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Abstract

Policy learning utilizing observational data is pivotal across various domains, with the objec-

tive of learning the optimal treatment assignment policy while adhering to specific constraints

such as fairness, budget, and simplicity. This study introduces a novel positivity-free (stochastic)

policy learning framework designed to address the challenges posed by the impracticality of the

positivity assumption in real-world scenarios. This framework leverages incremental propensity

score policies to adjust propensity score values instead of assigning fixed values to treatments.

We characterize these incremental propensity score policies and establish identification con-

ditions, employing semiparametric efficiency theory to propose efficient estimators capable of

achieving rapid convergence rates, even when integrated with advanced machine learning al-

gorithms. This paper provides a thorough exploration of the theoretical guarantees associated

with policy learning and validates the proposed framework’s finite-sample performance through

comprehensive numerical experiments, ensuring the identification of causal effects from obser-

vational data is both robust and reliable.
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1 Introduction

Over the past decade, methodologies for learning treatment assignment policies have seen substan-

tial advancements in fields like biostatistics [Luedtke and van der Laan, 2016b, Tsiatis et al., 2019],

computer science [Uehara et al., 2022, Yu et al., 2022], and econometrics [Athey and Wager, 2021,

Jia et al., 2023]. The core objective of data-driven policy learning is to learn optimal policies that

map individual characteristics to treatment assignments to optimize some utility or outcome func-

tions. This is crucial for deriving robust and trustworthy policies in high-stakes decision-making

settings, requiring adherence to standard causal assumptions: consistency, unconfoundedness, and

positivity [van der Laan et al., 2011, Imbens and Rubin, 2015].

Various statistical and machine-learning methods have been developed to address policy learn-

ing tasks. Popular approaches include model-based methods such as Q-learning and A-learning

[Murphy, 2003, Shi et al., 2018], and direct model-free policy search methods such as decision

trees and outcome weighted learning [Zhang et al., 2012, Cui et al., 2017], among others [Bibaut

et al., 2021, Zhou et al., 2023]. Another prevailing line of work concerns heterogeneous treatment

effects estimation [Wager and Athey, 2018, Künzel et al., 2019, Nie and Wager, 2021, Kallus and

Oprescu, 2023], where the sign of the conditional average treatment effects equivalently determines

the optimal policy.

However, most methods depend heavily on the three standard causal assumptions to identify

causal effects and optimal policies. Recent progress has been made to relax the consistency and

unconfoundedness assumptions [Cortez et al., 2022, Kallus and Zhou, 2018], but advancements

addressing the violation of the positivity assumption are scarce. Yang and Ding [2018] and Branson

et al. [2023] provide estimation and asymptotic inference results for propensity score trimming with

binary and continuous treatments. Lawrence et al. [2017] consider counterfactual learning from

deterministic bandit logs under lack of sufficient exploration. Gui and Veitch [2023] use supervised

representation learning to estimate causal effects for text data with apparent overlap violation.

Zhang et al. [2023] consider a missing-at-random mechanism without a positivity condition for

generalizable and double robust inference for average treatment effects under selection bias with

decaying overlap. Jin et al. [2022] use pessimism and generalized empirical Bernstein’s inequality

to study offline policy learning without assuming any uniform overlap condition. Khan et al.
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[2023] provide partial identification results for off-policy evaluation under non-parametric Lipschitz

smoothness assumptions on the conditional mean function, and thus avoid assuming either overlap

or a well-specified model. Liu et al. [2023] propose the overlap weighted average treatment effect

on the treated under lack of positivity. To our knowledge, our work is the first to consider learning

treatment assignment policies while avoiding the positivity assumption.

This study introduces a novel positivity-free policy learning framework focusing on dynamic

and stochastic policies, which are practical. We propose incremental propensity score policies that

shift propensity scores by an individualized parameter, requiring only the consistency and uncon-

foundedness causal assumptions. Our approach enhances the concept of incremental intervention

effects, as proposed by Kennedy [2019], adapting it to individual treatment policy contexts.

We also use semiparametric theory to characterize the efficient influence function [Bickel et al.,

1993, van der Laan and Robins, 2003], which serves as the foundation to construct estimators with

favorable properties, such as double/multiple robustness and asymptotically negligible second-order

bias (also called Neyman orthogonality in double machine learning [Chernozhukov et al., 2018] or

orthogonal statistical learning [Foster and Syrgkanis, 2023]). Thus, our proposed estimators can

attain fast parametric
√
n convergence rates, even when nuisance parameters are estimated at

slower rates such as n1/4 via flexible machine learning algorithms.

Based on the above efficient off-policy evaluation results, we propose approaches to learning the

optimal policy by maximizing the value function, possibly under application-specific constraints.

Several examples are provided in Section 4, including fairness and resource limit. While it remains

an open problem to provide finite sample or asymptotic regret bounds as Athey and Wager [2021]

for stochastic policy learning with constraints, which is out of the scope of this article, we estab-

lish asymptotic guarantees for our proposed policy learning methods under alternative (stronger)

conditions.

The rest of this article is organized as follows. Section 2 introduces the basic setup and notations

and proposes the incremental propensity score policy. Our main identification and semiparametric

efficiency theory results for off-policy evaluation are presented in Section 3. Section 4 formally

introduces our positivy-free policy learning framework, with several examples. Asymptotic analysis

of guarantees for policy evaluation and learning are given in Section 5. Finally, we illustrate our

methods via simulations and a data application in Section 6. The article concludes in Section 7
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with a discussion of some remarks and future work. All proofs and additional results are provided

in the Supplementary Material.

2 Statistical Framework

We first introduce the notations and setup. Let X denote the p-dimensional vector of covariates

that belongs to a covariate space X ⊂ Rp, A ∈ A = {0, 1} denote the binary treatment, Y ∈ R

denote the outcome of interest. Without loss of generality, we assume throughout that larger

values of Y are more desirable. Our observed data structure is O = (X,A, Y ). Suppose that our

collected random sample (O1, . . . , On) of size n are independent and identically distributed (i.i.d.)

observations of O ∼ P , where P denote the true distribution of the observed data.

Now, we are in the position to introduce different types of policies or interventions commonly

used in the literature: (i) under static policies, the same treatments would be applied indiscrimi-

nately, while dynamic policies depend on individual characteristics; (ii) deterministic policies rec-

ommend one specific treatment and stochastic policies output probabilities of prescribing each

treatment level. This article focuses on dynamic and stochastic policies, which are more prac-

tical in various settings and have received substantial recent interest. Typical examples include

point exposures [Dud́ık et al., 2014], longitudinal studies [Tian, 2008, Murphy et al., 2001, van der

Laan and Petersen, 2007], natural stochastic policies in reinforcement learning [Kallus and Uehara,

2020], and particularly interventions that depend on the observational treatment process [Muñoz

and van Der Laan, 2012, Haneuse and Rotnitzky, 2013, Young et al., 2014]; but none of the existing

intervention effects both avoids positivity conditions entirely and is completely nonparametric.

We use the potential outcomes framework [Neyman, 1923, Rubin, 1974] to define causal effects.

Let Y (a) denote the potential outcome had the treatment a been assigned. A policy d : X → {0, 1}

is deterministic if it maps individual characteristics x to a treatment assignment 0 or 1, and the

output of a stochastic policy d : X → [0, 1] is the probability of assigning treatment 1. Let D

denote a pre-specified class of policies of interest, where each policy d ∈ D induces the value

function defined by

V (d) = E[Y (d)] = E[Y (1)d(X) + Y (0)(1− d(X))],
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where Y (d) is the potential outcome under the policy d. In Remark 1, we briefly review standard

(deterministic) policy learning methods. In our framework, we focus on dynamic and stochastic

policies. Our goal is to directly search for the optimal policy d∗ that maximizes the value function

V (d), possibly under application-specific constraints c(d) ≤ 0. See Section 4 for detailed examples.

2.1 Causal Assumptions

We make the following identification assumptions.

Assumption 1 (Consistency). Y = Y (A).

Assumption 2 (Unconfoundedness). A ⊥ Y (a) | X for a = 0, 1.

Assumption 1 is also known as the stable unit treatment value assumption, which says there

should be no multiple versions of the treatment and no interference between units. Assumption 2

states that there are no unmeasured confounders so that treatment assignment is as good as random

conditional on the covariates X. In this article, we entirely avoid the positivity assumption which

requires that each unit has a positive probability of receiving both treatment levels, i.e., c < Pr(A =

1 | X) < 1− c for some constant c > 0.

Remark 1. Standard policy learning methods need all of Assumptions 1, 2 and the positivity

assumption to identify the value function of deterministic policies d : X → A by the outcome

regression (OR), inverse probability weighting (IPW) and augmented IPW (AIPW) formulas:

VOR(d) = E[E[Y | X,A = d(X)]], VIPW(d) = E

[
I{A = d(X)}Y

Pr(A = d(X) | X)

]
,

VAIPW(d) = E

[
E[Y | X,A = d(X)] +

I{A = d(X)}(Y − E[Y | X,A = d(X)])

Pr(A = d(X) | X)

]
,

thus the optimal policies are given by d∗OR = argmaxd∈D VOR(d), d
∗
IPW = argmaxd∈D VIPW(d),

and d∗AIPW = argmaxd∈D VAIPW(d), possibly under application-specific constraints. When the

positivity is violated, it is error-prone to rely on the outcome regression model’s extrapolation, and

the IPW and AIPW estimators would fail due to division by zero.

2.2 Incremental Propensity Score Policies

Kennedy [2019] propose a new class of stochastic dynamic intervention, called incremental propen-
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sity score interventions, and show that these interventions are nonparametrically identified without

requiring any positivity restrictions on the propensity scores. Specifically, their proposed interven-

tion replaces the observational propensity score π with a shifted version based on multiplying the

odds of receiving treatment, δπ(x)/{δπ(x) + 1− π(x)}, where the increment parameter δ ∈ (0,∞)

is user-specified and dictates the extent to which the propensity scores fluctuate from their actual

observational values. Some motivation and examples, efficiency theory, and estimators for mean

outcomes under these interventions are studied in detail by Kennedy [2019].

We propose a positivity-free (stochastic) policy learning framework based on the incremental

propensity score interventions. Specifically, we consider the stochastic policy d : X → [0, 1] that

assigns treatment 1 with probability

d(x) =
δ(x)π(x)

δ(x)π(x) + 1− π(x)
, (1)

where δ(x) enables individualized treatment assignment. We note that the choice of d(x) in (1)

is motivated by its interpretability and positivity-free. In particular, whenever 0 < π(x) < 1,

δ(x) = [d(x)/{1− d(x)}]/[π(x)/{1 − π(x)}] is simply an odds ratio, indicating how the policy

changes the odds of receiving treatment. When positivity is violated, we have that d(x) = 0 if

π(x) = 0, and d(x) = 1 if π(x) = 1.

3 Identification and Efficiency Theory

3.1 Identification

We first give formal identification results for the value function of incremental propensity score

policies, which require no conditions on the propensity scores.

Proposition 1 (Identification formulas). Under Assumptions 1 and 2, the value function V (d)

can be nonparametrically identified by the outcome regression with incremental propensity score

(OR-IPS) formula:

VOR−IPS(d) = E

[
δ(X)π(X)µ1(X) + {1− π(X)}µ0(X)

δ(X)π(X) + 1− π(X)

]
, (2)
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where µa(X) = E[Y | X,A = a], a = 0, 1 are the outcome regression functions or the inverse

probability weighting of incremental propensity score (IPW-IPS) formula:

VIPW−IPS(d) = E

[
Y {δ(X)A+ 1−A}

δ(X)π(X) + 1− π(X)

]
. (3)

Proposition 1 shows that the value function can be identified by (i) a weighted average of the

outcome regression functions µ0, µ1, where the weight on µ1 is given by the incremental propensity

score d(x) and the weight on µ0 is 1− d(x); (ii) inverse probability weighting where each treated is

weighted by the (inverse of the) propensity score plus some fractional contribution of its comple-

ment, i.e., π(x) + (1− π(x))/δ(x), and untreated units are weighted by this same amount, except

the entire weight is further down-weighted by a factor of δ(x).

3.2 Efficient Off-policy Evaluation

Despite that simple plug-in OR-IPS and IPW-IPS estimators can be easily constructed from (2)

and (3), these estimators will only be
√
n-consistent when the outcome regression or propensity

score models are correctly specified. This is usually unrealistic in practice. We use semiparametric

efficiency theory to study the following statistical functional of P from a nonparametric statistical

model M:

Ψ(P ) = V (d) = EP

[
δ(X)π(X)µ1(X) + {1− π(X)}µ0(X)

δ(X)π(X) + 1− π(X)

]
,

and propose efficient estimators based on the efficient influence function.

Proposition 2 (Semiparametric Efficiency). The efficient influence function of Ψ(P ) is

ϕ(P )(O) =
Aδ(X){Y − µ1(X)}+ (1−A){Y − µ0(X)}+ δ(X)π(X)µ1(X) + {1− π(X)}µ0(X)

δ(X)π(X) + 1− π(X)

+
δ(X)τ(X){A− π(X)}

{δ(X)π(X) + 1− π(X)}2
−Ψ(P ),

(4)

where τ(x) = µ1(x)− µ0(x).
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By Proposition 2, the one-step bias-corrected estimator is given by

Ψ̂OS = Ψ(P̂ ) + Pnϕ(P̂ )(O) =
1

n

n∑
i=1

ξ(P̂ )(Oi), (5)

where we estimate P by P̂ , and let Pn denote the empirical distribution, and ξ(P )(O) = ϕ(P )(O)+

Ψ(P ) is the uncentered efficient influence function. This estimator can converge at fast paramet-

ric
√
n rates and attain the efficiency bound, even when the propensity score π(x) and outcome

regression functions µ0, µ1 are modeled flexibly and estimated at rates slower than
√
n, as long

as these nuisance functions are estimated consistently at rates faster than n1/4. This allows much

more flexible nonparametric methods and modern machine learning algorithms to be employed.

However, characterizing asymptotic properties of the estimator (5) requires some empirical

process conditions that restrict the flexibility and complexity of the nuisance estimators; otherwise,

we will have overfitting bias and intractable asymptotic behaviors. See the asymptotic analysis in

Section 5 and proofs thereof. To accommodate the wide use of modern machine learning algorithms

that usually fail to satisfy the required empirical process conditions, we apply the cross-fitting

procedure to obtain asymptotically normal and efficient estimators [Zheng and van der Laan, 2010,

Chernozhukov et al., 2018]. Suppose we randomly split the data into K folds. Then the cross-fitting

estimator is

Ψ̂CF =
1

K

K∑
k=1

Ψ̂k =
1

K

K∑
k=1

Pn,kξ(Pn,−k)(O), (6)

where Pn,k and Pn,−k denote the empirical measures on data from the k-fold and excluding the

k-fold, respectively. That is, for k = 1, . . . ,K, nuisance estimators are constructed excluding the

k-fold, and the value function Ψ̂k is evaluated on the k-th fold; finally, the cross-fitting estimator

is the average of the K value estimators from K folds.

4 From Efficient Policy Evaluation to Learning

In this section, we first present our proposed methods for policy learning.

As discussed in Section 2, given a pre-specified policy class D (e.g., linear decision rules), we

propose estimating the optimal treatment assignment rule d̂ that solves (i) d̂ = argmaxd∈D V̂ (d),

where V̂ (d) is a value function estimator by OR-IPS (2), IPW-IPS (3), one-step (5) or cross-fitting
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(6); or (ii) d̂ = argmaxd∈D V̂ (d) subject to ĉ(d) ≤ c, when an application-specific constraint c(d) ≤ c

is imposed, and ĉ(d) is a constraint estimator which usually needs to be studied on a case-by-case

basis.

We first review important examples of policy learning that fit into our framework.

Vanilla direct policy search. The first example is what most existing work on policy learning

has focused on, primarily for deterministic policies with a binary treatment. When the policy

class is unrestricted, the optimal treatment assignment rule depends on the sign of the conditional

average treatment effect for each individual unit, which cannot be extended to stochastic policies.

Our proposed optimal incremental propensity score policies maximize the value function.

Fair policy learning. In many decision-making scenarios, such as hiring, recommendation sys-

tems, and criminal justice, concerns have been raised regarding the fairness of decisions from the

learning process [Chzhen et al., 2020]. Let S ∈ S denote the sensitive attribute. For randomized

predictions f : X ×S → ∆(A), popular fairness criteria include demographic parity (DP) [Calders

et al., 2009]:

E[f(X,S) | S = s] = E[f(X,S) | S = s′], ∀s, s′ ∈ S, (7)

which says that f(X,S) is independent from S, or equal opportunity (EO) [Hardt et al., 2016]:

E[f(X,S) | S = s,A = a] = E[f(X,S) | S = s′, A = a], ∀s, s′ ∈ S, a ∈ A, (8)

which requires equal true positive and true negative rates. Following the same spirit, we consider

fair policy learning tasks as the constrained optimization problem:

max
d∈D

V (d), subject to f(d) ≤ b,

where f(d) is either the DP or EO metrics, which can be estimated by

f̂DP(d) =

(∑
s∈S

(∑n
i=1 d(Xi)I{Si = s}∑n

i=1 I{Si = s}
−
∑n

i=1 d(Xi)

n

)2
)1/2

,

or

f̂EO(d) =

(∑
s∈S

(∑n
i=1 d(Xi)I{Si = s,Ai = 1}∑n

i=1 I{Si = s,Ai = 1}
−
∑n

i=1 d(Xi)I{Ai = 1}∑n
i=1 I{Ai = 1}

)2
)1/2

,
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and b is a pre-specified tuning parameter.

Resource-limited policy learning. In many real-world applications, the proportion of individ-

uals who can receive the treatment is a priori limited due to a budget or a capacity constraint. So

we consider the resource-limited policy learning tasks as the constrained optimization problem:

max
d∈D

V (d), subject to E[d] ≤ b,

where b is the pre-specified budget or capacity.

Protect the vulnerable. Since the optimal policy is typically defined as the maximizer of the

expected potential outcome over the entire population, such a policy may be suboptimal or even

detrimental to certain disadvantaged subgroups. Fang et al. [2022] propose the fairness-oriented

optimal policy learning framework:

max
d∈D

V (d), subject to Qτ (Y (d)) ≥ b,

where Qτ (Y (d)) = inf{t : FY (d)(t) ≥ τ} is the τ -th quantile of Y (d), FY (d) denotes the cumulative

distribution function of Y (d), and b is a pre-specified protection threshold. Note that the quantile

function can be estimated by Q̂τ (Y (d)) = argminq n
−1
∑n

i=1 ci(d)ρτ (Yi − q), where ρτ (u) = u(τ −

I{u < 0}) is the quantile loss function, and ci(d) = Aid(Xi) + (1−Ai)(1− d(Xi)).

Other examples in the literature include the counterfactual no-harm criterion by the principal

stratification method [Li et al., 2023], (weakly) NP-hard knapsack problem [Luedtke and van der

Laan, 2016a], and instrumental variable methods [Qiu et al., 2021].

5 Asymptotic Analysis of Policy Evaluation and Learning

In this section, we first characterize the asymptotic distributions of our proposed one-step estima-

tor (5) and the cross-fitted estimator (6) for off-policy evaluation.

Theorem 1. Assume the following conditions hold: (i) ∥π̂(x)−π(x)∥L2 = op(n
−1/4), ∥µ̂a−µa∥L2 =

op(n
−1/4) for a = 0, 1; (ii) ϕ(P ) belongs to a Donsker class; (iii) |Y | and |δ(X)| are bounded in

probability. For the one-step estimator, we have that
√
n(Ψ̂OS −Ψ(P )) → N (0, E[ϕ2]).
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Theorem 2. Assume the following conditions hold: (i) ∥π̂(x)−π(x)∥L2 = op(n
−1/4), ∥µ̂a−µa∥L2 =

op(n
−1/4) for a = 0, 1; (ii) |Y | and |δ(X)| are bounded in probability. For the cross-fitting estimator,

we have that
√
n(Ψ̂CF −Ψ(P )) → N (0, E[ϕ2]).

Condition (i) of Theorems 1 and 2 is commonly assumed such that the second-order remainder

term is op(1) [Kennedy, 2022]. Condition (ii) of Theorems 1 ensures the centered empirical process

term is op(1). Condition (iii) of Theorems 1 and condition (ii) of Theorems 2 are mild regularity

conditions. The asymptotic variance of the one-step estimator can be consistently estimated by

1
n

∑n
i=1 ϕ

2(P̂ )(Oi), and the asymptotic variance of the cross-fitting estimator can be consistently

estimated by 1
K

∑K
k=1 Pn,kϕ

2(P̂−k)(O).

Next, we prove asymptotic guarantees for the following generic off-policy learning problem:

max
d∈D

V̂ (d), subject to ĉ(d) ≤ c,

where V̂ (d) is a value estimator of our proposed incremental propensity score policies, ĉ(d) is an

estimate of the constraint, and c is a pre-specified criterion.

Consider a parametric policy class D(H) indexed by η ∈ H, where H is a compact set. Let

η∗ denote the true Euclidean parameter indexing the optimal policy. To simplify the notation, for

d(x; η) ∈ D(H), we define V (η) = V (d(x; η)) and c(η) = c(d(x; η)).

Theorem 3. Assume the following conditions hold: (i) d(x; η) is a continuously differentiable and

convex function with respect to η; (ii) V̂ (η) and ĉ(η) converge to V (η) and c(η) at rates
√
n. We

have that (i) V (η̂)− V (η∗) = Op(n
−1/2); (ii) V̂ (η̂)− V (η∗) = Op(n

−1/2).

Theorem 4. Assume the following conditions hold: (i) D is a Glivenko–Cantelli class; (ii) π̂(x) and

µ̂a(x) are uniformly consistent estimators of π(x) and µa(x) for a = 0, 1; (iii) ∀d ∈ D, m ∈ (0, 1),

it follows that md ∈ D. We have that (i) V (d̂)− V (d) = op(1); (ii) V̂ (d̂)− V (d) = op(1).

Theorem 3 (i) establishes that the regret of the learned policy attains the convergence rate

of n−1/2, and (ii) shows that V̂ (η̂) is a
√
n-consistent estimator of the optimal value function for

parametric and convex policy classes under mild assumptions. Theorem 4 (i) establishes that the

regret of the learned policy vanishes, and (ii) shows V̂ (η̂) is still a consistent estimator for GC

classes.
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6 Experiments

In this section, we conduct extensive experiments to evaluate the performance of our proposed

positivity-free policy learning methods by comparison with standard policy learning methods.

Replication code is available at GitHub.

6.1 Simulation

We consider the fair policy learning task under the demographic parity constraint and simulate

S ∼ Bernoulli(0.5), (X1, X2, X3) ∼ Uniform(0, 1),

A ∼ Bernoulli(expit(−1−X1 + 1.5X2 − 0.25X3 − 3.1S)),

Y (0) ∼ N{20(1 +X1 −X2 +X2
3 + exp (X2)), 20

2},

Y (1) ∼ N{20(1 +X1 −X2 +X2
3 + exp (X2)) + 25(3− 5X1 + 2X2 − 3X3 + S), 202},

where expit : x 7→ 1/(1 + exp (−x)). We let S denote the sensitive attribute and X1, X2, X3 the

common non-sensitive attributes. The treatment assignment mechanism yields variable propensity

scores that can degrade the performance of weighting-based estimators in standard policy learning

methods. For standard methods, we consider the policy class of linear rules Dlinear = {d(s, x) =

I{(1, s, x1, x2, x3)β > 0} : β ∈ R5, ∥β∥2 = 1}. For the incremental propensity score policies, we

consider the class DIPS = {d(s, x) = δ(s, x;β)π(s, x)/{δ(s, x;β)π(s, x) + 1 − π(s, x)} : β ∈ R5},

which is indexed by δ(s, x;β) = exp {(1, s, x1, x2, x3)β}.

We estimate the outcome regression model µ(s, x) and the propensity score π(s, x) using the

generalized random forests [Athey et al., 2019] implemented in the R package grf. The constrained

optimization problems are solved by the derivative-free linear approximations algorithm [Powell,

1994], implemented in the R package nloptr. The sample size is n = 1000, and the demographic

parity threshold is τ = 0.01.

We compare the true values of the estimated optimal policies using test data with sample size

N = 105. The true optimal value is approximated using the test data. Simulation results of

100 Monte Carlo repetition are reported in Figure 1a. When some estimated propensity scores

are exactly 0, the IPW and AIPW estimators would fail, and NA is returned. Three standard
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methods IPW, OR, and AIPW have the worst performance. The IPW-IPS estimator also has

large variability, which is similarly reported in Kennedy [2019]. The OR-IPS and efficient one-step

estimators achieve the best performance with the highest value.
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(a) Simulations.

IPW OR AIPW IPW−IPS OR−IPS One−step

70
80

90
10

0
11

0
12

0
13

0
14

0

Tr
ue

 v
al

ue

(b) Diabetes data application.

Figure 1: Performance of optimal policies under three standard methods (IPW, OR, AIPW) and
our proposed three methods (IPW-IPS, OR-IPS, One-step). The blue line is the (approximate)
true optimal value.

Additional simulation results are given in Section G of the Supplementary Material. Specifically,

we illustrate that our proposed policy learning methods have comparable performance when there

is no positivity violation, and also illustrate the better performance of our proposed methods when

using parametric models.

6.2 Data application

We illustrate our proposed methods using semi-synthetic data from the Fairlearn open source

project [Weerts et al., 2023]. Additional information on our data analysis is provided in Section H

of the Supplementary Material.

The Diabetes dataset represents ten years (1999-2008) of clinical care at 130 US hospitals and

integrated delivery networks [Strack et al., 2014], and contains hospital records of patients diagnosed

with diabetes who underwent laboratory tests and medications and stayed up to 14 days. Our

application aims to learn the optimal policy for prescribing diabetic medication by maximizing the

expected outcome under the demographic parity constraint. The sensitive attribute is race, and a

violation of positivity exists in the data.
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We include 7 baseline covariates: race, gender, age, time in hospital (number of days be-

tween admission and discharge), num lab procedures (number of lab tests performed during the en-

counter), num medications (number of distinct generic names administered during the encounter)

and number diagnoses (number of diagnoses). Under positivity violation, we are unable to identify

the value function, e.g. relying on the outcome regression’s extrapolation to learn the counterfactual

outcomes on test data. Thus the potential outcomes are simulated as follows: Y (0) ∼ N{20(1 +

gender−age+time in hospital+num lab procedures+num medications+num medications2+

exp (number diagnoses)), 202}, and Y (1) ∼ N{20(1+gender−age+time in hospital+num lab procedures+

num medications+num medications2+exp (number diagnoses))+25(3−5age+2time in hospital−

3num medications+race), 202}. The estimation setup and policy classes are the same as previous

simulations. We run 50 repetitions; each time we randomly select 500 patients as training data

to learn the optimal policy and 2000 patients as test data to evaluate the performance. Empirical

results are reported in Figure 1b. When the positivity violation is severer, the IPW estimator has

extremely large variability, and we also observe that our proposed methods perform consistently

better than the standard methods.

7 Discussion

This article proposes a general positivity-free stochastic policy learning framework using obser-

vational data, possibly subject to application-specific constraints. There are several interesting

directions for future research. It is relevant to extend our methods to the more general case with

multiple time points for treatment assignment, multiple treatment levels, or high-dimensional mod-

els [Wei et al., 2023], where positivity is even more likely to be violated. The incremental propensity

score approach can also be extended to account for common issues such as covariate shift [Zhao

et al., 2023, Lei et al., 2023], censoring and dropout [Cui et al., 2023], and truncation by death

[Chu et al., 2023].
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SUPPLEMENTARY MATERIAL

A Proof of Proposition 1

The proof of our identification results is straightforward, following similar arguments in Kennedy

[2019]. First, we prove the OR-IPS formula:

V (d) = E[Y (d)]

= E[Y (1)d(X) + Y (0)(1− d(X))]

= E[E[Y (1)d(X) + Y (0)(1− d(X)) | X]]

= E[d(X)E[Y (1) | X] + (1− d(X))E[Y (0) | X]]

= E[d(X)E[Y | X,A = 1] + (1− d(X))E[Y | X,A = 0]]

= E

[
δ(X)π(X)

δ(X)π(X) + 1− π(X)
µ1(X) +

1− π(X)

δ(X)π(X) + 1− π(X)
µ0(X)

]
= E

[
δ(X)π(X)µ1(X) + {1− π(X)}µ0(X)

δ(X)π(X) + 1− π(X)

]
.

Next, we prove the IPW-IPS formula:

E

[
Y {δ(X)A+ 1−A}

δ(X)π(X) + 1− π(X)

]
= E

[
Y Aδ(X)

δ(X)π(X) + 1− π(X)
+

Y (1−A)

δ(X)π(X) + 1− π(X)

]
= E

[
Y (1)Aδ(X)

δ(X)π(X) + 1− π(X)
+

Y (0)(1−A)

δ(X)π(X) + 1− π(X)

]
= E

[
E

[
Y (1)Aδ(X)

δ(X)π(X) + 1− π(X)
+

Y (0)(1−A)

δ(X)π(X) + 1− π(X)
| X
]]

= E

[
E[Y (1)A | X]δ(X)

δ(X)π(X) + 1− π(X)
+

E[Y (0)(1−A) | X]

δ(X)π(X) + 1− π(X)

]
= E

[
Y (1)

E[A | X]δ(X)

δ(X)π(X) + 1− π(X)
+ Y (0)

E[(1−A) | X]

δ(X)π(X) + 1− π(X)

]
= E[E[Y (1)d(X) + Y (0)(1− d(X)) | X]]

= V (d).
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B Proof of Proposition 2

We derive the efficient influence function for the following statistical functional:

Ψ(P ) = EP

[
δ(X)π(X)µ1(X) + {1− π(X)}µ0(X)

δ(X)π(X) + 1− π(X)

]
.

For a given distribution P in the nonparametric statistical model M, we let p denote the

density of P with respect to some dominating measure ν. For all bounded h ∈ L2(P ), define the

parametric submodel pϵ = (1+ ϵh)p, which is valid for small enough ϵ and has score h at ϵ = 0. We

would establish that Ψ(P ) is pathwise differentiable with respect to M at P with efficient influence

function ϕ(P ) if we have that for any P ∈ M,

∂

∂ϵ
Ψ(Pϵ)

∣∣∣∣
ϵ=0

=

∫
ϕ(P )(o)h(o)dP (o).

We denote πϵ(x) = EPϵ [A | X = x], µa,ϵ(x) = EPϵ [Y | X = x,A = a], S = ∂ log pϵ/∂ϵ, and can

compute

∂

∂ϵ
Ψ(Pϵ)

∣∣∣∣
ϵ=0

=
∂

∂ϵ
EPϵ

[
δ(X)πϵ(X)µ1,ϵ(X) + {1− πϵ(X)}µ0,ϵ(X)

δ(X)πϵ(X) + 1− πϵ(X)

] ∣∣∣∣
ϵ=0

=
∂

∂ϵ
EP

[
(1 + ϵS)

δ(X)πϵ(X)µ1,ϵ(X) + {1− πϵ(X)}µ0,ϵ(X)

δ(X)πϵ(X) + 1− πϵ(X)

] ∣∣∣∣
ϵ=0

= EP

[
S
δ(X)π(X)µ1(X) + {1− π(X)}µ0(X)

δ(X)π(X) + 1− π(X)

]
+ EP

[
1

δ(X)π(X) + 1− π(X)

(
π(X)

∂

∂ϵ
µ1,ϵ(X)

∣∣∣∣
ϵ=0

+ µ1(X)
∂

∂ϵ
πϵ(X)

∣∣∣∣
ϵ=0

)]
+ EP

[
1

δ(X)π(X) + 1− π(X)

(
{1− π(X)} ∂

∂ϵ
µ0,ϵ(X)

∣∣∣∣
ϵ=0

− µ0(X)
∂

∂ϵ
πϵ(X)

∣∣∣∣
ϵ=0

)]
− EP

[
δ(X)π(X)µ1(X) + {1− π(X)}µ0(X)

{δ(X)π(X) + 1− π(X)}2

(
δ(X)

∂

∂ϵ
πϵ(X)

∣∣∣∣
ϵ=0

− ∂

∂ϵ
πϵ(X)

∣∣∣∣
ϵ=0

)]
.

Then we need to compute

∂

∂ϵ
πϵ(X)

∣∣∣∣
ϵ=0

=
∂

∂ϵ

π(X) + ϵEP [SA | X]

1 + ϵEP [S | X]

∣∣∣∣
ϵ=0

= EP [SA | X]− π(X)EP [S | X]

= EP [S(A− π(X)) | X],
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and for a = 0, 1,

∂

∂ϵ
µa,ϵ(X)

∣∣∣∣
ϵ=0

=
∂

∂ϵ

µa(X) + ϵEP [SY | X,A = a]

1 + ϵEP [S | X,A = a]

∣∣∣∣
ϵ=0

= EP [SY | X,A = a]− µa(X)EP [S | X,A = a]

= EP [S(Y − µa(X)) | X,A = a].

Combining the above derivations, we obtain that

ϕ(P )(O) =
Aδ(X){Y − µ1(X)}+ (1−A){Y − µ0(X)}+ δ(X)π(X)µ1(X) + {1− π(X)}µ0(X)

δ(X)π(X) + 1− π(X)

+
δ(X)τ(X){A− π(X)}

{δ(X)π(X) + 1− π(X)}2
−Ψ(P ),

which yields the result.

C Proof of Theorem 1

We first outline the inferential strategy from semiparametric theory. Consider a statistical modelM

for distributions P̃ , with P denoting the true distribution. Under sufficient smoothness conditions,

we have the following von Mises expansion for Ψ(P̃ ):

Ψ(P̃ ) = Ψ(P )−
∫

ϕ(P̃ )(o)dP (o) + Rem(P̃ , P ),

where ϕ(P ) is the influence function derived in Section B such that
∫
ϕ(P )(o)dP (o) = 0, and

Rem(P̃ , P ) = O(∥P̃ − P∥2) is a second-order reminder term that we will analyze later.

Let P̂ be an estimator of P , then we obtain the following one-step estimator of Ψ(P ):

Ψ̂ = Ψ(P̂ ) +

∫
ϕ(P̂ )(o)dPn(o),

where Pn is the empirical distribution.
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Next, we characterize the asymptotic properties of Ψ̂. Note that

Ψ̂−Ψ(P ) =

{
Ψ(P̂ ) +

∫
ϕ(P̂ )(o)dPn(o)

}
−Ψ(P )

=
{
Ψ(P̂ )−Ψ(P )

}
+

∫
ϕ(P̂ )(o)dPn(o)

= −
∫

ϕ(P̂ )(o)dP (o) + Rem(P̂ , P ) +

∫
ϕ(P̂ )(o)dPn(o)

=

∫
ϕ(P̂ )(o)d {Pn(o)− P (o)}+Rem(P̂ , P )

=

∫
ϕ(P )(o)dPn(o) +

∫ {
ϕ(P̂ )(o)− ϕ(P )(o)

}
d {Pn(o)− P (o)}+Rem(P̂ , P ).

Therefore,
√
n
{
Ψ̂−Ψ(P )

}
is expressed as the following three terms:

√
n
{
Ψ̂−Ψ(P )

}
=

√
n

∫
ϕ(P )(o)dPn(o)

+
√
n

∫ {
ϕ(P̂ )(o)− ϕ(P )(o)

}
d {Pn(o)− P (o)}

+
√
nRem(P̂ , P ).

By the central limit theorem,
√
n
∫
ϕ(P )(o)dPn(o) is asymptotically normal with the asymptotic

variance given by E[ϕ2(P )(O)].

We assume that ϕ(P ) belongs to a Donsker class, so we have that the centered empirical process

√
n

∫ {
ϕ(P̂ )(o)− ϕ(P )(o)

}
d {Pn(o)− P (o)} = op(1).

Finally, we characterize the second-order remainder term:

Rem(P̂ , P ) = Ψ(P̂ )−Ψ(P ) + EP [ϕ(P̂ )(O)].

We have that

Ψ(P ) = EP

[
δ(X)π(X)µ1(X) + {1− π(X)}µ0(X)

δ(X)π(X) + 1− π(X)

]
,
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and

EP [ϕ(P̂ )(O)]

= EP

[
Aδ(X){Y − µ̂1(X)}+ (1−A){Y − µ̂0(X)}+ δ(X)π̂(X)µ̂1(X) + {1− π̂(X)}µ̂0(X)

δ(X)π̂(X) + 1− π̂(X)

+
δ(X)τ̂(X){A− π̂(X)}

{δ(X)π̂(X) + 1− π̂(X)}2

]
−Ψ(P̂ ).

Combining the derivations above, we have that

∣∣∣Rem(P̂ , P )
∣∣∣ ≤ Ĉ1∥µ̂1(X)− µ1(X)∥L2 × ∥π̂(X)− π(X)∥L2

+ Ĉ2∥µ̂0(X)− µ0(X)∥L2 × ∥π̂(X)− π(X)∥L2

+ Ĉ3∥π̂(X)− π(X)∥2L2
,

where Ĉ1, Ĉ2 and Ĉ3 are Op(1). We assume that ∥π̂(x)− π(x)∥L2 = op(n
−1/4), and ∥µ̂a − µa∥L2 =

op(n
−1/4) for a = 0, 1. Therefore, we have that

√
nRem(P̂ , P ) = op(1). That is, we conclude that

√
n
{
Ψ̂−Ψ(P )

}
→ N (0, E[ϕ2(P )(O)]),

which completes the proof.

D Proof of Theorem 2

Essentially, we need to prove that the centered empirical process is op(1), when we avoid Donsker

conditions by using the cross-fitting technique. We first review a useful lemma from Kennedy et al.

[2020].

Lemma 1. Consider two independent samples O1 = (O1, . . . , On) and O2 = (On+1, . . . , ON ) drawn

from the distribution P. Let f̂(o) be a function estimated from O2, and Pn the empirical measure

over O1, then we have

(Pn − P)(f̂ − f) = OP

(
∥f̂ − f∥√

n

)
.
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Proof. First note that by conditioning on O2, we obtain that

E
{
Pn(f̂ − f)

∣∣O2

}
= E(f̂ − f | O2) = P(f̂ − f),

and the conditional variance is

var{(Pn − P)(f̂ − f) | O2} = var{Pn(f̂ − f) | O2} =
1

n
var(f̂ − f | O2) ≤ ∥f̂ − f∥2/n,

therefore by the Chebyshev’s inequality we have that

P

{
|(Pn − P)(f̂ − f)|

∥f̂ − f∥2/n
≥ t

}
= E

[
P

{
|(Pn − P)(f̂ − f)|

∥f̂ − f∥2/n
≥ t

∣∣∣∣O2

}]
≤ 1

t2
,

thus for any ϵ > 0 we can pick t = 1/
√
ϵ so that the probability above is no more than ϵ, which

yields the result.

Next, we characterize the asymptotic properties of the cross-fitted estimator Ψ̂CF. Following

similar steps as Section C, we have that

√
n
{
Ψ̂CF −Ψ(P )

}
=

√
n

∫
ϕ(P )(o)dPn(o) +

1√
K

K∑
k=1

√
nk(Rk,1 +Rk,2),

where Rk,1 =
∫ {

ϕ(P̂−k)(o)− ϕ(P )(o)
}
d {Pn,k(o)− P (o)}, Rk,2 = Rem(P̂−k, P ).

We note that

Rk,1 =

∫ {
ϕ(P̂−k)(o)− ϕ(P )(o)

}
d {Pn,k(o)− P (o)}

=

∫ {
ξ(P̂−k)(o)− ξ(P )(o)

}
d {Pn,k(o)− P (o)} ,

where ξ(P )(o) = ϕ(P )(o) + Ψ(P ), and by Lemma 1, we have that

√
nkRk,1 = Op

(
∥ξ(P̂−k)− ξ(P )∥L2

)
.
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Note that

ξ(P̂−k)(O)− ξ(P )(O)

=
Aδ(X){Y − µ1(X)}+ (1−A){Y − µ0(X)}

δ(X)π(X) + 1− π(X)
− Aδ(X){Y − µ1(X)}+ (1−A){Y − µ0(X)}

δ(X)π(X) + 1− π(X)

+
δ(X)π(X)µ1(X) + {1− π(X)}µ0(X)

δ(X)π(X) + 1− π(X)
− δ(X)π(X)µ1(X) + {1− π(X)}µ0(X)

δ(X)π(X) + 1− π(X)

+
δ(X)τ(X){A− π(X)}

{δ(X)π(X) + 1− π(X)}2
− δ(X)τ(X){A− π(X)}

{δ(X)π(X) + 1− π(X)}2
,

and we assume that |Y | and |δ(X)| are bounded in probability. By the triangle and Cauchy-Schwarz

inequalities, we have that

∥ξ(P̂−k)− ξ(P )∥L2 ≤ Ĉ1,−k∥µ̂0,−k(X)− µ0(X)∥L2 + Ĉ2,−k∥µ̂1,−k(X)− µ1(X)∥L2

+ Ĉ3,−k∥π̂−k(X)− π(X)∥L2

where Ĉ1,−k, Ĉ2,−k and Ĉ3,−k are Op(1). We assume that ∥π̂(x) − π(x)∥L2 = op(n
−1/4), and

∥µ̂a − µa∥L2 = op(n
−1/4) for a = 0, 1. Therefore, we have that

√
nkRk,1 = op(1).

By the same arguments as Section C, we have that
√
nkRk,2 = op(1). That is, we conclude that

√
n
{
Ψ̂CF −Ψ(P )

}
→ N (0, E[ϕ2(P )(O)]),

which completes the proof.

E Proof of Theorem 3

In this section, we consider a parametric policy class D(H) indexed by η ∈ H. That is, the off-policy

learning task is given by the following optimization problem:

η∗ = argmax
η∈H

V (η),

subject to c(η) ≤ 0,
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and the estimated policy is given by

η̂ = argmax
η∈H

V̂ (η),

subject to ĉ(η) ≤ 0.

We first review a useful lemma from Shapiro [1991].

Lemma 2. Let H be a compact subset of Rk. Let C(H) denote the set of continuous real-valued

functions on H, with L = C(H) × · · · × C(H) the r-dimensional Cartesian product. Let f(η) =

(f0, . . . , fr) ∈ L be a vector of convex functions. Consider the quantity η∗ defined as the solution

to the following convex optimization program:

η∗ =argmin
η∈H

f0(η),

subject to fj(η) ≤ 0, j = 1, . . . , r.

Assume that Slater’s condition holds, so that there is some η ∈ H for which the inequalities are

satisfied and non-affine inequalities are strictly satisfied, i.e. fj(η) < 0 if fj(η) is non-affine. Now

consider a sequence of approximating programs, for n = 1, 2, . . .:

η̂n =argmin
η∈H

f̂n,0(η),

subject to f̂n,j(η) ≤ 0, j = 1, . . . , r,

with f̂n(η) =
(
f̂n,0, . . . , f̂n,r

)
∈ L. Assume that r(n)

(
f̂n − f

)
converges in distribution to a random

element W ∈ L for some real-valued function f(η). Then

r(n)
(
f̂n,0(η)(η̂n)− f0(η

∗)
)
→ L,

for a particular random variable L. It follows that f̂n,0(η)(η̂n)− f0(η
∗) = Op(1/r(n)).

By Theorem 1 or 2, we have that

√
n
(
V̂ (η)− V (η)

)
=

1√
n

n∑
i=1

ϕV (Oi; η) + op(1),
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and by condition (ii), we have that

√
n (ĉ(η)− c(η)) =

1√
n

n∑
i=1

ϕc(Oi; η) + op(1),

where ϕV and ϕc are the influence functions.

By condition (i) and Lemma 2 with r(n) =
√
n, we obtain the conclusion (ii).

To prove conclusion (i), note that

V (η̂)− V (η∗) = V (η̂)− V̂ (η̂) + V̂ (η̂)− V (η∗),

where we have that V (η̂)− V̂ (η̂) = Op(n
−1/2), and V̂ (η̂)−V (η∗) = Op(n

−1/2). Hence, we conclude

that V (η̂)− V (η∗) = Op(n
−1/2), which completes the proof.

F Proof of Theorem 4

In this section, we follow similar techniques in Li et al. [2023] and consider the off-policy learning

task given by the following optimization problem:

d∗ = argmax
d∈D

V (d) = argmax
d∈D

E[ξ(P )(O)],

subject to c(d) = E[ϕc(P )(O)] ≤ 0,

where D is a Glivenko–Cantelli class, and the estimated optimal policy is given by

d̂ = argmax
d∈D

V̂ (d) = argmax
d∈D

1

n

n∑
i=1

ξ(P̂ )(Oi)

subject to ĉ(d) =
1

n

n∑
i=1

ϕc(P̂ )(Oi) ≤ 0.

By condition (iii) of Theorems 1 or condition (ii) of Theorems 2, we have that both {ξ(O; d) :

d ∈ D} and {ϕc(O; d) : d ∈ D} are GC classes.

To simplify the notation, let we denote Dc = {d ∈ D : c(d) ≤ 0}, and Dn,c = {d ∈ D : ĉ(d) ≤ 0}.
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First we note that the estimation error can be expressed as

V (d∗)− V̂ (d̂) = V (1)
n + V (2)

n + V (3)
n ,

where we define

V (1)
n = max

d∈Dc

E[ξ(P )(O)]−max
d∈Dc

Pnξ(P )(O),

V (2)
n = max

d∈Dc

Pnξ(P )(O)−max
d∈Dc

Pnξ(P̂ )(O),

V (3)
n = max

d∈Dc

Pnξ(P̂ )(O)− max
d∈Dn,c

Pnξ(P̂ )(O).

We analyze the three terms as follows. We have that

V (1)
n = max

d∈Dc

E[ξ(P )(O)]−max
d∈Dc

Pnξ(P )(O)

≤ max
d∈Dc

|E[ξ(P )(O)]− Pnξ(P )(O)|

= op(1),

and similarly we have that

V (2)
n = max

d∈Dc

Pnξ(P )(O)−max
d∈Dc

Pnξ(P̂ )(O)

≤ max
d∈Dc

∣∣∣Pn{ξ(P )(O)− ξ(P̂ )(O)}
∣∣∣

= op(1).

To analyze V
(3)
n , note that for any d ∈ D, we have that

E[ϕc(P )(O)]− Pnϕc(P̂ )(O)

= {E[ϕc(P )(O)]− Pnϕc(P )(O)}+ {Pnϕc(P )(O)− Pnϕc(P̂ )(O)},

and E[ϕc(P )(O)]− Pnϕc(P )(O) converges to 0 uniformly as {ϕc(O; d) : d ∈ D} is a GC class, and

Pnϕc(P )(O)− Pnϕc(P̂ )(O) converges to 0 uniformly by condition (ii).
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Hence, ∀ϵ > 0, ∃N1 ∈ N, such that for all n > N1, |E[ϕc(P )(O)] − Pnϕc(P̂ )(O)| < ϵ, by which

we obtain that, for all d ∈ Dc, i.e., E[ϕc(P )(O)] ≤ c, we have that Pnϕc(P̂ )(O) < c+ ϵ. Therefore,

we have that c
c+ϵd ∈ Dn,c.

As ξ(P̂ )(O) is uniformly bounded, there exists a constant L > 0 such that for any d1, d2, we

have that

|ξ(P̂ )(O; d1)− ξ(P̂ )(O; d2)| ≤ L sup
x∈X

|d1(x)− d2(x)|.

Thus, ∀ϵ > 0, ∃N1 ∈ N, such that for all n > N1,

V (3)
n = max

d∈Dc

Pnξ(P̂ )(O)− max
d∈Dn,c

Pnξ(P̂ )(O)

≤ max
d∈Dc

Pnξ(P̂ )(O)− max
d∈ c

c+ϵ
Dc

Pnξ(P̂ )(O)

≤ ϵ

c+ ϵ
L,

and similarly, we can obtain that ∃N2 ∈ N, such that for all n > N2,

V (3)
n ≥ − ϵ

c+ ϵ
L,

which in combination implies that V
(3)
n = op(1).

Next, we prove our result (ii) for the regret. Note that

V (d∗)− V (d̂) = {V (d∗)− V̂ (d∗)}+ {V̂ (d∗)− V̂ (d̂)}+ {V̂ (d̂)− V (d̂)}.

We analyze the three terms as follows. By the same argument for proving (i), we have that

V (d∗)− V̂ (d∗) = E[ξ(P )(O; d∗)]− Pnξ(P̂ )(O; d∗) = op(1),

V̂ (d̂)− V (d̂) = Pnξ(P̂ )(O; d̂)− E[ξ(P )(O; d̂)] = op(1).

Also by a similar argument, we have that for any d ∈ D and ϵ > 0, ∃N2 ∈ N, for all n > N2,

32



c
c+ϵd ∈ Dn,c, and

V̂ (d∗)− V̂ (d̂) = V̂ (d∗)− V̂

(
c

c+ ϵ
d∗
)
+ V̂

(
c

c+ ϵ
d∗
)
− V̂ (d̂)

≤ ϵ

c+ ϵ
L,

and also that for any d ∈ D and ϵ > 0, ∃N3 ∈ N, for all n > N3,
c

c+ϵ d̂ ∈ Dn,c, and

V (d∗)− V (d̂) ≥ V

(
c

c+ ϵ
d̂

)
− V (d̂) ≥ − ϵ

c
L,

so we conclude that V (d∗)− V (d̂) = op(1), which completes the proof.

G Additional simulations

In this section, we present additional simulation results.

G.1 Incremental propensity score policy learning with sufficent overlap

We examine the performance of our proposed methods by comparison with standard policy learning

methods, when sufficient overlap indeed holds. We consider the following data generating process:

(X1, X2) ∼ Uniform(0, 1),

(X3, X4) ∼ N {( 00 ) , ( 1 0.3
0.3 1 )} ,

A ∼ Bernoulli(expit(0.3− 0.4X1 − 0.2X2 − 0.3X3 + 0.1X4)),

Y (0) ∼ N{20(1 +X1 −X2 +X2
3 + exp (X2)), 20

2},

Y (1) ∼ N{20(1 +X1 −X2 +X2
3 + exp (X2)) + 25(3− 5X1 + 2X2 − 3X3 +X4), 20

2}.

We perform the vanilla direct policy search tasks without constraint. Hence, the optimal policy

is simply d∗(x) = I{3−5X1+2X2−3X3+X4 > 0}. For standard methods, we consider the policy

class of linear rules Dlinear = {d(x) = I{(1, x1, x2, x3, x4)β > 0} : β ∈ R5, ∥β∥2 = 1}. For the incre-

mental propensity score policies, we consider the class DIPS = {d(x) = δ(x;β)π(x)/{δ(x;β)π(x) +

1− π(x)} : β ∈ R5}, which is indexed by δ(x;β) = exp {(1, x1, x2, x3, x4)β}.
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We estimate the outcome regression model µ(x) and the propensity score π(x) using the gen-

eralized random forests [Athey et al., 2019] implemented in the R package grf. The unconstrained

optimization problems are solved by the genetic algorithm [Sekhon and Mebane, 1998] implemented

in the R package rgenoud. The sample size is n = 2000. We compare the true values of the es-

timated optimal policies using test data with sample size N = 105. The true optimal value is

approximated using the test data. Simulation results of 100 Monte Carlo repetition are reported

in Figure 2a.
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(a) Sufficient overlap.
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(b) Parametric models.

Figure 2: Performance of optimal policies under three standard methods (IPW, OR, AIPW) and
our proposed three methods (IPW-IPS, OR-IPS, One-step). The blue line is the (approximate)
true optimal value.

Despite the fact that the true optimal rule is included in the standard policy class of linear rules

but not in our proposed class of incremental propensity score policies, we still observe comparable

performance of both classes, which exemplifies the effectiveness of our proposed methods.

G.2 Incremental propensity score policy learning with parametric models

We examine the performance of our proposed methods by comparison with standard policy learning

methods, when using correctly specified parametric models.

The simulation setup is the same as in the main paper where the positivity assumption is

violated, except that the sample size n = 500 is smaller and the outcome regression µ(s, x) and the

propensity score π(s, x) models are estimated by correctly specified parametric models. Simulation

results of 100 Monte Carlo repetition are reported in Figure 2b. The standard methods IPW, OR,
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and AIPW have the worst performance. The IPW-IPS estimator still has large variability, and the

OR-IPS and efficient one-step estimators achieve the best performance with the highest value.

H Diabetes data analysis

In this section, we provide supplementary information on our Diabetes data analysis.

The original dataset is available in the UCI Repository Diabetes 130-US hospitals for years

1999-2008 [Strack et al., 2014]. The Fairlearn open source project [Weerts et al., 2023] provides

full dataset pre-processing script in python on GitHub. We follow these pre-processing steps, and

provide the R script.

The dataset contains 101766 patients, and a detailed description of the 25 variables are available

at the Fairlearn project. Originally, the categories of race include “African American”, “Asian”,

“Caucasian”, “Hispanic”, “Other”, “Unknown”, and the categories of age include “30 years or

younger”, “30 − 60 years”, “Over 60 years”. We dichotomize them, so the resultant categories of

race include “Caucasian” or “Non-Caucasian”, and the resultant categories of age include “30 years

or younger” or “Over 30 years”.

The missing data are completed by multivariate imputation by chained equations, implemented

in the R package mice.
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https://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+1999-2008
https://github.com/fairlearn/talks/blob/main/2021_scipy_tutorial/preprocess.py
https://fairlearn.org/v0.8/user_guide/datasets/diabetes_hospital_data.html

	Introduction
	Statistical Framework
	Causal Assumptions
	Incremental Propensity Score Policies

	Identification and Efficiency Theory
	Identification
	Efficient Off-policy Evaluation

	From Efficient Policy Evaluation to Learning
	Asymptotic Analysis of Policy Evaluation and Learning
	Experiments
	Simulation
	Data application

	Discussion
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Additional simulations
	Incremental propensity score policy learning with sufficent overlap
	Incremental propensity score policy learning with parametric models

	Diabetes data analysis

