
HAL Id: hal-04236309
https://hal.science/hal-04236309

Submitted on 10 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Rectifying Binary Classifiers
Sylvie Coste-Marquis, Pierre Marquis

To cite this version:
Sylvie Coste-Marquis, Pierre Marquis. Rectifying Binary Classifiers. The 26th European Confer-
ence on Artificial Intelligence (ECAI’23), Sep 2023, Cracovie, Poland. �10.3233/FAIA230307�. �hal-
04236309�

https://hal.science/hal-04236309
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Rectifying Binary Classifiers
Sylvie Coste-Marquisa and Pierre Marquisa,b

aUniv. Artois, CNRS, CRIL, France
bInstitut Universitaire de France, France

ORCiD ID: Sylvie Coste-Marquis https://orcid.org/0000-0003-4742-4858,
Pierre Marquis https://orcid.org/0000-0002-7979-6608

Abstract. We elaborate on the notion of rectification of a classi-
fier Σ based on Boolean features, introduced in [10]. The purpose
is to determine how to modify Σ when the way it classifies a given
instance is considered incorrect since it conflicts with some expert
knowledge T . Given Σ and T , postulates characterizing the way Σ
must be changed into a new classifier Σ ? T that complies with T
were presented. We focus here on the specific case of binary classi-
fiers, i.e., there is a single target concept, and any instance is clas-
sified either as positive (an element of the concept), or as negative
(an element of the complementary concept). In this specific case, our
main contribution is twofold: (1) we show that there is a unique rec-
tification operator ? satisfying the postulates, and (2) when Σ and T
are Boolean circuits, we show how a classification circuit equivalent
to Σ?T can be computed in time linear in the size of Σ and T ; when
Σ is a decision tree (resp. a random forest, a boosted tree) and T is
a decision tree, a decision tree (resp. a random forest, a boosted tree)
equivalent to Σ ? T can be computed in time polynomial in the size
of Σ and T .

1 Introduction
Though explaining is an issue considered in AI for decades, the new
field of “eXplainable AI (XAI)” has emerged a couple of years ago
[19]. The main objective of XAI is to make ML models less opaque.
More precisely, the DARPA, at the origin of this buzz word, pointed
out the following purpose of XAI: “to provide users with explana-
tions that enable them to understand the system’s overall strengths
and weaknesses, convey an understanding of how it will behave in
future or different situations, and perhaps permit users to correct
the system’s mistakes”. Reaching this objective has gone typically
through the definition of a number of explanation and/or verification
tasks for various ML models, and the development and the evaluation
of algorithms for addressing them. Among others, [4] has pointed out
XAI queries that capture in formal terms, explanation and/or verifi-
cation tasks. Answers to such XAI queries can be used by the user
of the ML model to determine whether the model is trustable enough
(or not), by confronting those answers to the own expectations of the
user about the model.

Many work has been devoted for the past few years in this direc-
tion (see e.g., [1, 28, 33, 18, 36, 29, 27, 32]). The issue of correcting
the system’s mistakes has received less attention, probably because
it is more tricky. Indeed, whenever the prediction made by the ML
model is viewed as incorrect or, more generally, when it conflicts

∗ Corresponding Author. Email: marquis@cril.univ-artois.fr

with the expectations of the user, a challenging issue is to figure out
how the ML model should be modified to ensure that the prediction
made will be correct afterwards, and that the predictor will comply
with the expectations of the user. This calls for XAI transformations,
i.e., methods that do not reduce to extracting useful information from
the ML model (this is the purpose of XAI queries), but are designed
to change the model itself.

To make things concrete and illustrate the concept of XAI transfor-
mation, let us consider the following credit scoring scenario. Alice, a
bank employee, receives Bob, a customer who wants to obtain a loan.
The bank management provides Alice with an AI algorithm (a pre-
dictor) to help her decide which issue to give to any loan application.
Alice uses this algorithm and it recommends against granting Bob
the requested loan. Alice is very surprised by the result provided by
the algorithm, since she is experienced and has already granted loans
to clients of the bank with precisely the same profile as Bob’s, i.e.,
a client with low incomes but who has reimbursed a previous loan
and has no debts. Alice’s expertise led her not to follow the recom-
mendation of the AI algorithm and to grant Bob the loan requested.
However, Alice would like to do more to avoid that the problem en-
countered arises again with another client having an identical profile.
She wonders what could be done to this end.

The research question tackled in the recent work [10] is relevant
to Alice’s concern. In this work, the authors introduced a specific
XAI transformation, called rectification, that is suited to multi-label
Boolean classifiers. Given a setX = {x1, · · · , xn} (its elements are
Boolean features) and a set Y = {y1, · · · , ym}, that is disjoint with
X (its elements are labels, denoting classes / concepts), X is the set
{0, 1}n of all vectors over {0, 1} of size n, and Y is the set {0, 1}m
of all vectors over {0, 1} of size m. Then, a multi-label Boolean
classifier simply is a mapping f from X to Y , associating with each
input instance (a vector x ∈ X of n Boolean values assigned to
the elements of X) a vector y ∈ Y of m Boolean values assigned
to the elements of Y . Whenever an instance x = (x1, . . . , xn) is
associated by the classifier with y = (y1, . . . , ym) such that yi (i ∈
[m]) is equal to 1 (resp. 0), one considers that x belongs to the class
yi (resp. does not belong to this class).

For instance, considering the previous credit scoring scenario,
one may assume the following sets of Boolean features X =
{x1, x2, x3} and labels Y = {y}, associated with the following se-
mantics:

• x1 = 1: has low income
• x2 = 1: has reimbursed a previous loan
• x3 = 1: has debts



• y = 1: to grant the loan

Bob is viewed as the instance x = (x1 = 1, x2 = 1, x3 = 0), and if
f denotes the predictor used by Alice, we have f(x) = 0, meaning
that the predictor suggests not to grant the loan.

A multi-label Boolean classifier f can be represented by a Boolean
circuit Σ over a set of variables PS such that X ∪ Y ⊆ PS . In
such a circuit Σ, called a classification circuit, features and labels
are both represented by propositional variables despite the fact that
they correspond to distinct notions. Some pieces of knowledge sup-
posed to be more reliable than the classification circuit Σ are also
considered. They are represented as well by a Boolean circuit T over
PS . The purpose of rectifying the classification circuit Σ by T is to
modify Σ so that (1) the constraints imposed by T on the facts about
Y that must hold under each x are respected, and (2) the resulting
circuit noted Σ ? T is still a classification circuit. A minimal change
condition is taken into account; it states that the way x was classi-
fied by Σ must not be modified by the rectification process when the
constraints imposed by T on the facts that hold under x are already
satisfied. In the general case when Y is unconstrained, several clas-
sification circuits Σ?T can be found that satisfy (1) and the minimal
change condition. Stated otherwise, several rectification operators ?
can be defined.

Whatever the operator ? chosen, the value of rectification comes
from the fact that each error found, i.e., each instance x badly clas-
sified by Σ, is guaranteed to be corrected if a rectification process
where T indicates how x should be classified is run. Thus, if Σ does
not classify x in the right way while T classifies x as it must be clas-
sified, then it is ensured x will be classified correctly by Σ ? T . This
requirement is typically not met when learning-based techniques are
used to (tentatively) correct badly classified instances. In such ap-
proaches (see e.g., [40]), when a new instance x is found wrongly
classified by the predictor Σ, the training set used to generate Σ is
updated by adding to it x′, that coincides with the misclassified in-
stance x is but associated with the right label, then a new classifier
Σ′ is learned from the updated dataset. However, for many ML mod-
els (including "simple ones", like decision trees or perceptrons), it
can easily be the case that x′ will not be classified correctly by Σ′.
Stated otherwise, retraining a classifier is in general not enough to
ensure that it will be corrected as one expects.

In [10], it was shown that a rectification operation amounts to a
specific form of belief change [2]. A logical characterization of clas-
sification circuits has been pointed out and a number of postulates
that rectification operators should satisfy have been presented. The
authors also exhibited some operators from the rectification family,
and studied the standard belief change postulates in order to deter-
mine those that are satisfied by every rectification operator satisfies,
and those that are not. Especially, they proved that the families of rec-
tification operators and those of “standard” belief change operators,
namely revision operators / update operators [23, 22], are disjoint.

In this paper, we focus on the specific case of binary classifiers,
i.e., there are only two classes, the target concept and the comple-
mentary one, so that every instance is either positive (i.e., it belongs
to the target concept) or negative (i.e., it does not belong to it). This is
ensured by considering that Y = {y} is a singleton (as it it the case
for the credit scoring scenario). Under this assumption, we present
two new contributions. On the one hand, provided that the Boolean
classifier is represented by a circuit Σ involving only variables X for
the representation of instances and the concept variable y, we show
that there exists a unique rectification operator, noted ?, thus provid-
ing a full characterization of rectification operators in this restricted

case. Since it is unique, ? coincides with the operators presented in
[10] when Y is a singleton. On the other hand, we show how a clas-
sification circuit equivalent to Σ ? T can be computed in time linear
in the size of Σ and T , where the change formula T is given as a
Boolean circuit. This result fully contrasts with the representations
of rectified classifiers presented in [10], which are of size exponen-
tial in the size of X . In addition, the specific cases when Σ and T
are SDD circuits [12], OBDD circuits [9], and (possibly affine) deci-
sion trees [38, 25] are analyzed. We finally show how random forests
and boosted trees can be rectified in polynomial time.

The rest of the paper is organized as follows. Some formal pre-
liminaries are provided in Section 2. Our characterization theorem is
presented in Section 3. Our representation result is given in Section
4. Other related work is discussed in Section 5. Section 6 concludes
the paper.

2 Preliminaries
Before presenting the key definitions of the rectification setting
pointed out in [10], we first need to recall a couple of notions about
propositional representations.

A Boolean circuit Φ over a set PS of propositional variables is a
DAG where internal nodes are labelled by usual connectives,¬,∨,∧,
but may also correspond to decision nodes over variables from PS ,
and leaves are labelled by variables from PS or by Boolean constants
> – verum – and ⊥ – falsum (also denoted 1 and 0, respectively).
The size |Φ| of Φ is the number of arcs in it. Var(Φ) the subset of
variables of PS occurring in Φ. L is the set of all Boolean circuits
over PS . When X ⊆ PS , LX denotes the subset of L consisting of
Boolean circuits over X .

For any node N of Φ, let ΦN be the subcircuit of Φ rooted at N ,
i.e., the subgraph of Φ that consists of all the nodes and arcs that can
be reached from N . When N is a decision node labelled by variable
x ∈ X in a Boolean circuit Φ, the subcircuit ΦN of Φ given by

x

ΦM ΦP

is viewed as a short for the Boolean circuit

∨
∧ ∧

x xΦM ΦP

A formula over PS simply is a Boolean circuit over PS where the
underlying DAG is a tree. A literal is a propositional variable of PS ,
possibly negated, or a Boolean constant. Any propositional variable
x is called a positive literal, and the negation of x, denoted ¬x or
x, is called a negative literal. For any subset X = {x1, . . . , xn}
of PS , LX denotes the set of literals based on the variables of X .
A term is a conjunction of literals, and a clause is a disjunction of
literals. A canonical term over X is a term into which every variable
of X occurs once (as such, or negated). With X the set {0, 1}n of
all vectors over {0, 1} of size n, every instance x ∈ X can also be
viewed as a canonical term over X , still noted x, such that for every
i ∈ [n], xi is a literal of this term if the ith coordinate of x is 1 and
xi is a literal of this term otherwise.

Given a set of variables V ⊆ PS , an interpretation over V is a
mapping ω from V to B = {0, 1}. Every interpretation over V cor-
responds to a unique canonical term over V , and vice versa. When



a total ordering < over PS is provided, interpretations can be rep-
resented by bit vectors or by words. For instance, if V = {v1, v2}
such that v1 < v2, then the mapping ω such that ω(v1) = 0 and
ω(v2) = 1 can be represented by the vector (0, 1) ∈ {0, 1}2 or
equivalently by the word 01. Boolean circuits are interpreted in a
classical way. For a Boolean circuit Φ ∈ LV and an interpretation
over any superset of V = Var(Φ), we use ω |= Φ to denote the fact
that ω if a model of Φ according to the semantics of propositional
logic. That is, assigning the variables of Φ to truth values as speci-
fied by ω makes Φ true. By [Φ] we denote the set of models of Φ over
Var(Φ). Φ is inconsistent if [Φ] = ∅, and Φ is consistent otherwise.
A Boolean circuit Ψ ∈ LV is a logical consequence of a Boolean
circuit Φ ∈ LV (denoted Φ |= Ψ) if Φ ∧ ¬Ψ is inconsistent. Φ and
Ψ are logically equivalent (denoted Φ ≡ Ψ) if they have the same
models over Var(Φ) ∪Var(Ψ).

Given a Boolean circuit Φ ∈ L and a consistent term γ over PS ,
the conditioning of Φ by γ is the Boolean circuit from L, noted
Φ(γ), obtained by replacing in Φ every occurrence of a variable
v ∈ Var(γ) by > if v is a positive literal of γ and by ⊥ if v is
a negative literal of γ. Thus, conditioning Φ by γ amounts to condi-
tioning Φ by every literal ` of γ in an iterative way (the ordering does
not matter). Conditioning ΦN by γ where N is a decision node la-
belled by x reduces to conditioning its two children by γ when x 6∈ γ
and x 6∈ γ, and to replacing N by the conditioning of its right child
(resp. left child) by γ when x ∈ γ (resp. x ∈ γ).

When V is a subset of PS , a Boolean circuit Φ ∈ L is said to
be independent of V if there is a Boolean circuit Ψ ∈ L logically
equivalent to Φ such that Var(Ψ) ∩ V = ∅. The forgetting of V in
Φ, denoted ∃V.Φ, is (up to logical equivalence) the strongest logical
consequence of Φ that is independent of V (see e.g., [26]). The pro-
jection of Σ onto V is the forgetting of V in Σ, where V denotes the
set PS \ V . ∃V.Φ can be characterized as follows:

• ∃∅.Φ ≡ Φ,
• ∃{v}.Φ ≡ (Φ(v) ∨ (Φ(v)),
• ∃(V ′ ∪ {v}).Φ ≡ ∃V ′.(∃{v}.Φ).

Let x ∈ X . A Boolean circuit Φ over L is said to classify x as
v if and only if the Boolean circuit Φ(x) has a unique model over
V = PS \ X , given by v. Φ has the XY -classification property if
and only if Y ⊆ PS \X and Φ classifies every x ∈X . In that case,
one also says that Φ is a classification circuit. When PS \X = {y}
is a singleton, a Boolean circuit Φ is said to classify x as a positive
instance if Φ(x) ≡ y, as a negative instance if Φ(x) ≡ y, and Φ
does not classify x in the remaining case.

The last notion to be made precise before defining rectifica-
tion operators is the notion of fact compliance. A Boolean cir-
cuit Σ ∈ L is fact-compliant with a Boolean circuit T ∈
L on an instance x if and only if Σ(x) |= F (T,x) where
F (T,x) = > if T (x) is inconsistent,

=
∧

`∈LY s.t. T (x)|=` ` otherwise.
When T (x) is consistent, F (T,x) is the conjunction of all the

facts (literals) about Y that hold in T (x). Accordingly, for every T
and every x, we have T (x) |= F (T,x).

Example 1. Let X = {x1, x2} and Y = {y1, y2}. Let Σ be the
Boolean circuit over X ∪ Y given by Figure 1. Σ is logically equiv-
alent to (x1 ⇔ y1) ∧ (x2 ⇔ y2). The instance (1, 1) corresponds
to the canonical term x1 ∧ x2. Similarly, the instance (1, 0) corre-
sponds to the canonical term x1 ∧ x2. One can easily verify that
Σ((1, 1)) ≡ y1 ∧ y2, Σ((1, 0)) ≡ y1 ∧ y2, Σ((0, 1)) ≡ y1 ∧ y2,
and Σ((0, 0)) ≡ y1 ∧ y2. Thus, Σ classifies every instance x, and as
such, Σ is a classification circuit.

∧

x1 y2

¬

y1

y1

0 1

¬

x2

x2

Figure 1: A classification circuit.

Now, let T = ((x1∧x2)⇒ (y1∧y2))∧((x1∧x2)⇒ (y1∨y2))∧
((x1 ∧ x2)⇒ y2) ∧ (x1 ∨ x2). T is a formula and it does not have
the XY -classification property. Indeed, though T classifies (1, 1)
(as (1, 1)), it does not classify any of the other instances: T ((1, 0))
has three models over Y , T ((0, 1)) has two models over Y , and
T ((0, 0)) is inconsistent. Finally, we have F (T, x1 ∧x2) ≡ y1 ∧ y2,
F (T, x1 ∧ x2) ≡ >, F (T, x1 ∧ x2) ≡ y2, and F (T, x1 ∧ x2) ≡ >.
Thus, Σ is fact-compliant with T on every instance, but (0, 1).

With these definitions in hand, the notion of rectification operator
can be defined as follows:

Definition 1 (rectification operator). A rectification operator ? is a
mapping associating with two given circuits T and Σ from L, where
Σ has the XY -classification property, a circuit from L, noted Σ ? T
and called a rectified circuit, such that:

(RE1) Σ ? T has the XY -classification property;
(RE2) If Σ is fact-compliant with T on x ∈X ,

then (Σ ? T )(x) ≡ Σ(x);
(RE3) For any x ∈X , (Σ ? T )(x) |= F (T,x);
(RE4) If T is inconsistent, then Σ ? T ≡ Σ;
(RE5) If Σ ≡ Σ′ and T ≡ T ′, then Σ ? T ≡ Σ′ ? T ′;
(RE6) Σ ? T ≡ (∃X ∪ Y .Σ) ? (∃X ∪ Y .T ).

The rationale for those postulates is presented in [10]. Roughly,
(RE1) is a closure condition: it asks that any rectified classification
circuit is still a classification circuit. (RE2) is a minimal change con-
dition, stating that the classification of any x as achieved by Σ should
not be modified by the rectification operation whenever Σ is fact-
compliant with T on x. (RE3) is a success condition: it demands
that the rectified circuit Σ ? T is fact-compliant with T on every x.
(RE4) is a non-triviality condition; it deals with the case when T is
inconsistent; in such a situation, a minimal change of Σ consists in
not modifying it at all. (RE5) is a standard principle of irrelevance
of syntax. Finally, (RE6) is a relevance condition: it states that the
result of rectifying Σ by T must not depend on the variables outside
X ∪ Y .

Example 2. Let us consider again the classification circuit Σ and the
formula T presented at Example 1. Since Σ is fact-compliant with T
on every instance, but (0, 1), (RE2) imposes that (Σ ? T )((1, 1)) ≡
y1 ∧ y2, (Σ ? T )((1, 0)) ≡ y1 ∧ y2, and (Σ ? T )((0, 0)) ≡ y1 ∧ y2.
(RE3) requires that (Σ ? T )((0, 1)) |= y2. Finally, (RE1) ensures
that (Σ ? T )((0, 1)) ≡ y1 ∧ y2 or (Σ ? T )((0, 1)) ≡ y1 ∧ y2. Ac-
cordingly, the classification y1∧y2 of the instance (0, 1) as achieved
by Σ can be rectified in two distinct ways in order to enforce that y2

holds. Indeed, since no independence assumptions are made about
the labels of Y , it can make sense to change the truth value of label
y1 when changing the truth value of label y2. The situation is similar
to what happens in belief revision, where revising y1 ∧ y2 by y2 may
lead to y1 ∧ y2 without questioning the satisfaction of the revision
postulates.



3 A Characterization Theorem

Unlike what happens in the general case (as exemplified above), there
is a unique operator ? satisfying the rectification postulates in the
restricted case when Y contains a single label:

Proposition 1. If L is a language of Boolean circuits over a set
of propositional variables PS = X ∪ {y}, then there is a unique
rectification operator ?.

Proof. First of all, because of postulate (RE5), we know that the
syntactic representations of Σ and T does not play any role in the
definition of Σ ? T (? is syntax-independent). Now, when Y = {y}
is a singleton, we can mainly get rid of y in the representation of the
classifier Σ and consider it as implicit (this is usually done in binary
classifiers for the sake of simplicity). Indeed, by definition (see Defi-
nition 4 in [10]), Σ is a classification circuit if and only if there exists
a circuit ΣX from LX such that Σ ≡ ΣX ⇔ y. The models of ΣX

are precisely those truth assignments x over X such that Σ(x) ≡ y.
Because of postulate (RE1), defining Σ ? T just amounts to pointing
out a circuit ΣT

X from LX , so that Σ ? T ≡ ΣT
X ⇔ y. We now show

that, given Σ and T , the rectification postulates ensure the existence
of a unique circuit ΣT

X up to logical equivalence. Let x ∈ X . Since
T is a circuit from L and Y = {y}, T (x) is equivalent to y, y,>, or
⊥. Accordingly,F (T,x) is equivalent to T (x) ≡ y, T (x) ≡ y, or to
>, so that F (T,x) is equivalent to > precisely when it is not equiv-
alent to T (x). Because of postulate (RE1), (Σ ? T )(x) is equivalent
to y or to y. By definition, Σ is fact-compliant with T on x precisely
when F (T,x) is equivalent to> or Σ(x) is equivalent to T (x), and
in this case, because of (RE2), one must have (Σ ? T )(x) ≡ Σ(x).
Thus, for any x ∈ X such that F (T,x) is equivalent to > or Σ(x)
is equivalent to T (x), x is a model of ΣT

X if and only if x is a model
of ΣX . The remaining case, i.e., when F (T,x) is not equivalent to>
and Σ(x) is not equivalent to T (x), can be simplified as Σ(x) is not
equivalent to F (T,x) ≡ T (x). Because of postulate (RE3), in this
case, the class of x must be switched (from positive to negative, or
vice-versa), so that x is a model of ΣT

X if and only if x is not a model
of ΣX . This shows that ΣT

X is unique up to logical equivalence, or
equivalently that there exists a unique rectification operator ?. Note
that ? trivially satisfies (RE4) since if T is inconsistent, F (T,x) is
equivalent to> for every x ∈X , and ? trivially satisfies (RE6) since
L is built solely upon variables from X and Y (thus, ∃X ∪ Y .Σ is
equivalent to Σ and ∃X ∪ Y .T is equivalent to T ).

Example 3. As a matter of illustration, let us consider again the
loan allocation scenario with Alice and Bob, as sketched in the in-
troduction. Let us suppose that the predictor f furnished by the bank
labels an instance positive when it corresponds to a customer who
has high incomes (x1) but has not reimbursed a previous loan (x2),
or (which looks more risky) a customer who has low incomes (x1)
and has some debts (x3). Suppose also that Alice’s expertise con-
sists of two decision rules stating that if a customer has low incomes
but no debts, the loan can be granted, while if a customer has not
reimbursed a previous loan, the loan should not be granted.

Formally, the predictor f can be represented by the classification
circuit Σ = ΣX ⇔ y where ΣX = (x1 ∧ x2) ∨ (x1 ∧ x3). Alice’s
expertise can be represented by the formula T = T1 ∧ T2 with T1 =
(x1 ∧x3)⇒ y and T2 = x2 ⇒ y encode Alice’s decision rules. For
every instance x ∈X , Table 1 indicates from left to right, whether or
not Σ classifies x as positive (this is the case precisely when Σ(x) ≡
y), the constraint imposed by T on the way x should be classified
(i.e., as positive when T (x) ≡ y and as negative when T (x) ≡ y),

the facts F (T,x) that hold in T under x, and finally whether or
not Σ ? T classifies x as positive (this is the case precisely when
(Σ ? T )(x) ≡ y).

x Σ(x) T (x) F (T,x) (Σ ? T )(x)

000 y y y y
001 y y y y
010 y > > y
011 y > > y
100 y ⊥ > y
101 y y y y
110 y y y y
111 y > > y

Table 1: The credit scoring scenario, with Alice and Bob.

The instance x = (x1 = 1, x2 = 1, x3 = 0) in orange in
the table corresponds to Bob. The classification circuit considered
at start classifies x as a negative instance (Σ(x) ≡ y). Contrast-
ingly, the rectified classification circuit Σ ? T once T has been taken
into account classifies x as positive ((Σ ? T )(x) ≡ y), as it is ex-
pected. One can observe by looking at the table that no specific as-
sumptions are made about what T must say about y under a par-
tial assignment x. Thus, the information conveyed by T about x
can be trivial, i.e., equivalent to > (this is the case for instance for
x = (x1 = 0, x2 = 1, x3 = 0)) or contradictory – equivalent to ⊥
– (this is the case for x = (x1 = 1, x2 = 0, x3 = 0) since Alice’s
decision rules T1 and T2 are both triggered under this assignment,
and those rules have conflicting conclusions).

Note that when Y is a singleton, for every x ∈X such that T (x)
is consistent, we have T (x) ≡ F (T,x). Then (RE3) shows imme-
diately that for every x ∈ X such that T (x) is consistent, Σ ? T is
knowledge-compliant with T on x, i.e., (Σ ? T )(x) |= T (x) [10].

4 Representing Rectified Classifiers
Some rectification operators have been put forward in [10]. Among
them is the following ?D operator:

Definition 2 (?D). Let ◦D denote Dalal revision operator [11].1

Let ?D be the mapping associating with T ∈ L and a classification
circuit Σ ∈ L, a classification circuit Σ ?D T ∈ L such that

Σ ?D T ≡
∨

x∈X

x ∧ (Σ ?D T )(x)

where for any x ∈X , (Σ ?D T )(x) = Σ(x) ◦D F (T,x).

It was already observed that ?D coincides with other rectification
operators pointed out in [10] when Y is a singleton. Thanks to Propo-
sition 1, we now know more: there is no rectification operator ? that
would be different of ?D . Accordingly, the definition of ?D induces
in a straightforward way a characterization result for the class of rec-
tification operators when |Y | = 1.

However, the definition of ?D above is not convenient at all from a
representation perspective since the representation

∨
x∈X x∧(Σ?D

T )(x) of the rectified classifier Σ ?D T is of size exponential in |X|.
In the following, we explain how a much more compact representa-
tion of Σ ? T can be derived. This representation can be computed

1 Given two propositional representationsϕ andα, the models ofϕ◦Dα con-
sist of the models of α which are as close as possible to ϕ w.r.t. Hamming
distance.



in time linear in |Σ| and of |T |, and its size also is linear in the
size of |Σ| and of |T |. Remember that when Y = {y}, because of
(RE1), one knows that there exists a circuit ΣT

X from LX so that
Σ ? T ≡ ΣT

X ⇔ y. Thus, generating a circuit representing Σ ? T
boils down to generating a circuit representing ΣT

X .
To do so, one first need to make precise the instances that are clas-

sified by T as positive, and those that are classified by T as negative.

Proposition 2. Let x ∈X and T ∈ L. T classifies x as

• a positive instance if x |= T (y) ∧ ¬T (y);
• a negative instance if x |= T (y) ∧ ¬T (y).

Proof. Let us consider the case of positive instances (the other case
is similar). By definition, T classifies x as a positive instance if and
only if T (x) ≡ y. This means precisely that the assignment ωx,y that
coincides with x over X and sets y to true is a model of T and that
the assignment ωx,y that coincides with x over X and sets y to false
is not a model of T (if both ωx,y and ωx,y were models of T , then we
would have T (x) ≡ >, and if none of ωx,y and ωx,y were models
of T , then we would have T (x) ≡ ⊥). But ωx,y |= T precisely
means that x |= ∃{y}.(T ∧ y), or equivalently that x |= T (y). And
similarly, ωx,y 6|= T precisely means that x 6|= ∃{y}.(T ∧ y), or
equivalently that x 6|= T (y). Finally, since T (y) is a circuit from
LX and x is an assignment over X , we have x 6|= T (y) if and only
if x |= ¬T (y). This concludes the proof.

On this basis, the following representation of ΣT
X can be derived:

Proposition 3. Let ΣX ∈ LX and T ∈ L. We have

ΣT
X ≡ (ΣX ∧ ¬(T (y) ∧ ¬T (y))) ∨ (T (y) ∧ ¬T (y)).

Proof. Proposition 1 ensures that ΣT
X is unique up to logical equiv-

alence. Then, the result comes directly from the identification of the
only two reasons according to which an instance x ∈ X must be
classified as positive by the rectified classifier (i.e., when x is a model
of ΣT

X ):

• Because of (RE2), x is a model of ΣT
X when x is a model of ΣX

and the change formula T does not classify x as negative (hence,
ΣX ⇔ y is fact-compliant with T on x). By construction, given
Proposition 2, every such model is a model of ΣX ∧ ¬(T (y) ∧
¬T (y)).

• Because of (RE3), x is a model of ΣT
X when T classifies x as a

positive instance. By construction, given Proposition 2, every such
model is a model of T (y) ∧ ¬T (y).

The rationale of this characterization of ΣT
X is as follows. For an

instance x to be classified as positive by the rectified classification
circuit, it must be the case that either T consistently asks for it (this
corresponds to the disjunct T (y) ∧ ¬T (y)), or that the classification
circuit considered at start classifies x as positive, provided that T
does not consistently ask x to be classified as negative (this corre-
sponds to the disjunct ΣX ∧ ¬(T (y) ∧ ¬T (y))). Such a construc-
tion is reminiscent to the representation of STRIPS-like actions using
propositional formulae, thus asking to make precise each situation
where a fluent holds so as to handle the frame problem.

From Proposition 3, since the conditioning transformation on cir-
cuits can be achieved in linear time, ΣT

X ⇔ y (where ΣT
X is provided

by Proposition 3) is a circuit ofL equivalent to Σ?T and computable
in time linear in |Σ|+ |T |. Its size is also linear in |Σ|+ |T |, as ex-
pected.

Example 4. Let us consider Σ and T as in Example 3. We have
T (y) ≡ x2 and T (y) ≡ x1 ∨ x3. Thus, we get

ΣT
X ≡ ((x1 ∧ x2) ∨ (x1 ∧ x3)︸ ︷︷ ︸

ΣX

∧¬((x1 ∨ x3)︸ ︷︷ ︸
T (y)

∧¬ x2︸︷︷︸
T (y)

))

∨( x2︸︷︷︸
T (y)

∧¬((x1 ∨ x3)︸ ︷︷ ︸
T (y)

).

This circuit can be simplified as ΣT
X ≡ x1 ∧ x2. One can check in

Table 1 (rightmost colum) that the models of ΣT
X are precisely those

x ∈X such that (Σ ? T )(x) ≡ y. Stated otherwise, for the rectified
classification circuit Σ?T , the clients for which a loan can be granted
are those having low incomes provided that they have reimbursed a
previous loan.

If ΣX and T are formulae (and not general Boolean circuits) in
Proposition 3, then the resulting characterization of ΣT

X also is a for-
mula (indeed, conditioning a formula leads to a formula). Thus, as a
direct corollary to Proposition 3, we get:

Corollary 1. Whenever ΣX and T belongs to a class C of circuits
that offers in polynomial time the transformations of negation (¬C),
bounded conjunction (∧BC), and bounded disjunction (∨BC) [13],
a representation of ΣT

X in C can be derived in polynomial time from
ΣX and T .

Notably, focusing on a restricted class of circuits C is not manda-
tory for ensuring tractable classification: when ΣT

X is in LX , decid-
ing whether x ∈ X is classified as positive by Σ ? T amounts to
testing whether x is a model of ΣT

X , and such a model checking test
can be done in time linear in the size of the input. However, consider-
ing specific classes of circuits can be useful from an XAI perspective
(see e.g., [4, 5, 3, 37, 21]).

Among the classes of circuits offering ¬C, ∧BC, and ∨BC are
SDD, the class of sentential decision diagrams [12], OBDD, the class of
ordered binary decision diagrams [9], but also DT, the class of deci-
sion trees, and more generally ADT, the class of affine decision trees
[25]. Any Boolean circuit can be represented in SDD, OBDD, ADT and
DT. Thus, considering those languages for representing the change
formula T that triggers the rectification operation allows us to ac-
cept as input any possible T (up to logical equivalence). Of course,
it is not the case that every Boolean circuit T has a representation in
SDD, OBDD, ADT or DT that is of size polynomial in |T |, but “simple”
change formulae T (e.g., clauses or terms) can be turned in linear
time into equivalent representations in SDD, OBDD, ADT, and DT. For
instance, a decision rule like (x1∧x3)⇒ y (equivalent to the clause
x1∨x3∨y) that is entailed by the formula T considered in Example
3 could be easily handled.

The case of DT is of particular interest since it corresponds to a
well-known ML model [8, 31], that also serves as a key component of
other ML models, especially random forests RF [7] and boosted trees
[15]. Rectifying a (possibly weighted) random forest simply amounts
to rectifying every decision tree in it while keeping the weight of
each tree as it is, thus the rectification process is also tractable for
(possibly weighted) random forests. The case of boosted trees is a bit
more tricky, but in the case of binary classification, every boosted tree
(whatever its form) can be turned in polynomial time into an equiva-
lent weighted random forest. This is easy to figure out for Adaboost-
style boosted trees, which are similar to weighted random forests,
except that the leaves are labelled by +1 and −1 instead of 1 and 0.
In this case, every tree ΣX with weight w can be replaced by two
decision trees Σ+1

X and Σ−1
X where Σ+1

X and Σ−1
X are copies of ΣX



where every leaf labelled by 1 (resp. −1) in ΣX corresponds to a
leaf labelled by 1 (resp. 0) in Σ+1

X , and every leaf labelled by 1 (resp.
−1) in ΣX corresponds to a leaf labelled by 0 (resp. 1) in Σ−1

X , while
the weight of Σ+1

X is w and the weight of Σ−1
X is −w. In the case of

XGBoost-style boosted trees, the trees are regression trees, i.e., with
leaves labelled by weights (real numbers). Then every tree ΣX with
leaves labelled by weightsw1, . . . , wp can be replaced by pweighted
decision trees Σw1

X , . . . ,Σ
wp

X where the weight associated with Σwi
X

(i ∈ [p]) is wi and Σwi
X is a copy of ΣX where every leaf labelled by

wi in ΣX corresponds to a leaf labelled by 1 in Σwi
X , while all the

remaining leaves of ΣX correspond to leaves labelled by 0 in Σwi
X .

For more on translations between ML models, see [14].
Given the significance of tree-based models (decision trees, ran-

dom forests, and boosted trees) in ML and their performance when
dealing with tabular data [6, 17], the availability of polynomial-time
rectification algorithms for such models is a noteworthy consequence
of Proposition 3.

Example 5. Considering Example 3 again, let us illustrate how a
decision tree classifier equivalent to Σ ? T can be generated in poly-
nomial time from Σ and T .

Starting with a decision tree Σ over X ∪{y}, a decision tree over
X equivalent to ΣX (given at Figure 2 (left)) can be obtained by
conditioning Σ by y since ΣX ≡ Σ(y). Conditioning a decision
tree by a literal v (resp. v) amounts to replacing in the tree every
decision node over variable v by its right (resp. left) child. Using the
conditioning transformation, from the decision tree T over X ∪ {y}
at Figure 2 (right), one can derive efficiently decision trees for T (y)
and T (y) (in Figure 2 (right), they are the subtrees rooted at nodes
T (y) and T (y)).

On this basis, deriving decision trees equivalent to T (y)∧¬T (y)
and T (y) ∧ ¬T (y), as reported on Figures 3 (left) and 3 (right)
(respectively), requires to be able to negate and to conjoin decision
trees. Negating a tree consists in replacing each of its 1-leaves by
a 0-leaf, and vice-versa. Conjoining two decision trees consists in
replacing every 1-leaf of the first tree by a copy of the second tree. In
the general case, the conjunction operation may lead to a decision
tree that is not simplified, because it is not read-once and may include
decision nodes having two identical children [38]. However, such a
tree can be simplified in linear time into an equivalent tree, using the
following rules whenever applicable: on the one hand, every decision
node over a variable xi can be replaced by its left (resp. right) child
when it is itself the left (resp. right) child of a decision node over
xi or when it has an ancestor satisfying this property; on the other
hand, a decision node having two identical children can be replaced
by any of its two children.

Figure 4 (left) presents a decision tree equivalent to ΣX ∧
¬(T (y) ∧ ¬T (y)) and obtained by conjoining the decision tree of
ΣX given in Figure 2 (left) with the negation of the decision tree of
T (y)∧¬T (y) given in Figure 3 (left). Figure 4 (right) illustrates the
effect of the simplification process.

Figure 5 (left) presents a decision tree equivalent to (ΣX ∧
¬(T (y) ∧ ¬T (y))) ∨ (T (y) ∧ ¬T (y)), obtained by disjoining the
decision tree at Figure 4 (right) with the decision tree at Figure 3
(left). This is achieved by replacing every 0-leaf of the first tree by
a copy of the second tree. The resulting tree is not simplified, and
Figure 5 (right) presents an equivalent, yet simplified decision tree
(obtained by running the simplification procedure sketched above).
By construction, it is equivalent to ΣT

X . As expected, one recovers
here the condition x1∧x2 characterizing the positive instances w.r.t.
the rectified classification circuit: the clients for which a loan can be

granted are those having low incomes provided that they have reim-
bursed a previous loan. Finally, a decision tree equivalent to Σ ? T
can be generated in linear time from ΣT

X by replacing every 1-leaf
(resp. 0-leaf) by a decision node over y, with a 0-leaf (resp. 1-leaf)
as left child and a 1-leaf (resp. 0-leaf) as right child.

x1ΣX

x2 x3

1 0 0 1

yT

x1T (y) x2 T (y)

1 x3 0 1

0 1

Figure 2: A decision tree representing ΣX (left) and a decision tree
representing T (right). The subtrees of T rooted at nodes T (y) and
T (y), respectively, are decision trees representing T (y) and T (y).

x1T (y) ∧ ¬T (y)

x2 x3

1 0 0 x2

1 0

x2 T (y) ∧ ¬T (y)

0 x1

0 x3

1 0

Figure 3: A decision tree representing T (y) ∧ ¬T (y) (left) and a
decision tree representing T (y) ∧ ¬T (y) (right).

x1

x2 x3

x1 0

x2 x3

0 1 1 x2

0 1

1 x1

x2 x3

0 1 1 x2

0 1

x1

0 x3

0 x2

0 1

Figure 4: A decision tree representing ΣX ∧¬(T (y)∧¬T (y)) (left)
and this decision tree once simplified (right).

Dealing with constrained decision-functions In the previous sec-
tions, the atomic Boolean conditions represented by the propositional
symbols fromX are supposed to be logically independent. This sim-
ply means that every x ∈ X is considered as feasible. However,
when the classifier used is based on trees, the Boolean conditions
labelling decision nodes are, in general, not independent. This is be-
cause the Boolean conditions used to describe x ∈ X are usually
generated from attributes A that are not of Boolean type. For exam-
ple, Bob’s annual income primarily is a number, let us sayA = $15k.
A tree-based classifier ΣX may contain a Boolean condition like
x1 = (A < 20) (“has very low income”), but Σ could also contain
other Boolean conditions about A, like x4 = (A < 30) (“has low
income”). Clearly enough, those two conditions are not independent



x1

x3

x2 x2

1

x2

0 x1

0 x3

0 1

0 x1

0 x3

0 1

x2

0 x1

0 x3

0 1

x1

0 x2

0 1

Figure 5: A decision tree representing ΣT
X (left) and this decision tree

once simplified (right).

since there is no instance x ∈X satisfying x1 and not satisfying x4.
Taking into account the logical links existing between Boolean con-
ditions occurring in ΣX calls for considering a domain theory ϕ over
X (here, ϕ ≡ x1 ⇒ x4), thus to consider a constrained decision-
function (ΣX , ϕ) instead of ΣX alone [16].

While the presence of a domain theory ϕ usually has an impact on
answering XAI queries (especially, on the local explanations – ab-
ductive or contrastive – for an instance that are expected [16, 39]),
it does not change the way rectification is achieved. Indeed, the role
of ϕ for the classification task is only to filter out impossible in-
stances. Thus, given a classifier Σ = ΣX ⇔ y and a domain the-
ory ϕ, there are three (mutually exclusive) cases: (1) if x 6|= ϕ,
then Σ(x) is undefined; (2) if x |= ΣX ∧ ϕ, then Σ classifies x
as positive; (3) if x |= ¬ΣX ∧ ϕ, then Σ classifies x as negative.
When some expert knowledge T is considered, the corresponding
rectified constrained decision-function is simply given by (ΣT

X , ϕ)
such that Σ ? T = ΣT

X ⇔ y and again there are three (mutually
exclusive) cases: (1) if x 6|= ϕ, then (Σ ? T )(x) is undefined; (2) if
x |= ΣT

X∧ϕ, then Σ?T classifies x as positive; (3) if x |= ¬ΣT
X∧ϕ,

then Σ ? T classifies x as negative. That mentioned, it is easy to
check that for every x ∈ [ϕ], (ΣX ⇔ y) ∧ ϕ and ΣX ⇔ y clas-
sify x in the same way and T ∧ ϕ and T classify x in the same
way. As a consequence, ϕ can be used to simplify ΣX and T in
the sense that replacing ΣX by any Σ′X and T by any T ′ such that
(ΣX ⇔ y) ∧ ϕ ≡ (Σ′X ⇔ y) ∧ ϕ and T ∧ ϕ ≡ T ′ ∧ ϕ will lead to
equivalent rectified constrained decision-functions. Accordingly, for
the running example, if ϕ = x3 ⇒ x1 was supposed (in words, “ev-
eryone who has debts has low income”), ΣX ≡ (x1∧x2)∨(x1∧x3)
could be replaced by the simpler formula Σ′X = (x1 ∧ x2) ∨ x3.

5 Other Related Work

XAI transformations that differ from rectification have been consid-
ered so far in the literature. One of them consists in retraining (i.e.,
learning again): when a prediction is viewed as incorrect, a simple
approach that can be used to fix it is to add the corresponding in-
stance (together with the right prediction) to the training set, then
learning a new model. The main advantage of such an approach is
that there is no need to design a specific correction algorithm for the
ML model under consideration. The main drawback is that most of
the time there is no insurance that the approach is effective (even for
simple ML models as decision trees), in the sense that the predic-
tion provided by the new model for the instance at hand can still be
wrong.

The retraining transformation has been considered in [30] as an
approach to possibly repair multi-layer perceptrons (MLPs) when
their safety is not considered as sufficient to be used. The goal was
to guarantee that each prediction made (a regression value) ranges
within specific bounds. An abstraction of the input MLP as a Boolean
combination of linear arithmetic constraints has been used not only
to estimate how safe the MLP is (i.e., to compute a superinterval
of the safety interval of the MLP) but also to identify spurious coun-
terexamples that can be exploited to train a new MLP offering tighter
safety bounds). Both the ML issue (regression vs. classification), the
ML model (MLP vs. trees), and the way the repair is triggered (safety
interval vs. expert knowledge), make this work quite different from
our own one. In the same direction, [40] presents an approach for im-
proving the decisions made by a classifier (whatever the underlying
ML model), thanks to the use of a reasoning module. The retraining
transformation is leveraged to this purpose. Like [30], the approach
proposed in [40] is not specific to Boolean classifiers (unlike our
approach). The lack of guarantee that required change is achieved
makes those approaches significantly different from rectification.

More recently, [34] has pointed out another XAI transformation
suited to Boolean classifiers, namely editing. The purpose of editing
is to determine how a Boolean classifier should be modified when
new pieces of evidence must be incorporated. In a rectification pro-
cess, the class associated to an instance by the classifier is preserved
unless this classification conflicts with the expert knowledge, while
this is not the case when classifier is edited in the light of new ex-
amples (or counter-examples). This makes editing more suited to in-
cremental learning than rectification. Like [10], [34] follows an ax-
iomatic perspective: the main objective is to delineate the rational
ways of editing a Boolean classifier using postulates, not to provide
algorithms to implement specific editing operations. This is another
significant difference w.r.t. our own work.

Finally, it is worth noting that the retraining transformation and
the editing transformation are more liberal than rectification: apply-
ing those transformations may lead to change the classification of
instances not involved in the change operation. This never happens
when rectification is used because of (RE2).

6 Conclusion

In this paper, we have presented a characterization theorem for the
unique rectification operator ? obtained when dealing with mono-
label Boolean classifiers. We have explained how a classification cir-
cuit equivalent to Σ ? T can be computed in time linear in the size of
Σ and T . We have also shown that a decision tree equivalent to Σ?T
can be computed in time polynomial in the size of Σ and T when Σ
is a decision tree or, more generally, a tree-based classifier (a random
forest, a boosted tree) and T can be represented as a decision tree.

In our work, one started with the basic assumption that the avail-
able background knowledge T is more reliable than the classification
circuit Σ. We believe that it is a reasonable assumption for many sce-
narios. Especially, the assumption is similar to the one considered in
AGM belief revision (primacy of the new information). That men-
tioned, just like AGM belief revision is not suited to every revision
issue (semi-revision [20], promotion [35], or improvement [24], can
be used when the assumption does not hold), it would be interest-
ing to determine how to relax the basic assumption and deal with
pieces of expert knowledge that might be faulty or conflicting. An-
other perspective for further research is to compare the accuracy in-
crease achieved by correcting tree-based classifiers using retraining
with those obtained via rectification.



Acknowledgements
The authors would like to thank the anonymous reviewers for their
comments and insights. This work has benefited from the support
of the AI Chair EXPEKCTATION (ANR-19-CHIA-0005-01) of the
French National Research Agency (ANR). It was also partially sup-
ported by TAILOR, a project funded by EU Horizon 2020 research
and innovation programme under GA No 952215.

References
[1] A. Adadi and M. Berrada, ‘Peeking inside the black-box: A survey

on explainable artificial intelligence (XAI)’, IEEE Access, 6, 52138–
52160, (2018).

[2] C. E. Alchourrón, P. Gärdenfors, and D. Makinson, ‘On the logic of
theory change: Partial meet contraction and revision functions’, Journal
of Symbolic Logic, 50, 510–530, (1985).

[3] M. Arenas, P. Barceló, L. E. Bertossi, and M. Monet, ‘The tractability
of SHAP-score-based explanations for classification over deterministic
and decomposable boolean circuits’, in Proc. of AAAI’21, pp. 6670–
6678, (2021).

[4] G. Audemard, F. Koriche, and P. Marquis, ‘On tractable XAI queries
based on compiled representations’, in Proc. of KR’20, pp. 838–849,
(2020).

[5] P. Barceló, M. Monet, J. Pérez, and B. Subercaseaux, ‘Model inter-
pretability through the lens of computational complexity’, in Proc. of
NeurIPS’20, (2020).

[6] V. Borisov, T. Leemann, K. Seßler, J. Haug, M. Pawelczyk, and
G. Kasneci, ‘Deep neural networks and tabular data: A survey’, CoRR,
abs/2110.01889, (2021).

[7] L. Breiman, ‘Random forests’, Machine Learning, 45(1), 5–32, (2001).
[8] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classifica-

tion and Regression Trees, Wadsworth, 1984.
[9] R. E. Bryant, ‘Graph-based algorithms for Boolean function manipula-

tion’, IEEE Transactions on Computers, C-35(8), 677–692, (1986).
[10] S. Coste-Marquis and P. Marquis, ‘On belief change for multi-label

classifier encodings’, in Proc. of IJCAI’21, pp. 1829–1836, (2021).
[11] M. Dalal, ‘Investigations into a theory of knowledge base revision: Pre-

liminary report’, in Proc. of AAAI’88, pp. 475–479, (1988).
[12] A. Darwiche, ‘SDD: A new canonical representation of propositional

knowledge bases’, in Proc. of IJCAI’11, pp. 819–826, (2011).
[13] A. Darwiche and P. Marquis, ‘A knowledge compilation map’, Journal

of Artificial Intelligence Research, 17, 229–264, (2002).
[14] A. de Colnet and P. Marquis, ‘On translations between ML models for

XAI purposes’, in Proc. of IJCAI’23, (2023). To appear.
[15] Y. Freund and R. E. Schapire, ‘A decision-theoretic generalization of

on-line learning and an application to boosting’, J. Comput. Syst. Sci.,
55(1), 119–139, (1997).

[16] N. Gorji and S. Rubin, ‘Sufficient reasons for classifier decisions in the
presence of domain constraints’, in Proc. of AAAI’22, pp. 5660–5667,
(2022).

[17] L. Grinsztajn, E. Oyallon, and G. Varoquaux, ‘Why do tree-based
models still outperform deep learning on tabular data?’, CoRR,
abs/2207.08815, (2022).

[18] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pe-
dreschi, ‘A survey of methods for explaining black box models’, ACM
Computing Surveys, 51(5), 93:1–93:42, (2019).

[19] D. Gunning, ‘Darpa’s explainable artificial intelligence (XAI) pro-
gram’, in Proc. of IUI’19, (2019).

[20] S.O. Hansson, ‘Semi-revision (invited paper)’, J. Appl. Non Class. Log-
ics, 7(2), (1997).

[21] X. Huang, Y. Izza, A. Ignatiev, and J. Marques-Silva, ‘On efficiently
explaining graph-based classifiers’, in Proc. of KR’21, pp. 356–367,
(2021).

[22] H. Katsuno and A. O. Mendelzon, ‘On the difference between updating
a knowledge base and revising it’, in Proc. of KR’91, pp. 387–394,
(1991).

[23] H. Katsuno and A. O. Mendelzon, ‘Propositional knowledge base re-
vision and minimal change’, Artificial Intelligence, 52(3), 263–294,
(1991).

[24] S. Konieczny, M. Medina Grespan, and R. Pino Pérez, ‘Taxonomy of
improvement operators and the problem of minimal change’, in Proc.
of KR’10, pp. 161–170, (2010).

[25] F. Koriche, J.-M. Lagniez, P. Marquis, and S. Thomas, ‘Knowledge
compilation for model counting: Affine decision trees’, in Proc. of IJ-
CAI’13, pp. 947–953, (2013).

[26] J. Lang, P. Liberatore, and P. Marquis, ‘Propositional independence:
Formula-variable independence and forgetting’, Journal of Artificial In-
telligence Research, 18, 391–443, (2003).

[27] S. M. Lundberg, G. G. Erion, H. Chen, A. J. DeGrave, J. M. Prutkin,
B. Nair, R. Katz, J. Himmelfarb, N. Bansal, and S. Lee, ‘From local ex-
planations to global understanding with explainable AI for trees’, Nat.
Mach. Intell., 2(1), 56–67, (2020).

[28] T. Miller, ‘Explanation in artificial intelligence: Insights from the social
sciences’, Artificial Intelligence, 267, 1–38, (2019).

[29] C. Molnar, Interpretable Machine Learning, Leanpub, 2020.
[30] L. Pulina and A. Tacchella, ‘An abstraction-refinement approach to ver-

ification of artificial neural networks’, in Proc. of CAV’10, pp. 243–257,
(2010).

[31] J. Ross Quinlan, ‘Induction of decision trees’, Machine Learning, 1(1),
81–106, (1986).

[32] C. Rudin, C. Chen, Z. Chen, H. Huang, L. Semenova, and C. Zhong,
‘Interpretable machine learning: Fundamental principles and 10 grand
challenges’, CoRR, abs/2103.11251, (2021).

[33] W. Samek, G. Montavon, A. Vedaldi, L.K. Hansen, and K.R. Müller,
Explainable AI: Interpreting, Explaining and Visualizing Deep Learn-
ing, Springer, 2019.

[34] N. Schwind, K. Inoue, and P. Marquis, ‘Editing boolean classifiers: A
belief change perspective’, in Proc. of AAAI’23, (2023).

[35] N. Schwind, S. Konieczny, and P. Marquis, ‘On belief promotion’, in
Proc. of KR’18, pp. 297–307, (2018).

[36] R. Srinivasan and A. Chander, ‘Explanation perspectives from the cog-
nitive sciences - A survey’, in Proc. of IJCAI’20, pp. 4812–4818,
(2020).

[37] G. Van den Broeck, A. Lykov, M. Schleich, and D. Suciu, ‘On the
tractability of SHAP explanations’, in Proc. of AAAI’21, pp. 6505–
6513, (2021).

[38] I. Wegener, Branching Programs and Binary Decision Diagrams,
SIAM, 2000.

[39] J. Yu, A. Ignatiev, P. J. Stuckey, N. Narodytska, and J. Marques-Silva,
‘Eliminating the impossible, whatever remains must be true’, CoRR,
abs/2206.09551, (2022).

[40] Z.-H. Zhou, ‘Abductive learning: towards bridging machine learn-
ing and logical reasoning’, Science China Information Science, 62(7),
76101:1–76101:3, (2019).


