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INFINITESIMAL MODULAR GROUP: q-DEFORMED sl 2 AND WITT ALGEBRA

We describe new q-deformations of the 3-dimensional Heisenberg algebra, the simple Lie algebra sl 2 and the Witt algebra. They are constructed through a realization as differential operators. These operators are related to the modular group and q-deformed rational numbers defined by Morier-Genoud and Ovsienko and lead to q-deformed Möbius transformations acting on the hyperbolic plane.

Introduction and results

The construction of q-deformed rational numbers by Morier-Genoud and Ovsienko [START_REF] Morier-Genoud | q-deformed rationals and q-continued fractions[END_REF] starts from the observation that rational numbers are generated by the image of zero under the action of the modular group PSL 2 (Z). This group is generated by the translation T (x) = x + 1 and the inversion S(x) = -1/x. The only relations between these operations are S 2 = id = (ST ) 3 .

The q-deformed integers [n] q = 1 + q + q 2 + ... + q n-1 = 1-q n 1-q , where q ∈ C * , satisfy [n + 1] q = q[n] q + 1. It is natural to introduce as q-analog to the translation T the transformation T q (x) = qx + 1. The map S q (x) = -1/(qx) satisfies S 2 q = id = (S q T q ) 3 . The q-rational numbers are then defined by the image of zero under the action by T q and S q using for example the continued fraction representation of a rational number. Since these operations are Möbius transformations, we can represent them in matrix form as follows:

T q = q 1 0 1 and S q = 0 -1 q 0 . This coincides with the reduced Burau representation of the braid group B 3 with parameter t = -q [START_REF] Burau | Über Zopfgruppen und gleichsinnig verdrillte Verkettungen[END_REF]. Indeed the standard generators of B 3 are represented by σ 1 = T q and σ 2 = S q T q S q = 1 0 -q q . One easily checks the braid relation σ 1 σ 2 σ 1 = σ 2 σ 1 σ 2 . The faithfulness of specializations of the Burau representation (where q is not a formal parameter, but a non-zero complex number) is an open question [3, Section 7]. It was studied for real values of q in [START_REF] Scherich | Classification of the real discrete specialisations of the Burau representation of B 3[END_REF]. In [START_REF] Morier-Genoud | Burau Representation of Braid Groups and q-Rationals[END_REF] a link to q-deformed rational numbers allows to partially solve the open question.

Following a suggestion of Valentin Ovsienko, we can associate to T q a differential operator D -1 (q), which corresponds to the infinitesimal q-shift. For q = 1 we have D -1 (1) = ∂ = d/dx. This operator is given by D -1 := (1 + (q -1)x)∂.

One can directly check that D -1 commutes with T q , where T q acts on the space of functions by precomposition. The starting point of the paper is the question whether there is a differential operator associated to S q . This would allow to define in some sense a Lie algebra for the modular group PSL 2 (Z), or an infinitesimal version of the Burau representation of B 3 . Looking for differential operators allows to use analytical methods (like determining their eigenfunctions) and to get the Jacobi identity for free.

In the classical setting for q = 1, there is an operator which anti-commutes with S:

S • x∂ + x∂ • S = 0,
where S acts on the space of functions by precomposition. We introduce the differential operator D 0 , a q-deformed version of x∂, given by D 0 := (1 + (x -1)q)D -1 = (1 + (x -1)q)(1 + (q -1)x)∂.

We will see that D 0 anti-commutes with S q . Together with D 1 := S q • D -1 • S q , we get three differential operators which are closed under the bracket (see Theorem 2.3):

Theorem A. The operators D -1 , D 0 and D 1 form a Lie algebra with brackets

[D 0 , D 1 ] = (q 2 -q + 1)D 1 + (1 -q)D 0 , [D 0 , D -1 ] = -(q 2 -q + 1)D -1 + (1 -q)D 0 , [D -1 , D 1 ] = 2D 0 + (1 -q)(D 1 -D -1 ).
The theorem tells us that the module over R[q] generated by D -1 , D 0 and D 1 is a deformation of the simple Lie algebra sl 2 (R) which we recover for q = 1. The Lie algebra sl 2 being simple, it does not allow for non-trivial deformations. Hence our deformation is isomorphic to sl 2 as a Lie algebra, but they are different as Z[q]-modules. This is similar to quantum groups.

A fundamental role is played by the Möbius transformation

g q (x) = 1 + (x -1)q 1 + (q -1)x
which is a deformation of the identity. It is the eigenfunction of D 0 with eigenvalue q 2 -q + 1 and normalization g q (0) = 1 -q. We call it the Ovsienko transition map since it makes a passage between two different q-deformations of rational numbers studied in [START_REF] Bapat | q-deformed rational numbers and the 2-Calabi-Yau category of type A 2[END_REF]. More precisely (see Theorem 2.7):

Theorem B. The two q-deformations of rational numbers defined in [2, Definition 2.6] are linked via

g q r s ♯ q = r s ♭ q -1
.

This theorem comes from the interplay between g q , T q and S q given by g q • T q = T q -1 • g q and g q • S q = S q -1 • g q (see Proposition 2.6). The Ovsienko transition map also satisfies a sort of duality between q and x: g q (x)g x (q) = 1.

The map g q also behaves very well with the three operators D -1 , D 0 and D 1 (see Proposition 2.10 and 3.1):

Proposition C. The Ovsienko transition map g q and the differential operators D -1 , D 0 , and D 1 interact in the following way:

(1) D 0 (g q ) = (q 2 -q + 1)g q , D -1 (g q ) = q + (1 -q)g q , D 1 (g q ) = (q -1)g q + g 2 q .

(2)

g q D 0 = (1 -q)D 0 + (q 2 -q + 1)D 1 , g q D -1 = D 0 + (1 -q)D 1 .
(3) qg -1 q D 0 = (q -1)D 0 + (q 2 -q + 1)D -1 , qg -1 q D 1 = D 0 + (q -1)D -1 . These relations allow a deformation of the Witt algebra, the complexification of the Lie algebra of polynomial vector fields on the circle. The Witt algebra is described by a vector space basis (ℓ n ) n∈Z with bracket given by

[ℓ n , ℓ m ] = (m -n)ℓ n+m .
This algebra can be realized as differential operators (or equivalently as vector fields) via ℓ n = x n-1 ∂. Putting for n > 1:

D n = g n-1 q D 1 and D -n = (qg -1 q ) n-1 D -1
, we get a deformation of the Witt algebra (see Theorem 3.2):

Theorem D. The (D n ) n∈Z form a Lie algebra with bracket given by (where n, r > 0):

[D 0 , D n ] = n(q 2 -q + 1)D n + (q 2 -q + 1) n-1 k=1 (1 -q) k D n-k + (1 -q) n D 0 , [D n , D n+r ] = rD 2n+r + (q -1)rD 2n+r-1 , [D -n , D n ] = 2nq n-1 D 0 + (2n -1)q n-1 (q -1)(D -1 -D 1 ), [D n+r , D -n ] = (q -1)q n-1 (2n + r -1)D r+1 -(q 2 + (2n + r -2)q + 1)q n-1 D r , -q n-1 (q 2 -q + 1) r-1 k=1 (1 -q) k D r-k -(1 -q) r q n-1 D 0 .
The remaining brackets [D 0 , D -n ], [D -n , D -n-r ] and [D n , D -n-r ] obey similar formulas.

Integrating the vector fields associated to D -1 , D 0 and D 1 on the hyperbolic plane, we get Möbius transformations. We speculate about a q-deformed hyperbolic plane on which these transformations naturally act. The boundary of this deformed hyperbolic plane should be the q-deformed real numbers. Other interesting open questions include the link between our q-deformed sl 2 and the quantum group U q (sl 2 ), or the existence of a central extension of our deformed Witt algebra, which would give a deformed Virasoro algebra.

Deformations of rational numbers were introduced in [START_REF] Morier-Genoud | q-deformed rationals and q-continued fractions[END_REF], extended to real numbers in [START_REF] Morier-Genoud | On q-deformed real numbers[END_REF] and to Gaussian integers in [START_REF] Ovsienko | Towards quantized complex numbers: q-deformed Gaussian integers and the Picard group[END_REF]. Many different deformations of the Witt algebra or its central extension, the Virasoro algebra, have been introduced in the past: first in [START_REF] Curtright | Deforming maps for quantum algebras[END_REF] and then in [START_REF] Chaichian | q-deformations of Virasoro algebra and conformal dimensions[END_REF] deforming the matrix Lie bracket to [A, B] q = qAB -q -1 BA. This also deforms the Jacobi identity. A similar construction was done in [START_REF] Hu | q-Witt algebras, q-Virasoro algebra, q-Lie algebras, q-holomorph structure and representations[END_REF] viewing the Witt algebra as space of derivations of C[x ±1 ] and using the q-differential ∂ q (f ) = f (qx)-f (x) qx-x . This was generalized in [START_REF] Hartwig | Deformations of Lie algebras using σ-derivations[END_REF] to more general σ-derivatives. Deforming the cocycle gives a q-Virasoro algebra in [START_REF] Kassel | Cyclic homology of differential operators, the Virasoro algebra and a q-analogue[END_REF], developped into a theory of q-deformed pseudo-differential operators in [START_REF] Khesin | Extensions and Contractions of the Lie Algebra ofq-Pseudodifferential Symbols on the Circle[END_REF]. A deformation as Lie algebra in terms of an operator product expansion is given in [START_REF] Shiraishi | A quantum deformation of the Virasoro algebra and the Macdonald symmetric functions[END_REF]. A similar proposal can be found in [START_REF] Frenkel | Quantum affine algebras and deformations of the Virasoro and W -algebras[END_REF]Equation (1.3)], using a q-deformed Miura transformation. In [START_REF] Nedelin | q-Virasoro constraints in matrix models[END_REF]Equation (38)] the deformation [T m (q), T n (q)] = ([-n] q -[-m] q )(T n+m (q 2 ) -T n+m (q)) is studied. Yet another proposal from [START_REF] Nigro | A q-Virasoro algebra at roots of unity, free fermions, and Temperley-Lieb hamiltonians[END_REF]Formula 3.18] gives operators D n (q) for n ∈ Z with commutator [D n (q), D m (q)] = (q -q -1 )[n -m] q D n+m (q 2 ) (removing the central extension). Finally in [START_REF] Avan | Deformed Virasoro algebras from elliptic quantum algebras[END_REF] a two-dimensional deformation using elliptic algebras is studied. All these approaches are different from ours.

Structure of the paper. In Section 2 we introduce and study the deformation of sl 2 , the Heisenberg algebra and the Ovsienko transition map. This is broadened in Section 3 to a deformed Witt algebra. In the final Section 4 we study the Möbius transformations associated to these deformations.
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Deformed sl 2 and Heisenberg algebra

The group SL 2 acts naturally on the projective line P 1 . We will work over R or C. Differenting this action at the identity gives a realization of the Lie algebra sl 2 as vector fields on P 1 . Using the two standard charts of P 1 with transition function x → 1/x, the image of sl 2 → Vect(P 1 ) is generated by ∂, x∂ and x 2 ∂ written in the first chart, where we use the notation ∂ = d/dx. One readily checks that these expressions are well-defined over the second chart.

We construct a deformation of these three differential operators. They come as a realization of a Lie algebra which itself deforms sl 2 . Together with a q-deformed identity map, we deform the 3-dimensional Heisenberg algebra.

2.1. Deformed sl 2 . On P 1 , consider the Möbius transformations

T q (x) = qx + 1 and S q (x) = - 1 qx ,
where q ∈ C * is a fixed parameter. They deform the translation x → x + 1 and the inversion x → -1/x. These transformations act on the space of functions on P 1 by precomposition.

Consider the differerntial operator D -1 on P 1 which is defined in the first chart by (2.1)

D -1 := (1 + (q -1)x)∂.
Proposition 2.1. The operators D -1 and T q commute, where T q acts on the space of functions by precomposition.

Proof. For a function f (x), we have on the one side

D -1 • T q (f (x)) = D -1 (f (qx + 1)) = (1 + (q -1)x)qf ′ (qx + 1).
On the other side,

T q • D -1 (f (x)) = T q ((1 + (q -1)x)f ′ (x)) = (1 + (q -1)(qx + 1))f ′ (qx + 1).

Both expressions coincide. □

The unique eigenfunction E q of D -1 with eigenvalue 1 and normalization E q (0) = 1 is a q-deformation of the exponential function, called the Tsallis exponential [START_REF] Tsallis | Possible generalization of Boltzmann-Gibbs statistics[END_REF]. This was first observed by Valentin Ovsienko and Emmanuel Pedon 1 . To find E q , one has to solve

f = D -1 f = (1 + (q -1)x)f ′ , i.e. (ln f ) ′ = 1 1+(q-1)
x . The solution is given by

E q (x) = (1 + (q -1)x) 1 q-1 .
It satisfies E q (qx + 1) = E q (1)E q (x) since E q (qx + 1) = T q E q is also an eigenfunction of D -1 with eigenvalue 1.

The main new operator we introduce is the following:

(2.2) D 0 := (1 + (x -1)q)D -1 = (1 + (x -1)q)(1 + (q -1)x)∂.
Proposition 2.2. The operators D 0 and S q anti-commute, where S q acts on the space of functions by precomposition.

The proof is a direct verification, similar to the proof of Proposition 2.1. An equivalent statement is

S q • D 0 • S q = -D 0 .
Proof. For a function f (x), we have on the one side

D 0 • S q (f (x)) = D 0 f (-1 qx ) = (1 + (x -1)q)(1 + (q -1)x)f ′ (-1 qx ) 1 qx 2 .
On the other hand:

S q • D 0 (f (x)) = S q (1 + (x -1)q)(1 + (q -1)x)f ′ (x) = 1 + q(-1 qx -1) 1 -1 qx (q -1) f ′ (-1 qx ) = -1 qx 2 1 + (x -1)q 1 + (q -1)x f ′ (-1 qx ). □
More generally, we can find all operators D of the form g(x)∂ which anti-commute with S q . The relation {D, S q } = 0 gives g(x) = -qx 2 g -1 qx . Adding as constraint that g has to be polynomial, it is clear that it is of degree at most 2. Plugging in g(x) = g 0 + g 1 x + g 2 x 2 gives a solution for any g 1 and g 2 = -qg 0 . In other words, the two fundamental solutions are g(x) = x and g(x) = 1 -qx 2 . Note in particular that the undeformed operator x∂ still anticommutes with S q . The particular choice above for D 0 is g 1 = -1 + 3q -q 2 and g 0 = 1 -q. We will see below why this is the simplest choice.

Let us determine the eigenfunctions of D 0 with eigenvalue α. One has to solve

αf = D 0 f , i.e. (ln f ) ′ = α (1+(q-1)x)(1+(x-1)q) . The solutions are 1 + (x -1)q 1 + (q -1)x α q 2 -q+1
. 1 Unpublished, private communication.

We define the Ovsienko transition map

(2.3) g q (x) = 1 + (x -1)q 1 + (q -1)x ,
which is the unique eigenfunction of D 0 with eigengenvalue q 2 -q + 1 and normalization g q (0) = 1 -q. We can think of g q as a deformation of the identity map. We study this function more in detail below in 2.2. Now we come back to the discussion why our D 0 is the simplest choice. Consider an operator D = g(x)∂ anti-commuting with S q , i.e. of the form g(x) = g 0 +g 1 -qg 0 x 2 with arbitrary g 0 , g 1 ∈ Z[q]. We impose that D deforms x∂, that is g 0 (1) = 0 and g 1 (1) = 1. We also impose the leading terms of g 0 , g 1 to be ±1. We wish that the eigenfunctions of D are Möbius transformations in Z[q]. This is only the case if the discriminant of

g 0 + g 1 x -qg 0 x 2 is a square in Z[q]
. This leads to the equation g 1 (q) 2 + 4qg 0 (q) 2 = R(q) 2 for some R ∈ Z[q]. This is equivalent to 4qg 2 0 = (R -g 1 )(R + g 1 ). Excluding the case where g 0 = 0 which leads to the undeformed operator x∂, the next simplest case is g 0 (q) = 1 -q. By treating all possible factorizations of 4q(1 -q) 2 , we see that the g 1 with lowest degree has to be g 1 (q) = -1 + 3q -q 2 which is the case for our choice D 0 .

We complete the operators D -1 and D 0 to a deformed sl 2 . For that, we wish to deform x 2 ∂. Note that x 2 ∂ = S • ∂ • S. This motivates the following definition:

(2.4)

D 1 := S q • D -1 • S q = (1 + (x -1)q)x∂.
By definition, D 1 commutes with S q T q S q . Our first result is that these three operators give a Lie algebra deforming sl 2 :

Theorem 2.3. The operators D -1 , D 0 and D 1 form a Lie algebra with brackets

[D 0 , D 1 ] = (q 2 -q + 1)D 1 + (1 -q)D 0 , [D 0 , D -1 ] = -(q 2 -q + 1)D -1 + (1 -q)D 0 , [D -1 , D 1 ] = 2D 0 + (1 -q)(D 1 -D -1 ).
For q = 1, we get the Lie algebra sl 2 .

Proof. The proof is a straightforward computation. All D i are of the form g(x)∂ with g a polynomial of degree at most 2. This explains why we can express any bracket as linear combination of D -1 , D 0 and D 1 . The non-trivial part is that the coefficients are in Z

[q]. Since D 0 = (1 + (x -1)q)D -1 , we get [D 0 , D -1 ] = -D -1 (1 + (x -1)q)D -1 = -q(1 + (q -1)x) 2 ∂.
Similarly we have

D 0 = (1 + (q -1)x)x -1 D 1 , hence [D 0 , D 1 ] = -D 1 (x -1 + q -1)D 1 = (1 + (x -1)q) 2 ∂.
The last bracket can be computed to be [D -1 , D 1 ] = (1 -q + 2qx + q(q -1)x 2 )∂. One explicitely checks that these three brackets coincide with results claimed in the theorem. Finally, it is clear that these brackets satisfy the Jacobi identity since we know a representation of the operators D i as differential operators. □

The Lie algebra sl 2 being simple, it does not allow any non-trivial deformations. This means that our q-deformation is abstractly isomorphic to sl 2 . We can give an explicit isomorphism. Denote by (f, h, e) the generators of sl 2 given by the differential operators (∂, x∂, x 2 ∂). They satisfy [h, e] = e, [h, f ] = -f and [e, f ] = -2h. The following is an isomorphism of Lie algebras between (D -1 , D 0 , D 1 ) and (f, h, e):

(2.5)

f = q -1/2 (D -1 + q-1 q 2 -q+1 D 0 ), h = D 0 q 2 -q+1 , e = q -1/2 (D 1 + 1-q q 2 -q+1 D 0 ). Remark 2.4. It is tempting to consider D -1 , D 1 and D 0 := [D -1 , D 1 ].
The operator D 0 still anti-commutes with S q and the bracket relations are

[ D 0 , D ±1 ] = ±(q 2 + 1)D ±1 ± (q -1) 2 D ∓1 .
The main drawback of this choice is that the eigenfunctions of D 0 are Möbius transformations with coefficients not in Z[q].

Remark 2.5. A simpler and very similar Lie algebra deforming sl 2 is given by generators (d -1 , d 0 , d 1 ) with brackets

[d 0 , d -1 ] = -qd -1 +(1-q)d 0 , [d 0 , d 1 ] = qd 1 +(1-q)d 0 , [d -1 , d 1 ] = 2d 0 +(1-q)(d 1 -d -1 ).
It can be obtained as our deformation for a formal parameter q with relation (q-1) 2 = 0. Then q 2 -q + 1 = q. One checks that the Jacobi identity still holds.

Using the isomorphism (2.5) to sl 2 , we can describe a 2-dimensional representation of the deformed Lie algebra defined by (D -1 , D 0 , D 1 ). Using the standard realization f = ( 0 0 1 0 ) , h = 1/2 0 0 -1/2

and e = ( 0 -1 0 0 ), we get:

D -1 = 1-q 2 0 q 1/2 q-1 2 , D 0 = q 2 -q+1 2 0 0 -q 2 +q-1 2 , D 1 = q-1 2 -q 1/2 0 1-q 2 .
A direct computation shows that there is no 2-dimensional representation of our qdeformed sl 2 into sl 2 (Q[q]). In dimension 3, there is of course the adjoint representation into sl 3 (Z[q]).

2.2. Ovsienko transition map. The map g q defined in (2.3) plays a fundamental role, both for generalizing the q-deformation from sl 2 to the Witt algebra in Section 3, and in the theory of q-deformed rationals as we shall see now. It allows to pass between two different q-deformations of the rational numbers.

Recall that the Ovsienko transition map is defined by

g q (x) = 1 + (x -1)q 1 + (q -1)x ,
which is a deformation of the identity. It is the eigenfunction of D 0 with eigenvalue q 2 -q + 1 and normalization g q (0) = 1 -q. Note that g q is a Möbius transformation associated to the matrix q 1 -q q -1 1 which is of determinant q 2 -q + 1. For q ̸ = 1, g q is an elliptic transformation since its normalized trace is given by q+1 √

q 2 -q+1 < 2. The unique fixed point on H 2 is 1+i √ 3 2 which is independent of q.
From the definition of g q , we see the following duality between q and x: g q (x)g x (q) = 1.

Proposition 2.6. The functions g q , T q and S q , seen as 2 × 2-matrices satisfy:

g q T q = qT q -1 g q and g q S q = qS q -1 g q .

Therefore, seen as Möbius transformations, we have g q • T q = T q -1 • g q and g q • S q = S q -1 • g q .

Proof. Both assertions can be checked by a direct computation:

g q T q = q 1 -q q -1 1 q 1 0 1 = q 2 1 q 2 -q q = qT q -1 g q ,
and similarly

g q S q = q 1 -q q -1 1 0 -1 q 0 = q -q 2 -q q 1 -q = qS q -1 g q .
The second identity can be derived also as follows: since S q D 0 S q = -D 0 , we see that both g -1 q (x) and g q (S q (x)) are eigenfunctions of D 0 with eigenvalue -q 2 + q -1. Hence they have to be multiple of each other. The precise relation is given by g q (S q (x)) = -q gq(x) = S q -1 (g q (x)). □

We describe now the main link to q-deformed rational numbers. In [13, Remark 3.2], the authors notice that the procedure for q-deformed irrational numbers gives two different answers when applied to rationals. This was further developped in [START_REF] Bapat | q-deformed rational numbers and the 2-Calabi-Yau category of type A 2[END_REF], from which we borrow the notations. When one approaches a rational r/s from the right by a sequence of rationals strictly bigger than r/s, the procedure gives [r/s] ♯ q , the deformation from applying T q and S q to zero described at the beginning of the Introduction. When approaching r/s from the left, the limit gives another q-deformation of r/s, denoted [r/s] ♭ q [2, Theorem 2.11]. The precise formulas given in [2, Definition 2.6] can be written in our context as follows: consider U = T ST , which is the function U (x) = 1 1+1/x , and its q-analog U q = T q S q T q . For a rational r/s ∈ Q, take the unique even continued fraction expression r/s = [a 1 , a 2 , ..., a 2n ]. This means that r/s = T a 1 U a 2 T a 3 • • • U a 2n (∞). By convention, we put ∞ = [ ], the empty expression. Then

(2.6) r s ♯ q = T a 1 q U a 2 q T a 3 q • • • U a 2n q (∞),

and

(2.7) r s

♭ q = T a 1 q U a 2 q T a 3 q • • • U a 2n q 1 1 -q .
To give some examples, we have [0] ♯ q = 0 and [0] ♭ q = q-1 q , [1] ♯ q = 1 and [1] ♭ q = q, [2] ♯ q = 1 + q and [2] ♭ q = 1 + q 2 , [∞] ♯ q = ∞ and [∞] ♭ q = 1 1-q . It was noticed numerically by Valentin Ovsienko that g q is a transition between these two q-deformations of rational numbers. This is made precise in the following: Theorem 2.7. The passage between the two q-deformations of rationals is given by

g q r s ♯ q = r s ♭ q -1
.

Note that q gets inversed to q -1 . The proof is an application of Proposition 2.6.

Proof. Proposition 2.6 gives g q U q = U q -1 g q . Using Equation (2.6) and again Proposition 2.6, we get

g q r s ♯ q = g q T a 1 q U a 2 q T a 3 q • • • U a 2n q (∞) = T a 1 q -1 U a 2 q -1 T a 3 q -1 • • • U a 2n q -1 g q (∞). Now g q (∞) = q q-1 = 1 1-q -1 .
Hence we conclude by Equation (2.7). □

It is known that for r/s ∈ Q >0 both [r/s] ♯ q = R ♯ (q)/S ♯ (q) and [r/s] ♭ q = R ♭ (q)/S ♭ (q) are rational functions in q with positive coefficients, i.e. R ♯ , S ♯ , R ♭ , S ♭ ∈ N[q]. Using some known inequalities for q-rationals (see [START_REF] Morier-Genoud | q-deformed rationals and q-continued fractions[END_REF]Theorem 2]), one can directly prove that g q ([r/s] ♯ q ) is a rational function in q with positive coefficients. Finally, we can use the transition function g q (x) as reparametrization of P 1 . To emphasize the dependence of our differential operators, we will write here D -1 (q, x) = (1 + (q -1)x)∂ x and similar for D 0 and D 1 .

Proposition 2.8. Reparametrizing P 1 by the transition map ξ = g q (x) gives D ±1 (q, x) = qD ±1 (q -1 , ξ), D 0 (q, x) = (q 2 -q + 1)ξ∂ ξ .

The behavior of D -1 and D 1 is reminiscent of Proposition 2.6.

Proof. Using dξ dx = q 2 -q+1 (1+(q-1)x) 2 and x = ξ+q-1 q+(1-q)ξ , we get 1 + (q -1)x = q 2 -q+1 q+(1-q)ξ . Hence

D -1 (x, q) = (1 + (q -1)x) dξ dx ∂ ξ = q 2 -q + 1 1 + (q -1)x ∂ ξ = (q + (1 -q)ξ)∂ ξ = qD -1 (q -1 , ξ).
The computation for D 1 is similar. Finally:

D 0 (q, x) = (1 + (q -1)x)(1 + (x -1)q)∂ x = (q 2 -q + 1)g q (x)∂ ξ = (q 2 -q + 1)ξ∂ ξ .

□

This proposition indicates that we can use the undeformed operator x∂ together with D ±1 to get a deformation of sl 2 which is equivalent to our proposal. The importance of the Ovsienko transition map g q , especially in the light of Proposition 2.6, justifies to use D 0 instead of x∂.

Heisenberg algebra.

The operators D -1 and g q , seen as multiplication operator, give a deformation of the Heisenberg algebra. This strengthens the idea of considering g q as a deformation of the identity.

Theorem 2.9. The two operators D -1 and g q satisfy [D -1 , g q ] = q + (1 -q)g q .

Hence together with the central element 1, they define a solvable 3-dimensional Lie algebra deforming the 3-dimensional Heisenberg algebra which we recover for q = 1.

The proof is a simple computation:

[D -1 , g q ] = D -1 (g q ) = q 2 -q + 1 1 + (q -1)x = q + (1 -q)g q .
The Lie algebra generated by (1, g q , D -1 ) is solvable since D -1 is not in the image of the Lie bracket. Hence the derived series becomes zero at the second step.

The previous theorem works since there is a nice expression for D -1 (g q ). This holds true more generally: Proposition 2.10. The function g q behaves well under the operators D -1 , D 0 and D 1 : D 0 (g q ) = (q 2 -q + 1)g q , D -1 (g q ) = q + (1 -q)g q , D 1 (g q ) = (q -1)g q + g 2 q . Proof. We only have to prove the last statement since we have already seen the first two. For that, we use the relation g q (S q (x)) = -q/g q (x), see Proposition 2.6. We get D 1 (g q ) = S q D -1 S q (g q ) = S q D -1 (-q/g q ) = S q (-qg -2 q (q + (1 -q)g q )), where we first used that S q acts by precomposition, then Proposition 2.6 and finally the expression for D -1 (g q ). Since S q acts by precomposition applying 2.6 again concludes: D 1 (g q )S q (-qg -2 q (q + (1 -q)g q )) = g 2 q + (q -1)g q . □

We can use this proposition to express on operator in terms of another via the relation

D i = D i (gq)
D j (gq) D j for all i, j ∈ {-1, 0, 1}. This holds true since these differential operators are of order 1.

Deformed Witt algebra

Now that we have deformed the differential operators ∂, x∂ and x 2 ∂, we can do the same for all x n ∂ for n ∈ Z. These are a realization of the Witt algebra, the Lie algebra of complex polynomial vector fields on the circle (the centerless Virasoro algebra). Putting ℓ n = x n-1 ∂, the Lie algebra structure is given by

(3.1) [ℓ n , ℓ m ] = (m -n)ℓ n+m .
To get a deformation of the Witt algebra, we define for n > 1:

D n = g n-1 q D 1 , D -n = (qg -1 q ) n-1 D -1 , (3.2) 
where g -1 q = 1/g q denotes the inverse for multiplication (not composition). Proposition 3.1. The operators D n behave nicely when multiplied by g q . By definition we have g q D n = D n+1 for n ≥ 1 and g q D -n = qD -n+1 for n ≥ 2. In addition:

g q D 0 = (1 -q)D 0 + (q 2 -q + 1)D 1 g q D -1 = D 0 + (1 -q)D 1 .
Similarly there is a nice behavior when multiplied by qg -1 q . By definition qg -1 q D -n = D -n-1 for n ≥ 1 and qg -1 q D n = qD n-1 for n ≥ 2. In addition:

qg -1 q D 0 = (q -1)D 0 + (q 2 -q + 1)D -1 qg -1 q D 1 = D 0 + (q -1)D -1 .
Proof. From the definitions we get g q D 0 = (1 + (x -1)q) 2 ∂. From Proposition 2.3 and its proof we see that this is

[D 0 , D 1 ]. Therefore g q D 0 = (q 2 -q + 1)D 1 + (1 -q)D 0 . A direct computation also gives g q D -1 = (1 + (x -1)q)∂ = D 0 + (1 -q)D 1 .
For the second half, note that g q D 0 + (q -1)g q D -1 = (q 2 -q + 1 -(q -1) 2 )D 1 = qD 1 . Dividing by g q gives qg -1 q D 1 = D 0 +(q-1)D -1 . Similarly (q-1)g q D 0 +(q 2 -q+1)D -1 = qD 0 , so dividing by g q gives qg -1 q D 0 = (q -1)D 0 + (q 2 -q + 1)D -1 . □ Using Proposition 2.10 and 3.1 we get the bracket relations of all D n : Theorem 3.2. The (D n ) n∈Z form a Lie algebra with bracket given by (with n, r > 0):

[D 0 , D n ] = n(q 2 -q + 1)D n + (q 2 -q + 1) n-1 k=1 (1 -q) k D n-k + (1 -q) n D 0 [D 0 , D -n ] = -n(q 2 -q + 1)D -n -(q 2 -q + 1) n-1 k=1 (q -1) k D -n+k -(q -1) n D 0 [D n , D n+r ] = rD 2n+r + (q -1)rD 2n+r-1 [D -n , D -n-r ] = -rD -2n-r + (q -1)rD -2n-r+1 [D -n , D n ] = 2nq n-1 D 0 + (2n -1)q n-1 (q -1)(D -1 -D 1 ) [D n+r , D -n ] = (q -1)q n-1 (2n + r -1)D r+1 -(q 2 + (2n + r -2)q + 1)q n-1 D r -q n-1 (q 2 -q + 1) r-1 k=1 (1 -q) k D r-k -(1 -q) r q n-1 D 0 [D n , D -n-r ] = -(q -1)q n-1 (2n + r -1)D -r-1 -(q 2 + (2n + r -2)q + 1)q n-1 D -r -q n-1 (q 2 -q + 1) r-1 k=1 (q -1) k D -r+k -(q -1) r q n-1 D 0 For q = 1, one recovers the Witt algebra.
It is clear that the bracket of the operators D n satisfies the Jacobi identity since these operators come from a realization as differential operators. We only have to check the bracket relations, which uses induction and all properties between g q and D -1 , D 0 , D 1 .

Proof. We prove the first relation by induction on n. The case n = 1 is true by Proposition 2.3. Then for n > 1:

[D 0 , D n ] = [D 0 , g q D n-1 ] = D 0 (g q )D n-1 + g q [D 0 , D n-1 ] = (q 2 -q + 1)g q D n-1 + g q (n -1)(q 2 -q + 1)D n-1 + g q (q 2 -q + 1) n-2 k=1 (1 -q) k D n-1-k + (1 -q) n-1 D 0 = n(q 2 -q + 1)D n + (q 2 -q + 1) n-1 k=1 (1 -q) k D n-k + (1 -q) n D 0
, where we used that g q is an eigenfunction of D 0 , and Proposition 3.1. The second statement is a similar computation. The third relation comes as follows:

[D n , D n+r ] = [D n , g r q D n ] = D n (g r q )D n = rg r-1 q g n-1 q D 1 (g q )D n = rg r+n-2 q (g 2 q + (q -1)g q )D n = rD 2n+r + r(q -1)D 2n+r-1 ,
where we used Proposition 2.10 for D 1 (g q ). The fourth bracket is a similar computation.

To prove the fifth relation, we use induction on n again. The initial n = 1 is done by Proposition 2.3. Then for n ≥ 1:

[D -n-1 , D n+1 ] = [qg -1 q D -n , g q D n ] = qg -1 q D -n (g q )D n + q[D -n , D n ] -qg q D n (g -1 q )D -n = q n g -n
q (q+(1-q)g q )D n + q(2nq n-1 D 0 + (2n-1)q n-1 (q-1)(D -1 -D 1 )) + qg n-2 q (g 2 q + (q -1)g q )D -n = 2nq n D 0 + q n (2n(q -1) + q q )D -1 -q n (2n(q -1) -qg -1 q )D 1 = (2n + 2)q n D 0 + (2n + 1)q n (q -1)(D -1 -D 1 ), where we used several times Propositions 2.10 and 3.1. Finally for the last two brackets, we start from (where a, b > 0):

[D a , D -b ] = [g a-1 q D 1 , (qg -1 q ) b-1 D -1 ] = q b-1 g a-1 q D 1 (g 1-b q )D -1 -g 1-b q D -1 (g a-1 q )D 1 + g a-b q [D 1 , D -1 ] = q b-1 g a-b q (-(a + b)D 0 + (a + b -1)(q -1)(D 1 -D -1 )) . (3.3)
An easy induction gives for r > 0:

(3.4) g r q D 0 = (q 2 -q + 1) r-1 k=0 (1 -q) k D r-k + (1 -q) r D 0 .
Also we get g r q D -1 = g r-1 q D 0 + (1 -q)D r , where we can use Equation (3.4) to express the first term. Similar results hold for (qg -1 q ) r D 0 and (qg -1 q ) r D 1 . Putting a = n + r and b = n in Equation (3. □ Remark 3.3. Regarding Remark 2.5, we could consider a formal parameter q satisfying (q -1) 2 = 0. This drastically simplifies the bracket relations for the D n , but the result is not a Lie algebra anymore. The Jacobi identity does not hold exactly, but only modulo (q -1) 2 .

Möbius transformations

The differential operators ∂, x∂, x 2 ∂ can be interpreted in at least three different ways: first as differential operators on P 1 written in one chart (this was our approach). Second they can be seen as complex vector fields on the circle S 1 ⊂ C (this approach was used for the Witt algebra). Third, a Lie algebra can be realised as Killing vector fields on the associated symmetric space of non-compact type. For sl 2 this symmetric space is the hyperbolic plane H 2 .

In this section, we integrate the operators D -1 , D 0 and D 1 seen as vector fields of H 2 . The result gives interesting Möbius transformations with q-parameter. Conjecturally there should be a q-deformation of H 2 on which these transformations act, such that the boundary can be identified with the q-deformed real numbers of [START_REF] Morier-Genoud | On q-deformed real numbers[END_REF].

4.1. Classical setting. Consider first the classical setup with the operators ∂, x∂ and x 2 ∂. These are Killing vector fields on the hyperbolic plane H 2 , whose integration determines isometries of H 2 .

Consider for example the case of ∂. A curve γ integrates this vector field iff γ ′ (t) = 1 for all t ∈ R. With initial condition γ(0) = x we get γ(t) = x + t. We should think of this as a function γ x (t) of the initial condition. For time 1, we get the translation γ x (1) = x + 1 = T (x).

Another important case is x∂, for which we have to solve γ ′ (t) = γ(t). With initial condition γ(0) = x, we obviously get γ(t) = e t x. The function x → e t x is the hyperbolic isometry of H 2 associated to the geodesic joining 0 to ∞. Its matrix is given by (4.1) e t/2 0 0 e -t/2 . We can immediately generalize to the generators of the Witt algebra. Consider the operator x n ∂ with n ∈ Z, n ̸ = 1. A curve γ integrates the associated vector field if γ ′ (t) = γ(t) n . The solution with initial condition γ(0) = x is given by 1) .

γ x (t) = x (1 -(n -1)tx n-1 ) 1/(n-
Apart from n = 0 and n = 2, the associated transformations in x are not Möbius transformations. We get Möbius transformations though when passing to a ramified covering. Putting y = x n-1 , we get

γ x (t) n-1 = y 1 -(n -1)ty . 
4.2. Deformed transformations. We repeat the method of the previous subsection to deduce the transformations associated to D -1 , D 0 and D 1 . Since these operators are still of the form g(x)∂ with g a polynomial in x of degree at most 2, the vector fields D i are still Killing vector fields, so there integration gives Möbius transformations.

Start with D -1 = (1 + (q -1)x)∂. The associated differential equation is γ ′ (t) = 1 + (q -1)γ(t) with initial condition γ(0) = x. Solving this equation is standard: first one solves the homogeneous equation, then one uses the variation of the constant to finally get γ(t) = -1 q-1 + x + 1 q-1 e (q-1)t .

For t = 1 we get the associated map x → -1 q-1 + x + 1 q-1 e q-1 . The Taylor development around q -1 at order 1 gives

x → -1 q-1 + x + 1 q-1 q = qx + 1 which is nothing but T q (x). For a general time t, the same procedure gives x → (1 -t + qt)x + t. To sum up: Proposition 4.1. The time 1 flow of the operator D -1 seen as vector field on H 2 is the affine map x → -1 q-1 + x + 1 q-1 e q-1 whose Taylor development at order 1 in q -1 is T q .

For the operator D 1 , it is not necessary to do any computation since D 1 = S q D -1 S q . We can simply conjugate by S q the previous computations. In particular, the associated transformation in the Taylor development is S q T q S q .

Consider now the operator

D 0 = (1 + (q -1)x)(1 + (x -1)q)∂. The associated differential equation reads γ ′ (t) = 1 -q + (-1 + 3q -q 2 )γ + q(q -1)γ 2
which is a Ricatti equation.

To solve a Ricatti equation, put a = 1 -q, b = -1 + 3q -q 2 , c = q(q -1) and introduce the new function u such that cγ(t) = -u ′ (t)/u(t). Then u satisfies u ′′ (t)bu ′ (t) + acu(t) = 0. The discriminant has the nice expression b 2 -4ac = (q 2 -q + 1) 2 . The two roots of the characteristic equation are q and -(q -1) 2 . Hence we get u(t) = C 1 e qt + C 2 e -(q-1) 2 t where C 1 , C 2 are two constants. Since γ = -u ′ /(cu), we can scale C 1 and C 2 by the same number without changing γ. Putting C 1 = 1 -q, we get γ(t) = e qt + C 2 q-1 q e -(q-1) 2 t (1 -q)e qt + C 2 e -(q-1) 2 t .

The initial condition γ(0) = x gives

C 2 =
q(1 -q)x -q q -1 -qx .

We already see that γ x (t) is a Möbius transformation in x since C 2 is. For time t = 1 we get: Proposition 4.2. Integrating to time t = 1 the operator D 0 seen as vector field in H 2 gives the Möbius transformation γ x (1) = (qe q + (q -1) 2 e -(q-1) 2 )x + (1 -q)(e q -e -(q-1) 2 ) q(1 -q)(e q -e -(q-1) 2 )x + (1 -q) 2 e q + qe -(q-1) 2 .

If we Taylor develop γ x (1) around q -1 to order 1, we get a quadratic polynomial in x. In order to keep a Möbius transformation, we Taylor develop all entries of the associated 2 × 2-matrix to order 1 in q -1. The result is:

W q :=
e(1 -2q) (e -1)(q -1) (e -1)(q -1)

-q ,

where we used q 2 = 2q -1 coming from the Taylor development. We see that q = 1 gives the transformation x → ex. A similar computation with arbitrary time t gives

W t q =
e t (t -qt -q) (e t -1)(q -1) (e t -1)(q -1) -q which for q = 1 gives the transformation x → e t x from Equation (4.1).

Remark 4.3. The first entry of W q reads e(1 -2q) which is a reduction of -eq 2 at order 1 in q -1. It might be interesting to keep higher order terms in q if they are simpler.

4.3. Speculations about a q-deformed hyperbolic plane. The above computations seem to indicate the existence of a q-deformed version of the hyperbolic plane H 2 q on which the transformations T q , S q , g q and W q act. A similar idea is developped in [START_REF] Bapat | q-deformed rational numbers and the 2-Calabi-Yau category of type A 2[END_REF] where a compactification of the space of stability conditions for type A 2 is constructed. The transformation S q (x) = -1/(qx) has only one fixed point given by iq -1/2 . This equals [i] q , the q-deformed version of i from [START_REF] Ovsienko | Towards quantized complex numbers: q-deformed Gaussian integers and the Picard group[END_REF]Formula (9)]. The translation T q (x) = qx+1 has two fixed points at the (usual) boundary at infinity, given by ∞ and 1/(1-q). However, we expect the boundary of H 2 q to be R q ∪ {∞}, where R q denotes the q-reals. On R q , the transformation T q has no fixed point since T q [x] q = [x + 1] q .

An important role should play the Ovsienko transition map g q (x) = 1+(x-1)q 1+(q-1)x . Since it deforms the identity, there are strictly more transformations in the deformed setting. For q ̸ = 1, g q is an elliptic transformation with only fixed point on H 2 given by 1+i √ 3 2 which is independent of q. In [17, Part 2.3] it is shown that this complex number stays itself under q-deformation. Note that both transformations g q and T q S q are rotations around the same center. Hence they commute. Similarly, the matrix of g -1 q anticommutes with the matrix of S q .

These links between q-deformed numbers and the q-deformed sl 2 -algebra are intriguing and might point towards a deeper relation.

  3) and using (3.4) gives the bracket [D n+r , D -n ]. Putting a = n and b = n + r gives in a similar way the last bracket [D n , D -n-r ].