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Abstract. Bipartitioning the set of variables Var(Σ) of a propositional
formula Σ w.r.t. definability consists in pointing out a bipartition 〈I,O〉
of Var(Σ) such that Σ defines the variables of O (outputs) in terms of
the variables in I (inputs), i.e., for every o ∈ O, there exists a formula
Φo over I such that o⇔ Φo is a logical consequence of Σ. The existence
of Φo given o, I, and Σ is a coNP-complete problem, and as such, it
can be addressed in practice using a SAT solver. From a computational
perspective, definability bipartitioning has been shown as a valuable pre-
processing technique for model counting, a key task for a number of AI
problems involving probabilities. To maximize the benefits offered by
such a preprocessing, one is interested in deriving subset-minimal bipar-
titions in terms of input variables, i.e., definability bipartitions 〈I,O〉
such that for every i ∈ I, 〈I \ {i}, O ∪ {i}〉 is not a definability biparti-
tion. We show how the computation of subset-minimal bipartitions can
be boosted by leveraging not only the decisions furnished by SAT solvers
(as done in previous approaches), but also the SAT witnesses (models
and cores) justifying those decisions.

Keywords: Automated reasoning including satisfiability checking and
its extensions, definability, propositional logic

1 Introduction

In this paper, we are interested in identifying definability relations between vari-
ables occurring in a given propositional formula Σ. When I is a subset of the
variables of Σ and o is a variable of Σ, Σ is said to define o in terms of I if
and only if (1) there exists a formula Φo over I such that o ⇔ Φo is a logical
consequence of Σ. o can be considered as an output variable provided that the
variables in I are viewed as input variables, since Σ defines o in terms of I if and
only if (2) under every assignment γI of variables from I that is consistent with
Σ, either o or ¬o is implied by Σ (i.e., the truth value of variable o is fixed).
The two characterizations (1) and (2), namely explicit definability and implicit
definability, are known to be equivalent in classical logic [2].

More precisely, in the following, our goal is to compute definability biparti-
tions: we want to split the set Var(Σ) of variables occurring in Σ into disjoint
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subsets I and O such that Σ defines every variable of O in terms of the variables
in I. The resulting pair 〈I,O〉 is referred to as a definability bipartition.

Deriving such bipartitions has been shown as a valuable preprocessing tech-
nique for model counting, a key task for a number of AI problems involving
probabilities (see e.g., [6,4,7,14,5]). Indeed, whenever a variable o has been iden-
tified as an output variable from O, it can be forgotten from Σ without modifying
the number of models. The forgetting of o from Σ [11,9] is the quantified formula
∃o ·Σ, i.e., Σ into which o is existentially quantified. This quantified formula is
equivalent to the standard formula given by (Σ|¬o) ∨ (Σ|o). Here, Σ|¬o (resp.
Σ|o) is the formula Σ where every occurrence of variable o has been replaced by
the Boolean constant ⊥ (falsum) (resp. the Boolean constant > (verum)). Thus,
when 〈I,O〉 is a definability bipartition of Var(Σ), the number of models of Σ
is precisely the number of models of Σ once projected onto I.

This observation led us to design and evaluate a preprocessing technique dedi-
cated to model counting, which consists in deriving first a definability bipartition
〈I,O〉 of Var(Σ) and then in eliminating in Σ the implicit existential quantifica-
tions over variables from O [6,7]. Accordingly, the corresponding preprocessing
algorithm B+ E consists of a pipeline of two algorithms B (for deriving a biparti-
tion) and E for eliminating the output variables. Many experiments with various
model counters considered upstream have shown that huge computational ben-
efits can be achieved by taking advantage of B+ E (see [7] for details). In order
to avoid trivial bipartitions (e.g., 〈Var(Σ), ∅〉) to be considered and maximize
the leverage of the approach, the focus was on deriving subset-minimal biparti-
tions in terms of input variables, i.e., definability bipartitions 〈I,O〉 such that
for every i ∈ I, 〈I \ {i}, O ∪ {i}〉 is not a definability bipartition.3

B mainly is a greedy algorithm, equipped with a definability oracle based
on a SAT solver. The definability oracle used in B relies only on the decision
returned by the SAT solver, i.e., whether the CNF formula considered as input
is consistent or not. However, modern SAT solvers furnish more information
that can be exploited for further treatments when used in an incremental way.
Especially, when the input formula is consistent, a truth assignment forming a
model of the formula is computed; when it is inconsistent, a subset of clauses
that is conjunctively inconsistent (alias a core) can be extracted as well.

In the following, we show how the computation of subset-minimal bipartitions
can be boosted by taking into account not only the decisions furnished by SAT
solvers (as done in B), but also the SAT witnesses (models and cores) justifying
those decisions. We present an improved bipartition algorithm, named B+, which
takes advantage of extra-information reported by the SAT solver. We prove the
correctness of the algorithm and present an empirical evaluation of it based on
a large number of benchmarks (CNF instances) from various families. In order
to figure out the benefits offered by the use of SAT witnesses of each type, we
measure the number of instances for which B+ (using models, cores, both of
them, or none of them) succeeds in computing a subset-minimal bipartition in

3 In practice, computing smallest bipartitions in terms of input variables, i.e., bipar-
titions 〈I,O〉 such that |I| is minimal, is in general too demanding for being useful.
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a given amount of time. The experiments made show that taking advantage of
both models and cores is useful in practice and that B+ outperforms B (which
boils down to the variant of B+ where neither models nor cores are exploited).
For space reasons, proofs are not provided in the paper, but they are available
online at http://www.cril.univ-artois.fr/~marquis/BDBCSW.pdf.

2 Preliminaries

Let L be the (classical) propositional language defined inductively from a count-
able set P of propositional variables, the usual connectives (¬, ∨, ∧, ↔, etc.)
and including the Boolean constants > (verum) and ⊥ (falsum). A literal ` is
a variable ` = x from P or a negated one ` = ¬x. When ` is a literal, var(`)
denotes the variable from P upon which ` is built. An interpretation ω is a
mapping from P to {0, 1}, represented as a set of literals. Formulae Σ are in-
terpreted in the classical way. If Σ(ω) = 1, then ω is called a model of Σ and
Σ is consistent. In the case when Σ has no model, Σ is said to be inconsistent.
|= denotes logical entailment. For any formula Σ from L, Var(Σ) is the set of
variables from P occurring in Σ. A term is a conjunction of literals or >, and
a clause is a disjunction of literals or ⊥. A CNF formula Σ is a conjunction of
clauses (also viewed as a set of clauses when convenient). Let X be any subset
of P. A canonical term γX over a subset X of P is a consistent term into which
every variable from X appears (either as a positive literal or as a negative one,
i.e., as a negated variable).

Let us now recall the concept of definability in propositional logic (the follow-
ing definition is about implicit definability, i.e., it does not refer to any definition
of y in Σ):

Definition 1 (definability). Let Σ ∈ L, X ⊆ P and y ∈ P. Σ defines
y in terms of X if and only if for every canonical term γX over X, we have
γX ∧Σ |= y or γX ∧Σ |= ¬y.

Example 1. Let Σ be the CNF formula consisting of the following clauses:

¬a ∨ b ¬a ∨ c a ∨ ¬b ∨ ¬c ¬e ∨ c ∨ d ¬c ∨ e
¬d ∨ e b ∨ ¬c ∨ d d ∨ ¬a

a and e are defined in Σ in terms of X = {b, c, d}. For instance, the canonical
term γX = b ∧ c ∧ d over {b, c, d} is such that Σ ∧ γX |= a ∧ e.

Clearly enough, Definition 1 shows that the concept of definability trivializes
when Σ is inconsistent, in the sense that Σ defines each of its variables in terms
of ∅ when Σ is inconsistent. Thus, in the rest of the paper, we suppose that Σ
is consistent.

In the following, we state that a subset Y of variables from P is defined in
terms of X in Σ (denoted by X vΣ Y ) when every variable y ∈ Y is defined in
terms of X in Σ. It is known that deciding whether Σ defines y in terms of X is
"only" coNP-complete [10]. Indeed, we can take advantage of the following result

http://www.cril.univ-artois.fr/~marquis/BDBCSW.pdf
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(Padoa’s theorem [13]), restricted to propositional logic and recalled in [10], to
decide whether Σ defines y in terms of X. This theorem gives an entailment-
based characterization of definability:

Theorem 1. For any Σ ∈ L and any X ⊆ P, let Σ′X be the formula obtained by
replacing in Σ in a uniform way every propositional symbol z from Var(Σ) \X
by a new propositional symbol z′. Let y ∈ P. If y 6∈ X, then Σ (implicitly) defines
y in terms of X if and only if Σ ∧Σ′X ∧ y ∧ ¬y′ is inconsistent.4

In [6,7], the authors took advantage of Theorem 1 in order to design a greedy
bipartition algorithm, called B. Given a CNF formula Σ, B makes intensive use
of Theorem 1 to compute a subset-minimal bipartition 〈I,O〉 of Var(Σ), where
a definability bipartition 〈I,O〉 of Var(Σ) is a subset-minimal bipartition of
Var(Σ) if @x ∈ I such that I \{x} vΣ O∪{x}. Algorithm 1 presents a version of
B where some technicalities (the ordering under which the variables are processed
and the possibility to limit the number of learned clauses) are abstracted away.
At line 1, backbone(Σ) computes the backbone of Σ (i.e., the set of all literals
implied by Σ), and initializes O with the corresponding variables (indeed, if a
literal ` belongs to the backbone of Σ, then var(`) is defined in Σ in terms of
∅). Still at line 1, I is initialized to the empty set. Then, variables that are not
yet identified as inputs or outputs are considered iteratively (lines 2 – 4). At
line 3, defined? takes advantage of Theorem 1 for determining whether x is
defined in Σ in terms of Var(Σ) \ (O ∪ {x}), i.e., all the variables but x and
those in the current set of output variables. defined? uses a SAT solver solve
based on CDCL architecture [12] for achieving the (in)consistency test required
by Padoa’s method. Note that solve allows SAT solving "under assumptions"
[3], i.e., the input CNF formula consists of two parts, F a CNF formula and A, a
conjunction of unit clauses. Thanks to the use of assumptions, clauses that are
learnt at each call to solve are kept for the subsequent calls to solve within B.

defined?(x,Σ,Var(Σ) \ (O ∪ {x})) returns true precisely when solve indi-
cates that the CNF formula F ∧ A is inconsistent, where

F = Padoa(Σ) = Σ ∧Σ′∅ ∧
∧

z∈Var(Σ)

((¬sz ∨ ¬z ∨ z′) ∧ (¬sz ∨ z ∨ ¬z′))

and A = (
∧
sz|z∈Var(Σ)\(O∪{x}) sz)∧x∧¬x′. Variables sz are fresh variables, used

as selectors: whenever sz is set to 1, z and z′ must take the same truth value
in Padoa(Σ). Depending on the result returned by defined?, x is added either
to O (line 3) or to I (line 4). Finally, the bipartition that has been computed is
returned at line 5.

Example 2 (Example 1 cont’ed). Let us consider the CNF formula given in Ex-
ample 1, we have:

4 Obviously enough, in the remaining case when y ∈ X, Σ defines y in terms of X.
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Algorithm 1: B

input : a CNF formula Σ
output : 〈I,O〉 a subset-minimal definability bipartition of Var(Σ)

1 〈Σ,O〉← backbone(Σ); I←∅;
2 foreach x ∈ Var(Σ) \ (I ∪O) do
3 if defined?(x,Σ,Var(Σ) \ (O ∪ {x})) then O←O ∪ {x};
4 else I←I ∪ {x};
5 return 〈I,O〉

Padoa(Σ) = ¬a ∨ b ¬a ∨ c a ∨ ¬b ∨ ¬c ¬e ∨ c ∨ d
¬c ∨ e ¬d ∨ e d ∨ ¬a b ∨ ¬c ∨ d
¬a′ ∨ b′ ¬a′ ∨ c′ a′ ∨ ¬b′ ∨ ¬c′ ¬e′ ∨ c′ ∨ d′
¬c′ ∨ e′ ¬d′ ∨ e′ d′ ∨ ¬a′ b′ ∨ ¬c′ ∨ d′
sa ∨ a ∨ ¬a′ sa ∨ ¬a ∨ a′ sb ∨ b ∨ ¬b′ sb ∨ ¬b ∨ b′
sc ∨ c ∨ ¬c′ sc ∨ ¬c ∨ c′ sd ∨ d ∨ ¬d′ sd ∨ ¬d ∨ d′
se ∨ e ∨ ¬e′ se ∨ ¬e ∨ e′

To check whether e is defined in Σ in terms of X = {a, b, c}, it is enough to test
the consistency of Padoa(Σ) under the assumption A = {sa, sb, sc, e,¬e′}. Since
{¬a, b,¬c, d, e,¬a′, b′,¬c′,¬d′,¬e′, sa, sb, sc,¬sd,¬se} is a model of Padoa(Σ)
under the given assumption A, we can conclude that e is not defined in Σ in
terms of X. On the other hand, e is defined in Σ in terms of X ′ = {b, c, d}, since
Padoa(Σ) under the assumption A′ = {sb, sc, sd, e,¬e′} is inconsistent.

3 Exploiting SAT Oracle Witnesses

Interestingly, modern SAT solvers "under assumptions" A may provide an out-
put that does not consist only of the decision made about the consistency of its
input, but may also contain a justification of the decision, alias a SAT witness.
Thus, a triple (s,V, C) can be reported by the SAT solver when run on F and
A. In such a triple, s (the decision) is a Boolean value set to true when F ∧A is
consistent, V is a model of F ∧ A when s is true (the SAT witness), and C ⊆ A
is an inconsistent core of F ∧ A, i.e., C is such that F ∧ C is inconsistent, when
s is false (the UNSAT witness).

In order to understand how the witnesses offered by the SAT solver can be
exploited in the context of a definability bipartition algorithm, it is necessary
to enter into the details about the way B and defined? precisely work. At each
iteration of the greedy algorithm B, the focus is on a variable x that has not
been considered so far in previous iterations. When encountered, x is undecided,
i.e., it has not been classified yet as input or as output. For every x, Var(Σ) can
be split into four pairwise-disjoint sets of variables: {x}, the set Ix of variables
already encountered when x is processed, classified as input variables, and put
in I, the set Ox of variables already encountered when x is processed, classified
as output variables, and put in O, and finally the remaining set Ux of variables
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that will be considered next and are still undecided when x is processed. Each
of the variables u ∈ Ux will be classified either as input (noted u ∈ U Ix) or as
output (noted u ∈ UOx ) in a subsequent iteration, thus when all the variables
will be processed, we will have either u ∈ I or u ∈ O. When Ix ∪ Ux vΣ {x},
since Ux = U Ix ∪ UOx , U Ix ⊆ I, UOx ⊆ O, and I vΣ O, we can conclude that
I vΣ {x}, as expected. Thus, no backtracking is necessary: the classification of
each variable x achieved by the greedy algorithm when x is processed never has
to be questioned. This ensures the correctness of B for computing a definability
bipartition of Var(Σ) (see Proposition 3 in [7]).

At each step, defined? is called to determine whether or not Σ defines x in
terms of Ix∪Ux. Finally, deciding whether or not Σ defines x in terms of Ix∪Ux
amounts to calling solve on F = Padoa(Σ) = Σ∧Σ′∅∧

∧
z∈Var(Σ)((¬sz∨¬z∨z′)

∧(¬sz ∨ z ∨ ¬z′)) and A = {x,¬x′} ∪ {sx | x ∈ Ix ∪ Ux}.

In the definability bipartition algorithm B presented in [6,7], only the decision
value s of the triple returned by solve has been considered. We now explain how
the two other components of the triple, i.e., the two types of SAT witnesses, can
be exploited to improve the performance of the algorithm. Basically, at each
iteration, when defined? is called to decide whether or not Σ defines x in terms
of Ix ∪ Ux, the goal is to take advantage of the SAT witnesses furnished by
solve when providing a decision about x to reduce the computational efforts to
be made by the definability bipartition algorithm in subsequent iterations. The
two types of witnesses will be leveraged in two different ways.

When the decision returned by solve is false, Σ defines x in terms of Ix∪Ux
and an inconsistent core C will be exhibited. This core makes precise a subset
of assumptions of XC ⊆ Ix ∪ Ux such that Σ defines x in terms of XC . The
idea is to keep track of this definability relation by forming a clause (based on
selectors) (

∨
v∈XC

¬sv) ∨ sx) that reflects that Σ defines x in terms of XC . This
clause can be freely added to Padoa(Σ) in subsequent iterations: adding it does
not change the definability relationships that may exist among variables in Σ
but enables to reducing the search space visited by solve in the next iterations.
As a matter of example, suppose that C indicates that Σ defines x in terms of
XC ⊆ Ix∪Ux. For each variable y processed after x by the definability bipartition
algorithm, if XC ⊆ Iy ∪ Uy, then the part of the search space where x and x′

do not take the same truth value does not have to be explored by solve. The
clause (

∨
v∈XC

¬sv) ∨ sx that is recorded prevents such an exploration.
When the decision returned by solve is true, Σ does not define x in terms of

Ix∪Ux. A model V of F ∧A is exhibited and by construction, the restriction of V
to Var(Σ) is a model of Σ. Let y be any variable from Ux. If the canonical term
γ

flip(V,y)
Ix∪{x}∪Ux

that coincides with V on Ix ∪{x} and on every variable from Ux but
y is consistent with Σ, then Σ does not define y in terms of Ix ∪{x}∪Ux. Since
Ix ∪ {x} ∪ Ux ⊆ Iy ∪ Uy when y is processed after x and x has been put into I,
this implies that Σ does not define y in terms of Iy∪Uy. Therefore, y can be put
in I as well (and removed from the current set of undecided variables) as soon
as x is processed. That way, there is no need to process y later on (one iteration
of the definability bipartition algorithm is saved). In order to avoid an expensive
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SAT call to determine whether γflip(V,y)
Ix∪{x}∪Ux

is consistent with Σ, an incomplete
local search approach is used instead. The neighborhood of V constrained by
γ

flip(V,y)
Ix∪{x}∪Ux

is explored in search for a partial assignment of the variables of Ox
that extends γflip(V,y)

Ix∪{x}∪Ux
into a model of Σ.

In the following, before presenting our improved definability bipartition al-
gorithm B+, we first point out a couple of formal results that will be useful to
establish the correctness of B+.

3.1 Exploiting UNSAT Witnesses

First, let us consider the case when the decision s returned by solve when x
is processed is false. In this case, x is defined in terms of X. Hence, x ↔ x′ is
a logical consequence of Σ ∧Σ′X . As a consequence, assigning in Padoa(Σ) the
corresponding selector sx to true or false does not matter when the selectors
associated to the variables v ∈ X have been set to true. Formally:

Proposition 1. If Σ defines x ∈ Var(Σ) in terms of X ⊆ Var(Σ) \ {x}, then
Padoa(Σ) ∧

∧
v∈X sv does not depend on sx, i.e., it can be rewritten into an

equivalent formula into which sx does not occur.

As a consequence, definability recording clauses that keep track of previously
identified definability relationships X vΣ {x} can be freely added to Padoa(Σ).
Formally, (

∨
v∈X ¬sv) ∨ sx is a definability recording clause of Σ if X vΣ {x}

holds. The presence of such clauses does not modify the definability relationships
between variables of Σ that can be found using Padoa(Σ). This is made precise
by the following proposition:

Proposition 2. If R is a set of definability recording clauses of Σ, then for any
set X ⊆ Var(Σ) of variables and variable x ∈ Var(Σ), we have that Padoa(Σ)∧
R∧

∧
v∈X sv∧x∧¬x′ is inconsistent if and only if Padoa(Σ)∧

∧
v∈X sv∧x∧¬x′

is inconsistent.

A last observation is that the inconsistent core C returned by solve can be
exploited to derive a definability recording clause that is, in general, logically
stronger than (

∨
v∈X ¬sv) ∨ sx:

Proposition 3. Let (s,V, C)← solve(Padoa(Σ), {x,¬x′}∪ {sv | v ∈ X}). If s
is false, then Σ defines x in terms of S = {v | sv ∈ C}.

The definability recording clause (
∨
v∈S ¬sv) ∨ sx found using the extracted

core can then be added to Padoa(Σ) for subsequent computations, as justified
by Proposition 2.

Example 3 (Example 2 cont’ed). Suppose that the variables are considered in
the following order by the definability bipartition algorithm: e, a, b, c, d. Thus,
the first definability test that occurs aims to decide whether Σ defines e in
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terms of {a, b, c, d}. In this case, the assumption under consideration is A =
{sa, sb, sc, sd, e,¬e′}. (false, ∅, {sb, sc, sd, e,¬e′}) could be an outcome returned
by the SAT solver. This reflects the fact that {b, c, d} vΣ {e} (there is no
need to consider a as an input variable for defining e in Σ when b, c, d are
already considered as input variables). Consequently, the clause added into F is
¬sb∨¬sc∨¬sd∨se. In the next iteration, when we will check whether Σ defines
a in terms of {b, c, d}, the assumption A = {sb, sc, sd, a,¬a′} will enforce se to
be assigned to true without any significant computational effort, thanks to the
added clause. Consequently, the two clauses ¬e∨e′ and e∨¬e′ will be activated,
so that solve will not explore the part of the search space where e and e′ take
distinct truth values.

3.2 Exploiting SAT Witnesses

Now let us consider the case when s is true, so that the variable x tested at the
current iteration of the definability bipartition algorithm must be added to I. As
we will see, in this case, it is possible to take advantage of the model V returned
by solve and to “dig around” it in order to classify as inputs variables y that
are still undecided.

Proposition 4. Let X ⊆ Var(Σ) and x ∈ Var(Σ). If there exists a canonical
term γX over X such that γX ∧x is consistent with Σ and γX ∧¬x is consistent
with Σ, then Σ does not define x in terms of X.

Since the restriction to Var(Σ) of the SAT witness returned by solve is a
model of Σ, Proposition 4 gives a sufficient condition based on V that ensures
that a variable y ∈ Ux can be put into I. Indeed, if the canonical term γ

flip(V,y)
Ix∪{x}∪Ux

that coincides with V on Ix∪{x} and on every variable from Ux but y is consistent
with Σ, then Σ does not define y in terms of Ix ∪ {x} ∪Ux. Hence, as explained
previously, y can be put in I and removed from the current set of undecided
variables.

Because deciding whether γflip(V,y)
Ix∪{x}∪Ux

is consistent with Σ is computationally
expensive in general (it requires to call a SAT solver if a complete algorithm is
expected), we turn to a much cheaper, though incomplete, greedy local search
to do the job. One looks for a canonical term γOx over Ox such that the inter-
pretation that satisfies γflip(V,y)

Ix∪{x}∪Ux
and γOx

satisfies Σ. Since every variable of

Var(Σ) is assigned either in γflip(V,y)
Ix∪{x}∪Ux

or in γOx
, the latter model checking test

can be achieved in linear time.
Thus, once solve has shown that x must be put in the set I of input variables

and has returned a model V justifying this decision, the variables y ∈ Ux are
considered successively. For each y, starting from V where the truth value of
y has been flipped, we iteratively flip the truth value of variables of Ox. Such
flipping operations are made while they lead to an interpretation that decreases
the number of falsified clauses in Σ. If at the end of the process, the number
of falsified clauses is zero, then the current interpretation is a model of Σ and
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Algorithm 2: greedyLS
input : a CNF formula Σ, (I, U,O) a partition of Var(Σ) s.t. Σ defines O in

terms of I ∪ U and V a model of Σ over Var(Σ).
output : IU ⊆ U such that Σ does not define any variable y ∈ IU in terms of

(I ∪ U) \ {y}.
1 IU←∅;
2 foreach y ∈ U do
3 V ′←flip(V, y);
4 while ∃o ∈ O and #false(Σ, V ′) > #false(Σ, flip(V ′, o)) do
5 V ′←flip(V ′, o);

6 if #false(Σ, V ′) = 0 then IU←IU ∪ {y};
7 return IU

since it satisfies γflip(V,y)
Ix∪{x}∪Ux

by construction, y can be definitely put in the set I
of input variables that will be returned by the definability bipartition algorithm,
so it is removed from the current set of undecided variables. In the remaining
case when the number of falsified clauses is not null, no conclusion can be drawn.
y is kept in the current set of undecided variables and it will be put in I or in
O later on (at last, during the iteration when y will be processed).

Algorithm 2 implements the greedy local search process greedyLS. It takes
as input the CNF formula Σ, a partition (I, U,O) of Var(Σ) s.t. Σ defines O in
terms of I∪U , and a model V of Σ over Var(Σ). The algorithm returns a subset
of variables IU of U such that Σ does not define any variable y of IU in terms
of (I ∪ U) \ {y}. It starts by initializing IU to the empty set (line 1). For each
variable y in U , the algorithm tests whether y can be moved into IU (lines 2 – 6).
To do so, at line 3 the interpretation V ′ obtained by flipping the truth value of y
in V is considered. Then, while it is possible to decrease the number of falsified
clauses of Σ by flipping the truth value of some output variable o ∈ O, the truth
value of o in V ′ is flipped (lines 4 – 5). If at line 6 the number of falsified clauses
is zero, then y fulfills the expected requirement (the resulting interpretation V ′
is a model of Σ) and y can be added safely to the set IU of variables (thus, its
status changes from “undecided” to ”input”). Finally, IU is returned at line 7.

A last, yet useful observation, is that the SAT witness V returned by solve
run on its input F ∧ A when variable x is processed can be exploited to derive
not only one model of Σ but in general two models of Σ that can be used
to classify as inputs variables that are still undecided when x is processed. As
explained before, the restriction of V to Var(Σ) is one of them, but there is
a second interpretation that can be exploited, namely the interpretation over
Var(Σ) obtained from the restriction of V to {v′ | v ∈ Var(Σ)} by “renaming
back” every variable v′ into v.

Example 4 (Example 3 cont’ed). Suppose now that the variables have been con-
sidered in the following order by the definability bipartition algorithm: e, b, a,
c, d. And that e has already been processed and classified as an output variable.
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Algorithm 3: B+
input : a CNF formula Σ
output : 〈I,O〉 a subset-minimal definability bipartition of Var(Σ)

1 〈Σ,O,M〉← backbone(Σ);
2 I←∅;
3 foreachM∈ M do
4 I←I ∪ greedyLS(Σ, (I,Var(Σ) \ (I ∪O), O),M);

5 Ψ←Padoa(Σ);
6 U←Var(Σ) \ (I ∪O);
7 while U 6= ∅ do
8 Pick a variable x in U and remove it from U ;
9 (s,V, C)←solve(Ψ, {sv|v ∈ I ∪ U} ∪ {x,¬x′});

10 if s is false then
11 O←O ∪ {x};
12 Ψ←Ψ ∧ (sx ∨

∨
sv∈C ¬v)

13 else
14 I←I ∪ {x};
15 I←I ∪ greedyLS(Σ, (I, U,O), {` ∈ V | var(`) ∈ Var(Σ)});
16 U←U \ I;
17 I←I ∪ greedyLS(Σ, (I, U,O), {` | `′ ∈ V and var(`′) ∈ Var(Σ′

∅)});
18 U←U \ I;

19 return 〈I,O〉

Then the next step is to determine whether Σ defines b in terms of {a, c, d}.
In this case, the assumption under consideration is A = {sa, sc, sd, b,¬b′} and
a possible outcome of solve is (true, V = {¬a, b, ¬c, d, e, ¬a′, ¬b′, ¬c′, d′,
e′, sa, ¬sb, sc, sd, se}, ∅). Hence, b can be put into the set of input variables.
Before considering the next iteration of the definability bipartition algorithm, it
is possible to take advantage of two models of Σ to determine whether some vari-
ables that are currently undecided can be classified as inputs. The two models
are {¬a, b,¬c, d, e} (obtained by restricting V to Var(Σ)) and {¬a,¬b,¬c, d, e}
(obtained from the restriction of V to {v′ | v ∈ Var(Σ)} by “renaming back”
every variable v′ into v). Digging around {¬a, b,¬c, d, e}, we can check that the
interpretation {¬a, b,¬c,¬d,¬e} is a model of Σ. As a consequence, variable d
which is still undecided can be put into the set of input variables. Digging around
{¬a,¬b,¬c, d, e}, we can check that the interpretation {¬a,¬b, c, d, e} also is a
model of Σ. Therefore, the undecided variable c can be put as well into the set
of input variables. Hence, only variable a remains undecided after two iterations
provided that the order e, b, a, c, d has been used.

3.3 Improving B by considering SAT Oracle Witnesses

Algorithm 3 gives the pseudo-code of B+, our implementation of the improved
version of B that exploits the witnesses returned by the SAT oracle solve.
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B+ starts by computing the backbone of Σ using the algorithm proposed in
[8]. Starting from a model ω of Σ and considering each literal ` satisfied by ω in
an iterative way, one tests the consistency of Σ∧¬`. If Σ∧¬` is consistent, then
a model of Σ different from ω is exhibited and we can conclude that neither ` nor
its negation belongs to the backbone of Σ. Otherwise, ` belongs to the backbone
of Σ. Contrary to what happens in B, where the models generated during the
computation of the backbone are not used, they are exploited in B+. At line 1,
Σ is simplified by its backbone, O is assigned to the set of variables belonging
to the backbone and M is a set of models of Σ found as a by-product of the
computation of the backbone. I is set to the empty set at line 2. Then, for each
modelM in M, the greedy algorithm greedyLS is called in order to spot input
variables (lines 3 – 4). More precisely, additional input variables are gathered
into I in an iterative way by calling greedyLS on Σ and the given model M.
O is not modified during those iterations over M, but as soon as input variables
are detected, they are added into I (line 4), hence I usually changes (and as a
consequence Var(Σ) \ (I ∪O) changes as well) during the iterations.

Then, Padoa’s theorem is leveraged. First, at line 5, Ψ is initialized with the
CNF formula Padoa(Σ). At line 6, the set of undecided variables U is set to the
variables that have not been classified so far as inputs or outputs. Then, while
some undecided variables remain, one variable is selected and a call to the SAT
solver solve is performed (lines 7 – 18). More precisely, at line 8, a variable
x belonging to U is selected and it is removed from U . solve is called at line
9 with the formula Ψ , and its output is stored in the triple (s,V, C). The set
of assumption variables used for this call contains x, x′ and the propositional
variables that correspond to selectors sv making equivalent the pairs of variables
v, v′ in I ∪ U .

Depending on the value of s, two cases have to be considered (lines 10 –
18). If s is false, which means Ψ is inconsistent regarding the given assumptions,
then x is added into the set of output variables (line 11) and a definability
recording clause, as presented in Section 3.1, is added to Ψ (line 12). If s is
true, which means Ψ is consistent under the considered assumptions, then the
input set of variables I is updated with x (line 14). From the model V found
by solve, two models of Σ can be extracted in general, as explained previously.
Consequently, it is possible to call greedyLS twice in order to try and collect
additional input variables (lines 15 – 18). The first call is made at line 15, where
the function greedyLS is called with the CNF formula Σ, O the set of already
identified output variables, U the set of undecided variables and the restriction
of V to the variables of Σ. Then, the set of undecided variables U is updated to
take into account the variables that have just been identified as inputs (line 16).
The second call to greedyLS differs from the first one only as to the model of
Σ used. For the second call, the restriction of V to {v′ | v ∈ Var(Σ)} obtained
by “renaming back” its literals is considered. Again, at line 18, U is updated to
take account for the update of I at line 17. Finally, the computed bipartition is
returned at line 19.
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The following proposition ensures that the bipartition computed by Algo-
rithm 3, when considering Σ as an input, is a subset-minimal definability bipar-
tition of Σ.

Proposition 5. Algorithm 3 is correct and it terminates after a number of calls
to a SAT oracle that does not exceed 2n + 1 if n is the number of variables in
Var(Σ).

4 Experimental Evaluation

Our objective was to evaluate empirically the benefits offered by the use of SAT
witnesses of each type within B+. In our experiments, we have considered 1942
CNF instances from the Compile! project.5 Those instances are gathered into 8
datasets, as follows: BN (Bayes nets) (1116), BMC (Bounded Model Checking)
(18), Circuit (41), Configuration (35), Handmade (58), Planning (557), Random
(104), Qif (7) (Quantitative Information Flow analysis - security) and Scheduling
(6). We have also considered 1200 instances from the model counting and the
projected model counting tracks of the last model counting competitions (see
https://mccompetition.org (2020-2022)). The SAT solver (solve) used was
Glucose [1]. Our experiments have been conducted on Intel Xeon E5-2643 (3.30
GHz) processors with 32 GiB RAM on Linux CentOS. A time-out of 100 seconds
and a memory-out of 7.6 GiB have been considered for each instance.

For each instance, we measured the time needed by B+ to derive a subset-
minimal definability bipartition. For each run, the opportunity of exploiting
cores (core) or models (model) has been activated or not, rendering possible
to compare four variants of B+ depending on the choices made for the two
parameters. The version where cores and models are not used is noted (init) in
the following. It merely boils down to B and is considered as a baseline approach
in the comparison.

Table 1 presents the number of instances for which B+ terminated in due
time and returned a subset-minimal definability bipartition. From this table,
it is clear that exploiting SAT witnesses really helps in practice to reduce the
time needed to compute a subset-minimal bipartition. Furthermore, whatever
the benchmark category considered, the version of B+ equipped with both SAT
and UNSAT witnesses solved systematically at least as many instances as B (init),
and for several datasets, significantly more instances. A similar conclusion can
be drawn for the versions of B+ equipped with either SAT or UNSAT witnesses.
No significant degradation of performance in terms of the number of instances
solved in due time can be observed (compared to B (init), only one instance
from the Planning dataset is lost by B+ equipped with SAT witnesses). Thus, B+
equipped with both SAT and UNSAT solved 72 more instances than the baseline
approach (2859 vs. 2787), 21 more instances than the version of B+ that only
uses SAT witnesses (2859 vs. 2838), and 51 more instances than the version of B+
that only uses UNSAT witnesses (2859 vs. 2808). From this table, we also observe
5 See http://www.cril.univ-artois.fr/kc/benchmarks.html for details.

https://mccompetition.org
http://www.cril.univ-artois.fr/kc/benchmarks.html
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Method
Category init model core core+model

Competition 930 966 937 973
BN 1078 1081 1079 1081
Handmade 38 39 42 43
Circuit 36 36 36 36
Planning 548 547 557 557
Random 95 104 95 104
BMC 18 18 18 18
Configuration 35 35 35 35
Qif 7 7 7 7
Scheduling 2 5 2 5
Total 2787 2838 2808 2859

Table 1: The table shows the number of instances solved by different versions
of B+ within a time limit of 100 seconds and a memory limit of 7680 MB.

that the best improvement is obtained when considering the two types of SAT
witnesses at the same time, which means that the benefits offered by each type
of witness are complementary.

Fig. 1: Cactus plot used to compare different versions of B+. The number of
instances solved is provided on the x-axis and the time needed to solve them on
the y-axis.

The cactus plot in Figure 1 compares the run times of the four different ver-
sions of B+. It shows that whatever the time limit between 10 and 100 seconds,
the init configuration solves systematically less instances than the other con-
figurations (this behavior still occurs when the time limit is set to a value less
than 10 seconds, we do not report this part of the cactus here because the fig-
ure becomes hard to be read). Figure 1 also shows that when instances become
harder, the performance gap between B+ and B increases with the time bound,
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(a) core+model vs. core (b) core+model vs. model

Fig. 2: Comparing the run times of different versions of B+.

which demonstrates that using SAT witnesses is all the more efficient when the
instance under consideration appears as difficult.

Figure 2 shows a comparison between between B+ equipped with core+model
and the versions of B+ where only one of core or model is used. Each dot
represents an instance. The time (in seconds) needed to solve it using the version
of B+ corresponding to the x-axis (resp. y-axis) is given by the x-coordinate
(resp. y-coordinate) of the dot. The experimental results, reported in Figures 2a
and 2b, clearly show that the version of B+ exploiting SAT and UNSAT witnesses
is generally faster than the versions of B+ where only one of the two types of
witness is leveraged.

5 Conclusion

We have shown how to boost the computation of subset-minimal definability
bipartitions through the leverage of SAT witnesses (models and cores) justify-
ing the decisions made by the SAT solver used to solve successive instances of
the definability problem. The experiments made show that taking advantage of
both models and cores is useful in practice. Our new algorithm B+ for com-
puting subset-minimal definability bipartitions clearly outperforms the previous
algorithm, B, developed so far for the same purpose.
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