′
Y ) :=

∑

a+b+c=r

JX|X
a (ZY , Z

′
Y ) · κ

X|Y
N,[b](ZY )

− 1
2 · κX|Y

N,[c](Z
′
Y )

− 1
2 . (4.30)

From the parity properties of J
X|X
a from Theorem 3.7 and the bounded geometry assumption, we

see that the coefficients of IYr are bounded with all their derivatives, and the parity of IYr coincides

with r. Hence, by Theorem 3.18, the sequence of operators 1
pn−mA

X|Y
p forms a Toeplitz operator

with weak exponential decay with respect to X . Moreover, from (3.39) and (4.30), we deduce

IY0 (ZY , Z
′
Y ) = κ

X|Y
N |−1

Y . (4.31)

From the last statement of Theorem 3.18, we deduce that [ 1
pn−mA

X|Y
p ]0 = κ

X|Y
N |−1

Y .

For technical reasons, we will later need to consider the inverse of 1
pn−mA

X|Y
p . The following

result gives a sufficient condition for inverting Toeplitz operators with weak exponential decay.

Lemma 4.5. Assume that a sequence of operators Gp, p ∈ N, forms a Toeplitz operator with weak

exponential decay with respect to a manifold Z in the notations from Definition 3.16. Assume that

for f := [Gp]0, we have f 6= 0 everywhere and f−1 ∈ C ∞
b (Y,End(ι∗F )). Then there is p1 ∈ N,

such that for p ≥ p1, the operators Gp are invertible. Moreover, the sequence of operators G−1
p ,

p ≥ p1, forms a Toeplitz operator with weak exponential decay with respect to the same manifold

Z and we have [(Gp)
−1]0 = f−1.

To prove this result, the following statement will be of utmost importance.

Lemma 4.6. For any f1, f2 ∈ C ∞
b (Y,End(ι∗F )), the sequence of operators T Yf1,p ◦ T Yf2,p, p ∈ N,

forms a Toeplitz operator with exponential decay. Moreover, we have [T Yf1,p ◦ T Yf2,p]0 = f1 · f2. In

particular, a product of two Toeplitz type operators with weak exponential decay forms a Toeplitz

type operator with weak exponential decay.
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Proof. The first part of this result for compact manifolds, in realms of Toeplitz operators

in the sense of [13, §7] (which is a slightly weaker notion), has first appeared in Borde-

mann–Meinrenken–Schlichenmaier [3], cf. [21, Theorem 3.1], for trivial F and when the volume

form dvY coincides with the Riemannian volume form dvgTY . For nontrivial F and other volume

forms dvY , and in a more general setting of compact symplectic manifolds, this result was proved

by Ma-Marinescu in [15], [13, Theorem 7.4.1] by using the asymptotic characterization of Toeplitz

operators as in Theorem 3.18. Since according to Theorem 3.18, the analogous characterization

holds in our more refined setting of Toeplitz type operators with weak exponential decay, the same

proof would give us the needed result.

Proof of Lemma 4.5. First of all, let us consider a sequence of operators Kp := Gp ◦T Yf−1,p
, p ∈ N.

According to Lemma 4.6, Kp, p ∈ N, form a Toeplitz operator with weak exponential decay with

respect to Z and we can represent it in the form

Kp = 1 +
Qp

p
, (4.32)

where Qp, p ∈ N, is a Toeplitz operator with weak exponential decay with respect to Z. In

particular, by Corollary 2.10, there are C > 0, p1 ∈ N∗, such that for any p ≥ p1, we have

‖Qp‖ ≤ C. (4.33)

From (4.32) and (4.33), we deduce that there is p1 ∈ N∗, such that Kp is invertible for p ≥ p1, and

K−1
p =

∞
∑

r=0

(−1)r
Qr
p

pr
. (4.34)

However, by Corollary 2.11, we infer that there are C > 0, p1 ∈ N, such that for any p ≥ p1,
r ∈ N

∗, we have

∣

∣Qr
p(y1, y2)

∣

∣

C k ≤ Crpm+ k
2 · exp

(

− c
√
p · distX(y1, y2)

)

. (4.35)

We conclude by Lemma 4.6 and (4.35) that the sequence of operators K−1
p , p ≥ p1, forms a

Toeplitz type operator. But then again by Lemma 4.6, we obtain that the sequence of operators

T Y
f−1,p

◦ K−1
p , p ≥ p1, forms a Toeplitz operator with exponential decay. But trivially, we have

Gp ◦ T Yf−1,p
◦K−1

p = T Y
f−1,p

◦K−1
p ◦Gp = Id. Hence, Gp is invertible and (Gp)

−1 = T Y
f−1,p

◦K−1
p ,

which finishes the proof.

As an important consequence of our considerations, we obtain the following result.

Theorem 4.7. A family T
Y |X
p : L2(X,Lp ⊗ F ) → L2(Y, ι∗(Lp ⊗ F )), p ∈ N, of linear operators

forms a Toeplitz operator with exponential decay of type Y |X if and only if the family of linear

operators 1
pn−m (T

Y |X
p )∗ : L2(Y, ι∗(Lp ⊗ F )) → L2(X,Lp ⊗ F ), p ∈ N, forms a Toeplitz operator

with exponential decay of type X|Y . Moreover, we have

[T Y |X
p ]0 =

([ 1

pn−m
(T Y |X

p )∗
]

0

)∗
· κX|Y

N |Y . (4.36)
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Proof. Let us first assume that a sequence of operators T
Y |X
p , p ∈ N, forms a Toeplitz operator

with exponential decay of type Y |X . Clearly, it is enough to prove that for any k ∈ N, j = {1, 2},

gaj ∈ C ∞
b (Y, Sym2k+jN (0,1)∗ ⊗ End(ι∗F )), for T

Y |X
p = T

Y |X
⟪gaj ⟫,p

, j = 2, and for T
Y |X
p = 1√

p
T
Y |X
⟪gaj ⟫,p

,

j = 1, the sequence of operators 1
pn−m (T

Y |X
p )∗, p ∈ N, forms a Toeplitz operator with exponential

decay of type X|Y .

According to Theorem 4.3 and (1.17), for p ≥ p1, where p1 ∈ N∗ is as in Theorem 4.3, we

have

(T
Y |X
⟪gaj ⟫,p

)∗ = T
X|Y
⟪(gaj )

∗⟫,p ◦ AX|Y
p . (4.37)

Hence, according to Theorems 4.1.6 and 4.3, we see that 1
pn−m (T

Y |X
⟪gaj ⟫,p

)∗ forms a Toeplitz operator

with exponential decay of type X|Y . The relation (4.36) follows from Theorems 4.1.6 and 4.3.

This proves the first direction of Theorem 4.7. The proof of the opposite direction is completely

analogous and is left to the interested reader.

Proof of Theorem 3.20. The proof of one implication of Theorem 3.20 was described in the end of

Section 3.4. The inverse implication is a direct consequence of Theorems 3.19 and 4.7.

4.3 Some examples of Toeplitz type operators

The main goal of this section is to give some examples of Toeplitz type operators. To state our

results in this direction, we need to fix some notation first.

We fix y0 ∈ Y , choose an orthogonal basisw1, . . . , wn−m of (N
X|Y
y0 )(1,0) as in (3.66). We define

Λω,h : Sym
i((NX|Y )(1,0)∗)⊗ Symj((NX|Y )(0,1)∗) → Symmax{i−j,0}((NX|Y )(1,0)∗),

Λω,a : Sym
i((NX|Y )(1,0)∗)⊗ Symj((NX|Y )(0,1)∗) → Symmax{j−i,0}((NX|Y )(0,1)∗),

(4.38)

for multiindices α, β ∈ Nn−m, as follows

Λω,h(w
α ⊗ wβ) =

{

1
π|α|

α!
(α−β)!w

α−β, if α ≥ β, α 6= β,

0, otherwise,

Λω,a(w
α ⊗ wβ) =

{

1
π|β|

β!
(β−α)!w

β−α, if α ≥ β, α 6= β,

0, otherwise.

(4.39)

Clearly, those operators do not depend on the choice of the basis. We extend Λω,h[·] and Λω,a[·]
to Symk(NX|Y )∗ ⊗ C linearly. For the next result, we will use the following notation. For f ∈
C ∞
b (X,End(F )), we let T

Y |Y
f,p

:= ResY ◦ TXf,p ◦ E
X|Y
p .

Proposition 4.8. For any f ∈ C ∞
b (X,End(F )), g ∈ ⊕∞

k=0C
∞
b (Y, Symk(NX|Y )∗ ⊗ End(ι∗F )),

ge ∈ ⊕∞
k=0C

∞
b (Y, Sym2k(NX|Y )∗ ⊗End(ι∗F )), go ∈ ⊕∞

k=0C
∞
b (Y, Sym2k+1(NX|Y )∗ ⊗End(ι∗F )),

the sequences of operators

T
Y |Y
f,p ,1. T

Y |Y
⟪g⟫,p,2.

p ∈ N, form Toeplitz operators with exponential decay. Also, the sequences of operators

T
X|Y
f,p ,3. T

X|Y
⟪ge⟫,p

,4. 1√
p
T
X|Y
⟪go⟫,p

,5.
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p ∈ N, form Toeplitz operators with exponential decay of type X|Y . The sequences of operators

T
Y |X
f,p ,6. T

Y |X
⟪ge⟫,p

,7. 1√
p
T
Y |X
⟪go⟫,p

,8.

p ∈ N, form Toeplitz operators with exponential decay of type Y |X . Moreover, we have

[T
Y |Y
f,p ]0 = f ,1. [T

X|Y
f,p ]0 = 0,2. [T

Y |Y
⟪g⟫,p]0 = Λω,=[g],3.

[T
X|Y
⟪ge⟫,p

]0 = Λω,h[ge],4. [
√
pT

X|Y
⟪go⟫,p

]0 = 0,5. [T
X|Y
⟪go⟫,p

]1 = Λω,h[go],6.

[T
Y |X
f,p ]0 = 0,7. [T

Y |X
⟪ge⟫,p

]0 = Λω,a[ge],8. [ 1√
p
T
Y |X
⟪go⟫,p

]0 = 0,9.

[ 1√
p
T
Y |X
⟪go⟫,p

]1 = Λω,a[go].10.

Proof. The proofs of all the statements from the first part of Proposition 4.8 are very similar to the

proofs from Theorem 4.1: they all proceed by the verification that the relevant operators satisfy the

assumptions of Theorems 3.18, 3.19 and 3.20. The proofs of the second part are also analogous:

we only need to calculate the first term of the asymptotic expansions as in (3.77), (3.80), (3.83)

and apply the last part of Theorems 3.18, 3.19, 3.20. For brevity, we only present the proof for the

fourth statement, which is slightly more complicated than the rest.

The validity of the first condition from Theorem 3.19 for T
X|Y
⟪ge⟫,p

is direct. The second and the

third conditions are proved in Lemma 3.11. Hence, by Theorem 3.19, the sequence of operators

T
X|Y
⟪ge⟫,p

, p ∈ N, form a Toeplitz operator with exponential decay of type X|Y . We now only need

to calculate the first term of the asymptotic expansion of this sequence of operators to establish the

second part of the theorem.

We decompose ge as follows

ge =
∑

i,j

ge,ij, (4.40)

where i, j ∈ N and ge,ij ∈ Symi(NX|Y )(1,0)∗ ⊗ Symj(NX|Y )(0,1)∗. From (3.28), (3.30) and (3.53),

we deduce that for any Z = (ZY , ZN), ZN ∈ R2(n−m); ZY , Z
′
Y ∈ R2m, we have

JE0,ge(Z,Z
′
Y ) =

∑

i,j

Λω,h
[

ge,ij
]

· Z⊗(i−j)
N · κX|Y

N (y0)
1
2 . (4.41)

From this and the last part of Theorem 3.19, we conclude that the second part of Proposition 4.8

for the fourth point holds.

5 Complex embeddings and associated Toeplitz type operators

The main goal of this section is to establish Theorems 1.1, 1.5 and 1.8. More precisely, in Section

5.1, we calculate the second term of the asymptotic expansion of the multiplicative defect intro-

duced in Section 4.2 and, as a consequence, we prove Theorem 1.8. In Section 5.2, we establish

Theorems 1.1, 1.5 and the extension of Theorem 1.5 to towers of submanifolds of arbitrary length.
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5.1 Optimal Ohsawa-Takegoshi theorem, multiplicative defect asymptotics

The main goal of this section is to calculate the second term of the asymptotic expansion of the

multiplicative defect and to calculate the asymptotics of the optimal constant in Ohsawa-Takegoshi

theorem, i.e. to establish Theorem 1.8.

Theorem 5.1. In the notations of Theorems 1.1, 4.3, under assumption (1.11), we have
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The proof of Theorem 5.1 will be based on the following result.

Theorem 5.2. In the notations of Theorem 3.7, under assumptions (1.11), we have

J
X|X
2 (0, 0) =

1

8π
r
X
x0

− 1

2π
√
−1

Λω[R
F
x0
]. (5.2)

Proof. The proof is due to Lu [12] (for trivial (F, hF )) and Wang [24] (for general (F, hF )), cf.

also Dai-Liu-Ma [13, Theorem 1.3].

Recall that in Lemma 3.11, for any f ∈ C ∞
b (X,End(F )), x0 ∈ X , r ∈ N, we defined the

polynomials JXr,f(Z,Z
′) ∈ End(Fx0), Z,Z

′ ∈ R
2n.

Corollary 5.3. Under the assumptions (1.11), we have

JX1,f(Z,Z
′) = ∇End(F )

∂
∂z

f +
∂f

∂z ′
. (5.3)

Proof. It follows directly from (3.28), (3.39), (3.51), (3.40) and the fact, following from Proposi-

tion 2.15, that a derivative of a sections of a vector bundle, written in the trivialization, considered

in Theorem 3.7, correspond to covariant derivatives.

Proof of Theorem 5.1. The first identity is a direct consequence of Theorem 4.3 and our assump-

tion, see the remark before (1.11).

To establish the second identity, remark that from the first part and Theorem 4.3, the sequence

of operators p( 1
pn−mA

X|Y
p − BY

p ), p ≥ p1, forms a Toeplitz operator with weak exponential decay

with respect to X . Moreover, from (3.40) and (4.30), we see that the expansion (3.77) holds for

T Yp := p( 1
pn−mA

X|Y
p − BY

p ) and for polynomials IYr (ZY , Z
′
Y ), ZY , Z

′
Y ∈ R2m, verifying

IY0 (0, 0) = J
X|X
2 (0, 0)− J

Y |Y
2 (0, 0). (5.4)

From Theorem 5.2, we obtain that
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√
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. (5.5)

From the last part of Theorem 3.18 and (5.5), we obtain the needed result.

Let us now give the first application of those calculations.
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Proof of Theorem 1.8. From (4.27), remark that the following identities hold

(EX|Y
p )∗ ◦ EX|Y

p =
(

(AX|Y
p )∗

)−1
, ResY |X

p ◦ (ResY |X
p )∗ = AX|Y

p . (5.6)

Clearly, we have ‖(EX|Y
p )∗ ◦ E

X|Y
p ‖ = ‖EX|Y

p ‖2 and ‖ResY |X
p ◦ (ResY |X

p )∗‖ = ‖ResY |X
p ‖2. The

result now follows from this observation, Theorem 5.1, Lemma 3.14 and (5.6).

Remark 5.4. From (5.6), we see that A
X|Y
p is a self-adjoint operator.

5.2 Transitivity defect, proofs of Theorems 1.1, 1.5

The main goal of this section is to study the asymptotic transitivity of the optimal holomorphic

extension operator and to prove Theorems 1.1 and 1.5. One way of proceeding would be to directly

use the formula (4.12) to calculate the asymptotics of the sequence of operators

TW |Y
p := ResW ◦ EX|Y

p − EW |Y
p , (5.7)

p ≥ p1, where p1 ∈ N is as in (1.8) and study the first non vanishing term of this asymptotics.

Then, we will get the needed result by the use of the basic formula, cf. (1.30),

EX|W
p ◦ TW |Y

p = Dp = EX|Y
p − EX|W

p ◦ EW |Y
p , (5.8)

and the subsequent use of the formula (4.23). This method is, although straightforward, compu-

tationally complicated. In fact, to calculate [E
X|Y
p − E

X|W
p ◦ EW |Y

p ]3 (which is the first significant

term of our asymptotic expansion according to Theorem 1.5), we will need to calculate J
X|X
3 , and

the third terms of the Taylor expansions of τE , pτL, σ, υ, etc. Working directly with the asymptotic

expansion of the sequence of operators Dp is also possible due to the results from Section 3.1, but

computationally is even more difficult.

Our approach is different. We will still, however, base our consideration on the study of the se-

quence of operators T
W |Y
p , p ∈ N, instead of Dp. But differently from the above approach, instead

of using right away the explicit formula for the asymptotic expansion, we will first find an alter-

native expression for T
W |Y
p in terms of the operators A

X|Y
p , A

X|W
p and A

W |Y
p . Then the calculation

of the asymptotic expansion for T
W |Y
p will be essentially encapsulated in the calculations of the

asymptotic expansions of A
X|Y
p , A

X|W
p and A

W |Y
p . More precisely, our first result goes as follows.

Lemma 5.5. There is p1 ∈ N, such that for any p ≥ p1, the following expression for T
W |Y
p holds
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.

(5.9)
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Proof. First of all, recall that by Theorem 4.3 and Lemma 4.5, there is p1 ∈ N, such that for p ≥ p1,

the operators 1
pn−lA

X|W
p , 1

pn−mA
X|Y
p , 1

pl−mA
W |Y
p are invertible. In what follows, we work with such

p with no further notice. From (4.27), we have

EW |Y
p = (ResY ◦BW

p )∗ ◦ (AW |Y
p )−1. (5.10)

Now, from the trivial fact that BW
p = ResW ◦ EX|W

p and (5.10) for W := X , Y :=W , we obtain

BW
p = ResW ◦ (ResW ◦BX

p )
∗ ◦ (AX|W

p )−1. (5.11)

From (5.10), (5.11) and the trivial fact that ResY ◦ ResW = ResY , we obtain

EW |Y
p =

(

ResY ◦ (ResW ◦BX
p )

∗ ◦ (AX|W
p )−1

)∗ ◦ (AW |Y
p )−1. (5.12)

We replace ResY in (5.12) by ResY ◦BX
p , open the brackets in (5.12), use once again (4.27) to give

an alternative expression for (ResY ◦BX
p )

∗ and use the trivial fact BX
p ◦ EX|Y

p = E
X|Y
p , to obtain

EW |Y
p =

( 1

pn−l
(AX|W

p )∗
)−1

◦ ResW ◦ EX|Y
p ◦
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pn−m
AX|Y
p

)

◦
( 1

pl−m
AW |Y
p

)−1

. (5.13)

The formula (5.9) is then a formal consequence of (5.13) and the fact that ResW ◦ EX|Y
p = BW

p ◦
ResW ◦ EX|Y

p ◦BY
p , following from (1.7).

To establish Theorem 1.5, we need two additional lemmas. To state the first, let us fix a function

f ∈ C ∞
b (X,End(F )) and consider the Toeplitz operator TXf,p, p ∈ N. We will use below the

notational conventions introduced before Theorem 3.7.

Lemma 5.6. There are polynomials J
X|Y
0,f (Z,Z ′), J

X|Y
1,f (Z,Z ′) in Z,Z ′ ∈ R

2n, such that for

F
X|Y
r,f

:= J
X|Y
r,f · Pn, r = 0, 1, the following holds. There are ǫ, c, C,Q > 0, p1 ∈ N∗, such

that for any y0 ∈ Y , p ≥ p1, |Z|, |Z ′| ≤ ǫ, the Schwartz kernels of TXf,p, evaluated with respect to

the volume form dvX , satisfies

∣

∣

∣

∣
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pn
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√
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√
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1
2κ

X|Y
ψ (Z ′)−

1
2

∣

∣

∣

∣

≤ Cp−1
(

1 +
√
p|Z|+√

p|Z ′|
)Q

exp(−c√p|Z − Z ′|). (5.14)

Moreover, we have J
X|Y
0,f (ZY , Z

′
Y ) = f(y0) and for Z = (0, ZN), ZN ∈ R2(n−m), we have

J
X|Y
1,f (Z, 0) = ∇End(E)

∂
∂z

f. (5.15)

Proof. First of all, recall that the diffeomorphism hX|Y was defined in (2.22), and the functions

ξ
X|Y
L , ξ

X|Y
F were defined in (2.25). Directly from the definitions, we obtain the following relation

between the Schwartz kernels
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TXf,p
(

ψX|Y
y0

(Z), ψX|Y
y0

(Z ′)
)

= exp
(

− p(ξ
X|Y
L )∗ − (ξ

X|Y
F )∗

)

(ψX|Y
y0

(Z ′))·
· TXf,p

(

φXy0(h
X|Y (Z)), φXy0(h

X|Y (Z ′))
)

· exp
(

− pξ
X|Y
L − ξ

X|Y
F

)

(ψX|Y
y0

(Z)). (5.16)

Remark also that in the notations of (2.2), (3.35), (3.36), by [16, (3.26)] and [9, (5.35)], we have

κXφ,y0(Z) = 1 +O(|Z|2), κ
X|Y
ψ,y0

(Z) = 1− gTXy0 (νX|Y , Z) +O(|Z|2). (5.17)

By Proposition 2.3.5 and (5.17), we deduce that

κXφ,y0

κ
X|Y
ψ,y0

= 1 +O(|Z|2). (5.18)

From Lemma 3.11, Corollary 5.3, (5.16), (5.18) and the trivial fact that for Z = (0, ZN), ZN ∈
R2(n−m), we have ξ

X|Y
L (Z) = ξ

X|Y
E (Z) = 0, hX|Y (Z) = Z, we deduce the result.

Lemma 5.7. There are polynomials J
W |Y
0,Res(ZW , Z

′
Y ), J

W |Y
1,Res(ZW , Z

′
Y ) in ZW ∈ R

2l, Z ′
Y ∈ R

2m,

such that for F
W |Y
r,Res := J

W |Y
r,Res ·El,m, r = 0, 1, the following holds. There are ǫ, c, C,Q > 0, p1 ∈ N

∗,
such that for any y0 ∈ Y , p ≥ p1, ZW = (ZY , ZNW |Y ), ZY ∈ R2m, |ZW |, |Z ′

Y | ≤ ǫ, the Schwartz

kernel of ResW ◦ EX|Y
p , evaluated with respect to dvY , satisfies the following bound
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p|Z ′
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exp
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√
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Y |+ |ZNW |Y |)
)

. (5.19)

Moreover, we have J
W |Y
0,Res(ZW , Z

′
Y ) = 1, and for ZW = (0, ZNW |Y ), ZNW |Y ∈ R2(l−m), in the

notations of Lemma 3.1, we have

Kn,n[1, J
W |Y
1,Res](ZW , 0) = J

W |Y
1,Res(ZW , 0), KEP

l,m [J
W |Y
1,Res, 1] = J

W |Y
1,Res. (5.20)

Proof. The existence of polynomials was proved in (4.12). The calculation of J
W |Y
0,Res was included

in (4.13). Now, to prove (5.20), we first remark that

BW
p ◦ ResW ◦ EX|Y

p = ResW ◦ EX|Y
p , ResW ◦ EX|Y

p = ResW ◦ EX|Y
p ◦BY

p . (5.21)

Comparing the first order asymptotics of each side of (5.21), using Lemma 3.1 and the analysis,

similar to the one before (3.51), gives

Kn,n[1, J
W |Y
1,Res](ZW , 0) +Kn,n[J

W |Y
1 , 1](ZW , 0) = J

W |Y
1,Res(ZW , 0),

KEP
l,m [J

W |Y
1,Res, 1] +KEP

l,m [1, J
Y |Y
1 ] = J

W |Y
1,Res.

(5.22)

However, an easy calculation, using (3.40), shows that

KEP
l,m [J

W |Y
1 , 1](ZW , 0) = 0, KEP

l,m [1, J
Y |Y
1 ] = 0, (5.23)

which obviously finishes the proof.
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Proof of Theorem 1.5. First of all, remark that in Theorem 4.1.2, we already established that the

sequence of operators T
W |Y
p , p ≥ p1, from (5.7), forms a Toeplitz operator with weak exponential

decay with respect to X of type W |Y , and the identity [T
W |Y
p ]0 = 0 holds. From this, Theorem

4.1.6 and (5.8), we obtain that the sequence of operators Dp, p ∈ N, form a Toeplitz operator with

exponential decay of type X|Y , and the identity [Dp]0 = 0 holds. Similarly, we see that it suffices

to prove that under the assumption (1.11) and dvW = dvgTW , we have [T
W |Y
p ]1 = 0, [T

W |Y
p ]2 = 0,

the polynomial [T
W |Y
p ]3 has degree 1, and for any n ∈ (NW |Y )(1,0), we have

[TW |Y
p ]3 · n =

1

8π

∂

∂n

(

rX − rW
)

· IdF − 1

2π
√
−1

∇End(F )
n

(

Λω[R
F ]− Λι∗2ω[R

F ]
)

. (5.24)

Let us now establish all those statements. We assume in what follows (1.11) and dvW = dvgTW .

To simplify further presentation, we define f ∈ C ∞(W ), g ∈ C ∞(Y ), as follows

f :=
[ 1

pn−l
AX|W
p

]

1
, g :=

[ 1

pl−m
AW |Y
p

]

1
−

[ 1

pn−m
AX|Y
p

]

1
. (5.25)

Remark that both f and g take real values due to Theorem 5.1, cf. also Remark 5.4. From Theorem

5.1, we obtain the following identities

f = −g =
1

8π

(

rXy0 − rWy0

)

− 1

2π
√
−1

(

Λω[R
F ]− Λι∗2ω[R

F ]
)

. (5.26)

Clearly, from Lemmas 4.5 and 5.5, the sequences of operators TWp,1 := BW
p − ( 1

pn−l (A
X|W
p )∗)−1,

T Yp,2 := BY
p −( 1

pn−mA
X|Y
p )◦( 1

pl−mA
W |Y
p )−1, p ∈ N, form Toeplitz operators with exponential decay,

and we have

[TWp,1]0 = 0, [TWp,1]0 = f, [T Yp,2]0 = 0, [T Yp,2]0 = g. (5.27)

We now denote

T
W |Y
p,0 := TWf,p ◦ ResW ◦ EX|Y

p + ResW ◦ EX|Y
p ◦ T Yg,p. (5.28)

From Corollary 2.11, Lemma 5.5 and (5.27), we deduce that the Schwartz kernels T
W |Y
p (x, y),

T
W |Y
p,0 (x, y); x ∈ W , y ∈ Y , of T

W |Y
p , T

W |Y
p,0 , evaluated with respect to dvY , are related by

∣

∣

∣
TW |Y
p (x, y)− 1

p
T
W |Y
p,0 (x, y)

∣

∣

∣
≤ Cpm−2 · exp

(

− c
√
p · distX(x, y)

)

. (5.29)

From Lemmas 3.1, 5.6, 5.7 and (5.28), we see that there are polynomials J
W |Y
0,0 (ZW , Z

′
Y ),

J
X|Y
0,1 (ZW , Z

′
Y ), ZW = (ZY , ZNW |Y ), ZY , Z

′
Y ∈ R2m, verifying

J
W |Y
0,0 := J

W |Y
0,f · JW |Y

0,Res + J
W |Y
0,Res · J

Y |Y
0,g ,

J
W |Y
0,1 (ZW , 0) :=

1
∑

i=0

Kl,l[J
W |Y
i,f , J

W |Y
1−i,Res](ZW , 0) +

1
∑

i=0

KEP
l,m [J

W |Y
i,Res, J

Y |Y
1−i,g](ZW , 0),

(5.30)

such that for F
W |Y
0,r := J

W |Y
0,r ·Em,l, r = 0, 1, the following holds. There are ǫ, c, C,Q > 0, p1 ∈ N∗,

such that for any y0 ∈ Y , p ≥ p1, ZW ∈ R2l, |ZW |, |Z ′
Y | ≤ ǫ, the following bound holds
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∣

∣

∣

∣

1

pm
T
W |Y
p,0

(

ψW |Y
y0

(ZW ), φYy0(Z
′
Y )
)

−
1

∑

r=0

p−
r
2F

W |Y
0,r (

√
pZW ,

√
pZ ′

Y )κ
W |Y
ψ (ZW )−

1
2κYφ (Z

′
Y )

− 1
2

∣

∣

∣

∣

≤ Cp−1
(

1 +
√
p|ZW |+√

p|Z ′
Y |
)Q

exp
(

− c
√
p(|ZY − Z ′

Y |+ |ZNW |Y |)
)

. (5.31)

From Lemmas 5.6, 5.7, (3.40) and (5.30), we deduce that for ZW = (0, ZNW |Y ), ZNW |Y ∈ R2(l−m),

J
W |Y
0,0 := f + g, J

W |Y
0,1 (ZW , 0) := ∇End(F )

∂
∂zW

f. (5.32)

Now, from (5.29) and (5.31), we deduce that [T
W |Y
p ]1 = 0. Remark now that by (5.26), we

have f + g = 0. From this, (5.29), (5.31) and (5.32), we deduce that [T
W |Y
p ]2 = 0. Now, finally,

from (5.29), (5.31), (5.32) and the last part of Lemma 3.11, we deduce (5.24), which finishes the

proof as we explained before (5.24).

Let us now generalize Theorem 1.5 to the tower of embeddings of an arbitrary length. We fix

a tower of embeddings Y
ι1−֒→ W1

ι2−֒→ · · · ιr−֒→ Wr

ιr+1−֒−→ X , ι := ιr+1 ◦ · · · ◦ ι1, and volume forms

dvWi
on Wi, i = 1, . . . , r, verifying assumptions, similar to (1.6) with respect to the metric gTWi

induced by gTX . We assume that the triples (X,Wr, g
TX), · · · , (Wi+1,Wi, g

TWi+1), (W1, Y, g
TW1),

i = 1, . . . , r − 1, are of bounded geometry in the sense of Definition 2.4.

Corollary 5.8. The sequence of operators

Dp,r := EX|Y
p − EX|Wr

p ◦ EWr |Wr−1
p ◦ · · · ◦ EW2|W1

p ◦ EW1|Y
p , p ∈ N, (5.33)

forms a Toeplitz operator with exponential decay of type X|Y . Moreover, we have [Dp,r]0 = 0.

Also, under assumptions (1.11) and dvWi
= dvgTWi , i = 1, . . . r, we have [Dp,r]1 = 0, [Dp,r]2 = 0

and [Dp,r]3 ∈ C ∞
b (Y, (NX|Y )(1,0)∗ ⊗ End(ι∗F )) for n ∈ (NX|Y )(1,0), we have

[Dp,r]3 · n =
r

∑

i=1

{

1

8π

∂

∂ni
·
(

rWi+1 − rWi
)

+

√
−1

2π
∇End(F )
ni

(

Λ(ιi+1)∗ω[R
F ]− Λ(ιi)∗ω[R

F ]
)

}

, (5.34)

where we denoted Wr+1 := X,W0 := Y ; ιi : Wi → X is defined as ιi := ιr ◦ · · · ◦ ιi+1, and

ni := P
Wi|Wi−1

N n, i = 1, . . . , r.

Proof. Let us rewrite Dp,r in the following way

Dp,r := EX|Y
p − EX|Wr

p ◦ EWr|Y
p + EX|Wr

p ◦
(

EWr |Y
p − EWr|Wr−1

p ◦ · · · ◦ EW2|W1
p ◦ EW1|Y

p

)

. (5.35)

Now, the result follows directly from Theorems 1.5 and 4.1.6 by induction.

Proof of Theorem 1.1. It follows directly from Theorems 1.5, 1.6, Remark 1.7a) and Proposition

3.15.
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