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Introduction

A numerical semigroup is a cofinite submonoid S of N, i.e. a subset containing 0, stable under addition and with finite complement N \ S. Equivalently, it is a set of the form S = a 1 , . . . , a n = Na 1 + • • • + Na n where a 1 , . . . , a n are positive integers with gcd(a 1 , . . . , a n ) = 1, called generators of S. The least such n is usually denoted e and called the embedding dimension of S, see below.

Let S be a numerical semigroup and S * = S\{0}. A primitive element of S is an element a ∈ S * \(S * +S * ), i.e. a nonzero element of S which is not the sum of two nonzero elements of S. Let P = P (S) denote the set of primitive elements of S. It is easy to see that P is finite and is the unique minimal generating set of S. The embedding dimension of S is e = e(S) = |P |, the multiplicity of S is m = m(S) = min S * , the Frobenius number of S is F = F (S) = max(Z \ S) and the conductor of S is c = c(S) = F + 1, satisfying c + N ⊆ S and minimal with respect to that property. The genus of S is g = g(S) = |N \ S|, its number of gaps. We partition S as

S = L ⊔ R,
where L = L(S) = {a ∈ S | a < F (S)} and R = R(S) = {a ∈ S | a > F (S)}, the left part and right part of S, respectively.

Wilf's conjecture is the inequality

e|L| ≥ c.
While this conjecture remains open since 1978, it has been verified in several cases. For convenience, we list some of them in a single statement together with their respective references.

Theorem 1.1. Wilf 's conjecture holds for all numerical semigroups satisfying one of the following conditions:

(1) e ≤ 3 [START_REF] Fröberg | On numerical semigroups[END_REF] (2) c ≤ 3m [START_REF] Eliahou | Wilf's conjecture and Macaulay's theorem[END_REF] (3) e ≥ m/3 [START_REF] Eliahou | A graph-theoretic approach to Wilf 's conjecture[END_REF] (4) |L| ≤ 12 [START_REF] Eliahou | On numerical semigroups with at most 12 left elements[END_REF] (5) m ≤ 19 [START_REF] Kliem | A new face iterator for polyhedra and for more general finite locally branched lattices[END_REF] See also [START_REF] Delgado | Conjecture of Wilf: A survey[END_REF] for an extensive recent survey of partial results on Wilf's conjecture, and [START_REF] Bras-Amorós | Fibonacci-like behavior of the number of numerical semigroups of a given genus[END_REF][START_REF] Bruns | Wilf's conjecture in fixed multiplicity[END_REF][START_REF] Delgado | On a question of Eliahou and a conjecture of Wilf[END_REF][START_REF] Dobbs | On a question of Wilf concerning numerical semigroups[END_REF][START_REF] Eliahou | Near-misses in Wilf's conjecture[END_REF][START_REF] Fromentin | Exploring the tree of numerical semigroups[END_REF][START_REF] Kaplan | Counting numerical semigroups by genus and some cases of a question of Wilf[END_REF][START_REF] Moscariello | On a conjecture by Wilf about the Frobenius number[END_REF][START_REF] Sammartano | Numerical semigroups with large embedding dimension satisfy Wilf's conjecture[END_REF][START_REF] Selmer | On the linear Diophantine problem of Frobenius[END_REF][START_REF] Sylvester | On Subinvariants, i.e. Semi-Invariants to Binary Quantics of an Unlimited Order[END_REF][START_REF] Wilf | A circle-of-lights algorithm for the "money-changing problem[END_REF] for some other relevant papers.

The first significant verification by computer of Wilf's conjecture up to a given genus was accomplished in 2008 by Bras-Amorós [START_REF] Bras-Amorós | Fibonacci-like behavior of the number of numerical semigroups of a given genus[END_REF]. There, Wilf's conjecture was announced to hold for all numerical semigroups of genus g ≤ 50. This result was extended to genus g ≤ 60 in 2016 by Fromentin-Hivert [START_REF] Fromentin | Exploring the tree of numerical semigroups[END_REF], to genus g ≤ 65 in 2021 by Bras-Amorós and Rodríguez [START_REF] Bras | New Eliahou semigroups and verification of the Wilf conjecture for genus up to 65[END_REF], and finally to genus g ≤ 66 in 2023 by Bras-Amorós [START_REF] Bras-Amorós | On the seeds and the great-grandchildren of a numerical semigroup[END_REF].

In this paper, we extend the verification of Wilf's conjecture up to genus g ≤ 100. See Theorem 3.5 below. This is achieved by combining three main ingredients:

(1) The main result of [START_REF] Eliahou | A graph-theoretic approach to Wilf 's conjecture[END_REF] stating that Wilf's conjecture holds in case e ≥ m/3.

(2) The method from [START_REF] Delgado | Trimming the numerical semigroups tree to probe Wilf's conjecture to higher genus[END_REF] to exploit the above result by efficiently trimming the tree T of numerical semigroups (see below) and thereby drastically reduce the number of numerical semigroups up to a given large genus to test for Wilf's conjecture. (3) A fast parallelisable algorithm to enumerate all numerical semigroups up to a given large genus [START_REF] Fromentin | Exploring the tree of numerical semigroups[END_REF].

For general reference books on numerical semigroups, see [START_REF] Ramírez-Alfonsín | The Diophantine Frobenius problem[END_REF][START_REF] Rosales | Numerical semigroups[END_REF].

The tree T

The set of all numerical semigroups can be organised in a rooted tree T , with root N of genus 0, such that all numerical semigroups of genus g lie at distance g from the root. Before recalling its construction, we introduce some terminology.

2.1.

Left and right primitive elements. Let S be a numerical semigroup. Recall the above partition S = L ⊔ R relative to the Frobenius number F (S). Accordingly, we partition the set P of primitive elements of S as

P = (P ∩ L) ⊔ (P ∩ R).
We call left primitive the elements of P ∩ L and right primitive those of P ∩ R. We denote 2.2. The children of S. We now briefly recall the construction of the tree T . Let S be a numerical semigroup, and let a ∈ P ∩ R be a right primitive element of S, if any. Then the set S ′ = S \ {a} is still a numerical semigroup, as easily seen.

A child of S in T is any numerical semigroup of the above form

S ′ = S \ {a}
where a ∈ P ∩ R. Clearly, the number of children of S in T is equal to e r .

The Frobenius number, genus and multiplicity of a child S ′ = S\{a} of S with a ∈ P ∩R are easy to determine. Indeed, one has 

F (S ′ ) = a,
O m = m, m + 1, . . . , 2m -1 = {0} ⊔ (m + N).
Then O m is of multiplicity m and conductor c = m. It has exactly m children, namely

O m \ {m + i} for 0 ≤ i ≤ m -1. They still have multiplicity m for 1 ≤ i ≤ m -1.
The only case where the multiplicity differs is at i = 0, for which

O m \ {m} = O m+1 is of multiplicity m + 1.
Note finally that any numerical semigroup of multiplicity m ≥ 1 is a descendant of O m in the tree T .

2.3. Numerical semigroups of given genus. For g ∈ N, let n g denote the number of numerical semigroups of genus g. It is well known that n g is finite. The first few values of n g are [START_REF] Bras-Amorós | On the seeds and the great-grandchildren of a numerical semigroup[END_REF][START_REF] Delgado | NumericalSgps, a package for numerical semigroups[END_REF][START_REF] Eliahou | Wilf's conjecture and Macaulay's theorem[END_REF][START_REF] Rosales | Numerical semigroups[END_REF].

(n 0 , n 1 , n 2 , n 3 , n 4 , n 5 , n 6 ) = (1, 1, 2,
In her famous paper [START_REF] Bras-Amorós | Fibonacci-like behavior of the number of numerical semigroups of a given genus[END_REF], Maria Bras-Amorós conjectured that n g behaves like the gth Fibonacci number F g , with a growth rate tending to the golden ratio φ = 1+ √ 5 2 ≈ 1.618 and satisfying

(1)

n g ≥ n g-1 + n g-2 for all g ≥ 2.
The conjectured growth rate of n g was subsequently confirmed by A. Zhai [START_REF] Zhai | Fibonacci-like growth of numerical semigroups of a given genus[END_REF], implying n g ≥ n g-1 for g large enough. Yet the conjectured inequality [START_REF]CALCULCO platform[END_REF] remains widely open to this day, as is the case for the much weaker inequality n g ≥ n g-1 for all g ≥ 1.

Until now, the exact value of n g had been computed up to g ≤ 72. In this paper, with massive computations using a distributed version of the fast algorithms in [START_REF] Fromentin | Exploring the tree of numerical semigroups[END_REF], we unlock three new values, namely See Section 5 for more details.

Trimming T

The main ideas proposed in [START_REF] Delgado | Trimming the numerical semigroups tree to probe Wilf's conjecture to higher genus[END_REF] to trim the tree T so as to drastically reduce the verification of Wilf's conjecture up to a given genus G are the following ones. Notation 3.1. Let G ≥ 1. We denote by T G the subtree of T consisting of all numerical semigroups S of genus g(S) ≤ G.

Proposition 3.2. Let S = O m be a numerical semigroup of multiplicity m. Let S ′ be a child of S. Then (1) m(S ′ ) = m(S) (2) e l (S ′ ) ≥ e l (S) (3) e(S) -1 ≤ e(S ′ ) ≤ e(S)
Proof. We have S ′ = S \ {a} for some right primitive element a ∈ P ∩ R. Denote m, c, P, L the multiplicity, conductor, primitive elements and left part of S, respectively, and m ′ , c ′ , P ′ , L ′ the corresponding objects for S ′ . Since a ≥ c > m, it follows that min(S ′ ) * = min S * , i.e. m ′ = m. Moreover, since c ′ = a + 1 > c, it follows that L ⊂ L ′ , and any left primitive element a ∈ P ∩ L of S remains left primitive in S ′ . Thus P ∩ L ⊆ P ′ ∩ L ′ , implying e l (S ′ ) ≥ e l (S). Finally, as easily seen, one has either P ′ = P \ {a} or P ′ = P \ {a} ⊔ {a + m}. The former occurs when a + m = s 1 + s 2 for some pair {s 1 , s 2 } ⊂ S * distinct from {a, m}, whereas the latter occurs when a + m has no other representation as an element of S * + S * . Therefore e(S) -1 ≤ e(S ′ ) ≤ e(S). Proof. Let h = g(T ). Then g ≤ h ≤ G by hypothesis, and T is an (h -g)th descendant of S. Now at each step from S down to T in T , the number of primitive elements diminishes by at most 1 as stated in Proposition 3.2 [START_REF] Bras | New Eliahou semigroups and verification of the Wilf conjecture for genus up to 65[END_REF]. Hence Summarizing, to probe Wilf's conjecture up to genus G, we only need to test those numerical semigroups S in T G (3). This is a significant reduction, as the subtree T G (3) turns out to be much smaller than T G . For instance, for G = 100, we found that T 100 (3) counts approximately 4.5 × 10 15 nodes, as compared to the full tree T 100 counting roughly n 75 × φ 25 ≈ 3.2 × 10 19 nodes. (See Section 5.) This level of reduction allowed us to reach one of the main computational results of this paper. Theorem 3.5. Wilf 's conjecture holds for all numerical semigroups of genus g ≤ 100.

e(T ) ≥ e -(h -g) ≥ e + g -G ≥ m/3 + (G -g) + g -G = m(T )/3.
Proof. By computer, we constructed the much smaller subtree T G (3) ⊂ T G for G = 100, and checked that all of its nodes satisfy Wilf's conjecture. The claimed statement follows from Corollary 3.3 and 3.4.

3.1.

Further trimming. There are ways to further trim T G (3) and thus further reduce the number of numerical semigroups of genus g ≤ G to test for Wilf's conjecture. They may be used whenever the added computational cost remains reasonable.

Here is a useful instance, exploiting the result that numerical semigroups with embedding dimension e ≤ 3 satisfy Wilf's conjecture [START_REF] Fröberg | On numerical semigroups[END_REF], as recalled in Theorem 1.1 (1). Proof. Let T be a descendant of S of genus g(T ) ≤ G. We have

c(T ) = |L(T )| + g(T ) ≥ |L| + g(T ) ≥ G/3 + g(T ) ≥ g(T )/3 + g(T )
= 4g(T )/3. Proposition 3.6 then implies that T satisfies Wilf's conjecture.

The case c ∈ mN

Given a numerical semigroup S, consider the Euclidean division of its conductor c by its multiplicity m with nonpositive remainder:

(2) c = qm -ρ, 0 ≤ ρ ≤ m -1.
As argued in [START_REF] Eliahou | Divsets, numerical semigroups and Wilf's conjecture[END_REF], the particular case c = qm, i.e. with ρ = 0, might well be the heart of Wilf's conjecture. Indeed, the proofs of Wilf's conjecture in either case c ≤ 3m [START_REF] Eliahou | Wilf's conjecture and Macaulay's theorem[END_REF] or e ≥ m/3 [START_REF] Eliahou | A graph-theoretic approach to Wilf 's conjecture[END_REF] can be significantly shortened in this particular case. Moreover, the first five instances of the rare occurrence W 0 (S) < 0 all belong to this case [START_REF] Eliahou | Near-misses in Wilf's conjecture[END_REF]. Definition 4.1. A numerical semigroup S is special if its multiplicity m divides its conductor c.

For instance, the ordinary numerical semigroup O m = {0} ∪ (m + N) is special since it satisfies c = m. The above discussion leads one to think that, if Wilf's conjecture is false, then some counterexamples might well be special. Thus, the special case should be given priority in related research work.

In this context, the validity of Wilf's conjecture has been extended to the case e ≥ m/4 for special numerical semigroups. More generally, using the notation in (2), the result reads as follows [START_REF] Eliahou | Divsets, numerical semigroups and Wilf's conjecture[END_REF]. Let us see how we used here this theorem to push the verification of Wilf's conjecture up to genus G = 120 in the special case c ∈ mN.

To start with, the method in Section 3 to trim T or its bounded version T G to get the greatly reduced relevant subtree T G (3) in case e < m/3 works as well to retain only those numerical semigroups such that e < m/d for some fixed integer d ≥ 3. This yields a subtree T G (d) of T G all of whose numerical semigroups S satisfy By Theorem 4.2, the case of relevance to us here is d = 4. The subtree T G (4) may be further trimmed by exploiting the added hypothesis c = qm, as explained below. For convenience, we introduce the following definition. 4.1. Special trimming. We start with a condition on a non-special numerical semigroup S ensuring that no descendant of S is special. Proposition 4.3. Let S be a non-special numerical semigroup. Assume further that S has no right primitive element a ∈ P ∩ R such that a ≡ -1 mod m. Then no descendant T of S is special.

Proof. Let S ′ = S \ {a} with a ∈ P ∩ R be a child of S. As usual, we denote by m, F, c, P the multiplicity, Frobenius number, conductor and primitive elements of S, and by m ′ , F ′ , c ′ , P ′ the corresponding objects for S ′ . First of all, S = O m since O m is special. Hence m ′ = m by Proposition 3.2. We have F ′ = a and so c ′ = a + 1. Since a ≡ -1 mod m by hypothesis, and m ′ = m, we have c ′ ≡ 0 mod m ′ . Therefore S ′ is not special. Moreover, no right primitive element of S ′ can be congruent to -1 mod m ′ since P ′ = P \ {a} or P \ {a} ⊔ {a + m} as seen in the proof of Proposition 3.2. Hence S ′ satisfies the same hypotheses as S and we are done by induction on the distance between S and any of its descendant T .

We denote by T ′ G (d) the subtree obtained from T G (d) by the above special trimming. 4.2. Outcome. Having constructed the subtree T ′ G (d) for d = 4 and maximal genus G = 120, we ended up with the following computational result. Theorem 4.4. Wilf 's conjecture holds for all special numerical semigroups S of genus g ≤ 120.

Proof. For each numerical semigroup S in the subtree T ′ 120 (4), we computed W (S) = e|L| -c and found that W (S) ≥ 0, i.e. that S satisfies Wilf's conjecture. All numerical semigroups of genus g ≤ 120 outside T ′ 120 (4) satisfy e ≥ m/4 or are not special. Combining the computational results on T ′ 120 (4) and Theorem 4.2, we conclude that all special numerical semigroups of genus g ≤ 120 satisfy Wilf's conjecture.

Computational results

Our experiments were carried out on the computational platform CALCULCO [START_REF]CALCULCO platform[END_REF] using an adapted and distributed version of algorithms given in [START_REF] Fromentin | Exploring the tree of numerical semigroups[END_REF]. Source codes are available on GitHub [START_REF] Delgado | Github -trim_tree_semigroups[END_REF]. These experiments were run for two weeks during summer 2023, when the platform CALCULCO, shared by the whole university, had a much better availability. The distributed computation ran in parallel on up to 1500 cores, with a special-purpose finely tuned dynamic balancing of the tasks of the respective cores. Early experiments were conducted using the GAP package NumericalSgps [START_REF] Delgado | NumericalSgps, a package for numerical semigroups[END_REF].

5.1. Exploration of T 100 [START_REF] Bras | New Eliahou semigroups and verification of the Wilf conjecture for genus up to 65[END_REF]. The following table gives the number t g of numerical semigroups of genus g in the trimmed subtree T 100 (3). The number of nodes in T 100 (3) is equal to 4 554 895 996 302 538 ≈ 4.5×10 15 . We checked that all of these numerical semigroups satisfy Wilf's conjecture, whence Theorem 3.5.

Exploration of T ′

120 (4). The following table gives the number t ′ g of numerical semigroups of genus g in the subtree T ′ 120 (4). The number of nodes in T ′ 120 (4) is equal to 261 588 966 883 192 ≈ 2.6 ×10 14 . We checked that all of these numerical semigroups satisfy Wilf's conjecture, whence Theorem 4.4. 5.3. Growth rates. Recall that t g and t ′ g denote the number of numerical semigroups of genus g in T 100 (3) and T ′ 120 (4), respectively. Recall also that the growth rate of n g tends to φ = 1+ √ 5 2 ≈ 1.62 [START_REF] Zhai | Fibonacci-like growth of numerical semigroups of a given genus[END_REF]. As illustrated by the following figure, the growth rate of t g seems to stabilize around 1.46 for g ∈ [START_REF] Delgado | Conjecture of Wilf: A survey[END_REF]70]. 

e

  = |P |, e l = |P ∩ L|, e r = |P ∩ R|. Thus e = e l + e r .

  g(S ′ ) = g(S) + 1 as easily seen. As for the multiplicity of S ′ , one has m(S ′ ) = m(S) whenever c(S) > m(S), see Proposition 3.2. The only numerical semigroups S for which c(S) = m(S) are the so-called ordinary or superficial numerical semigroups O m , defined for any m ≥ 1 by

n

  73 = 6 832 823 876 813 577, n 74 = 11 067 092 660 179 522, n 75 = 17 924 213 336 425 401.

Corollary 3 . 3 .

 33 Let S = O m be a numerical semigroup of multiplicity m such that e l ≥ m/3. Then all descendants T of S in T satisfy Wilf 's conjecture. Proof. Let T be a descendant of S. Then, by a repeated application of Proposition 3.2 (2) for each generation of children going down from S to T , we have e(T ) ≥ e l (T ) ≥ e l (S) ≥ m/3 = m(T )/3. It then follows from Theorem 1.1 (3) that T satisfies Wilf's conjecture. Corollary 3.4. Let G ∈ N * . Let S be a numerical semigroup of genus g ≤ G such that e ≥ m/3 + (G -g). Then all descendants T of S of genus g(T ) ≤ G satisfy Wilf 's conjecture.

  It then follows from Theorem 1.1 (3) that T satisfies Wilf's conjecture.Consequently, when exploring T G to probe Wilf's conjecture up to a given maximal genus G, the subtree rooted at any numerical semigroup S satisfying Corollary 3.3 or 3.4 can be completely cut off from T G . What remains after this systematic trimming of T G is a subtree T G (3) all of whose numerical semigroups S satisfy (1) e l (S) < m(S)/3, (2) e(S) < m(S)/3 + (G -g(S)).

Proposition 3 . 6 .

 36 Let S be a numerical semigroup such that c ≥ 4g/3. Then S satisfies Wilf 's conjecture. Proof. As g = c -|L|, the hypothesis yields c ≥ 4(c -|L|)/3, i.e. 4|L| ≥ c. If e ≥ 4 then e|L| ≥ 4|L| ≥ c, so S satisfies Wilf's conjecture. And if e ≤ 3, the same conclusion holds by Theorem 1.1 (1). Corollary 3.7. Let G ∈ N * . Let S be a numerical semigroup of genus g ≤ G such that |L| ≥ G/3. Then all descendants T of S of genus g(T ) ≤ G satisfy Wilf 's conjecture.

Theorem 4 . 2 .

 42 Let S be a numerical semigroup satisfying e ≥ m/4. Then e|L| ≥ c-m+ρ. Morever, if S is special, then e|L| ≥ c, i.e. S satisfies Wilf 's conjecture.

( 1 )

 1 e l (S) < m(S)/d, (2) e(S) < m(S)/d + (G -g(S)).

Table 1 .

 1 Number n g of numerical semigroups of genus g ≤ 75. Previously unknown values are in bold font.
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The growth rate of t ′ g is a little more chaotic but seems to have the same behavior, as illustrated by the following figure.