GAPS IN DYNAMICAL DEGREES FOR ENDOMORPHISMS AND RATIONAL MAPS
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ABSTRACT. We study the ratio of dynamical degrees λ 1 ( f ) 2 /λ 2 ( f ) for regular, dominant endomorphisms of smooth complex projective surfaces, and obtain a gap property: for λ 2 ( f ) ≤ D, there is a uniform ε(D) > 0 such that this ratio is never contained in ]1, 1 + ε(D)[. The proof is a simple variation on the main theorems of [START_REF] Nakayama | Ruled surfaces with non-trivial surjective endomorphisms[END_REF].

DYNAMICAL DEGREES

Let f be a dominant rational transformation of a smooth complex projective variety X. Let m denote the dimension of X. Let H be a hyperplane section of X. The dynamical degrees λ k ( f ) are defined for each dimension 0 ≤ k ≤ m by the following limits

λ k ( f ) = lim n→+∞ (( f n ) * H k ) • (H n-k ) 1/n (1.1)
where ( • ) denotes the intersection product and H k = H • H • • • H (with k factors H). Thus, λ 0 ( f ) = 1 and λ m ( f ) is the topological degree deg top ( f ) (a positive integer since f is dominant). The sequence k → λ k ( f ) is log-concave, i.e.

λ k-1 ( f )λ k+1 ( f ) ≤ λ k ( f ) 2 (1.2)
for all 0 < k < m. In particular, λ m ( f ) k/m ≤ λ k ( f ) ≤ λ 1 ( f ) k . This proves the following well known result.

Theorem A. There is a uniform lower bound

λ k ( f ) ≥ λ m ( f ) k/m ≥ 2 k/m > 1 (∀1 ≤ k ≤ m)
for every variety X of dimension m and every dominant rational transformation f of X with topological degree λ m ( f ) > 1.

For instance, when f is an endomorphism of the projective space P m defined by polynomial formulas of degree d, one gets λ k ( f ) = d k and the previous inequality is indeed an equality. This paper discusses whether a further uniform gap

Date: 2022. λ 1 ( f ) m ≥ λ m ( f )(1 + ε) is satisfied for maps with λ 1 ( f ) m > λ m ( f ).
We focus on the first interesting case, that is when X is a surface.
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GAPS FOR

SURFACES ? When dim(X) = 2, one gets λ 1 ( f ) 2 ≥ λ 2 ( f ). If λ 2 ( f ) = 1, i.e. if f is a birational map of X, then either λ 1 ( f ) = 1 = λ 2 ( f ), or λ 1 ( f ) ≥ λ L ,
where λ L is the Lehmer number: this is an important consequence of [START_REF] Curtis | Coxeter groups, Salem numbers and the Hilbert metric[END_REF] proven in [START_REF] Blanc | Dynamical degrees of birational transformations of projective surfaces[END_REF]. This inequality may be considered as a gap for dynamical degrees, since λ L 1.17628 > 1.

With the Inequalities (1.2) in mind, one would like to compute the infimum R(D) of λ 1 ( f ) 2 /λ 2 ( f ) over all dominant rational maps of a given surface X (resp. of any surface) with a given topological degree λ 2 ( f ) = D and a first dynamical degree λ 1 ( f ) > λ 2 ( f ). A less precise question is the following.

Question.-Fix an integer D ≥ 2. Does there exist a constant ε(D) > 0 such that

λ 1 ( f ) 2 ≥ D(1 + ε(D)) (2.1) 
for all dominant rational maps of surfaces with λ 2 ( f ) = D and λ 1 ( f

) 2 > λ 2 ( f )?
If the answer is positive for some family of rational maps, we say that this family satisfies the gap property for λ 1 . Theorem B below provides such a gap for regular endomorphisms of smooth complex projective surfaces.

MONOMIAL MAPS

Consider a monomial map f : (x, y) → (αx a y b , βx c y d ), viewed as a rational transformation of the projective plane. Set τ = a + d and δ = adbc, the trace and determinant of the 2 × 2 matrix

A f = a b c d (3.1)
associated to f . Then |δ| = λ 2 ( f ), and the spectral radius of A f is λ 1 ( f ); changing A f into -A f does not change the dynamical degrees, so we assume τ ≥ 0. The characteristic polynomial of A f is χ(t) = t 2 -τt +δ. If its eigenvalues are complex conjugate, then λ 2 1 ( f ) = |δ| = λ 2 ( f ). So, we now assume that χ has two real roots. The largest one is λ

1 ( f ) = 1 2 τ + √ τ 2 -4δ ; it satisfies λ 1 ( f ) 2 = 1 2 τ 2 -2δ + τ τ 2 -4δ . (3.2)
Thus, with a = d and b = c = 1 we obtain τ = 2a, δ = a 2 -1, and

λ 1 ( f ) 2 λ 2 ( f ) = a + 1 a -1 . (3.3)
As a → +∞, the limit is 1. Thus, if D = |δ| is not fixed there is no gap for λ 1 .

Now, if D = |δ| is fixed there is a gap:

Proposition 3.1. Let D be an integer ≥ 1. If f : P 2 P 2 is a dominant monomial map with λ 2 ( f ) = D and λ 1 ( f ) 2 > λ 2 ( f ), the ratio λ 1 ( f ) 2 /λ 2 ( f ) is bounded from below by 1 + (2D) -1 .
Proof. As explained above, we may assume τ ≥ 0. Since the eigenvalues are distinct, τ = 0 and τ 2 -4δ ≥ 1; hence, τ ≥ 1. Using that λ 2 ( f ) = |δ| and Equation (3.2), the lower bound λ 1 ( f

) 2 /λ 2 ( f ) ≥ 1 + (2D) -1 is equivalent to τ 2 -2δ + τ τ 2 -4δ ≥ 2|δ| + 1. (3.4) 
If δ < 0, this follows from τ ≥ 1. If δ > 0, we denote by α and β the two eigenvalues of A f , and we remark that (3.4) is equivalent to

(α -β) 2 + τ τ 2 -4δ ≥ 1. (3.5) 
This is always satisfied, because τ and δ are integers, and τ 2 -4δ ≥ 1.

Remark 3.2. Similar examples can be obtained on abelian surfaces. For instance, for any elliptic curve E, one gets linear endomorphisms of

X = E × E with λ 1 ( f ) 2 /λ 2 ( f ) > 1 but arbitrary close to 1.

REGULAR ENDOMORPISMS

Let us look at regular endomorphisms of projective surfaces. As explained in Section 3, we need to fix λ 2 ( f ) to some value D in order to get a gap.

Theorem B. Let D be a positive integer. There is a positive real number

ε(D) such that λ 1 ( f ) 2 λ 2 ( f ) ≥ 1 + ε(D)
for every smooth complex projective surface X and every dominant endomorphism f of X with

λ 2 ( f ) = D and λ 1 ( f ) 2 > λ 2 ( f ).
The proof occupies the rest of this section. So, f will denote a dominant endomorphism of a smooth projective surface X. Since Theorem B is known for D = 1, we shall always assume 2 ≤ λ 2 ( f ) ≤ D for some fixed integer D.

The main arguments, described in § 4.2, are taken from the very nice paper [START_REF] Nakayama | Ruled surfaces with non-trivial surjective endomorphisms[END_REF] of Noboru Nakayama (see also the companion paper [START_REF] Fujimoto | Complex projective manifolds which admit nonisomorphic surjective endomorphisms[END_REF]). For all necessary results on dynamical degree, we refer to [START_REF] Dang | Degrees of iterates of rational maps on normal projective varieties[END_REF]. 4.1. When a bound on ρ(X) is satisfied. Since f is dominant, f * f * is the multiplication by λ 2 ( f ), so f * and f * are isomorphisms of the Néron-Severi group NS(X; Q). The dynamical degree λ 1 ( f ) is the spectral radius of f * on NS(X; R) and is the largest eigenvalue of f * on NS(X; R); as such, it is an algebraic integer.

Let ρ(X) denote the Picard number of X, i.e. ρ(X) = dim Q NS(X; Q).

Lemma 4.1. Let D and R be positive integers > 1. There is a positive real number

ε(R, D) such that λ 1 ( f ) 2 /λ 2 ( f ) > 1 + ε(R, D)
for every smooth projective surface X and every regular endomorphism f of X such that ρ(X) ≤ R, λ 2 ( f ) ≤ D, and

λ 1 ( f ) 2 > λ 2 ( f ).
Proof. We can assume λ 1 ( f

) 2 > λ 2 ( f ) and λ 1 ( f ) 2 /λ 2 ( f ) ≤ 2. Thus, λ 1 ( f ) is bounded from above by √ 2D; since λ 1 ( f ) is the spectral radius of f * , all eigen- values of f * on NS(X; C) have modulus ≤ √ 2D. So, the characteristic polynomial χ f * of f * : NS(X; Z) → NS(X; Z)
is a polynomial with integer coefficients, of degree R, the coefficients of which are bounded from above by C(R)( √ 2D) R for some constant C(R). This gives only finitely many possibilities for χ f * , and the result follows. 4.2. Orbits of negative curves, following Nakayama. Consider the set Neg(X) of irreducible curves C ⊂ X with C 2 < 0 (negative curves).

Pick C ∈ Neg(X) and set

C 1 = f (C); let a > 0 be the integer such that f * (C) = aC 1 (a is the degree of f along C). If C is another irreducible curve such that f * (C ) = a C 1 for some a > 0 then aC = a C in NS(X; Q) because f * is injective.
This implies that C = C because C 2 < 0 and C and C are irreducible and reduced. Thus,

f * C 1 = bC with ab = λ 2 ( f ); together with f * (C 1 ) •C = bC •C = C 1 • f * (C) = C 1 • (aC 1 ) (4.1) this implies ab = λ 2 ( f ) and C 2 1 = (b/a)C 2 < 0. (4.2)
In particular, f * permutes the irreducible curves C ⊂ X with negative self-intersection. This set of curves is, a priori, infinite, but we have Lemma 4.2 (Nakayama, see Lem. 10 and Pro. 11 in [START_REF] Nakayama | Ruled surfaces with non-trivial surjective endomorphisms[END_REF]). Let R( f ) be the ramification divisor of f . Let Neg(X; R( f )) be the set of irreducible components of R( f ) with negative self-intersection. Let C be an element of Neg(X).

(1) There is an integer

0 ≤ m ≤ log(|C 2 |) such that f m (C) ∈ Neg(X; R( f )).
(

) If C 2 = -1 then C ∈ Neg(X; R( f )), f (C) 2 ≤ -λ 2 ( f ), and f m (C) ∈ R( f ) for a positive integer m ≤ log(λ 2 ( f )). (3) The set Neg(X) is finite. (4) 2 
There is an integer N > 0 such that f N (C) = C for every C in Neg(X) and Neg(X) = Neg(X; R( f N )).

Proof. It suffices to prove [START_REF] Blanc | Dynamical degrees of birational transformations of projective surfaces[END_REF]. With the above notation, the condition

C ⊂ R( f ) is equivalent to b ≥ 2. On the other hand, b = 1 means a = λ 2 ( f ); and then C 2 1 = λ 2 ( f ) -1 C 2 > C 2 , hence f m (C) ⊂ R( f ) for an m ≤ log(-C 2 )/ log(a).
This lemma shows that one can contract a sequence of (-1)-curves in an f Nequivariant way to reach a minimal model of X: Theorem 4.3 (Nakayama). If f is an endomorphism of a smooth projective surface X, there is an integer N > 0, a birational morphism π : X → X 0 onto a minimal model X 0 of X, and an endomorphism f 0 of X 0 such that π

• f N = f 0 • π.
Remark 4.4. Since the dynamical degrees are invariant under birational conjugacy, we have

λ 1 ( f ) 2 λ 2 ( f ) = λ 1 ( f 0 ) 2 λ 2 ( f 0 ) 1/N ; (4.3)
without any control on N, one can not deduce a gap for f from a gap for f 0 . But if N and ρ(X 0 ) are bounded, then we automatically get a gap from Theorem 4.3 and Lemma 4.1. So, we shall either control N and ρ(X 0 ), and for this we follow closely [START_REF] Nakayama | Ruled surfaces with non-trivial surjective endomorphisms[END_REF], or reduce the computation to the case of monomial maps (with the same value of D).

Let us replace f by g := f N to assume that Neg(X) = Neg(X; R(g)) and that g fixes each irreducible curve C ⊂ R(g). From Equations (4.1) and (4.2) we obtain (1) λ 2 (g) is a square: there is an integer a g > 0 such that a

2 g = deg top (g); (2) g * (C) = g * (C) = a g C; (3) the multiplicity of C in R(g) is a g -1.
Thus, if we set

N X = ∑ C∈Neg(X) C, (4.4) 
we can write R(g) = (a g -1)N X + R + (g) for some effective divisor R + (g), the components of which have non-negative self-intersection. With such a notation at hand, the main ingredient towards Theorem B is the following lemma.

Lemma 4.5 (Nakayama, Lem. 13 of [START_REF] Nakayama | Ruled surfaces with non-trivial surjective endomorphisms[END_REF]).

(1) Let C be an element of Neg(X). The arithmetic genus of C is ≤ 1, and if it is equal to 1 then C is a connected component of the support of R(g) (hence also of N X ), where g = f N . (2) A connected component of the support of N X is an irreducible curve, or a chain of rational curves, or a cycle of rational curves.

4.3. Rational surfaces. Assume that X is rational. We follow the proof of Theorem 17 in [START_REF] Nakayama | Ruled surfaces with non-trivial surjective endomorphisms[END_REF]. If ρ(X) ≤ 3, § 4.1 shows that the endomorphisms of X satisfy a gap for λ 1 . Thus, we assume that ρ(X) ≥ 4. Since X is the blow-up of a minimal rational surface (the plane, the quadric, or a Hirzebruch surface), there is a fibration π : X → B such that (i) B is the projective line P 1 and the generic fiber of π is a projective line;

(ii) there is at least one singular fiber F;

(iii) every singular fiber is a tree of smooth rational curves with negative selfintersection; (iv) there is at least one section S of π with self-intersection S 2 < 0.

Since X admits an endomorphism with λ 2 ( f ) > 1, we also know that (iii') every singular fiber is a chain of smooth rational curves with negative selfintersections.

Indeed, such a fiber is entirely contained in N X . Since S is also contained in N X , we see that N X is connected and contains at least three irreducible components. Thus, Lemma 4.5 implies that (iii') holds and that (v) π has at most 2 singular fibers and N X is connected and is either a chain or a cycle of rational curves.

Case of a chain.-Assume that N X is a chain of rational curves. Either f or f 2 fixes each irreducible component of N X (because f (C)∩ f (C ) = f (C ∩C )). Thus, when contracting (-1)-curves, we can do it f 2 -equivariantly up to a minimal model of X. Since a minimal rational surface satisfies ρ(X 0 ) = 2, the gap follows from Remark 4.4.

Case of a cycle.-Now, assume that N X is a cycle of rational curves. There are two possibilities :

(1) N X is the union of two singular fibers F and F and two sections S and S ;

(2) N X is the union of the unique singular fiber F of π and two sections S and S , with S ∩ S = {p} for some p / ∈ F.

In the first case, we can contract (-1)-curves contained in the two singular fibers to reach a minimal model η : X → X 0 on which g := f N induces an endomorphism g 0 and π : X → B induces a rational fibration π 0 : X 0 → B such that • F 0 := η(F), F 0 := η(F ) are two (smooth) fibers of π 0 , S 0 := η(S) and S 0 := η(S ) are two sections of π 0 ; • f induces a rational transformation f 0 of X 0 such that f |X 0 \R(g 0 ) is regular and

f N 0 = g 0 ; • F 0 ∪ F 0 ∪ S 0 ∪ S 0 is f 0 -invariant and coïncides with R(g 0 ).
Then, the complement of R(g 0 ) in X 0 is a torus T G m × G m on which f 0 and g 0 act as regular endomorphisms. The restriction of f 0 to T G m × G m C × × C × is monomial: one can find integers a, b, c, d and elements α, β in C * such that f 0 (x, y) = (αx a y b , βx c y d ). From Section 3, we know that such transformations satisfy the gap property for λ 1 .

Let us show that the second case does not occur. We shall need the following: Lemma 4.6 (Lemma 16 of [START_REF] Nakayama | Ruled surfaces with non-trivial surjective endomorphisms[END_REF]). Let U = ∑ k i=1 a i C i be an effective divisor on a smooth projective surface such that a i > 0 for 1 ≤ i ≤ k and the C i form a chain of smooth rational curves starting with C 1 and ending with C k . If

K X •U + 2 = 0 and U •C i = 0 for all i then a 1 = a k = 1, C 2 i = -1 for some i < k and C 2 j = -1 for some j > 1.
Let F be the singular fiber of π. Then F = ∑ i a i C i for a chain of rational curves C i , and moving F to a nearby smooth fiber we see that F • C i = 0 for each i, and K X • F = -2. Thus, Lemma 4.6 can be applied to U = F.

First, one applies this lemma to contract a (-1)-curve contained in F that does not intersect S ; then we repeat this step until we reach a model X 1 of X in which the image S 1 of S satisfies S 2 1 = 0. This is always possible, at least after permutation of S and S , since otherwise we would reach a minimal model X 0 with two sections of negative self-intersection, but no such surface exists.

Then, one applies Lemma 4.6 to contract (-1) curves of the singular fiber that do not intersect S 1 in order to reach a relatively minimal model X 0 of X in which S becomes a section S 0 with S 2 0 = 0 and S provides a second section S 0 . The existence of a section S 0 with self-intersection 0 implies that X 0 is P 1 × P 1 . Since S 0 intersects S 0 , (S 0 ) 2 ≥ 2. By construction, q 0 := F 0 ∩ S 0 is not contained in S 0 . Consider the section containing q 0 which is horizontal, i.e. linearly equivalent to S 0 . This section is not S 0 and, its self-intersection being 0, it is not equal to S 0 either. Its proper transform in X is a negative curve; this proper transform should be in Neg(X), and we get a contradiction. 4.4. Ruled surfaces. If X is ruled but not rational, the Albanese map α : X → B is a surjective morphism onto a curve B of genus ≥ 1 ( 1 ). There is an endomorphism

f B of B such that α • f = f B • α; in particular, each fiber X b := α -1 (b) is mapped to the fiber X f B (b) by f . Then λ 1 ( f B ) is an integer, the topological degree δ of f |X b : X b → X f B (b)
for a generic point b ∈ B is also an integer, and we have

λ 1 ( f ) = max{λ 1 ( f B ), δ} and λ 2 ( f ) = λ 1 ( f B )δ; (4.5) 
see [START_REF] Dinh | Comparison of dynamical degrees for semiconjugate meromorphic maps[END_REF] for the general setting of rational maps permuting the fibers of a fibration. Thus, we obtain the gap property for λ

1 ( f ) with ε(D) = 1 D-1 , i.e. λ 1 ( f ) 2 ≥ λ 2 ( f )(1 + 1 D-1 ) if λ 2 ( f ) ≤ D and λ 1 ( f ) 2 > λ 2 ( f ).
4.5. Surfaces with non-negative Kodaira dimension. Assume that kod(X) ≥ 0. Since every dominant rational transformation of a surface X of general type is a birational transformation of finite order, we have kod(X) ∈ {0, 1}. When kod(X) = 1 the Kodaira-Iitaka fibration Φ : X B maps X onto a smooth curve B and there is an automorphism f B of B such that Φ • f = f B • Φ; by a superb theorem of Noboru Nakayama and De-Qi Zhang, f B has finite order (see [START_REF] Nakayama | Building blocks of étale endomorphisms of complex projective manifolds[END_REF]). Then, one easily shows that λ 1 ( f ) = λ 2 ( f ). In particular, λ 1 ( f ) 2 = λ 2 ( f ) 2 and we have a gap property as in Theorem B with ε(D) = D -1.

When kod(X) = 0, the unique minimal model X 0 of X must be a torus, a hyperelliptic surface, an Enriques or a K3 surface. Up to multiplication by an element of C × , there is a unique non-zero section Ω of K X , f * Ω = δΩ with δ 2 = λ 2 ( f ), and the exceptional locus of the birational morphism π : X → X 0 is the zero locus of Ω. Thus, f preserves this locus and induces a regular endomorphism of X 0 . Since K3 and Enriques surfaces do not admit endomorphisms with λ 2 ( f ) > 1, we have ρ(X 0 ) ≤ 6 (it would be ≤ 22 for K3 surfaces). Thus, the gap property follows when kod(X) = 0. 4.6. Conclusion. The last three subsections establish the gap property when X is rational, when X is ruled but not rational, and when kod(X) ≥ 0. From the classification of surfaces, this covers all possible cases, and Theorem B is proven.

FINAL COMMENTS

5.1. It would be nice to determine the infimum of λ 1 ( f ) 2 /λ 2 ( f ) for dominant endomorphisms of complex projective surfaces with a fixed λ 2 ( f ) = D, say for D = 2, 3, 4. The proof of Theorem B shows that this is a tractable problem. 1 Moreover, by a theorem of M. Segami, α endows X with the structure of a P 1 -bundle, i.e. X is ruled and the ruling is relatively minimal (see Pro. 14 of [START_REF] Nakayama | Ruled surfaces with non-trivial surjective endomorphisms[END_REF]).

5.2.

It seems reasonable to expect that Theorem B extends to projective surfaces over fields of positive characteristic, and to singular surfaces too.

5.3.

As explained in § 2, the natural question is to decide whether a similar gap property holds for rational transformations of surfaces. This question was originally asked by Curtis T. McMullen, who also suggested Theorem B in a private communication. The difficult case is the one of rational transformations of the projective plane. I don't know what to expect in this more general context (see [START_REF] Blanc | Dynamical degrees of birational transformations of projective surfaces[END_REF] for birational maps).

5.4.

One can also ask similar questions for any fixed pair (dim(X), deg top ( f )) = (m, D), the first ratios to consider being λ 1 ( f ) m / deg top ( f ) and λ 2 1 /λ 2 ( f ).