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Abstract. We define contrastive explanations that are suited to
tree-based classifiers. In our framework, contrastive explanations are
based on the set of (possibly non-independent) Boolean characteris-
tics used by the classifier and are at least as general as contrastive ex-
planations based on the set of characteristics of the instances consid-
ered at start. We investigate the computational complexity of comput-
ing contrastive explanations for Boolean classifiers (including tree-
based ones), when the Boolean conditions used are not independent.
Finally, we present and evaluate empirically an algorithm for com-
puting minimum-size contrastive explanations for random forests.

1 Introduction

Explaining the behaviour of AI systems is an issue of major sig-
nificance in the perspective of trustworthy AI. Thus, recent years
have seen a remarkable boom in work aimed at verifying AI sys-
tems and explaining the outputs they generate (see for instance
[18, 19, 21, 24, 28, 31, 34, 41, 1, 9, 39]).

Several types of explanations can be defined when dealing with
AI systems that implement classifiers f , i.e., mappings from a set X
of instances to a set L of classes (see e.g., [23]). On the one hand,
abductive explanations are about explaining the classification of an
instance x ∈ X achieved by f , by focusing on a subset of the char-
acteristics (i.e., the pairs attribute-value) of x, that are sufficient to
justify the classification f(x) made, in the sense that any instance
sharing this subset of characteristics is necessarily classified in the
same way as x. On the other hand, contrastive explanations for an
input instance x aim to explain why x has not been classified by f as
expected by the user who asked for an explanation, aka the explainee.

In this paper, we focus on contrastive explanations and tree-based
classifiers f in the binary case (i.e., when L = {0, 1}). Beyond deci-
sion trees [8, 38], our study includes random forests [7] and boosted
trees [14, 40, 15]. Such models are typically more accurate than deci-
sion trees (boosted trees are among state-of-the-art ML models when
dealing with tabular data [6]) but they are also more opaque [1, 2]
and the combinatorial and non-differentiable nature of tree ensem-
bles makes also the generation of explanations more challenging.

In previous work (see [17] for a survey), a contrastive explanation
for x is defined as a contrastive instance (i.e., an instance classified
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in a different way than x), that is as close as possible to x. Close-
ness can be measured in various ways, using distances, similarities,
sets of characteristics, or even sets of attributes. Thus, in [22], a con-
trastive explanation for x is defined as a minimal subset c of the set
of attributes A used to describe x such that there exist a value vi for
each Ai ∈ c and a contrastive instance xc that takes value vi for
Ai ∈ c, xc coincides with x on every attribute outside c, and xc is
not classified in the same way as x. When all the attributes of A are
Boolean ones, such a contrastive explanation for x can also be de-
fined as a minimal subset of the characteristics of the input instance
x that must be flipped in x in order to get an instance xc classified
in a different way. Indeed, the characteristics of xc can be easily de-
duced from the set of Boolean attributes to be modified provided that
x is known. Such contrastive explanations are referred to as neces-
sary reasons [12].

Beyond closeness to the input instance x, contrastive explanations
can also be assessed by considering their generality, i.e., the popula-
tion of feasible contrastive instances they cover. Indeed, on the one
hand, the number of contrastive explanations for a given x can be
huge, so that computing all of them can be out of reach. Further-
more, providing a large number of contrastive explanations to the
explainee is useless most of the time since she / he will not have the
cognitive capacity to grasp them as a whole. On the other hand, con-
trastive explanations reduced to single instances may turn out to be
outliers, and not true contrastive explanations. Thus, providing in-
stead a reduced set of more general explanations is better. However,
when taking generality into account, the definitions of contrastive ex-
planations based onA, as considered in previous work, are not suited
to tree-based models. Let us illustrate this issue using a very simple
scenario that will serve as a running example in the paper.

Example 1. Suppose that the decision tree classifier f , depicted on
Figure 1, is used to determine whether a loan must be granted or
not to an applicant. A1 is a numerical attribute that gives the annual
incomes of the applicant. A2 is a Boolean attribute that indicates
whether the applicant has already reimbursed a previous loan. Alice
wants to get a loan. Alice’s annual incomes are equal to $18k and
Alice has not reimbursed yet a previous loan. Alice corresponds to an
instance xA = (18, 0) and f(xA) = 0. The loan is not granted, and
Alice would like to know what she could do to change the decision.

Two contrastive instances from X that are as close as possible to
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Figure 1: A simple decision tree classifier f .

xA while being classified as positive by f are (20, 1) and (30, 0).
Using words, “increase your incomes to $20k and reimburse your
previous loan” and “increase your incomes to $30k ”. Better con-
trastive explanations would be “increase your incomes to at least
$20k and reimburse your previous loan” and “increase your in-
comes to at least $30k ”. Indeed, suppose that Alice does not know
whether A1 is monotonic for f , i.e., if x and x′ are two instances
that coincide except possibly on A1, f(x) = 1 and x1 ≤ x′1, then
f(x′) = 1. In this case, Alice cannot infer from the explanation
(30, 0) what would happen if her annual incomes increased to $35k:
would she get the loan as well, or not? While the predictor f gives a
positive answer to this question, this is not reflected in the explana-
tions (20, 1) and (30, 0) that are generated. More general explana-
tions covering the contrastive instances (20, 1) and (30, 0) but also
other contrastive instances would be welcome.

Alternatively, if one considers that contrastive explanations are
given as minimal subsets c of attributes to be modified in the input
instance as suggested in [22], {A1} is the unique contrastive expla-
nation for xA. Using words, "to get the loan, it is enough to change
the value of your annual incomes". Using this definition, one gets a
contrastive explanation that is not informative enough: Alice surely
expects to know to which extent her annual incomes must be updated
in order to get the loan. Especially, it is not the case that changing
the value 18 of A1 to any other value will lead to a contrastive in-
stance: if Alice’s annual incomes decrease (or increase but remain
below $30k), the loan will not be granted. Thus, A1 6= 18 covers in-
stances that are not contrastive instances for xA. Furthermore, the
contrastive instance (20, 1) is not covered by it because of the subset-
minimality requirement (the value of A2 in xA must also be updated
if one wants to cover it).

Our goal in this paper is to show how to define, characterize,
and compute contrastive explanations suited to tree-based classi-
fiers, while avoiding the shortcomings of previous proposals, illus-
trated in the example above. This goes through the definition of
a new set of instances Xf based on Boolean attributes given by
the conditions used in f , so that every instance x ∈ X can be
rewritten into an instance, denoted rf (x), that belongs to Xf and
is such that f(rf (x)) = f(x). On the running example, three
Boolean attributes A1

1, A
2
1, A

1
2 defined by A1

1 = (A1 ≥ 20),
A2

1 = (A1 ≥ 30), and A1
2 = (A2 = 1) used in f can be con-

sidered for describing instances and we have rf (xA) = (0, 0, 0).
Using conjunctively-interpreted sets of characteristics instead of vec-
tors, the instance xA corresponding to Alice is described primarily
by {A1 = 18, A2 = 0} and, once rewritten, by {A1

1, A
2
1, A

1
2} (or

equivalently by {(A1 ≥ 20), (A1 ≥ 30), (A2 = 1)}). Accordingly,
f will be viewed both as a mapping from X to L and, alternatively,
as a mapping from Xf = {rf (x) : x ∈ X} to L. In the latter
case, f is a Boolean function since every attribute used is consid-

ered as a Boolean one. However, f may contain Boolean attributes
that are not pairwise independent because they come from the same
(non-Boolean) attribute Ai used to describe instances from X . Thus,
some propositional constraints Σ forming a domain theory indicating
how the Boolean conditions used in f are logically connected must
be taken into account to refrain from deriving incorrect explanations,
based on instances that are not feasible. For instance, no rewritten
instance from Xf can be such that A2

1 is true and A1
1 is false. The

pair (f,Σ) is referred to as a constrained decision-function [16].
Our contributions are as follows. After some formal preliminaries

(Section 2), we show in Section 3 that contrastive explanations for
rewritten instances rf (x) must be privileged to contrastive explana-
tions for initial instances x. There are two reasons for it. On the one
hand, explanations for rewritten instances are as intelligible as expla-
nations based on the set of characteristics of the input instances, since
their meaning is primarily based on the same attributes, those from
A. On the other hand, explanations for rewritten instances are often
more general, so more informative and more robust than explana-
tions represented in the initial space of characteristics. Then, we fo-
cus on contrastive explanations for rewritten instances. In Section 4,
we define (weak, subset-minimal, and minimum-size) contrastive ex-
planations for instances based on the set of characteristics of f given
a constrained decision-function (f,Σ). We show how those explana-
tions can be characterized in terms of (prime) implicates. We identify
the computational complexity of recognizing such explanations and
contrast it with the complexity of recognizing abductive explanations
given a constrained decision-function (such abductive explanations
have been considered in [16]). Recognizing contrastive explanations
appears as “mildly” hard (first level of the polynomial hierarchy),
which suggests that their computation is feasible in practice in many
cases. To evaluate it, we describe in Section 5 an approach to derive
minimum-size contrastive explanations and present some empirical
results showing that this approach can be used in practice.

A folder containing a full-proof version of the paper, a more detailed
description of the datasets, and the code used in our experiments
is available online at http://www.cril.univ-artois.fr/expekctation/;
this code is also part of our XAI library PyXAI (https://www.cril.
univ-artois.fr/pyxai/).

2 Preliminaries
Classification Let A = {A1, . . . , Ak} be a finite set of attributes

(aka features), where each attribute is Boolean, categorical (aka nom-
inal), or numerical. The domain Di of Ai (i ∈ [k]) is {0, 1} when
Ai is Boolean, a finite set of values that are not ordered when Ai is
categorical (for instance Di = {orange,white, green}), and (typ-
ically) Di = N or R when Ai is numerical. We note Aboo (resp.
Acat, Anum) the subset of A consisting of Boolean (resp. categori-
cal, numerical) attributes.

An instance x over A is a tuple from D1 × . . .×Dk. Every x =
(v1, . . . , vk) is also viewed logically as the conjunctively-interpreted
set tx of Boolean conditions (alias characteristics) {(Ai = vi) : i ∈
[k]}. X is the set of all instances. A binary classifier f over A is
a mapping from X to L = {0, 1}. An instance x ∈ X is positive
when f(x) = 1 and it is negative when f(x) = 0.

A decision tree over A is a binary tree T , each of whose internal
nodes is a decision node, labeled with a Boolean condition on Ai ∈
A, and each leaf is labeled by an element of L. Whenever Ai is
numerical, the set of Boolean conditions labelling the nodes over Ai

used in f takes the form (Ai ≥ vij). Whenever Ai is categorical and
it has been one-hot encoded, the set of Boolean conditions labelling



the nodes over Ai used in f takes the form (Ai = vij). In both cases,
the set of encountered values vij in those nodes forms a subset Df

i of
the domain Di of Ai, and Df

i is not a singleton in general. The value
T (x) of T on an input instance x is given by the label of the leaf
reached from the root as follows: at each node go to the left (resp.
right) child if the Boolean condition labelling the node is evaluated
to 0 (resp. 1) for x.

A random forest over A is an ensemble F = {T1, · · · , Tm},
where each Ti (i ∈ [m]) is a decision tree over A, and such that
the value F (x) is given by

F (x) =

{
1 if 1

m

∑m
i=1 Ti(x) > 1

2

0 otherwise.

The size of F is given by |F | =
∑m

i=1 |Ti|, where |Ti| is the
number of nodes occurring in Ti.

Boolean functions By Fn we denote the class of all Boolean
functions from {0, 1}n to {0, 1}, and we use Xn = {x1, · · · , xn}
to denote the set of input Boolean variables. A Boolean vector
x ∈ {0, 1}n is a model of f if f(x) = 1. Otherwise, x is a counter-
model of f . [f ] denotes the set of all models of f .

We refer to f as a propositional formula when it is described us-
ing the Boolean connectives ∧ (conjunction), ∨ (disjunction) and ¬
(negation), together with the constants 1 (true) and 0 (false). f is sat-
isfiable if it has a positive instance, and it is unsatisfiable otherwise.
f is valid when it has no negative instance. If f and g are two propo-
sitional formulae over Xn, f entails g, noted f |= g, if and only if
[f ] ⊆ [g] holds and f and g are equivalent, noted f ≡ g, if and only
if [f ] = [g]. A literal over a variable x ∈ Xn is x itself (a posi-
tive literal) or its negation ¬x, also denoted xi (a negative literal).
LXn is the set of all literals over Xn. A term t is a conjunction of
literals, and a clause c is a disjunction of literals. In what follows,
we often treat instances as terms, and terms as sets of literals. For
an assignment z ∈ {0, 1}n, the corresponding canonical term is
tz =

∧n
i=1 x

zi
i where x0

i = xi and x1
i = xi. A term t covers an

assignment x if t ⊆ tx. A satisfiable term t is an implicant of f if
and only if t |= f holds, and t is a prime implicant of f if and only if
t is an implicant of f and no proper subset of t is an implicant of f .
A non-valid clause c is an implicate of f if and only if f |= c holds,
and c is a prime implicate of f if and only if c is an implicate of f
and no proper subset of c is an implicate of f . A DNF formula is a
disjunction of terms and a CNF formula is a conjunction of clauses.
The set of variables occurring in a formula f is denoted Var(f).

When every Boolean condition occurring in a decision tree T
(resp. a random forest F ) is viewed as a Boolean variable, T (resp.
F ) can be viewed as a Boolean function over Xn. The class of deci-
sion trees over Xn is denoted DTn, and the class of random forests
over Xn is denoted RFn.

3 Improving Generality by Rewriting Instances
Two families of contrastive explanations for instances from X can be
considered when f is a tree-based classifier, given that two distinct
spaces of characteristics can be used for describing instances:

Definition 1. Given a finite set of attributes A and a tree-based bi-
nary classifier f over A:

• The space of characteristics of the instances is the set
C = {(Ai = vij) : Ai ∈ A, vij ∈ Di}.

• The space of characteristics of the classifier is the set of literals
over the Boolean conditions Cf of the form (Ai = vij) and (Ai ≥
vij) that are used in f .

Accordingly, instances x to be explained are either considered as
they were given primarily (conjunctions of characteristics, i.e., of
pairs attribute-value, from C), or they are first rewritten into conjunc-
tions of literals rf (x) over the Boolean variables Cf used by the
predictor f . The rewrite function rf we consider is thus a mapping
from X to the terms over Cf .

We argue that rewritten instances should be considered as first-
class candidates because contrastive explanations for instances rep-
resented using C are unnecessarily specific or not informative enough
(as shown before, using the running example). In order to prove that
rewritten instances are more general than instances considered at
start, we first show how rf (x) is logically connected to x via a do-
main theory. Formally, for every numerical attribute Ai, one assumes
an implicit First-Order Logic (FOL) theory capturing the semantics
of = and ≤ over the set of numbers in the domain of Ai is implic-
itly taken into account (e.g., the theory used is DLO – Dense Linear
Order – if the values of the attribute are real numbers). In the cat-
egorical case, one makes the unique name assumption: if vp, vq are
two distinct values in the domain of Ai, then (Ai = vp) implies that
(Ai = vq).

Instead of the FOL theory itself, when dealing with an instance
x ∈ X , it is enough to consider the propositional grounding of
the theory given f and x = (v1, . . . , vk). Using the propositional
grounding of the theory instead of the theory itself is more conve-
nient from a computational perspective. For any numerical attribute
Ai ∈ Anum, let Df (Ai) = {vi1, . . . , vipi} be the set of values –
ordered in ascending way (i.e., vi1 < . . . , < vipi) – about Ai that can
be found in the decision nodes of f . The corresponding propositional
grounding is the formula

Σnum(Ai, f,x) = ((Ai = vi)⇒ c(vi, Df (Ai))) ∧ Σnum(Ai, f)

where Σnum(Ai, f) =
∧pi−1

j=1 ((Ai ≥ vij) ⇒ (Ai ≥ vij+1)) and

c(vi, Df (Ai)) = ((Ai ≥ vi ↑) ∧ (Ai ≥ vi ↓) with vi ↑=
min({vij ∈ Df (Ai) : vi < vij}) and vi ↓= max ({vij ∈ Df (Ai) :
vij ≤ vi}), when vi1 ≤ vi < vipi , c(vi, Df (Ai)) = (Ai ≥ vipi)

when vi ≥ vipi , and c(vi, Df (Ai)) = (Ai ≥ vi1) when vi < vi1.
Similarly, for any categorical attribute Ai ∈ Acat, let Df (Ai) =
{vi1, . . . , vipi} be the set of values that can be found in the decision
nodes of f . The corresponding propositional grounding is given by
the formula

Σcat(Ai, f,x) = ((Ai = vi)⇒
∧

vi
j∈Df (Ai)\{vi} (Ai = vij))

∧Σcat(Ai, f)

where Σcat(Ai, f) =
∧pi−1

j=1

∧pi
l=j+1((Ai = vij) ⇒ (Ai = vil )).

In Σnum(Ai, f,x) and Σcat(Ai, f,x), (Ai = vi) and (Ai = vij)
(j ∈ [pi]) are viewed as propositional variables.

Whatever the type of Ai (numerical or categorical), the cor-
responding grounding is composed of two parts (that are con-
nected conjunctively): a first part that depends on x (and more pre-
cisely of the value vi taken by Ai in x) and a second part only
about the Boolean conditions used by f . This second part is de-
noted by Σnum(Ai, f) when Ai is numerical and by Σcat(Ai, f)
when Ai is categorical. We denote by Σ(f) the conjunction∧

Ai∈Anum
Σnum(Ai, f) ∧

∧
Ai∈Acat

Σcat(Ai, f).



We are now in position to make more formal the notion of rewrit-
ten instance.

Definition 2. Let x = (v1, . . . , vk) ∈ X be an instance over A =
{A1, . . . , Ak} where (Ai = vi) ∈ C (i ∈ [k]). Let f be a tree-based
classifier over A. The rewritten instance rf (x) over Cf is given by
trf (x) where trf (x) is the set of all literals over Cf that are logical
consequences of tx given

Σ(f,x) =
∧

Ai∈Anum

Σnum(Ai, f,x) ∧
∧

Ai∈Acat

Σcat(Ai, f,x).

By definition, trf (x) is a logical consequence of tx given Σ(f,x).
It is also easy to check that rf (x) satisfies the underlying theory
Σ(f,x). Especially, for every x ∈X , rf (x) satisfies Σ(f).

In the general case, trf (x) is not equivalent given Σ(f,x) to tx
but is strictly more general. Thus, on the running example,

trf (xA) = {(A1 ≥ 30), (A1 ≥ 20), (A2 = 1)}

captures not only Alice but the whole population of instances x ∈X
with less than $20k annual incomes and a previous loan not reim-
bursed. Since contrastive instances are instances, the gain of gen-
erality obtained by considering rewritten instances also applies to
contrastive explanations. Note by the way that “more general” does
not imply “shorter” contrastive explanations in the general case (this
holds only when explanations are based on the same set of char-
acteristics). Indeed, rewritten instances are usually longer than the
instances considered at start, so this also applies to contrastive in-
stances. This can be easily explained by the fact that several thresh-
olds vij can be considered in the tree-based classifier f for the same
numerical attribute Ai from C. Of course, it can be the case that an
attribute Ai from C is detected as useless by f (on the example, a
numerical attribute A3 indicating the level of qualifications of the
applicant could be considered in C but not be used in the predictor
f since it appears as irrelevant to discriminate the positive instances
from the negative ones). In such a case, Ai does not correspond to
any Boolean attribute in Cf .

Because Boolean conditions in Cf are connected when they are
issued from the same attribute Ai ∈ A, Σ(f) must be taken into
account to discard explanations that do not comply with Σ(f), and
are not legit as a consequence [44]. As a matter of illustration, con-
sider Alice’s case again. c = {(A1 ≥ 30)} is a subset-minimal
contrastive explanation for x given f in the sense of [22]. How-
ever, no instance from X matches this representation in Cf because
trf (xA)c

= {(A1 ≥ 30), (A1 ≥ 20), (A2 = 1)} conflicts with

Σ(f) = (A1 ≥ 20) ⇒ (A1 ≥ 30). In order to eliminate such im-
possible instances, Σ(f) must be taken into account in the definition
of contrastive explanations. The next section indicates how to do it.

4 On Contrastive Explanations
In the following, we define notions of contrastive explanations suited
to classifiers based on Boolean variables that are logically connected
by a domain theory Σ, and we investigate their computational com-
plexity. The proposed setting covers the case of tree-based classi-
fiers f involving numerical or categorical attributes and rewritten in-
stances as discussed in the previous section (in this case, we take
Σ = Σ(f)), but is actually more general. For instance, hierarchi-
cal attributes (i.e., categorical attributes connected into an ontol-
ogy) could be considered as well in this setting. Classifiers based
on Boolean variables that are logically connected are referred to as
constrained decision-functions in [16].

Definition 3. [16] Let Xn = {x1, . . . , xn} be a set of Boolean
variables. A constrained decision-function over Xn is a pair (f,Σ)
where f ∈ Fn and Σ is a propositional formula over Xn. Σ indi-
cates how the Boolean variables from Xn are logically connected.

Contrastive explanations given a constrained decision-function
Given a constrained decision-function, the next definition introduces
notions of contrastive explanation, subset-minimal contrastive expla-
nation, and minimum-size contrastive explanation for an instance.

Definition 4. Let (f,Σ) be a constrained decision-function and x ∈
[Σ] be an instance.

• A contrastive explanation for x given (f,Σ) is a set c ⊆ tx such
that the vector xc ∈ {0, 1}n that coincides with x except on the
characteristics of c is such that xc ∈ [Σ] and f(xc) 6= f(x).

• A subset-minimal contrastive explanation for x given (f,Σ) is a
contrastive explanation c for x given (f,Σ) such that no proper
subset of c is a contrastive explanation for x given (f,Σ).

• A minimum-size contrastive explanation for x given (f,Σ) is a
contrastive explanation c for x given (f,Σ) such that no con-
trastive explanation c′ for x given (f,Σ) such that |c′| < |c|
exists.

Those notions of contrastive explanations echo the following no-
tions of abductive explanations:

Definition 5. Let (f,Σ) be a constrained decision-function and x ∈
[Σ] be an instance s.t. f(x) = 1 (resp. f(x) = 0).

• An abductive explanation for x given (f,Σ) is a set t ⊆ tx such
that t ∧ Σ |= f (resp. t ∧ Σ |= f ).

• A subset-minimal abductive explanation for x given (f,Σ) is an
abductive explanation t for x given (f,Σ) such that no proper
subset of t is an abductive explanation for x given (f,Σ).

• A minimum-size abductive explanation for x given (f,Σ) is an
abductive explanation t for x given (f,Σ) such that no abductive
explanation t′ for x given (f,Σ) such that |t′| < |t| exists.

Subset-minimal abductive explanations (alias sufficient reasons)
given a constrained decision-function have been investigated in [16]
(see also [10] for the case when the domain theory encodes numeri-
cal attributes). Subset-minimal abductive explanations are connected
to subset-minimal contrastive explanations via a minimal hitting set
duality [22] that still holds when a domain theory Σ is taken into
account [44], and that also corresponds, in logical terms, to the well-
known duality between prime implicants and prime implicates.

Our characterization results take advantage of this duality and re-
lated results from [16] and [12], as well as the notion of universal
literal quantification considered in [13]. Let us recall this notion. If
` is a literal over x, then the universal quantification of ` from f ,
noted ∀` · f , is the formula (` ∨ (f |`)) ∧ (f |`). In this expression,
(f |`) denotes the conditioning of f by `. If ` = x is a positive literal
(resp. ` = x is a negative literal) , (f |`) is the formula obtained by
replacing in f every occurrence of x by 1 (resp. 0). When t is a set of
literals, ∀t∪{`k+1} · f denotes the formula ∀t · (∀`k+1 · f). Finally,
∀x is a short for ∀tx.

We are now ready to present the following characterization results
for contrastive explanations. Note that while the running example
is focused on domain theories used to properly encode numerical
and categorical attributes, all the propositions reported in this section
apply to any constrained decision-function, and thus may concern
more general domain theories.



Proposition 1. Let (f,Σ) be a constrained decision-function and
x ∈ [Σ] be an instance s.t. f(x) = 1 (resp. f(x) = 0).

• The contrastive explanations for x given (f,Σ) are the sets of
literals c such that

∨
`∈c ` is an implicate of ∀x · (Σ⇒ f) (resp.

∀x · (Σ⇒ f)).
• The subset-minimal contrastive explanations for x given (f,Σ)

are the sets of literals c such that
∨

`∈c ` is a prime implicate of
∀x · (Σ⇒ f) (resp. ∀x · (Σ⇒ f)).

• The minimum-size contrastive explanations for x given (f,Σ) are
the sets of literals c such that

∨
`∈c ` is a minimum-size prime

implicate of ∀x · (Σ⇒ f) (resp. ∀x · (Σ⇒ f)).

Let us illustrate this proposition using Alice’s example. We have

trf (xA) = {(A1 ≥ 30), (A1 ≥ 20), (A2 = 1)}.

f is equivalent to (A1 ≥ 30) ∨ ((A1 ≥ 20) ∧ (A2 = 1)) and

Σ = Σ(f) = (A1 ≥ 30) ∨ (A1 ≥ 20).

Thus, Σ⇒ f is equivalent to (A1 ≥ 20)∨ ((A1 ≥ 30)∧ (A2 = 1))
and ∀rf (xA) · (Σ⇒ f) is equivalent to

(A1 ≥ 20) ∨ ((A1 ≥ 30) ∧ (A2 = 1)).

This formula has two prime implicates:

(A1 ≥ 20) ∨ (A1 ≥ 30) and (A1 ≥ 20) ∨ (A2 = 1).

Accordingly, rf (xA) has two subset-minimal contrastive explana-
tions given (f,Σ), namely

c1 = {(A1 ≥ 20), (A1 ≥ 30)} and c2 = {(A1 ≥ 20), (A2 = 1)}.

They are also minimum-size contrastive explanations. They corre-
spond respectively to the contrastive instances given by

trf (xA)
c1

= {(A1 ≥ 30), (A1 ≥ 20), (A2 = 1)}, and

trf (xA)
c2

= {(A1 ≥ 30), (A1 ≥ 20), (A2 = 1)}.

While it provides a simple, logic-based, characterization of con-
trastive explanations given a constrained decision-function, Proposi-
tion 1 does not ensure that the computation of the set of all contrastive
explanations for a instance given a constrained decision-function is
feasible. This is not the case in general, due to the intrinsic difficulty
of deriving (subset-minimal or minimum-size) contrastive explana-
tions (that will be discussed next) but also to the number of explana-
tions. Indeed, in the unconstrained case (i.e., when Σ is valid – e.g.,
Σ = 1), an instance x can have exponentially many (minimum-size,
thus subset-minimal) contrastive explanations given a random forest.

Proposition 2. Let F = {T1, · · · , Tm} be a random forest of RFn
and x ∈ {0, 1}n be an instance. The number of minimum-size con-
trastive explanations for x given (F, 1) can be exponential in the
number n of attributes and in the number m of trees used in F .

However, Proposition 1 can be exploited to reason about the whole
set of (subset-minimal or minimum-size) contrastive explanations for
x without needing to enumerate the elements of the set. For instance,
we can take advantage of it to derive the necessary (resp. relevant)
characteristics of subset-minimal contrastive explanations, i.e., those
characteristics occurring in all (resp. at least one) subset-minimal
contrastive explanation(s) [3]. In particular, when f(rf (x)) = 0,
those characteristics are given by the literals implying ∀rf (x)·(Σ⇒
f) (resp. the literals ∀rf (x) · (Σ ⇒ f) depends on [29]). Thus, on
Alice’s example, (A1 ≥ 20) is the unique necessary characteristic
of subset-minimal contrastive explanations for rf (xA), while all the
characteristics in trf (xA) are relevant.

The complexity of contrastive explanations Despite the duality
linking them, contrastive explanations differ from abductive explana-
tions on several aspects when it comes to their computation. First of
all, while an instance x ∈ [Σ] always has an abductive explanation
given (f,Σ) (indeed, tx is such an abductive explanation), x does
not always have a contrastive explanation given (f,Σ). To be more
precise:

Proposition 3. Let (f,Σ) be a constrained decision-function and
x ∈ [Σ] be an instance such that f(x) = 1 (resp. f(x) = 0).
x has a contrastive explanation given (f,Σ) if and only if ¬f ∧ Σ
(resp. f ∧ Σ) is satisfiable. Deciding whether x has a contrastive
explanation given (f,Σ) is NP-complete. NP-hardness still holds
when f is represented by a random forest from RFn and Σ = 1.

Another significant difference is based on the fact that recognizing
contrastive explanations is computationally easier than recognizing
abductive explanations, i.e., subsets of tx that are implicants of Σ⇒
f (this last problem is coNP-complete in general, and even in the
restricted case when f is represented by a random forest from RFn
and Σ = 1 [4]).

Proposition 4. Let (f,Σ) be a constrained decision-function and
x ∈ [Σ] be an instance. Let c ⊆ tx. Deciding whether c is a con-
trastive explanation for x given (f,Σ) is in P.

Contrastingly, recognizing (subset-minimal, or even minimum-
size) contrastive explanations is intractable:

Proposition 5. Let (f,Σ) be a constrained decision-function and
x ∈ [Σ] be an instance. Let c ⊆ tx. Deciding whether c is a
subset-minimal contrastive explanation for x given (f,Σ) is coNP-
complete. coNP-hardness still holds when f is represented by a ran-
dom forest from RFn and Σ = 1.

Proposition 6. Let (f,Σ) be a constrained decision-function and
x ∈ [Σ] be an instance. Let c ⊆ tx. Deciding whether c is a
minimum-size contrastive explanation for x given (f,Σ) is coNP-
complete. coNP-hardness still holds when f is represented by a ran-
dom forest from RFn and Σ = 1.

Subset-minimal and minimum-size abductive explanations are
harder to recognize, even in the unconstrained case (i.e., when Σ
is valid). Indeed, in the case of a random forest F ∈ RFn, decid-
ing whether t ⊆ tx is a subset-minimal abductive explanation for x
given F has been shown DP-complete [25] (the membership to DP
extends to the general case when the classifier is any Boolean func-
tion f ∈ Fn). In [4], it has been shown that, given x ∈ {0, 1}n,
F ∈ RFn such that F (x) = 1, and an integer k, deciding whether
there exists a minimum-size abductive explanation t for x given F
such that |t| ≤ k is Σp

2-complete. On this basis, one can show that
deciding whether t is a minimum-size abductive explanation for x
given F is Πp

2-complete. Thus, under the assumption that the poly-
nomial hierarchy does not collapse, identifying a minimum-size ab-
ductive explanation for an instance given a random forest is computa-
tionally harder than identifying a minimum-size contrastive explana-
tion for an instance given a random forest. Notably, under the same
assumption, identifying a minimum-size abductive explanation for
an instance given a decision tree is also computationally harder than
identifying a minimum-size contrastive explanation for an instance
given a decision tree (indeed, the former is NP-hard [5], while the
latter can be done in (deterministic) polynomial time (see e.g., [20]).



5 Computing Minimum-Size Contrastive
Explanations

Leveraging Proposition 4, one can easily design an algorithm for
computing a minimum-size (thus subset-minimal) contrastive expla-
nation for x given (f,Σ) using a PARTIAL MAXSAT solver. By
definition, such contrastive explanations are less numerous than the
contrastive explanations for x given (f,Σ) and they express smaller
changes (in terms of the number of characteristics of x to be modi-
fied).

Proposition 7. Let (f,Σ) be a constrained decision-function and
x ∈ [Σ] be an instance such that f(x) = 1.1 Let (Csoft, Chard) be
an instance of the PARTIAL MAXSAT problem such that Csoft = tx
and Chard = CNF (Σ ∧ f) where CNF (Σ ∧ f) is a CNF encoding
of Σ ∧ f . Let z∗ be an optimal solution of (Csoft, Chard). Then,
c = tx \ tz∗ is a minimum-size contrastive explanation for x given
(f,Σ) and we have txc = tz∗ ∩ LXn .

Let us recall that an instance of PARTIAL MAXSAT consists of a
pair (Csoft, Chard) where Csoft and Chard are (finite) sets of clauses.
According to Proposition 7, finding a minimum-size contrastive ex-
planation c for x given f then mainly amounts to finding an as-
signment z of the propositional variables involved in Csoft ∪ Chard

that maximizes the number of clauses in Csoft that are satisfied,
while satisfying all clauses in Chard. Here CNF (Σ ∧ f) denotes
any CNF formula that is query-equivalent to Σ ∧ f , i.e., equivalent
to it over Xn. Such a CNF formula can be generated in linear time
from the representation of f using Tseitin transformation [43] or
Plaisted/Greenbaum one [37] – those transformations require new
variables to be introduced. Those new variables are dummy ones.
Notably, they are not involved in the minimum-size contrastive ex-
planations that are generated.

Clearly enough, one can take advantage of the PARTIAL MAXSAT
characterization above for generating a preset number of minimum-
size contrastive explanations via the use of blocking clauses. Basi-
cally, the approach is as follows: one generates a first minimum-size
contrastive explanation c, then one adds to Chard the negation of the
corresponding contrastive instance txc as a clause and we resume
until the bound is reached or no solution exists or the size of the last
explanation that has been generated is strictly larger than the size of
the first explanation c that has been computed.

Empirical evaluation We have run some experiments in order to
assess to which extent minimum-size contrastive explanations can be
computed in practice.

Setting Our empirical protocol was as follows. We have focused
on 20 datasets (some of them based on numerical, categorical,
and Boolean attributes) for binary classification, which are stan-
dard benchmarks from the repositories Kaggle (www.kaggle.com),
OpenML (www.openml.org), or UCI (archive.ics.uci.edu/ml/). In
these datasets, the number of attributes (features) varies from 4 to
20000, and the number of instances from 170 to 32561.

For each dataset, random forest classifiers F have been learned us-
ing the Scikit-Learn library (version 1.0.2) [36]. Categorical features
have been one-hot encoded. Numerical features, have been binarized
on-the-fly by the random forest learning algorithm. The domain the-
ory Σ used was Σ(F ). All hyper-parameters of the learning algo-
rithm have been set to their default value (in particular, 100 trees per
forest and no depth bound on the trees). Indeed, the approach to XAI

1 If x is such that f(x) = 0, then consider f instead of f .

we follow, though exact (we do not approximate the predictor F nor
the explanations), is post-hoc, i.e., it is intended to take place once F
has been learned, whatever its accuracy. As it can be observed, using
default parameters led to quite a good accuracy for almost all datasets
under consideration (see Table 1), but not in every case (especially,
for the breast Tumor dataset), and again, this is on purpose since
our objective is to derive explanations suited to predictors as they
are, and not as they could have been. What we want to evaluate is the
ability to derive explanations in practice even if the accuracy of the
predictor is rather low.

For every dataset, a 10-fold cross validation process has been
achieved. For each dataset, each random forest F , and a pool of 10
instances x over Cf drawn at random from the test set and satisfy-
ing Σ (leading to 100 instances per dataset), we have run our algo-
rithm for computing a minimum-size contrastive explanation c for x
given (F,Σ). For making the experiments, we took advantage of the
PyXAI library (https://www.cril.univ-artois.fr/pyxai/) and used the
openwbo (WEIGHTED) PARTIAL MAXSAT solver [32].

For each dataset, we counted the number of instances (out of 100)
for which a minimum-size contrastive explanation has been com-
puted in due time (a time-out (TO) of 100s has been considered per
instance). For each instance for which the computation has been suc-
cessful, we measured the time needed to get the result and the size of
the resulting contrastive explanation. All the experiments have been
conducted on a computer equipped with Intel(R) XEON E5-2637
CPU @ 3.5 GHz and 128 Gib of memory.

Results A synthesis of the results obtained is provided in Table 1. The
columns give, from left to right, the name of the dataset, the number
of attributesA its is based on, the mean number of Boolean variables
from CF used in the random forests that have been generated, the
mean number of attributes from A used in the random forests that
have been generated, the mean accuracy of the random forests. The
two remaining groups of columns are about the performance of our
algorithm for computing minimum-size contrastive explanations c,
in terms of run time and size of the explanations, respectively. The
first group reports successively the mean run times in seconds and
the number of TOs met by our algorithm. The last group focuses
on the size of c, and gives successively the number of literals over
CF in c, the number of attributes from A the literals of c are issued
from, the percentage of literals in c relative to |CF |, and finally the
percentage of number of attributes fromA the literals of c are issued,
relative to |Aused |. When measuring the sizes of the explanations,
we exploited the fact that openwbo exhibits an anytime behaviour:
when the algorithm timed out, a contrastive explanation (that is not
of minimal size in general) can be derived nevertheless. Hence its
size can be considered in the statistics drawn.

The results show that our algorithm to derive minimum-size con-
trastive explanations has been successful most of the time. TOs were
met frequently only for the largest datasets (mnist38, christine,
gisette and dexter), involving hundreds attributes and leading to
random forests based on more than 7500 Boolean conditions. When
no TOs occurred (value 0 in column #TO of Table 1), each of the
100 contrastive explanations that have been derived for the dataset
under consideration is guaranteed to be of minimal size. Seemingly,
the accuracy of the predictor does not have any impact on the time
needed by our algorithm for deriving a minimum-size explanation.
Especially, for the datasets for which the computation always termi-
nated in due time, minimum-size contrastive explanations have been
derived in a short amount of time (in average, 13.55s).

We also ran additional experiments with a larger time-out (1200s
per instance). For each instance for which a contrastive explanation



Dataset |A| F Run time Size
|CF | |Aused | Accuracy Time #TO |CF | |A| %|CF | %|A|

balance-scale 4 28.0(±0.0) 4.0(±0.0) 91.2(±3.6) 4.23(±0.9) 0 5.28(±2.8) 1.51(±0.5) 18.86(±9.8) 37.75(±12.5)
bupa 5 254.9(±18.7) 5.0(±0.0) 97.39(±2.4) 0.07(±0.0) 0 54.91(±25.3) 2.55(±0.6) 21.52(±9.6) 51.0(±12.4)
compas 7 69.5(±1.0) 7.0(±0.0) 66.57(±1.9) 73.55(±15.1) 0 4.6(±6.3) 1.0(±0.0) 6.64(±9.1) 14.29(±0.0)
breastTumor 9 117.8(±1.6) 9.0(±0.0) 53.88(±10.4) 2.24(±0.4) 0 11.66(±17.6) 1.24(±0.5) 9.88(±14.9) 13.78(±5.5)
contraceptive 9 112.8(±1.0) 9.0(±0.0) 66.6(±3.4) 20.42(±0.7) 0 13.26(±14.4) 1.04(±0.2) 11.76(±12.8) 11.55(±2.2)
cleveland 13 556.5(±11.9) 13.0(±0.0) 80.91(±6.4) 0.44(±0.1) 0 54.29(±64.5) 1.88(±0.9) 9.77(±11.7) 14.46(±6.6)
adult 13 50718.2(±205.5) 13.0(±0.0) 85.44(±0.8) 29.86(±2.7) 0 1343.29(±4043.2) 1.06(±0.2) 2.65(±8.0) 8.15(±1.8)
australian 14 1437.2(±30.2) 14.0(±0.0) 86.81(±4.9) 2.0(±0.8) 0 91.72(±116.5) 1.58(±0.6) 6.35(±8.0) 11.29(±4.4)
bank 16 5200.1(±48.1) 16.0(±0.0) 89.69(±1.9) 9.97(±0.2) 0 1175.5(±696.9) 1.43(±0.6) 22.61(±13.4) 8.94(±3.9)
melb 17 28380.8(±65.9) 17.0(±0.0) 92.09(±0.6) 10.94(±0.6) 0 1845.7(±1081.3) 1.56(±0.6) 6.5(±3.8) 9.17(±3.3)
german 19 521.4(±23.5) 19.0(±0.0) 96.3(±2.6) 20.32(±23.3) 3 ≤120.02(±86.1) ≤5.64(±2.1) 23.13(±16.7) ≤29.69(±11.0)
default-paiement 23 173268.3(±524.0) 23.0(±0.0) 81.61(±0.7) 27.43(±18.8) 27 ≤2859.03(±10196.2) ≤2.83(±3.6) 1.65(±5.9) ≤12.31(±15.7)
biodegradation 41 5730.7(±89.3) 40.9(±0.3) 87.78(±2.9) 4.57(±9.0) 1 ≤459.52(±344.8) ≤2.66(±2.8) 8.02(±6.0) ≤6.51(±6.8)
divorce 54 116.5(±8.8) 50.4(±1.6) 97.65(±3.9) 3.34(±7.9) 0 15.59(±10.1) 5.57(±3.3) 13.39(±8.6) 11.04(±6.6)
spambase 57 15005.5(±91.7) 57.0(±0.0) 95.41(±0.6) 5.91(±8.6) 0 517.69(±451.9) 1.81(±0.9) 3.45(±3.0) 3.17(±1.6)
mnist38 784 32638.6(±173.4) 545.8(±3.2) 98.7(±0.4) 37.94(±31.0) 85 ≤1882.97(±895.6) ≤54.38(±26.9) 5.77(±2.7) ≤9.96(±4.9)
cnae 856 555.1(±13.2) 520.0(±12.1) 99.54(±0.6) 1.47(±0.4) 0 2.14(±1.1) 1.85(±0.7) 0.39(±0.2) 0.36(±0.1)
christine 1636 43587.5(±113.3) 1605.1(±1.0) 72.13(±2.2) 13.0(±17.1) 69 ≤221.45(±160.0) ≤19.54(±14.4) 0.51(±0.4) ≤1.22(±0.9)
gisette 5000 24464.6(±172.0) 4107.2(±16.1) 97.53(±0.6) 0.87(±0.0) 97 ≤274.02(±105.7) ≤48.41(±17.1) 1.12(±0.4) ≤1.18(±0.4)
dexter 20000 7892.9(±60.1) 3452.4(±32.5) 93.83(±2.4) 15.33(±24.2) 47 ≤63.91(±48.0) ≤13.57(±13.7) 0.81(±0.6) ≤0.39(±0.4)

Table 1: Performance of our algorithm for computing minimum-size contrastive explanations in terms of run time and size.

of minimal size has been derived within 1200s, we have computed
the difference between the size of the explanation obtained after 100s
and the optimal size. This difference in average was quite small (the
largest value was 11.2 for gisette), showing that the quality of the
explanations obtained after 100s is pretty good in average.

Our experiments also show that the sizes of the minimum-size con-
trastive explanations c that are derived can be large enough (even we
consider only the number of attributes from A the literals of c are
issued from), and possibly too large to be understood as a whole by
a human user (the limit is usually set to 7±2 [33]). Does it mean that
the computation of such explanations is useless in this case? For sure,
no! Once again, our perspective is not to invent short explanations
when they do not exist but to explain the behaviour of the classifier
as it is, and not as it could be. If the explanations that are gener-
ated do not sufficiently comply with the user’s expectations, he/she
is free not to trust in the corresponding prediction. Finally, it can be
observed that minimum-size contrastive explanations are in practice
quite small relative to the instances x one started with. Changing the
values of a few percentage (in average, 12.81%) of the attributes of
A used in F is enough to change the way x is classified.

6 Other Related Work
As sketched in the introduction, many works about the generation of
contrastive explanations focus on the computation of a nearest con-
trastive instance (see [26, 35, 17] for recent references) using opti-
mization techniques (e.g., MILP). Various distances / norms over X
have been taken into account and constraints have been considered
as well to discard instances that cannot be used as contrastive expla-
nations because they are impossible, cannot be reached because their
derivation would involve non-actionable attributes, or are viewed as
outliers. Approximation of the splits of the decision trees is some-
times used in order to recover a differentiable setting [30]. Approxi-
mately nearest contrastive instances with a preset degree of accuracy
can also be considered [27]. Heuristic approaches based on small
alterations of the paths in the decision trees in order to change the
decision made have been proposed as well [42].

In our approach, instances are considered over Cf , thus described
using Boolean attributes. In such a case, contrastive explanations cor-
respond to sets of contrastive instances over C, hence they are typi-
cally more general than single contrastive instances. The minimum-
size contrastive explanations for a rewritten instance rf (x) are the

(provably) nearest contrastive instances of rf (x) over Cf w.r.t. Man-
hattan/Hamming distance (or, equivalently, `1-norm). No commen-
surability assumptions about the scales of numerical attributes ofA is
needed in our approach, while the difficult task of identifying mean-
ingful scaling factors has to be achieved when local distances over
Dis must be aggregated to define a distance over X (e.g., how far
is (50, 30) to (25, 20) when x1 is the age of the applicant and x2

his/her income in $k?).
Closer to our work is [11], where binary variables denoting the fact

that a numerical attribute fromA takes its values within a specific in-
terval are used. Contrastive explanations based on those variables are
generated. As in our approach, such explanations correspond (in gen-
eral) not to a single instance of X but to a population of instances.
The cost function used in this work is parameterized by a cost matrix
that can take into account the characteristics of the instance x and dif-
ferent norms, including the `0-norm over C, which corresponds to the
`1-norm over Cf as in our work. Domain theories for numerical at-
tributes are considered implicitly in the encoding pointed out in [11],
while our approach takes advantage of any explicit domain theory in
CNF format Besides, the encoding used in [11] requires to introduce
numerous binary variables, especially one variable per leaf of each
tree, while our approach is far less demanding in this respect (the
binary variables used correspond basically to the conditions found
in the trees). Finally, as the other works mentioned above, [11] does
not consider the issue of identifying the complexity of recognizing
a contrastive explanation for constrained decision-functions, which
makes it significantly different from our own work.

7 Conclusion
When dealing with tree-based classifiers f , instances x can be con-
sidered either as they are or alternatively, as instances rf (x) rewrit-
ten using the Boolean conditions appearing in f . In this paper, we
have shown that contrastive explanations for rewritten instances are
valuable since they are more general. We have defined notions of
contrastive explanations given a constrained decision-function (f,Σ)
and pointed out characterizations in terms of (prime) implicates. We
have identified the computational complexity of recognizing con-
trastive explanations. An approach to derive minimum-size con-
trastive explanations has also been presented, and experiments have
shown that this approach can be used in practice for deriving expla-
nations for random forests based on hundreds Boolean conditions.
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