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Abstract
In this paper, molecular chirality is studied for
liquid-crystal fluids represented by hard rods
with the addition of an attractive chiral dis-
persion term. Chiral forces between molecu-
lar pairs are assumed to be long-ranged and
are described in terms of the pseudotensor of
Goossens [W. J. A. Goossens, Mol. Cryst. Liq.
Cryst. 12, 237–244 (1971)]. Following Varga
and Jackson [S. Varga and G. Jackson, Chem.
Phys. Lett. 377, 6–12 (2003)], this is combined
with a hard-spherocylinder core. We investi-
gate the relationship between molecular chiral-
ity and the helical pitch of the system, which
occurs in the absence of full three-dimensional
periodic boundary conditions. The dependence
of the wavenumber of this pitch on the thermo-
dynamic variables, temperature, and density, is
measured. We also explore the use of a novel
surface boundary interaction model. As a re-
sult of this approach, we are able to lower the
temperature of the system without the occur-
rence of nematic droplets, which would inter-
fere with the formation of a uniaxial pitch. Re-
garding the theoretical predictions of Wensink
and Jackson [H. H. Wensink and G. Jackson, J.
Chem. Phys. 130, 234911 (2009)], on the one
hand, we have qualitative agreement with the

observed non-monotonic density dependence of
the wavenumber. Initially increasing with den-
sity, the wavenumber reaches a maximum, be-
fore falling as the density moves towards the
point of phase transition from cholesteric to
smectic. However, further analysis for shorter
rods, in the presence of novel boundary condi-
tions, reveals some disagreement with the the-
ory, at least in this case; the unwinding of the
cholesteric helix in the cholesteric phase occurs
simultaneously with subtle increases in smectic
ordering. These pre-smectic fluctuations have
not been accounted for so far in theories on
cholesterics but turn out to play a key role
in controlling the pitch of cholesteric phases of
rod-shaped mesogens with a small to moderate
aspect ratio.

1 Introduction
Chirality is a fascinating property of certain ob-
jects that lack mirror symmetry. It is also a
characteristic of a variety of molecule types.1
When molecules or colloids are themselves chi-
ral objects it is possible for them to form chi-
ral liquid crystal phases, under certain condi-
tions. The cholesteric phase shares many of
the properties of its achiral counterpart, with
molecules being positioned without order while
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having orientational order along the nematic
ordering director, n̂. In the cholesteric phase,
this director gradually rotates along a partic-
ular axis, usually called the helical axis. The
pitch, P , is the distance along the axis of rota-
tion required to observe a 360◦ helical rotation
of the nematic ordering director.

Molecular chirality is responsible for some of
the most beautiful colours found in the natu-
ral world. For example, the iridescent metal-
lic textures of specific types of beetle were
found to be attributable to chiral structures
covering their exoskeletons.2 Chirality is also
a vital property of life itself,3 with cholesteric
phases being formed by various types of biolog-
ical helices,4 including DNA.5,6 However, the
precise microscopic origins of chirality remain
unclear. Experimental studies on suspensions
of rod-like viruses have revealed the macro-
scopic pitch to have complicated relationships
with microscopic properties, such as handed-
ness,7 helicity8 and contour length,9,10 as well
as other factors such as the suspending fluid’s
ionic strength.11,12 Likewise, experiments with
various other cholesteric phases suggest a clear
decrease in chiral wavenumber with tempera-
ture.13 Purely steric interactions may also re-
sult in cholesteric phases, as predicted by the-
ory14–20 and confirmed by simulation.21 Inter-
estingly, for the specific case of helical rods, the
handedness of the cholesteric phase was found
to spontaneously change upon variation of the
particle concentration alone.17,22,23 It is clear
at least that there are several competing mi-
croscopic mechanisms which control the forma-
tion of cholesteric phases. As illustrated by the
latter example, simulations offer a convenient
method by which to investigate a single mech-
anism in isolation. One of the first tasks when
planning to simulate chiral liquid-crystals is se-
lecting what attributes we wish to include in
the intermolecular interactions.

Steric chirality may be studied by fusing mul-
tiple achiral centres to create new and interest-
ing chiral interactions. Due to the straightfor-
ward nature of such models, the literature con-
tains a variety of examples. Contacting pairs of
Gay-Berne,24,25 or hard Gaussian overlap parti-
cles,14 aligned at fixed angles in each case, give

rise to cholesteric phases. While the former case
does have an attractive component to the pair
potential, it is the spatial arrangement of the
Gay-Berne centers that gives rise to the chiral
interaction. Likewise, rigid assemblies of ather-
mal hard, or soft repulsive, spheres may be used
to model helices,26,27 or simple enantiomeric
mixtures,28 while twisted polyhedra were used
to generate purely entropy-driven cholesteric
phases.21 Similarly, in an effort to model the
cholesteric phase of cellulose nanocrystals, a
hard-splinter model composed of fused sphero-
cylinders was explored recently.29

Simulating electrostatic chirality may be
achieved in several ways: by creating bespoke
coarse-grained models, which are suitable for
complex molecules;6,23,27 by using computa-
tionally efficient simple lattice30–33 and off-
lattice33–35 models; by modification of exist-
ing achiral potentials, such as the chiral Gay-
Berne potential;36,37 and by all-atom models,
although the latter is by far the most computa-
tionally expensive. There are also approaches
that include the combination of a hard repul-
sive core with chiral electrostatics.38 Interac-
tion models such as these, pairing a hard body
with an attractive potential, are noteworthy
because the decoupling of attractive and re-
pulsive forces allows a detailed study of their
separate contributions to the phase behaviour.
Previous examples, such as achiral rods39–43

and disk-like particles,44 provide valuable in-
sight into the relative contributions of these
separate forces to the overall phase behaviour
of these fluids. A further advantage of decou-
pling attractive and repulsive contributions is
that the challenging task of creating theoretical
models45–48 is somewhat simplified.

In nature, the pitch distance of cholesteric
phases of liquid-crystals is typically on the or-
der of 10-100 times the particle size. Under-
standably, with even the most computationally
efficient simulations, one does not simply con-
tain the half-pitch distance of such fluids within
a single simulation box. The use, therefore,
of standard periodic boundaries poses a par-
ticular problem for the simulation of cholesteric
phases.49 There are several ways to address this
issue, the first of which is by the use of twisted
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periodic boundaries.50–52 The rotation of peri-
odic images, in one axis only, through a right
angle, forces the system to adopt twisted equi-
librium structures. This is a useful approach
for cases where the longest system length is
25% of the equilibrium pitch distance,51 which
should ideally be known a priori. However,
while this approach does alleviate the afore-
mentioned problem to a degree, it leaves the
simulation of large pitch distances out of reach.
Another approach to simulating systems with
helical rotation is that of Memmer.36 In their
simulations of chiral Gay-Berne molecules, the
utilisation of the isobaric-isothermal ensemble
allows the simulation box dimensions to fluctu-
ate such that the length of each axis changes
independently. Provided the equilibrium half-
pitch distance is within the range of possible
domain lengths, this approach allows equilib-
rium pitch distances to be measured. Unfortu-
nately, this is another method which, even when
combined with twisted periodic boundaries, is
not suitable for systems with large pitch dis-
tances, or for those where it is not known a
priori. In the first case, the required system
would be too large to simulate in a reasonable
time frame and, in the second case, the prede-
fined rotation at the twisted boundaries along
the helical axis would not give the correct equi-
librium pitch distance.

In the Monte Carlo simulation study by Varga
and Jackson,38 the difficulty of simulating large
pitch distances with periodic boundaries was
eliminated by the use of parallel hard walls,
positioned at opposite ends of the helical axis.
The introduction of such walls breaks the sys-
tem’s symmetry and introduces surface tension.
It is necessary therefore to ensure that the dis-
tance between the surfaces is far enough to al-
low for the formation of a stable bulk region
with constant local density and helical rota-
tion. Provided this criterion is met, it appears
this is the most favourable way of simulating
cholesteric phases with large pitch distances.
This approach has also seen use in the excellent
simulation studies of sterically chiral molecules
by Dussi and Dijkstra21 and Wu and Sun53 and
is the method we shall employ in the present
work on cholesteric phases of liquid crystals.

The remaining sections of this paper are pre-
sented in the following order: the molecular
model of Wensink and Jackson46 is detailed in
section 2; in section 3, we summarise the theo-
retical relations derived by Wensink and Jack-
son;46 our simulation settings and results for a
cholesteric liquid-crystal fluid confined between
planar walls are presented in section 4; a modi-
fied approach is taken in section 5 with so-called
chiral walls; and in section 6 we make conclud-
ing remarks.

2 Intermolecular pair poten-
tial

The pair potential used in this work origi-
nates from the combination of the chiral disper-
sion term of Goossens54 with a purely-repulsive
hard-spherocylinder core — a cylinder with two
hemispherical caps. This was first used in
the Monte Carlo study of Varga and Jackson38

to simulate cholesteric liquid-crystalline fluids
with large pitch distances. Here we follow the
theoretical study of Wensink and Jackson,46

where this pair potential was modified to in-
clude a temperature dependency:

Uij

kBT
=


0; if rij ≥ L+D

− 1

T ∗ (1 + ϵc ((ω̂i × ω̂j) · ω̂ij) (ω̂i · ω̂j)) ; if σ ≤ rij < L+D

∞; if rij < σ,

(1)
where kBT is the thermal energy with kB de-
noting Boltzmann’s constant and T absolute
temperature, L is the cylinder length, D is
the diameter of the cylinder and of the hemi-
spherical caps, ϵc the chiral strength parameter,
ω̂i, ω̂j and rij respectively denote the orienta-
tion unit vectors and centre-of-mass distance of
molecules i and j. The unit vector oriented
through the centre points of those molecules
is ω̂ij and σ(ω̂i, ω̂j, ω̂ij) is the distance between
the centres of molecules i and j at the point of
contact of the hard spherocylinder bodies. To
take into account the effect of achiral attrac-
tive forces, the interparticle potential features
an additional achiral square-well (SW) contri-
bution with amplitude ϵ0 that is subsumed into
an effective temperature that we define as T ∗ =
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kBT/ϵ0. The way in which the electrostatic
forces change according to molecule positions
and orientations in presented in figure 1. It is
important to note that the SW chiral potential
is long-ranged as its range scales with the total
spherocylinder length L + D. This is in con-
trast to the one originally proposed by Goossens
which decays much more rapidly with centre-
of-mass distance, namely via 1/r7ij. As such,
the original Goossens potential is well-suited
to address short-ranged chiral forces such as
those imparted by the chiral shape of the meso-
gen, whereas the current one encapsulates chiral
forces transmitted through long-ranged electro-
static forces whose range strongly exceeds the
typical rod diameter. In this particular model,
which is interesting from a theoretical perspec-
tive, it should be mentioned that these interac-
tions are most significant for rod pairs in side-
by-side configurations, with the dispersion in-
teractions being zero for end-to-end configura-
tions. As a final point of note about this poten-
tial, if ϵc becomes negative then the handedness
of the chiral spherocylinder is switched.
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Figure 1: Contour plot of the electrostatic con-
tributions from equation 1. ω̂i, ω̂j and rij re-
spectively denote the orientation unit vectors
and centre-of-mass distance of molecules i and
j. ω̂j is fixed along the x-axis and the particle i
is free to rotate and translate within the cut-off
distance of L+D. Values given correspond to a
temperature of T ∗ = 40 and the chiral strength
parameter of ϵc = 0.1.

3 Wensink and Jackson’s
theoretical model for chi-
ral spherocylinders

The theoretical model of Wensink and Jack-
son46 relates the pitch distance of a chiral sphe-
rocylinder fluid to its bulk packing fraction.
Since we use the same molecular model here,
the predicted pitch distances and wavenumbers
from that work are useful for comparison with
our numerical results. By making a Gaussian
approximation of the orientation distribution
function applied within a mean-field Onsager-
Parsons theory adapted for cholesteric fluids,
they derived an analytical expression for the
pitch distance in terms of the chiral interaction
strength ϵc, packing fraction η and spherocylin-
der length L and diameter D:

P =
L

ϵ̄

(
T ∗

η

(
7π

32
+

24κη2√
π

(
G(η) +

1

T ∗

)2

+O(D/L)

))
, (2)

where the constant κ = 0.036926,

G(η) =
1− 3

4
η

(1− η)2
, (3)

and

ϵ̄ = ϵc
L

D

(
L+D

L

)4

. (4)

We note that in the original paper of Wensink
and Jackson46 there was a small typographi-
cal mistake in equation 4 which was later cor-
rected. In the prior version, the inverse length-
to-diameter ratio was squared in error. The
equations we present here are in their correct
form. By substitution and disregarding the
higher order terms O(D/L), they arrived at:

P =
D

ϵc

(
L+D

L

)4

T ∗

η

7π

32
+

24κη2√
π

 1− 3

4
η

(1− η)2
+

1

T ∗


2
. (5)

It is worth mentioning that by neglecting
the O(D/L) contributions this mean-field the-
ory only applies to sufficiently elongated rods
with L/D ≫ 1. Further, smectic order and
pre-smectic fluctuations are not considered.
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Nonetheless, this gives a convenient expression
for the pitch distance in terms of tempera-
ture and density for chiral spherocylinders of
a given aspect ratio and chiral strength. An
attractive feature of this model is that it al-
lows representation of molecular liquid-crystals
at low temperatures. At high temperatures,
it is also a suitable model for colloidal liquid-
crystals where interparticle attractions are typ-
ically less important. As expected, the pitch
distance drops monotonically with increasing
chiral amplitude ϵc and, for the range of effec-
tive temperatures T ∗ considered in this work,
the pitch distance rises monotonically with in-
creasing temperature. Variation in the packing
fraction η leads to more complicated behaviour
as we will see later.

In this work, the rod packing fraction is de-
fined as η = Nv0/V with v0 = πLD2/4+πD3/6
the spherocylinder volume. Finally, we will ex-
press pitch distances and chiral wave numbers
in reduced units, normalised by the rod length
L: P ∗ = P/L, q∗ = 2π/P ∗. It is worth not-
ing that the chiral wave number is ill-defined
in the isotropic phase. It may however still be
calculated and serves to show any residual heli-
cal rotation that the nematic ordering director
has, on average, which is normally non-existent
in an isotropic phase of non-chiral molecules.

4 Monte Carlo simulations
of chiral spherocylinders
confined between hard
planar walls

4.1 Simulation methodology

Constant NV T simulations were performed for
two types of systems, one for short chiral sphe-
rocylinders with an aspect ratio characterised
by L/D = 5, and the other for long rods with
L/D = 10. The density of each system was
controlled by fixing the number of molecules,
N , which are initially arranged in ideal crystal-
lattice structures, with their centre-of-mass po-
sitions scaled isotropically to fill the available
volume as uniformly as possible. Following

prior works,21,38,53,55 hard planar walls were po-
sitioned at the upper and lower limits of the z-
axis, while standard periodic boundaries were
imposed in the x- and y-axes. The two hard
and featureless walls, parallel to each other and
the x-y plane, confine the fluid. The presence
of these walls at the upper and lower limits
of the domain’s z-axis breaks the symmetry of
molecule-molecule interactions in the volumes
adjacent to the walls.

From a steric perspective, a portion of the
rod-rod interactions that would have been
present in a bulk system is replaced by rod-wall
interactions. Molecules within the rod-wall in-
teraction range favour a closer alignment to the
x-y plane of the wall than those molecules in
the bulk. This is actually a helpful feature for
the study of the cholesteric phase because it al-
lows us to preselect the axis of rotation of the
equilibrium states. Knowing, in advance, that
any helical rotation will be in the z-axis means
that the calculation of the bulk wave number
and pitch distance is straightforward. Further-
more, as previously mentioned, the pitch dis-
tance itself is not predetermined. These two
features are the key advantages of simulating
chiral fluids under confinement. An example of
the cholesteric phase from our simulations can
be found in figure 2.

In the case of short rods (L/D = 5), the x and
y domain lengths were set to Lx = Ly = 30, and
the distance between the walls in the z-axis is
set to Lz = 37, with all distances given in units
of spherocylinder diameters. For the long ones
(L/D = 10), these distances were Lx = Ly = 35
and Lz = 51. To test for system size effects, and
to help with the smectic order parameter calcu-
lation for the long rods, we also performed ad-
ditional simulations with a larger system with
dimensions Lx = Ly = 70 and Lz = 51.

The parameters investigated in this section
are varied between the two types of systems.
For the short rods, the number of molecules,
N , ranged from 1600 to 4600, in increments of
∆N = 100, the chiral strength parameter, ϵc =
0.10, 0.40, 0.60, 0.80, and 1.00, while the tem-
perature was set to T ∗ = 40. This indicates that
rod-rod attractions are relatively weak, namely
more than an order of magnitude smaller than
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Figure 2: An example of a simulated system
of chiral spherocylinders, with an aspect ratio
characterised by L/D = 10, in the cholesteric
phase. Variations in colour highlight differing
molecular orientations.

the thermal energy kBT . Similarly, for the long
rods: N = 1600 to 3200; ϵc = 0.10, 0.15, 0.40,
0.60, 0.80, and 1.00; at T ∗ = 30, 40, and 60.

Equilibrium configurations were obtained by
performing 4× 106 Monte Carlo cycles. Within
each cycle, N translation and rotation moves
are attempted. Representative snapshots of se-
lected equilibrium configurations are presented
in figures 3 and 4 for short and long chiral sphe-
rocylinders, respectively. From these equilib-
rium states, a further 12 × 106 Monte Carlo
cycles were used to measure and record local
values corresponding to local density and local
orientational order.

Local density profiles, as a function of the
distance between the wall surfaces, along the
z-axis were calculated by dividing the system
into bins of equal volume, stacked adjacent to
one another and parallel to the confining walls,
and counting the average number of molecules
within each. In addition, for each of these bins,
local nematic ordering directors were calculated
and the projection of these directors onto the x-

y plane was recorded. This approach has previ-
ously been used to accurately measure the equi-
librium pitch distances of similar confined sys-
tems.21,55 By comparison of orientational dif-
ferences of the local nematic director in the x-y
plane, for adjacent slabs, one may extrapolate
this rotation to determine local pitch distances
(P ∗

b ) and chiral wavenumbers (q∗b ), in the bulk
of the system. In addition, we also calculate
the local values of the smectic order parameter
(τb) within the bulk region of the system. This
is defined as

τb = max (⟨cos 2πd/l⟩) , (6)

where d is the distance between the centres of
two particles in the axis normal to the plane of
smectic layering and l is the layer spacing that
maximises the value of τb. For the two limiting
cases, τb will be unity for perfect local smectic
order and zero when no local smectic order is
present. Since l is not known a priori it must
be found after collecting all data for d distances.
An iterative method is employed to determine
the value of l which maximises τb for each local
bin in each configuration sampled. The bulk
value is then taken as the average of those bins
in the bulk of the system.

For systems where the wall separation dis-
tance is sufficiently long, there will be regions
between the two walls where the local pitch dis-
tances, wavenumbers and smectic order param-
eter values are invariant with z. These are taken
to be the equilibrium values of the bulk phase
for each of the simulated conditions.

4.2 Results

An important consideration with all confined
systems is to establish the range of surface ef-
fects away from the surface. That is the dis-
tance beyond which the surfaces cease to in-
fluence the phase behaviour of the fluid. The
region of the system which is further away
from the surfaces than this distance is expected
to have the same properties as those of bulk
systems of the same density and temperature.
Since we are principally interested in the bulk
phase behaviour of chiral fluids it is therefore
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essential we know precisely the location of this
bulk region.

One way of establishing the location of bulk
fluid regions is to examine local density profiles.
The bulk fluid is expected to have a density
which is invariant with its distance from either
surface. For this purpose, local density profiles
for confined systems of short and long chiral
spherocylinders are presented in figures 5 and
6, respectively.

The previous plots show that the density
profiles do not change appreciably with chiral
strength for the shorter rods. In the case of the
longer rods, we see less wall structure at higher
temperatures. Importantly we also have den-
sity invariance in the bulk of the system. How-
ever, we need to ensure that the helical rotation
of the pitch distance is also constant within that
region.

To this end, we present an example plot of lo-
cal angular rotation of the nematic ordering di-
rector between neighbouring bins for the short
rods in figure 7. Each bin is 1

20
th of the to-

tal distance between the surfaces. These an-
gles of rotation are used to compute the lo-
cal wavenumbers for selected systems for the
two aforementioned aspect ratios in figures 8
and 9. Again, we may observe density in-
variance in the middle, or bulk, of each sys-
tem. As expected, we see isotropic-nematic
phase transitions at bulk packing fractions of
ηb = 0.35 ↔ 0.45 for the shorter rods and
ηb = 0.25 ↔ 0.30 for the longer rods. These
phase transition points are significantly higher
than those of their non-chiral and purely re-
pulsive hard-spherocylinder counterpart fluids.
For the long rods the isotropic-nematic phase
transition occurs at ηb = 0.25 ↔ 0.27556 while
for the short rods these have been reported to
be ηb = 0.24 ↔ 0.27.57 In the latter case, we
expect to see the smectic phase at around ηb
= 0.48.58 It is also interesting to note how the
wall-wetting properties differ between the two
rod-lengths studied in this work, particularly
at high bulk densities. It is apparent that, at
high bulk densities, the longer rods wet the
walls with a cholesteric film while the bulk of
the system has already transitioned to a smec-
tic phase, which is characterised by a near-zero

wavenumber. The shorter rods on the other
hand do not exhibit this type of behaviour and
are, by comparison, much more homogeneous
between the surfaces. Further inspection of fig-
ures 5, 6, 8 and 9 also reveals a surface drying
effect where the rods are locally less nematic
at distances less than a rod length from the
wall. This is to be expected with walls that
are purely repulsive. Finally, it is worth not-
ing that we would anticipate that the shorter
rods will develop smectic signatures in the bulk
more easily than the longer ones given that the
window of stability of the nematic bulk phase
is much narrower for shorter rods.59,60

Having established the bulk regions of density
and wavenumber invariance for each of our sim-
ulated systems we now compare the simulated
bulk phase properties with those predicted by
theoretical methods. In figures 10 and 11 we
plot bulk wave numbers versus bulk packing
fraction for our Monte Carlo simulations along-
side predictions obtained from the theory of
Wensink and Jackson.46 A clear and qualitative
agreement is found with a non-monotonic rela-
tionship between bulk density and wavenum-
ber in all cases. Regarding quantitative com-
parison, we see a reasonable agreement in both
cases for higher values of ϵc. Our simulation re-
sults are supported by prior experimental work;
suspensions of filamentous bacteriophages (fd
virus) exhibit a similar non-monotonic rela-
tionship between the wavenumber and virus
density.61 As expected, we are also able to
find agreement with the findings of Ogolla et
al.13 and see a decrease in chiral wavenumber
with temperature in figure 9 for the low-density
cholesteric phase.

In figure 12 we reproduce the simulation re-
sults for the short chiral spherocylinders, this
time including data for the smectic order pa-
rameter (τb). Here, we observe an appar-
ent increase in smectic order occurring concur-
rently with an unwinding of the cholesteric he-
lix. Prior simulation work had shown a small in-
crease in smectic ordering before the cholesteric
to smectic phase transition,37 but it was unclear
if this occurred concurrently with the unwind-
ing of the cholesteric helix. In the section that
follows we will investigate this question in more
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detail. We will note here that of the smectic
states found at the higher end of the density
range, we observed them to be in the smectic-
A phase.

It is important also to check for system size
effects. To this end we performed additional
simulations for the longer rods with larger sys-
tems as described in the previous section. The
density profiles can be found in figure 13. Again
we see density invariance in the bulk of the sys-
tem and so we may use this region to calculate
bulk properties. These larger systems also al-
low us to calculate the smectic order parame-
ter. With the previously discussed simulations
of the longer rods there were too few molecules
in each of the local bins to adequately measure
τb. In figure 14 we plot this along with the
bulk wave number. Here it is clear that the in-
crease in smectic ordering is much more subtle
and does not necessarily coincide with a fall in
wave-number. It seems at least on the basis of
these results that perhaps pre-smectic fluctua-
tions play a more significant role in the unwind-
ing helix for shorter rods.

5 Monte Carlo simulations
of chiral spherocylinders
confined between chiral
walls

5.1 Chiral walls

While the results in the previous section would
seem to suggest a simultaneous increase in
smectic ordering and cholesteric helix unwind-
ing with increasing density we feel that a more
thorough analysis is required to confirm if this
is indeed the case. Furthermore, we wish to in-
vestigate this behaviour at lower and more re-
alistic temperatures to better represent liquid-
crystal fluid phase behaviour in thermotropic,
low-molecular-weight liquid crystals. However,
this poses a problem concerning our choice of
molecule-surface interaction model. At lower
temperatures, a purely repulsive surface can-
not compete with stronger intermolecular forces
and we observed frequent droplet formation in

the centre of the system coupled with a pro-
nounced surface drying effect. This is due to
an imbalance of interactions for molecules close
to the walls due to the absence of molecules
in the volume beyond the wall surface. To ad-
dress this issue we need to correct for the break-
ing of molecule-molecule interaction symmetry
near the surfaces.

To this end, in the second part of this work
we turn our attention towards a different type
of molecule-surface interaction. While retain-
ing the molecular pair potential of Wensink and
Jackson,46 and the hard surface we used in the
previous section, we make changes to the way
the pair potentials are calculated for molecules
close to the surfaces.

This new method is computationally efficient
and works in the same way as described previ-
ously, with one alteration. When, for example,
molecule A interacts electrostatically with an-
other molecule, B, an additional check is made.
Firstly, we draw an imaginary mirror plane that
is parallel to the surface of the walls and inter-
sects the centre of molecule A. If the mirror im-
age reflection of molecule B in this mirror plane
is fully outside of the walls, we double the pair
potential between molecules A and B. A visu-
alisation of the way these interactions work is
given in figure 15.

In this manner, we are able to mimic the effect
of there being molecules beyond the wall surface
with the same electrostatic influence and pack-
ing fraction as the molecules within the system.
We also retain the advantages given by planar
walls for simulating a stable chiral twist in the
z-axis normal to the wall surface.

The effect of imposing these domain bound-
aries is that molecules near the chiral walls feel
the presence of molecules beyond the surface
and are subject to similar chiral electrostatics
as they are from molecules which are further
away from the wall. This lessens the symmetry-
breaking properties of the wall and promotes
more uniform local wavenumbers throughout
the domain. It also gives the wall a pseudo-
attractive property which has the added bene-
fit of preventing surface drying and subsequent
droplet formation in the bulk of the system.
These are desirable as we wish to ensure that
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the cholesteric helix is orientated along the z-
axis for our measurements.

As a word of caution, it should be noted
however that this surface interaction model is
only appropriate for more highly ordered liquid-
crystals phases. Isotropic phases do not play
well with this type of boundary. Fortunately,
for our purposes, this is not a problem as our
interest lies in the highly ordered cholesteric
and smectic phases and the transition between
them.

As before, constant NV T simulations were
performed for chiral spherocylinders with an
aspect ratio characterised by L/D = 5 for a
range of system densities. This time we set the
temperature to a lower value of T ∗ = 10 to rep-
resent a more realistic scenario for liquid crystal
behaviour. As described above, we implement
chiral walls at the upper and lower z domain
boundaries.

Using this setup we performed Monte Carlo
simulations of these systems for 6 × 106 cycles
to attain equilibrium states and then a further
18×106 cycles over which bulk averages of den-
sity, wavenumber and smectic order parameter
values were calculated.

The results from our simulations with chiral
walls are plotted in figures 16, 17 and 18. In
the case of the first two, we again see invariance
of the density and wave number in the bulk of
the system. While the latter figure gives us a
much clearer picture of the density dependence
of both the wavenumber and smectic order pa-
rameter in the bulk regions of the simulated sys-
tems. Following our results in the previous sec-
tion, we find a simultaneous onset of increasing
smectic ordering with decreasing wavenumber,
starting at ηb ≈ 0.455. We believe that our
results here indicate that a driving force be-
hind the unwinding of the cholesteric helix at
higher densities is enhanced pre-smectic order-
ing which occurs well before the cholesteric-to-
smectic phase transition in the bulk.

6 Conclusions
Following the simulation study of Varga and
Jackson,38 we have taken advantage of the

symmetry-breaking properties of hard walls to
simulate cholesteric liquid-crystal fluids with
large pitch distances in a computationally effi-
cient manner. Taking measurements from only
the bulk region of the system, we obtain esti-
mates of the pitch distances as a function of
chiral strength, system density, and tempera-
ture.

Results for two different spherocylinder as-
pect ratios are compared to the DFT predic-
tions of Wensink and Jackson46 and a qualita-
tive agreement is found between the wavenum-
bers and density for a range of temperatures
and chiral strength values. Although it must
to stated that this agreement is not quantita-
tive for the most part, with some improvement
being present only for higher chiral strength
values. Following the experiments of Ogolla et
al.13 and simulations of Varga and Jackson38 we
see similar decreases in wavenumber with tem-
perature for the low-density cholesteric phase.
We also find support from the experiments
of Dogic and Fraden61 in that the observed
non-monotonic trend of increasing wavenum-
bers with density corresponds to the isotropic
to cholesteric transition while, at a higher den-
sity, the decrease in wavenumbers is due to
the cholesteric to smectic phase transition. For
shorter rods, characterised by an aspect ratio of
L/D = 5, we find evidence that, at low temper-
atures, this unwinding of the cholesteric helix
is driven by pre-smectic fluctuations within the
cholesteric phase. This latter point is in contra-
diction to prior theoretical predictions,46 which
is not unexpected since it was based on the as-
sumption of a uniform nematic with the absence
of smectic ordering. We further remark that a
similar non-monotonic relationship between the
pitch and rod density has been reported from
theories for cholesteric phases of rods with a dis-
tinct helical shape, again without smectic fluc-
tuations included.17,22 A non-monotonic vari-
ation of the pitch with rod density has been
observed in simulations of helical rods but the
role of local smectic order was not considered
there.23 In all these cases, the non-monotonic
dependence of the pitch with concentration was
attributed entirely to the distinctly helical ar-
chitecture of the rods, whereas in our model
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the rods are chiral but not necessarily helical.
A further discrepancy with systems dominated
by short-ranged shape chirality relates to the
fact that the chiral intermolecular interactions
in our model are long-ranged while the typical
chiral interaction energy ϵc/T

∗ is about two or-
ders of magnitude smaller than the thermal en-
ergy, suggesting that the chiral forces underpin-
ning the non-monotonic variation of the pitch
with density we observe are very weak indeed.

Further work will be necessary to determine if
the relationship observed here holds for longer
rods at high temperatures which is relevant
for entropy-stabilized colloidal liquid crystals.
The experimental observations of Dogic and
Fraden11 demonstrated that very long (L/D ≈
130) and purely repulsive virus suspensions
have the cholesteric helix unwinding before the
onset of local smectic order at high tempera-
tures. As hinted at by our preliminary results
for the longer rods, it would be intriguing to see
if it were possible to simulate this separation of
cholesteric helix unwinding from smectic fluc-
tuations for rods experiencing long-range chiral
forces, such as those represented in our model.
This would lend further support to the theo-
retical work of Wensink and Jackson46 where
the unwinding cholesteric helix is driven by a
subtle scaling of the collective chiral strength
and the twist elastic modulus with rod concen-
tration, without the need to invoke local smec-
tic order or steric chirality imparted by some
helical rod shape. While it would also be of
interest to investigate chiral systems of poly-
disperse rod lengths and make contact with the-
oretical62 progress. Since polydispersity desta-
bilises smectic ordering this would allow us to
investigate how the pitch behaves with far less
interference from local smectic structures. As
a final point, it would be interesting to explore
the possibility of recasting the aforementioned
DFT to probe the cholesteric-to-smectic transi-
tion, as this may provide an improved predic-
tion of the higher density behaviour.
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(a) ηb = 0.431 ± 0.001,
q∗b = 0.433 ± 0.036,
P ∗
b = 14.52± 1.08.

(b) ηb = 0.484 ± 0.001,
q∗b = 0.307 ± 0.048,
P ∗
b = 20.48± 2.96.

(c) ηb = 0.510 ± 0.001,
q∗b = 0.277 ± 0.065,
P ∗
b = 22.67± 4.81.

Figure 3: Snapshots of simulated systems of
chiral spherocylinders, with an aspect ratio
characterised by L/D = 5. Variations in colour
highlight differing molecular orientations. For
all systems ϵc = 0.60 and T ∗ = 40. Bulk
density (ηb), bulk pitch distance (P ∗

b ), and
bulk wavenumber (q∗b ) are as labelled. The di-
mensions of the system axes are Lx/D = 30,
Ly/D = 30 and Lz/D = 37, where Lz is the
separation distance between the hard parallel
walls.

(a) ηb = 0.340 ± 0.001,
q∗b = 0.612 ± 0.031,
P ∗
b = 10.27± 0.52.

(b) ηb = 0.427 ± 0.002,
q∗b = 0.367 ± 0.023,
P ∗
b = 17.15± 1.14.

(c) ηb = 0.450 ± 0.002,
q∗b = 0.036 ± 0.017,
P ∗
b = 174.14± 65.35.

Figure 4: Snapshots of simulated systems of
chiral spherocylinders, with an aspect ratio
characterised by L/D = 10. Variations in
colour highlight differing molecular orienta-
tions. For all systems ϵc = 0.15 and T ∗ = 30.
Bulk density (ηb), bulk pitch distance (P ∗

b ), and
bulk wavenumber (q∗b ) are as labelled. The di-
mensions of the system axes are Lx/D = 35,
Ly/D = 35 and Lz/D = 51, where Lz is the
separation distance between the hard parallel
walls.
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Figure 5: Plots of local packing fraction (η(z))
vs. distance from the lower wall (z, with dis-
tances in units of spherocylinder length), for
systems of chiral spherocylinders, with an as-
pect ratio characterised by L/D = 5, and the
addition of a chiral dispersion term, at a tem-
perature of T ∗ = 40. Lines correspond to the lo-
cal packing fractions for systems with differing
system densities, with the number of molecules
ranging from N = 2000 to N = 4600. The chi-
ral strength parameter (ϵc) is labelled on each
plot.
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Figure 6: Same as figure 5 but for systems
of chiral spherocylinders, with an aspect ratio
characterised by L/D = 10 and the number of
molecules ranging from N = 1600 to N = 3200.
The temperature (T ∗) and chiral strength pa-
rameter (ϵc) are labelled on each plot.
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Figure 7: Plots of the local angular rotation of
the nematic ordering director between neigh-
bouring bins vs. distance from the lower wall
(z, with distances in units of spherocylinder
length), for systems of chiral spherocylinders,
with an aspect ratio characterised by L/D =
5, and the addition of a chiral dispersion term,
at a temperature of T ∗ = 40. Lines correspond
to the local packing fractions for systems with
differing system densities, with the number of
molecules ranging from N = 2000 to N = 4600.
The chiral strength parameter (ϵc) is labelled on
each plot.
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Figure 8: Contour plots of the local chiral
wavenumber (q∗(z)), as a function of the bulk
packing fraction (ηb), and distance from the
lower wall (z, in units of spherocylinder length),
for systems of chiral spherocylinders with an as-
pect ratio characterised by L/D = 5, and the
addition of a chiral dispersion term, at a tem-
perature of T ∗ = 40. The chiral strength pa-
rameter (ϵc) is labelled on each plot.
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Figure 9: Same as figure 8 but for systems of
chiral spherocylinders with an aspect ratio char-
acterised by L/D = 10. The temperature (T ∗)
and chiral strength parameter (ϵc) are labelled
on each plot.
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Figure 10: A plot of bulk wavenumber (q∗b ) ver-
sus bulk packing fraction (ηb), for systems of
chiral spherocylinders with an aspect ratio char-
acterised by L/D = 5 and the addition of a chi-
ral dispersion term. The temperature T ∗ = 40.
The chiral strength parameter, (ϵc) is labelled in
the legend. Solid lines represent theoretical pre-
dictions using the analytical model of Wensink
and Jackson46 with these lines corresponding
to points of the same colour from Monte Carlo
simulations. The vertical green dashed lines
and text indicate the approximate locations of
the isotropic-to-cholesteric and cholesteric-to-
smectic phase transition points.
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Figure 11: A plot of bulk wavenumber (q∗b )
versus bulk packing fraction (ηb), for systems
of chiral spherocylinders with an aspect ratio
characterised by L/D = 10 and the addition of
a chiral dispersion term. The temperature T ∗

= 40 and the chiral strength parameters (ϵc)
are as labelled in the legends. Solid lines rep-
resent theoretical predictions using the model
of Wensink and Jackson46 with these lines cor-
responding to points of the same colour from
Monte Carlo simulations. The vertical dashed
lines and text indicate the approximate loca-
tions of the isotropic-to-cholesteric phase tran-
sition point.
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Figure 12: A plot of bulk wavenumber (q∗b ,
black symbols) and smectic order parameter
(τb, red symbols) versus bulk packing frac-
tion (ηb), for systems of chiral spherocylin-
ders with an aspect ratio characterised by
L/D = 5 and the addition of a chiral dis-
persion term. The temperature T ∗ = 40.
The chiral strength parameters (ϵc) are labelled
in the legend. The vertical blue line indi-
cates the bulk packing fraction above which
we see a simultaneous increase in smectic or-
dering and unwinding of the cholesteric helix.
The vertical green dashed lines and text indi-
cate the approximate locations of the isotropic-
to-cholesteric and cholesteric-to-smectic phase
transition points.
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Figure 13: Same as figure 5 but for systems
of chiral spherocylinders, with an aspect ratio
characterised by L/D = 10 and the number
of molecules ranging from N = 6400 to N =
12800. The temperature T ∗ = 30 and the chi-
ral strength parameter ϵc = 0.1.
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Figure 14: A plot of bulk wavenumber (q∗b ,
black symbols) and smectic order parameter
(τb, red symbols) versus bulk packing fraction
(ηb), for systems of chiral spherocylinders with
an aspect ratio characterised by L/D = 10 and
the addition of a chiral dispersion term. The
temperature T ∗ = 30 and the chiral strength
parameter ϵc = 0.1. The vertical green dashed
line and text indicate the approximate location
of the isotropic-to-cholesteric phase transition
point.
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Figure 15: Diagram of three chiral spherocylin-
ders (labelled A, B and C) in the vicinity of a
chiral wall. Dashed red outlines show the mir-
ror image reflections of molecules B and C in
the mirror plane (the blue dashed line) parallel
to the wall and through the centre of molecule
A. When computing the interactions between
molecule A and its neighbours we double the
pair potential between molecules A and B but
not between A and C. This is because the re-
flection of molecule B in the mirror plane which
goes through the centre of molecule A lies en-
tirely outside of the system beyond the lower
surface. The mirror reflection of molecule C in
the same mirror plane is however not entirely
outside of the system and so the pair potential
between A and C is not doubled.
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Figure 16: Same as figure 5 but for systems
confined between chiral walls with the number
of molecules ranging from N = 3200 to N =
3600. The temperature T ∗ = 10 and the chiral
strength parameter ϵc = 0.1.
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Figure 17: A contour plot of the local chiral
wavenumber (q∗(z)), as a function of the bulk
packing fraction (ηb), and distance from the
lower wall (z, in units of spherocylinder length),
for systems of chiral spherocylinders with an as-
pect ratio characterised by L/D = 5, and the
addition of a chiral dispersion term, at a tem-
perature of T ∗ = 10 and a chiral strength pa-
rameter ϵc = 0.1.
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Figure 18: A plot of bulk wavenumber (q∗b ,
black circles) and smectic order parameter (τb,
red circles) versus bulk packing fraction (ηb),
for systems of chiral spherocylinders with an
aspect ratio characterised by L/D = 5 and the
addition of a chiral dispersion term. The tem-
perature T ∗ = 10 and the chiral strength pa-
rameter ϵc = 0.1. The vertical blue line in-
dicates the bulk packing fraction above which
we see a simultaneous increase in smectic or-
dering and unwinding of the cholesteric he-
lix. The green dashed lines and text indi-
cate the approximate locations of the isotropic-
to-cholesteric and cholesteric-to-smectic phase
transition points.
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