
HAL Id: hal-04236367
https://hal.science/hal-04236367

Preprint submitted on 10 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A verification of Wilf’s conjecture up to genus 100
Manuel Delgado, Shalom Eliahou, Jean Fromentin

To cite this version:
Manuel Delgado, Shalom Eliahou, Jean Fromentin. A verification of Wilf’s conjecture up to genus
100. 2023. �hal-04236367�

https://hal.science/hal-04236367
https://hal.archives-ouvertes.fr


A VERIFICATION OF WILF’S CONJECTURE UP TO GENUS 100

M. DELGADO, S. ELIAHOU AND J. FROMENTIN

Abstract. For a numerical semigroup S ⊆ N, let m, e, c, g denote its multiplicity, em-
bedding dimension, conductor and genus, respectively. Wilf’s conjecture (1978) states
that e(c − g) ≥ c. As of 2023, Wilf’s conjecture has been verified by computer up to
genus g ≤ 66. In this paper, we extend the verification of Wilf’s conjecture up to genus
g ≤ 100. This is achieved by combining three main ingredients: (1) a theorem in 2020
settling Wilf’s conjecture in the case e ≥ m/3, (2) an efficient trimming of the tree T of
numerical groups identifying and cutting out irrelevant subtrees, and (3) the implemen-
tation of a fast parallelized algorithm to construct the tree T up to a given genus. We
further push the verification of Wilf’s conjecture up to genus 120 in the particular case
where m divides c. Finally, we unlock three previously unknown values of the number
ng of numerical semigroups of genus g, namely for g = 73, 74, 75.

1. Introduction

A numerical semigroup is a cofinite submonoid S of N, i.e. a subset containing 0,
stable under addition and with finite complement N \ S. Equivalently, it is a set of the
form S = 〈a1, . . . , an〉 = Na1 + · · · + Nan where a1, . . . , an are positive integers with
gcd(a1, . . . , an) = 1, called generators of S. The least such n is usually denoted e and
called the embedding dimension of S, see below.

Let S be a numerical semigroup and S∗ = S\{0}. A primitive element of S is an element
a ∈ S∗\(S∗+S∗), i.e. a nonzero element of S which is not the sum of two nonzero elements
of S. Let P = P (S) denote the set of primitive elements of S. It is easy to see that P
is finite and is the unique minimal generating set of S. The embedding dimension of S is
e = e(S) = |P |, the multiplicity of S is m = m(S) = minS∗, the Frobenius number of S is
F = F (S) = max(Z\S) and the conductor of S is c = c(S) = F +1, satisfying c+N ⊆ S
and minimal with respect to that property. The genus of S is g = g(S) = |N \ S|, its
number of gaps. We partition S as

S = L ⊔R,

where L = L(S) = {a ∈ S | a < F (S)} and R = R(S) = {a ∈ S | a > F (S)}, the left
part and right part of S, respectively.

Wilf’s conjecture is the inequality

e|L| ≥ c.
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While this conjecture remains open since 1978, it has been verified in several cases.
For convenience, we list some of them in a single statement together with their respective
references.

Theorem 1.1. Wilf ’s conjecture holds for all numerical semigroups satisfying one of the
following conditions:

(1) e ≤ 3 [17]
(2) c ≤ 3m [12]
(3) e ≥ m/3 [13]
(4) |L| ≤ 12 [16]
(5) m ≤ 19 [20]

See also [10] for an extensive recent survey of partial results on Wilf’s conjecture, and
[2, 5, 8, 11, 15, 18, 19, 21, 24, 25, 26, 27] for some other relevant papers.

The first significant verification by computer of Wilf’s conjecture up to a given genus
was accomplished in 2008 by Bras-Amorós [2]. There, Wilf’s conjecture was announced
to hold for all numerical semigroups of genus g ≤ 50. This result was extended to genus
g ≤ 60 in 2016 by Fromentin-Hivert [18], to genus g ≤ 65 in 2021 by Bras-Amorós and
Rodríguez [3], and finally to genus g ≤ 66 in 2023 by Bras-Amorós [4].

In this paper, we extend the verification of Wilf’s conjecture up to genus g ≤ 100. See
Theorem 3.5 below. This is achieved by combining three main ingredients:

(1) The main result of [13] stating that Wilf’s conjecture holds in case e ≥ m/3.
(2) The method from [9] to exploit the above result by efficiently trimming the tree

T of numerical semigroups (see below) and thereby drastically reduce the number
of numerical semigroups up to a given large genus to test for Wilf’s conjecture.

(3) A fast parallelisable algorithm to enumerate all numerical semigroups up to a given
large genus [18].

For general reference books on numerical semigroups, see [22, 23].

2. The tree T

The set of all numerical semigroups can be organised in a rooted tree T , with root N

of genus 0, such that all numerical semigroups of genus g lie at distance g from the root.
Before recalling its construction, we introduce some terminology.

2.1. Left and right primitive elements. Let S be a numerical semigroup. Recall the
above partition S = L ⊔ R relative to the Frobenius number F (S). Accordingly, we
partition the set P of primitive elements of S as

P = (P ∩ L) ⊔ (P ∩ R).

We call left primitive the elements of P ∩L and right primitive those of P ∩R. We denote

e = |P |,

el = |P ∩ L|,

er = |P ∩R|.

Thus

e = el + er.
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2.2. The children of S. We now briefly recall the construction of the tree T . Let S be
a numerical semigroup, and let a ∈ P ∩R be a right primitive element of S, if any. Then
the set S ′ = S \ {a} is still a numerical semigroup, as easily seen.

A child of S in T is any numerical semigroup of the above form

S ′ = S \ {a}

where a ∈ P ∩R. Clearly, the number of children of S in T is equal to er.

The Frobenius number, genus and multiplicity of a child S ′ = S\{a} of S with a ∈ P∩R
are easy to determine. Indeed, one has

{

F (S ′) = a,

g(S ′) = g(S) + 1

as easily seen. As for the multiplicity of S ′, one has

m(S ′) = m(S)

whenever c(S) > m(S), see Proposition 3.2. The only numerical semigroups S for which
c(S) = m(S) are the so-called ordinary or superficial numerical semigroups Om, defined
for any m ≥ 1 by

Om = 〈m,m+ 1, . . . , 2m− 1〉 = {0} ⊔ (m+ N).

Then Om is of multiplicity m and conductor c = m. It has exactly m children, namely
Om \ {m + i} for 0 ≤ i ≤ m − 1. They still have multiplicity m for 1 ≤ i ≤ m − 1.
The only case where the multiplicity differs is at i = 0, for which Om \ {m} = Om+1 is of
multiplicity m+ 1.

Note finally that any numerical semigroup of multiplicity m ≥ 1 is a descendant of Om

in the tree T .

2.3. Numerical semigroups of given genus. For g ∈ N, let ng denote the number of
numerical semigroups of genus g. It is well known that ng is finite. The first few values
of ng are

(n0, n1, n2, n3, n4, n5, n6) = (1, 1, 2, 4, 7, 12, 23).

In her famous paper [2], Maria Bras-Amorós conjectured that ng behaves like the gth

Fibonacci number Fg, with a growth rate tending to the golden ratio φ = 1+
√
5

2
≈ 1.618

and satisfying

(1) ng ≥ ng−1 + ng−2

for all g ≥ 2. The conjectured growth rate of ng was subsequently confirmed by A. Zhai [28],
implying ng ≥ ng−1 for g large enough. Yet the conjectured inequality (1) remains widely
open to this day, as is the case for the much weaker inequality ng ≥ ng−1 for all g ≥ 1.

Until now, the exact value of ng had been computed up to g ≤ 72. In this paper, with
massive computations using a distributed version of the fast algorithms in [18], we unlock
three new values, namely

n73 = 6 832 823 876 813 577,
n74 = 11 067 092 660 179 522,
n75 = 17 924 213 336 425 401.

See Section 5 for more details.
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3. Trimming T

The main ideas proposed in [9] to trim the tree T so as to drastically reduce the
verification of Wilf’s conjecture up to a given genus G are the following ones.

Notation 3.1. Let G ≥ 1. We denote by TG the subtree of T consisting of all numerical
semigroups S of genus g(S) ≤ G.

Proposition 3.2. Let S 6= Om be a numerical semigroup of multiplicity m. Let S ′ be a
child of S. Then

(1) m(S ′) = m(S)

(2) el(S
′) ≥ el(S)

(3) e(S)− 1 ≤ e(S ′) ≤ e(S)

Proof. We have S ′ = S \ {a} for some right primitive element a ∈ P ∩ R. Denote
m, c, P, L the multiplicity, conductor, primitive elements and left part of S, respectively,
and m′, c′, P ′, L′ the corresponding objects for S ′.

Since a ≥ c > m, it follows that min(S ′)∗ = minS∗, i.e. m′ = m. Moreover, since
c′ = a + 1 > c, it follows that L ⊂ L′, and any left primitive element a ∈ P ∩ L of S
remains left primitive in S ′. Thus P ∩ L ⊆ P ′ ∩ L′, implying el(S

′) ≥ el(S). Finally, as
easily seen, one has either P ′ = P \ {a} or P ′ = P \ {a} ⊔ {a +m}. The former occurs
when a + m = s1 + s2 for some pair {s1, s2} ⊂ S∗ distinct from {a,m}, whereas the
latter occurs when a+m has no other representation as an element of S∗+S∗. Therefore
e(S)− 1 ≤ e(S ′) ≤ e(S). �

Corollary 3.3. Let S 6= Om be a numerical semigroup of multiplicity m such that el ≥
m/3. Then all descendants T of S in T satisfy Wilf ’s conjecture.

Proof. Let T be a descendant of S. Then, by a repeated application of Proposition 3.2 (2)
for each generation of children going down from S to T , we have

e(T ) ≥ el(T ) ≥ el(S) ≥ m/3 = m(T )/3.

It then follows from Theorem 1.1 (3) that T satisfies Wilf’s conjecture. �

Corollary 3.4. Let G ∈ N
∗. Let S be a numerical semigroup of genus g ≤ G such that

e ≥ m/3 + (G − g). Then all descendants T of S of genus g(T ) ≤ G satisfy Wilf ’s
conjecture.

Proof. Let h = g(T ). Then g ≤ h ≤ G by hypothesis, and T is an (h−g)th descendant of
S. Now at each step from S down to T in T , the number of primitive elements diminishes
by at most 1 as stated in Proposition 3.2 (3). Hence

e(T ) ≥ e− (h− g) ≥ e+ g −G ≥ m/3 + (G− g) + g −G = m(T )/3.

It then follows from Theorem 1.1 (3) that T satisfies Wilf’s conjecture. �

Consequently, when exploring TG to probe Wilf’s conjecture up to a given maximal
genus G, the subtree rooted at any numerical semigroup S satisfying Corollary 3.3 or 3.4
can be completely cut off from TG. What remains after this systematic trimming of TG is
a subtree TG(3) all of whose numerical semigroups S satisfy

(1) el(S) < m(S)/3,

(2) e(S) < m(S)/3 + (G− g(S)).
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Summarizing, to probe Wilf’s conjecture up to genus G, we only need to test those
numerical semigroups S in TG(3). This is a significant reduction, as the subtree TG(3)
turns out to be much smaller than TG. For instance, for G = 100, we found that T100(3)
counts approximately 4.5×1015 nodes, as compared to the full tree T100 counting roughly
n75 × φ25 ≈ 3.2× 1019 nodes. (See Section 5.) This level of reduction allowed us to reach
one of the main computational results of this paper.

Theorem 3.5. Wilf ’s conjecture holds for all numerical semigroups of genus g ≤ 100. �

Proof. By computer, we constructed the much smaller subtree TG(3) ⊂ TG for G = 100,
and checked that all of its nodes satisfy Wilf’s conjecture. The claimed statement follows
from Corollary 3.3 and 3.4. �

3.1. Further trimming. There are ways to further trim TG(3) and thus further reduce
the number of numerical semigroups of genus g ≤ G to test for Wilf’s conjecture. They
may be used whenever the added computational cost remains reasonable.

Here is a useful instance, exploiting the result that numerical semigroups with embed-
ding dimension e ≤ 3 satisfy Wilf’s conjecture [17], as recalled in Theorem 1.1 (1).

Proposition 3.6. Let S be a numerical semigroup such that c ≥ 4g/3. Then S satisfies
Wilf ’s conjecture.

Proof. As g = c− |L|, the hypothesis yields c ≥ 4(c− |L|)/3, i.e. 4|L| ≥ c. If e ≥ 4 then
e|L| ≥ 4|L| ≥ c, so S satisfies Wilf’s conjecture. And if e ≤ 3, the same conclusion holds
by Theorem 1.1 (1). �

Corollary 3.7. Let G ∈ N
∗. Let S be a numerical semigroup of genus g ≤ G such that

|L| ≥ G/3. Then all descendants T of S of genus g(T ) ≤ G satisfy Wilf ’s conjecture.

Proof. Let T be a descendant of S of genus g(T ) ≤ G. We have

c(T ) = |L(T )|+ g(T )

≥ |L|+ g(T )

≥ G/3 + g(T )

≥ g(T )/3 + g(T )

= 4g(T )/3.

Proposition 3.6 then implies that T satisfies Wilf’s conjecture. �

4. The case c ∈ mN

Given a numerical semigroup S, consider the Euclidean division of its conductor c by
its multiplicity m with nonpositive remainder:

(2) c = qm− ρ, 0 ≤ ρ ≤ m− 1.

As argued in [14], the particular case c = qm, i.e. with ρ = 0, might well be the heart
of Wilf’s conjecture. Indeed, the proofs of Wilf’s conjecture in either case c ≤ 3m [12]
or e ≥ m/3 [13] can be significantly shortened in this particular case. Moreover, the first
five instances of the rare occurrence W0(S) < 0 all belong to this case [15].

Definition 4.1. A numerical semigroup S is special if its multiplicity m divides its con-
ductor c.
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For instance, the ordinary numerical semigroup Om = {0} ∪ (m+N) is special since it
satisfies c = m. The above discussion leads one to think that, if Wilf’s conjecture is false,
then some counterexamples might well be special. Thus, the special case should be given
priority in related research work.

In this context, the validity of Wilf’s conjecture has been extended to the case e ≥ m/4
for special numerical semigroups. More generally, using the notation in (2), the result
reads as follows [14].

Theorem 4.2. Let S be a numerical semigroup satisfying e ≥ m/4. Then e|L| ≥ c−m+ρ.
Morever, if S is special, then e|L| ≥ c, i.e. S satisfies Wilf ’s conjecture.

Let us see how we used here this theorem to push the verification of Wilf’s conjecture
up to genus G = 120 in the special case c ∈ mN.

To start with, the method in Section 3 to trim T or its bounded version TG to get
the greatly reduced relevant subtree TG(3) in case e < m/3 works as well to retain only
those numerical semigroups such that e < m/d for some fixed integer d ≥ 3. This yields
a subtree TG(d) of TG all of whose numerical semigroups S satisfy

(1) el(S) < m(S)/d,

(2) e(S) < m(S)/d+ (G− g(S)).

By Theorem 4.2, the case of relevance to us here is d = 4. The subtree TG(4) may
be further trimmed by exploiting the added hypothesis c = qm, as explained below. For
convenience, we introduce the following definition.

4.1. Special trimming. We start with a condition on a non-special numerical semigroup
S ensuring that no descendant of S is special.

Proposition 4.3. Let S be a non-special numerical semigroup. Assume further that S
has no right primitive element a ∈ P ∩R such that a ≡ −1 mod m. Then no descendant
T of S is special.

Proof. Let S ′ = S \ {a} with a ∈ P ∩ R be a child of S. As usual, we denote by
m,F, c, P the multiplicity, Frobenius number, conductor and primitive elements of S,
and by m′, F ′, c′, P ′ the corresponding objects for S ′. First of all, S 6= Om since Om is
special. Hence m′ = m by Proposition 3.2. We have F ′ = a and so c′ = a + 1. Since
a 6≡ −1 mod m by hypothesis, and m′ = m, we have c′ 6≡ 0 mod m′. Therefore S ′ is not
special. Moreover, no right primitive element of S ′ can be congruent to −1 mod m′ since
P ′ = P \ {a} or P \ {a} ⊔ {a + m} as seen in the proof of Proposition 3.2. Hence S ′

satisfies the same hypotheses as S and we are done by induction on the distance between
S and any of its descendant T . �

We denote by T ′
G(d) the subtree obtained from TG(d) by the above special trimming.

4.2. Outcome. Having constructed the subtree T ′
G(d) for d = 4 and maximal genus

G = 120, we ended up with the following computational result.

Theorem 4.4. Wilf ’s conjecture holds for all special numerical semigroups S of genus
g ≤ 120.

Proof. For each numerical semigroup S in the subtree T ′
120(4), we computed W (S) =

e|L| − c and found that W (S) ≥ 0, i.e. that S satisfies Wilf’s conjecture. All numerical
semigroups of genus g ≤ 120 outside T ′

120(4) satisfy e ≥ m/4 or are not special. Combin-
ing the computational results on T ′

120(4) and Theorem 4.2, we conclude that all special
numerical semigroups of genus g ≤ 120 satisfy Wilf’s conjecture. �
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5. Computational results

Our experiments were carried out on the computational platform CALCULCO [1] using
an adapted and distributed version of algorithms given in [18]. Source codes are available
on GitHub [6]. These experiments were run for two weeks during summer 2023, when the
platform CALCULCO, shared by the whole university, had a much better availability.
The distributed computation ran in parallel on up to 1500 cores, with a special-purpose
finely tuned dynamic balancing of the tasks of the respective cores. Early experiments
were conducted using the GAP package NumericalSgps [7].

5.1. Exploration of T100(3). The following table gives the number tg of numerical semi-
groups of genus g in the trimmed subtree T100(3).

g tg g tg g tg
0 1 34 183 029 68 78 371 434 661
1 1 35 268 072 69 114 677 728 452
2 1 36 392 646 70 167 759 612 028
3 1 37 575 237 71 245 327 971 537
4 2 38 842 632 72 358 502 883 157
5 3 39 1 234 294 73 523 268 737 918
6 4 40 1 808 003 74 762 512 542 535
7 6 41 2 648 088 75 1 108 797 952 894
8 9 42 3 878 863 76 1 608 029 199 893
9 13 43 5 681 044 77 2 323 793 898 612

10 19 44 8 320 312 78 3 343 540 732 459
11 28 45 12 184 995 79 4 786 270 172 173
12 41 46 17 844 810 80 6 811 932 935 500
13 60 47 26 134 470 81 9 633 271 340 874
14 88 48 38 275 824 82 13 524 365 031 892
15 129 49 56 052 677 83 18 835 200 708 312
16 189 50 82 079 784 84 26 006 592 640 071
17 277 51 120 191 188 85 35 586 447 144 420
18 406 52 176 010 965 86 48 235 329 094 317
19 595 53 257 743 713 87 64 707 333 203 651
20 872 54 377 377 331 88 85 854 587 472 809
21 1 278 55 552 530 112 89 112 592 214 454 082
22 1 870 56 809 003 680 90 145 836 255 324 616
23 2 741 57 1 184 568 132 91 186 464 879 487 116
24 4 019 58 1 734 367 942 92 234 882 687 403 501
25 5 888 59 2 539 101 162 93 290 865 320 646 279
26 8 622 60 3 717 160 466 94 353 167 513 519 152
27 12 634 61 5 441 979 825 95 419 043 410 131 476
28 18 513 62 7 967 290 270 96 483 141 727 918 288
29 27 128 63 11 663 422 314 97 534 768 932 735 380
30 39 749 64 17 072 801 062 98 557 018 016 635 015
31 58 192 65 24 990 316 134 99 522 447 041 258 147
32 85 285 66 36 581 421 194 100 389 883 092 218 470
33 124 928 67 53 548 048 989

The number of nodes in T100(3) is equal to 4 554 895 996 302 538 ≈ 4.5×1015. We checked
that all of these numerical semigroups satisfy Wilf’s conjecture, whence Theorem 3.5.

5.2. Exploration of T ′
120(4). The following table gives the number t′g of numerical semi-

groups of genus g in the subtree T ′
120(4).
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g t′
g

g t′
g

g t′
g

0 1 41 200 122 82 98 068 856 236
1 1 42 278 371 83 136 816 899 688
2 1 43 369 269 84 188 124 954 369
3 1 44 510 693 85 246 090 486 177
4 1 45 699 711 86 336 614 411 642
5 2 46 975 178 87 446 053 184 686
6 3 47 1 342 072 88 606 309 920 447
7 4 48 1 876 236 89 801 094 605 082
8 5 49 2 608 650 90 1 075 828 933 040
9 7 50 3 458 914 91 1 412 830 185 991
10 10 51 4 794 003 92 1 734 561 883 001
11 14 52 6 551 846 93 2 241 022 409 143
12 19 53 9 147 280 94 2 760 341 832 836
13 26 54 12 582 317 95 3 516 881 984 622
14 36 55 17 614 571 96 4 299 648 368 842
15 49 56 24 483 065 97 5 388 292 247 874
16 67 57 32 457 488 98 6 544 140 003 541
17 93 58 45 063 305 99 7 117 478 807 043
18 128 59 61 488 392 100 8 451 858 568 006
19 177 60 85 953 600 101 9 261 220 874 872
20 245 61 118 226 772 102 10 843 978 899 677
21 340 62 165 696 926 103 11 904 592 718 137
22 455 63 230 209 288 104 13 736 474 753 272
23 624 64 305 247 236 105 15 172 362 267 910
24 863 65 424 326 522 106 13 564 852 076 075
25 1 194 66 578 281 772 107 14 519 416 932 134
26 1 647 67 809 156 311 108 13 448 628 571 779
27 2 286 68 1 112 860 410 109 14 268 658 755 506
28 3 180 69 1 561 100 560 110 13 799 851 102 125
29 4 234 70 2 168 306 879 111 14 508 263 526 352
30 5 823 71 2 876 214 827 112 14 534 198 939 692
31 8 035 72 4 002 364 427 113 11 099 577 260 819
32 11 135 73 5 449 537 905 114 10 699 792 288 594
33 15 341 74 7 630 005 823 115 9 284 396 042 115
34 21 369 75 10 492 890 135 116 8 422 462 308 726
35 29 722 76 14 726 118 585 117 6 954 667 530 694
36 39 491 77 20 444 255 810 118 5 013 091 736 917
37 54 511 78 27 121 425 859 119 2 599 964 149 312
38 74 910 79 37 736 682 161 120 289 298 823 487
39 104 183 80 51 267 633 069
40 143 431 81 71 625 262 707

The number of nodes in T ′
120(4) is equal to 261 588 966 883 192≈ 2.6×1014. We checked

that all of these numerical semigroups satisfy Wilf’s conjecture, whence Theorem 4.4.

5.3. Growth rates. Recall that tg and t′g denote the number of numerical semigroups of
genus g in T100(3) and T ′

120(4), respectively. Recall also that the growth rate of ng tends

to φ = 1+
√
5

2
≈ 1.62 [28].

As illustrated by the following figure, the growth rate of tg seems to stabilize around
1.46 for g ∈ [10, 70].
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The growth rate of t′g is a little more chaotic but seems to have the same behavior, as
illustrated by the following figure.
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5.4. New values of ng. We took advantage of our distributed version of the algorithms
in [18] to compute the values of ng for all g ≤ 75. See Table 1. The total number of
numerical semigroups of genus g ≤ 75 is equal to 46 844 766 834 597 649≈ 4.6× 1016.

g ng g ng g ng

0 1 26 770 832 52 266 815 155 103
1 1 27 1 270 267 53 433 317 458 741
2 2 28 2 091 030 54 703 569 992 121
3 4 29 3 437 839 55 1 142 140 736 859
4 7 30 5 646 773 56 1 853 737 832 107
5 12 31 9 266 788 57 3 008 140 981 820
6 23 32 15 195 070 58 4 880 606 790 010
7 39 33 24 896 206 59 7 917 344 087 695
8 67 34 40 761 087 60 12 841 603 251 351
9 118 35 66 687 201 61 20 825 558 002 053

10 204 36 109 032 500 62 33 768 763 536 686
11 343 37 178 158 289 63 54 749 244 915 730
12 592 38 290 939 807 64 88 754 191 073 328
13 1 001 39 474 851 445 65 143 863 484 925 550
14 1 693 40 774 614 284 66 233 166 577 125 714
15 2 857 41 1 262 992 840 67 377 866 907 506 273
16 4 806 42 2 058 356 522 68 612 309 308 257 800
17 8 045 43 3 353 191 846 69 992 121 118 414 851
18 13 467 44 5 460 401 576 70 1 607 394 814 170 158
19 22 464 45 8 888 486 816 71 2 604 033 182 682 582
20 37 396 46 14 463 633 648 72 4 218 309 716 540 814
21 62 194 47 23 527 845 502 73 6832823876813577

22 103 246 48 38 260 496 374 74 11067092660179522

23 170 963 49 62 200 036 752 75 17924213336425401

24 282 828 50 101 090 300 128
25 467 224 51 164 253 200 784

Table 1. Number ng of numerical semigroups of genus g ≤ 75. Previously
unknown values are in bold font.
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