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ABSTRACT
Automatic crash bucketing is a crucial phase in the software de-
velopment process for efficiently triaging bug reports. It generally
consists in grouping similar reports through clustering techniques.
However, with real-time streaming bug collection, systems are
needed to quickly answer the question:What are the most similar
bugs to a new one?, that is, efficiently find near-duplicates. It is thus
natural to consider nearest neighbors search to tackle this problem
and especially the well-known locality-sensitive hashing (LSH) to
deal with large datasets due to its sublinear performance and theo-
retical guarantees on the similarity search accuracy. Surprisingly,
LSH has not been considered in the crash bucketing literature. It is
indeed not trivial to derive hash functions that satisfy the so-called
locality-sensitive property for the most advanced crash bucketing
metrics. Consequently, we study in this paper how to leverage LSH
for this task. To be able to consider the most relevant metrics used
in the literature, we introduce DeepLSH, a Siamese DNN architec-
ture with an original loss function, that perfectly approximates the
locality-sensitivity property even for Jaccard and Cosine metrics for
which exact LSH solutions exist. We support this claim with a series
of experiments on an original dataset, which we make available.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;
• Computing methodologies→ Randomized search; • Theory
of computation → Theory of randomized search heuristics.

KEYWORDS
Crash deduplication, Stack trace similarity, Approximate nearest
neighbors, Locality-sensitive hashing, Siamese neural networks

1 INTRODUCTION
Collection and triage of runtime errors following a software re-
lease are integral parts of a standard quality process (e.g., Windows
Error Reporting [12], Mozilla Crash Reporter [31]). At our com-
pany, which specializes in editing and installing b2b Enterprise
Resource Planning (ERP) systems, we receive a daily influx of over
ten thousand of automatic and user-generated reports. Each report
comprises a Java stack trace and relevant contextual information.

It is important to note that not all crash reports hold the same level
of priority: Rare occurrences indicate unexpected shutdowns, more
frequent ones involve GUI issues that obstruct end-users from com-
pleting their tasks, while the majority fall into the "silent" category.
The latter typically represents bugs that either have workarounds
found by users (thus limiting their impact) or background process
failures that may take days to notice but have significant conse-
quences. Hence, it is imperative to promptly address such bugs.

While extreme problems are rare and easy to identify and priori-
tize, it remains challenging to sort, rank and assign other reports
to developers (or simply ignore them). Indeed, many different re-
ports may actually imply a single root cause and a bug can produce
slightly different stack traces known as near-duplicates [8]. There-
fore, it is highly valuable to group similar crashes into buckets
to accelerate the crash investigation process [10]. Reporting sys-
tems use a range of heuristics and manually developed rules to
organize crash reports into categories, ideally each referring to the
same bug [12]. However, in many cases, it may assign crash reports
caused by the same bug to multiple buckets [12]. Thus, various
alternatives address the stack trace-based report deduplication prob-
lem by designing custom and accurate similarity measures between
stack traces, relying mostly on string and graph matching (e.g.,
edit distance, prefix match and LCSS) [5, 10, 20] and information
retrieval (e.g., TF-IDF and N-grams) [22, 33]. Other metrics take into
account specific characteristics of stack traces, such as the distance
to the top frame or alignment between matched frames) [8, 30, 38].
In the aforementioned studies, similarity measures are generally
embedded in clustering algorithms, but this comes with several
drawbacks: First, it needs numerous similarity calculations when
assigning a new stack trace to a cluster. Second, clusters are not sta-
ble over time and should be recalculated frequently without losing
links to actual bug tickets that have been previously created. It can
also be difficult to set the various parameters that need to be tuned.

In our company, we aim to process reports in quasi-real time
and enhance our maintenance processes. An essential aspect of this
objective is efficiently identifying the nearest neighbors for each
crash report. We need to quickly determine if a corresponding ticket
has already been created, allowing us to update its statistics, or if a
new ticket needs to be generated. This becomes even more crucial
when end-users directly contact us via email, phone, or assistance
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tickets. We must perform the same checks to ascertain whether
similar issues have been encountered before and if any temporary
or permanent solutions have been provided. However, the compu-
tational demands of searching for nearest neighbors are generally
prohibitive. For instance, we faced a significant challenge when
conducting linear scans, which took approximately 10 hours to com-
pare 1,000 stack traces against a pool of 100,000 stack traces using
the similarity metric proposed by Brodie et al.[5]. This well-known
observation within the field of data mining has led us to explore
the concept of approximate nearest neighbors search (ANN)[28].

Hashing is a popular technique for ANN [28], and particularly
LSH, allowing to search for approximate nearest neighbors in con-
stant time. LSH satisfies the locality-sensitive property, that is, simi-
lar items are expected to have a higher probability to be mapped
into the same hash code (or hash bucket) than dissimilar items [39].
Most importantly, LSH provides guarantees on the search accuracy
that is, the probability for two stack traces having randomly the same
hash function is equal to their similarity and the collision probability
of being hashed into at least one bucket can be simply and fully
controlled with two key parameters representing the user’s desired
search precision and recall. The more accurate LSH is, the larger its
hash tables are. Fortunately, LSH is known for its computational and
storage efficiency, as well as its sublinear search performance [16].

LSH remains surprisingly unexplored in the crash bucketing
literature, despite its potential benefits. It is indeed not trivial to
derive hash functions that guarantee the locality-sensitive property
for the most advanced metrics of crash bucketing. Generating hash
functions that meet this property is a non-trivial task. Although
several LSH function families have been proposed, each for estimat-
ing one and only one conventional similarity/distance measure, e.g.,
Min-Hash function for Jaccard coefficient [4] and Sign-Random-
Projection (Sim-Hash) function for angular distance [6], etc., a gen-
eralized procedure for applying LSH to various similarity measures
remains ambiguous and theoretically complex. More specifically,
there is currently no systematic procedure for deriving a family of
LSH functions for any given similarity measure.

Exploring the application of LSH to custom similarities for crash
deduplication is a novel area that we delve into. We propose to learn
these hash functions in a supervisedmanner tomimic any given sim-
ilarity measure while incorporating the locality-sensitive hashing
component into the model learning process. We draw inspiration
from the field of learn to hash techniques [11, 21, 23, 25, 26, 40],
which effectively reduce the dimensionality of input data represen-
tations while preserving similarity. In fact, we aim to leverage the
strengths of both LSH and Learn to Hash approaches. Our proposed
model generates a hash code, with LSH guarantees, that is shared
by the nearest neighbors of the input stack trace. To the best of our
knowledge, this is the first similarity-agnostic method that utilizes
hashing for the crash deduplication problem. It is important to note
that our objective is not to introduce a new similarity measure, but
rather to enable existing measures to scale effectively.
Contribution. Our contribution is three-fold. (i) Aiming to over-
come the problem of deriving LSH functions for stack-trace simi-
larity measures, we propose a generic approach dubbed DeepLSH
that learns and provides a family of binary hash functions that
perfectly approximate the locality-sensitive property to retrieve ef-
ficiently and rapidly near-duplicate stack traces. (ii) Technically,

we design a deep Siamese neural network architecture to perform
end-to-end hashing with an original objective loss function based
on the locality-sensitive property preserving with appropriate reg-
ularizations to cope with the binarization problem of optimizing
non-smooth loss functions. (iii) We demonstrate through our exper-
imental study the effectiveness and scalability of DeepLSH to yield
near-duplicate crash reports under a dozen of similarity metrics.
We successfully compare to standard LSH techniques (MinHash
and SimHash), and the most relevant deep hashing baseline [14]
on a large real-world dataset that we make available.
Main findings. (i) DeepLSH demonstrates exceptional conver-
gence to the locality sensitive property for all studied stack-trace
similarity measures: it effectively maintains the LSH guarantees,
exhibiting high precision/recall. (ii) DeepLSH consistently achieves
satisfactory search accuracy, with a recall rate and a ranking qual-
ity up to 0.9 for unseen stack traces. (iii) DeepLSH almost matches
MinHash (for Jaccard) and outperforms SimHash (for Cosine) in
search performance while still generalizing to other complex sim-
ilarity metrics. (iv) DeepLSH is highly scalable and can retrieve
near-duplicate crash reports in a constant time (an average of 24
seconds on 100 millions queries) compared to an exact K-NN ap-
proach which takes hours to perform a linear scan. (v) Our end-to-
end hashing approach combining LSH and learn-to-hash has shown
to be significantly more accurate than using only learn-to-hash or
LSH performed separately on learn to hash results, as demonstrated
by comparison to the most identified relevant baseline [14].

2 RELATEDWORK
Our work encompasses two research areas which will be discussed
in this section: (1) the approximate nearest neighbor search through
hashing techniques, and (2) custom similarity measures for the stack
trace deduplication problem.
Hashing for ANN search. Locality-sensitive hashing has been
widely studied by the theoretical computer science community. Its
main aspect focuses on the generation of a family of random hash
functions that meet the locality-sensitive property for conventional
similarity measures [4, 6, 9, 16, 34]. Particularly, Min-Hash (or min-
wise independent permutations) [4] is an LSH function designed
specifically for Jaccard similarity. Sim-Hash [6, 34] is another popu-
lar technique whose aim is to estimate angular similarities such as
Cosine. Sim-Hash has been adopted by Google [34] and it is often
used in text processing applications to compare between documents.
Both techniques cannot, however, be applied to estimate other sim-
ilarity metrics besides Jaccard or Cosine. LSH has garnered limited
interest within the software engineering community, mainly being
solicited for tasks like code search [37] and clone detection [17]
through the utilization of well-known LSH functions such as Min-
Hash and Hamming LSH. However, it remains an unexplored area
in the domain of crash-deduplication, primarily due to the fact
that the currently used metrics do not facilitate the application of
conventional and well-established LSH functions.

Designing LSH functions for any given similarity metric remains
ambiguous and theoretically challenging, as there is no established
method for deriving a set of LSH hash functions for a specific
similarity measure. On the other hand, the concept of learn to hash
has become the focus of many learning-based hashing methods
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especially for the computer vision community [13, 14, 21, 24–26,
40, 41]. These methods are primarily designed for searching image
similarity and have proven to be highly effective in reducing the
dimensionality of input data representations while preserving their
similarities. However, they do not meet our main objective, which
consists in an end-to-end procedure to retrieve near-duplicate data
objects with guarantees. They do not reveal a systematic way to
construct hash tables from the resulting hash codes, and neither do
they control the trade-off between recall and precision using key
parameters as does LSH. Alternatively, we take benefit from both
worlds, i.e., LSH and Learn to Hash, by proposing an end-to-end
procedure that incorporates the LSH component in the learning
process. We have identified a similar baseline approach in [14] that
proposes a different methodology compared to ours, consisting of
a deep hash coding neural network combined with Hamming LSH
fitted on the resulting hash vectors to retrieve near-duplicate images
in a large database. The authors first proposed a constrained loss
function without incorporating the locality-sensitive property, and
then performs discretization on continuous hash vectors to carry
out the Hamming LSH separately from the model. We show through
our experiments in Sec. 5 by adapting this two-step approach on
stack traces, that it leads to a considerable search performance
degradation compared to our approach DeepLSH.
Stack trace similarities. We report research studies that tackle
the crash report deduplication problem using stack trace similar-
ity functions. Lerch and Mezini [22] employed the TF-IDF-based
scoring function from Lucene library [27]. Sabor et al. [33] pro-
posed DURFEX system which uses the package name of the subrou-
tines and then segment the resulting stack traces into N-grams to
compare them using the Cosine similarity. Some alternative tech-
niques propose to compute the similarity using derivatives of the
Needleman-Wunsch algorithm [32]. In [5], Brodie et al. suggested
to adjust the similarity based on the frequency and the position of
the matched subroutines. Dang et al. [8] proposed a new similarity
measure called PDM in their framework Rebucket to compute the
similarity based on the offset distance between the matched frames
and the distance to the top frame. More recently, TraceSim [38]
has been proposed to take into consideration both the frame po-
sition and its global inverse frequency. Moroo et al [30] present
an approach that combines TF-IDF coefficient with PDM. Finally
we outline some earlier approaches that used edit distance as it
is equivalent to optimal global alignment [1, 29]. Note that our
approach DeepLSH does not propose a new similarity measure
and does not question the effectiveness or compete against these
existing measures, but it is complementary to them. We demon-
strate that DeepLSH model is able to estimate all these measures
with the purpose of providing a scalable way to yield approximate
near-duplicate stack traces w.r.t these custom similarity functions.

3 BACKGROUND AND PROBLEM DEFINITION
3.1 Crash reports and stack-trace dataset
Software often contains bugs that can lead to crashes and errors.
In the following, we use both terms interchangeably to refer to
instances of application crashes, where the system becomes unre-
sponsive, as well as errors arising from background tasks or error
pop-ups presented to end-users. Each of these issues is accompanied

by a Java stack trace and a run-time context (software/OS/database
version, timestamp, etc.) [36]. A stack trace is a detailed report of
the executed methods and their associated packages during a crash.
Stack traces can be retrieved through system calls in many program-
ming languages. In Java, the stack trace lists methods in descending
order, with the top of the stack trace representing the most inner
call. This is illustrated with a crash report from a software product
in Fig. 1. We define the stack-trace dataset as set of 𝑁 stack traces
D = {𝑠1, 𝑠2, ..., 𝑠𝑁 }.

1 id: 16377610978254995717215-XXXXXXX-XX
2 sessionId: 2D7E2416131887D473F6CFD7B35769C
3 version: 13.7
4 @timestamp: 2022-12-26 11:13:40.657
5 typeError: ERROR
6 functionality: com.company.modules.factory.Factory
7 message: No CAB matches reading 'Invalid'
8 detail: class com.company.exceptions.MyException:
9 at com.company.LancAdapter.do(LancAdapter.java:449)
10 at com.company.CABWrapper.read(CABWrapper.java:191)
11 ...
12 at com.company.Main(Main.java:94)
13 user message : I got this error while I was trying to ...

Figure 1: A crash report with a stack trace and its context.

3.2 Approximate Nearest Neighbors Search
A similarity measure between two stack traces is a function denoted
as 𝑠𝑖𝑚 : D × D −→ [0, 1]. It can be any conventional similarity
metric (Jaccard coefficient) or a specialized stack-trace similarity
measure (e.g., PDM [8] and TraceSim [38]). The distance function
is naturally given by 𝑑𝑖𝑠𝑡 : D × D −→ [0, 1] where 𝑑𝑖𝑠𝑡 = 1 − 𝑠𝑖𝑚.
Given a datasetD of𝑁 stack traces, the problem of nearest neighbor
search under a user-defined similarity measure 𝑠𝑖𝑚 consists in
finding, for a specific stack trace 𝑠 ∈ D, another stack trace denoted
as 𝑛𝑛(𝑠) ∈ D \ {𝑠} such that: 𝑛𝑛(𝑠) = argmax𝑠′∈D\{𝑠 } 𝑠𝑖𝑚(𝑠, 𝑠′).

An alternative of nearest neighbor search is the fixed-radius
nearest neighbor (𝑅−near neighbor) problem which seeks to find a
set of stack tracesS𝑅 that are within the distance 𝑅 of 𝑠 (0 < 𝑅 < 1),
such that: S𝑅 = {𝑠′ ∈ D \ {𝑠} | 𝑑𝑖𝑠𝑡 (𝑠, 𝑠′) ≤ 𝑅}.

There exists simple tree-based algorithms for approximate near-
est neighbor search problems, notably KD trees [2] and SR-tree [18].
However, for large scale high-dimensional cases, these techniques
suffer from the well-known curse of dimensionality [3] where the
performance is often surpassed by a linear scan. Consequently, sig-
nificant research efforts have been dedicated to exploring highly
efficient and scalable methods for approximating nearest neighbor
search problems in large-scale datasets, including hashing and LSH.

Locality-Sensitive Hashing (LSH) has been particularly proposed
to tackle the problem of randomized or probabilistic approximate
nearest neighbors search [39], that is, targeting the ANN problem
with guarantees aiming to find approximate nearest neighbors with
probability rather than a deterministic way (which is not tractable).
This choice is driven by the purpose of ensuring guarantees on the
search accuracy with respect to the exact nearest neighbors search,
while giving the user the ability to balance between precision and
recall to a desired level. Formally, we define our problem as follows:
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Problem 1 (Randomized approximate nearest neighbors search
(RANN)). Given a new reported stack trace 𝑠 , a datasetD of histor-
ical stack traces, the goal is to report some of the 𝑅−nearest neigh-
bors R of 𝑠 such that: R = {𝑠′ ∈ D \ {𝑠} | 𝑃𝑟 [𝑠′ ∈ S𝑅] ≥ 1 − 𝛿}
with (0 < 𝛿 < 1). The lower the parameter 𝛿 , the lower the chance
of finding elements in the radius (i.e., more restrictive).

3.3 Hashing approach for the RANN problem
Hashing-based approaches attempt to map data features from the
input space into a lower-dimensional space using hash functions
so that the approximate nearest neighbors search on the resulting
hash vectors can be performed efficiently. The compact hash codes
generally belong to the Hamming space i.e., binary codes. We define
the hash function for a stack trace 𝑠 as 𝑦 = ℎ(𝑠) where 𝑦 is the hash
code and ℎ : D −→ {0, 1}𝑏 where 𝑏 ≥ 1 is the number of bits in
the hash code. In approximate nearest neighbors search settings,
we usually opt for multiple hash functions to compute the final
meta-hash code: 𝑌 = 𝐻 (𝑠), where 𝐻 (𝑠) = [ℎ1 (𝑠), ℎ2 (𝑠), ..., ℎ𝐾 (𝑠)]𝑇
and 𝐾 is the number of hash functions. Hashing-based nearest
neighbors search includes hash table lookup strategy [39] which
seeks to design an efficient search scheme rooted in hash tables.
The hash table is a data structure made of buckets, each of which is
indexed by a meta-hash code such that the probability of collision
of near-duplicate stack traces under a given similarity measure is
maximized. Given a stack trace 𝑠 , the stack traces {𝑠′ ∈ D \ {𝑠} |
𝐻 (𝑠) = 𝐻 (𝑠′)} are retrieved as near-duplicates of 𝑠 . In order to
improve the recall, we generally construct 𝐿 hash tables containing
hash buckets, each corresponding to a hash code {𝐻1, 𝐻2, ..., 𝐻𝐿}.
The near-duplicate stack traces are then defined as {𝑠′ ∈ D \ {𝑠} |
∃ 𝑗 ∈ [[1, 𝐿]], 𝐻 𝑗 (𝑠) = 𝐻 𝑗 (𝑠′)}.

3.4 LSH for RANN problem
To address the problem 1 of randomized nearest neighbors search,
Locality-Sensitive Hashing (LSH) [16] maps high dimensional data
to lower dimensional representations by using a familyH of ran-
domhash functions that satisfy the locality-sensitive property. Thus,
similar data items in the high-dimensional input space are expected
to have more chance to be mapped to the same hash buckets than
dissimilar items. These similar data items are said to collide. Start-
ing with a formal definition of an LSH family H to address our
problem, we consider a metric space such that, M = (D, 𝑑𝑖𝑠𝑡), a
threshold 0 < 𝑅 < 1, an approximation factor 𝑐 > 1, and two prob-
abilities 𝑝1 and 𝑝2. The hash family H is a set of𝑀 hash functions
{ℎ1, ℎ2, ..., ℎ𝑀 } where each ℎ ∈ H is defined as ℎ : D −→ {0, 1}𝑏 .
An LSH family must satisfy the following conditions for any two
stack traces 𝑠, 𝑠′ ∈ D and any random hash function ℎ ∈ H :

• if 𝑑𝑖𝑠𝑡 (𝑠, 𝑠′) ≤ 𝑅, then 𝑃𝑟 [ℎ(𝑠) = ℎ(𝑠′)] ≥ 𝑝1,
• if 𝑑𝑖𝑠𝑡 (𝑠, 𝑠′) ≥ 𝑐𝑅, then 𝑃𝑟 [ℎ(𝑠) = ℎ(𝑠′)] ≤ 𝑝2.

A family H is said to be (𝑅, 𝑐𝑅, 𝑝1, 𝑝2)−sensitive if 𝑝1 > 𝑝2.
Alternatively [6], a sufficient condition forH to be an LSH family
is that the collision probability should be monotonically increasing
with the similarity i.e.,

𝑃𝑟 [ℎ(𝑠) = ℎ(𝑠′)] = 𝑔(𝑠𝑖𝑚(𝑠, 𝑠′)), (1)

Figure 2: (𝐿, 𝐾)− parameterized LSH algorithm for retrieving
near-duplicate stack traces with guarantees.

where 𝑔 is a monotonically increasing function. Indeed, most of
popular known LSH families such as Minhash [4] for Jaccard simi-
larity, satisfy this strong property.

The LSH scheme indexes all stack traces in hash tables and
searches for near-duplicates via a hash table lookup strategy. The
LSH algorithm uses two key hyperparameters 𝐿 and 𝐾 to be tuned.
Given the LSH family H , the LSH algorithm amplifies the gap
between the high probability 𝑝1 and the low probability 𝑝2 by
concatenating 𝐾 hash functions chosen independently and uni-
formly at random from H , to form a meta-hash function 𝐻 (𝑠) =
[ℎ1 (𝑠), ℎ2 (𝑠), ..., ℎ𝐾 (𝑠)]𝑇 . Themeta-hash function is associatedwith
a bucket ID in a hash table. Intuitively, it reduces the chances of
collision between similar stack traces, since this requires them to
have the same value for each of the 𝐾 hash functions (i.e., high
precision over the recall). To improve the recall, 𝐿 meta-hash func-
tions 𝐻1, 𝐻2, ..., 𝐻𝐿 are sampled independently, each of which cor-
responds to a hash table. These meta-hash functions are used to
map each stack trace into 𝐿 hash codes, and 𝐿 hash tables are con-
structed to index the corresponding buckets, each using 𝐾 random
hash functions. The LSH algorithm is conducted in two phases as
illustrated in Fig. 2 (considering, 𝐿 = 4 hash tables, for each we
have 𝐾 = 3 hash functions of 𝑏 = 4 bits.)
Pre-processing phase: The 𝐿 hash tables are built from 𝑁 stack
traces. A hash table is indexed by 𝐾 hash functions constituting its
meta-hash function. We store pointers to stack traces in hash tables,
since storing them in the original format is memory intensive.
Querying phase: Given a stack trace 𝑠 , the algorithm iterates over
the 𝐿 meta-hash functions in order to retrieve all stack traces that
are hashed into the same bucket as 𝑠 , then reports the union from all
these buckets

⋃𝐿
𝑗=1{𝑠′ ∈ D | 𝐻 𝑗 (𝑠) = 𝐻 𝑗 (𝑠′)}. A (𝐿, 𝐾)−parameterized

LSH algorithm succeeds in finding candidate near-duplicates for
a stack trace 𝑠 with a sampling probability at least 1 − (1 − 𝑝𝐾 )𝐿 ,
where 𝑝 is the collision probability of LSH function. This means
that 𝛿 = (1 − 𝑝𝐾 )𝐿 as defined in the problem 1 of randomized
ANN. If property (1) holds, in particular for the identity function,
i.e., 𝑔(𝑥) = 𝐼𝑥 , we can rely on the so-called probability-similarity
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relation between two different stack traces 𝑠, 𝑠′ ∈ D such that:

𝑃𝐾,𝐿 (𝑠, 𝑠′) = 1 − (1 − 𝑠𝑖𝑚(𝑠, 𝑠′)𝐾 )𝐿 (2)

4 DEEPLSH DESIGN METHODOLOGY
In order to address Problem 1 to efficiently retrieve near-duplicates,
it is crucial to define suitable Locality-Sensitive Hashing (LSH) fam-
ilies for stack trace-based similarity measures. While several LSH
families have been proposed for various similarity measures [4, 6, 9],
there is currently no generic mechanism available to generate a
family of hash functions that satisfies the locality-sensitive prop-
erty for any user-defined similarity measure, especially non-linear
measures that often require human expertise. To overcome this
challenge, we introduce DeepLSH, a generic approach that solely
requires the stack trace dataset and any user-defined similarity
measure (measure-agnostic) as input. DeepLSH provides a family
of hash functions that converges to the locality-sensitive property.

4.1 Learning a family of LSH functions
We exploit a deep supervised Siamese neural network with an orig-
inal objective loss function to learn hash functions that converge
to the locality-sensitive property for a given similarity measure.
Fig. 3 shows the structure of the proposed model that combines
two identical neural networks sharing the same structure and the
same parameters Θ. As input, we provide the model with the set G
of all possible distinct pairs of stack traces encoded as an ordered
sequence of stack frames. Each distinct frame is then referred to as
a feature. The model output is provided with the similarity values
for each pair of stack traces. The model 𝐹 , with its corresponding
parameters Θ, consists in encoding a stack trace into a compact vec-
tor that represents a family of𝑀 concatenated binary hash codes,
each of which is encoded in 𝑏 bits in the Hamming space, denoted
as 𝐹Θ (𝑠). The model consists in a concatenation of stacked con-
volution layers with different kernel sizes. We depict three kernel
region sizes: 2, 3 and 4, each of which has 256, 512 or 1024 filters.
These filters perform convolutions on the one-hot encoded stack
frames to generate feature maps. Then, 1-Max pooling is performed
over each map to record the largest number from each feature.
Finally, the resulting features are concatenated to form a feature
encoding vector for the penultimate layer that is fully connected to
the hash model. It is noteworthy that any feature encoder structure
(e.g., CNN, CNN-LSTM, AE, etc.) can be also used as a stack trace
encoder instead of our proposed network architecture.

Given the two hash vectors of the Siamese neural network, our
contribution consists in designing an objective loss function that
efficiently conducts 𝐹Θ to learn a family of binary hash functions
that aim to converge to the locality-sensitive property for the given
similarity function 𝑠𝑖𝑚. We propose to leverage Property (1) which
is sufficient to imply the two required conditions of an LSH family.
Assuming that the function 𝑔 is the identity function: 𝑔(𝑥) = 𝐼𝑥
since the similarity values are within the closed interval [0, 1], the
set of parameters Θ are optimized such that the probability of two
random projected hash functions of order 𝑘 from the resulting hash
vectors, ℎ𝑖

𝑘
and ℎ 𝑗

𝑘
being equal, converges to the similarity value

between the two stack traces 𝑠𝑖 and 𝑠 𝑗 i.e.,

𝑃𝑟 [ℎ𝑖
𝑘
= ℎ

𝑗

𝑘
] = 𝑃𝑟 [𝐻 (𝑠𝑖 )𝑘 = 𝐻 (𝑠 𝑗 )𝑘 ] = 𝑠𝑖𝑚 (𝑠𝑖 , 𝑠 𝑗 ) (3)

More formally, we seek to minimize the Mean Squared Error
(MSE) between the probability of collision of two randomly pro-
jected hash functions of order 𝑘 , i.e. ℎ𝑖

𝑘
resp. ℎ 𝑗

𝑘
of𝐻 (𝑠𝑖 ) resp.𝐻 (𝑠 𝑗 ),

and the similarity value 𝑠𝑖𝑚(𝑠𝑖 , 𝑠 𝑗 ), that is:

argmin
Θ

∑︁
(𝑠𝑖 ,𝑠 𝑗 ) ∈G

1
|G| [𝑃𝑟 [𝐹Θ (𝑠𝑖 )𝑘 = 𝐹Θ (𝑠 𝑗 )𝑘 ] − 𝑠𝑖𝑚(𝑠𝑖 , 𝑠 𝑗 )]2 (4)

At this point, the challenge is to formalize the probability of
collision in the loss function. In other words, we attempt to quantify
the probability 𝑃𝑟 [𝐹Θ (𝑠𝑖 )𝑘 = 𝐹Θ (𝑠 𝑗 )𝑘 ] during the learning phase.
In the following, we present the complete procedure for designing
a computed loss function for the model 𝐹 .

4.2 Objective loss function
Given that the hash vectors are in a Hamming space, i.e., the vectors
are restricted to binary values, {0, 1} or {−1, 1}, it can be demon-
strated that calculating the collision probability between two ran-
domly projected hash functions of the same order ℎ𝑖

𝑘
and ℎ 𝑗

𝑘
is

equivalent to computing the Hamming similarity between the two
hash vectors 𝐻 (𝑠𝑖 ) and 𝐻 (𝑠 𝑗 ). This equivalence is satisfied since,
for the Hamming similarity when 𝑏 = 1, it has been proven in
[16], that the projection function (i.e., a single bit drawn randomly)
verifies the locality-sensitive property. In other terms, for two bi-
nary vectors 𝑥 and 𝑥 ′ of length 𝑑 with a Hamming distance 𝑟 , the
collision probability by randomly pulling a hash function from the
set {ℎ : [−1, 1]𝑑 → {−1, 1} | ℎ(𝑥) = 𝑥𝑖 , 𝑖 ∈ {1, ..., 𝑑}} verifies:

𝑃𝑟 [ℎ(𝑥) = ℎ(𝑥 ′)] = 𝑔(𝑟 ) = 1 − 𝑟

𝑑
(5)

Intending to leverage property (5) and given that our hash func-
tions are rather 𝑏-bit encoded (𝑏 ≥ 1), i.e., not restricted to a single
projection but a succession of 𝑏 coordinates, we need to generalize
this property for 𝑏 ≥ 1. Consequently, we define a generalized
Hamming distance between two hash vectors 𝐻 (𝑠𝑖 ) and 𝐻 (𝑠 𝑗 )
as the number of different projected hash functions of order 𝑘 :
|{𝑘 ∈ [[1, 𝑀]] | ℎ𝑖

𝑘
≠ ℎ

𝑗

𝑘
}|. As a result, each hash function that

belongs to {ℎ′ : [−1, 1]𝑀×𝑏 → {−1, 1}𝑏 | ℎ′ (𝑠) = 𝐻 (𝑠)𝑘 } satisfies
the locality-sensitive property. This leads to conclude that for two
different stack traces 𝑠𝑖 and 𝑠 𝑗 , the collision probability between
two projected hash functions of a specific order 𝑘′ referring to (5):

𝑃𝑟 [ℎ𝑖
𝑘 ′ = ℎ

𝑗

𝑘 ′
] = 1 −

|{𝑘 ∈ [[1, 𝑀]] | ℎ𝑖
𝑘
≠ ℎ

𝑗

𝑘
}|

𝑀
(6)

Correspondingly, referring to the property (6), the objective func-
tion as described in (4) can be formalized as follows:

∑︁
(𝑠𝑖 ,𝑠 𝑗 ) ∈G

1
|G| [1 −

|{𝑘 | ℎ𝑖
𝑘
≠ ℎ

𝑗

𝑘
, 𝑘 ∈ [[1, 𝑀]]}|
𝑀

− 𝑠𝑖𝑚(𝑠𝑖 , 𝑠 𝑗 )]2 (7)

A challenging problem in hashing, on the other hand consists in
dealing with the binary constraint on hash vectors. This binary con-
straint leads to NP-hard mixed integer optimization problem [11].
In particular, the challenge in neural network parameter optimiza-
tion is the vanishing gradient descent from the Sign function used
to obtain binary values. Specifically, the gradient of the Sign func-
tion is zero for all non-zero input values, which is limiting for
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Figure 3: DeepLSH: Deep Siamese hash learning neural network overview

neural networks that rely on gradient descent for training. In order
to handle this challenge, most deep hashing techniques relax the
constraint during the learning of hash functions using Sigmoid or
Hyperbolic Tangent functions [13, 14, 21, 26]. With this relax-
ation, the continuous hash codes are learned first. Then, the codes
are binarized with thresholding. Continuous relaxation is a simple
approach to address the original binary constraint problem. How-
ever, with binary hash codes that result from thresholding in the
test phase, the solution may be suboptimal, compared to including
the binary constraint in the learning phase.

To this extent, we propose a simple yet efficient solution to
cope with the binary constraint in the training phase. The solution
lies in using approximate Hamming similarity. It requires having
continuous values that are extremely close to binary values {−1, 1}.
We propose to use the Hyperbolic Tangent activation on the hash
layer while including the following condition in the loss function
to drive the absolute hash values to be exceedingly close to 1:

1
𝑀 · 𝑏 𝐻 (𝑠)𝑇 .𝐻 (𝑠) − 1 = 0. (8)

Under this regularization term incorporated into the loss func-
tion, we define the approximate generalized Hamming similarity
as follows:

𝑔𝐻𝑎𝑚
(
𝐻 (𝑠𝑖 ), 𝐻 (𝑠 𝑗 )

)
= 1 −

∑𝑀
𝑘=1 𝐷Chebyshev (ℎ𝑖𝑘 , ℎ

𝑗

𝑘
)

2 ·𝑀 , (9)

where 𝐷Chebyshev = max𝑙∈{1,...,𝑏} ( |ℎ𝑖𝑘,𝑙 − ℎ
𝑗

𝑘,𝑙
|)

The Chebyshev distance between ℎ𝑖
𝑘,𝑙

and ℎ 𝑗
𝑘,𝑙

is then given as
the maximum absolute distance in one of the 𝑏 dimensions. This
implies that two hash codes are assumed to be similar if all bits of
the hash code are matched for a specific projection. In other words,
if ∃ 𝑙 ∈ {1, ..., 𝑏} for a specific 𝑘 such that |ℎ𝑖

𝑘,𝑙
− ℎ 𝑗

𝑘,𝑙
| ≈ 2, then ℎ𝑖

𝑘

and ℎ 𝑗
𝑘
are considered as two different hash codes.

Finally, to ensure independence between the hash code bits along
with the load-balanced locality-sensitive hashing, and inspired by
the work of [11], we have introduced the following regularization
term that pushes the model to diversify the hash codes:

1
𝑀 · 𝑏 𝐻 (𝑠 )𝑇 .1𝑀 ·𝑏 = 0. (10)

Putting all together. Having all the necessary elements to de-
sign an appropriate objective loss function to be optimized for
DeepLSH model, we define for convenience the following nota-
tions. Let 𝑆 = {𝑠𝑖𝑚(𝑠𝑖 , 𝑠 𝑗 )}𝑖, 𝑗∈[[1,𝑁 ]] ∈ [0, 1]𝑁×𝑁 be the matrix
representation of the similarities between all the stack trace pairs,
and H = [𝐻 (𝑠1), 𝐻 (𝑠2), ..., 𝐻 (𝑠𝑁 )] ∈ [−1, 1]𝑀 ·𝑏×𝑁 be the ap-
proximate binary hash vectors generated by the model 𝐹Θ, such
that, 𝐻 (𝑠𝑖 ) = [ℎ𝑖1, ℎ

𝑖
2, ..., ℎ

𝑖
𝑀
]𝑇 ∈ [−1, 1]𝑀 ·𝑏 . We refer to W =

{𝑔𝐻𝑎𝑚(𝐻 (𝑠𝑖 ), 𝐻 (𝑠 𝑗 ))}𝑖, 𝑗∈[[1,𝑁 ]] ∈ [0, 1]𝑁×𝑁 as the matrix repre-
sentation of the generalized Hamming similarity between all pairs
of hash vectors produced from the model 𝐹Θ. We formulate the
following optimization problem to learn the parameters of our
DeepLSH model using gradient descent as follows:

min
Θ

LDeepLSH =
1
| G | ∥W − 𝑆 ∥2

+ 𝜆1
2
∥ 1
𝑀 · 𝑏 H𝑇 H − I𝑁 ∥2

+ 𝜆2
| G | ∥

1
𝑀 · 𝑏 H𝑇1𝑀 ·𝑏 ∥2

+ 𝜆3 ∥Θ∥2𝐹 , (11)

where 𝜆1, 𝜆2 and 𝜆3 are regularization parameters to assess the
importance of the different parts of the objective function.

5 EXPERIMENTS
5.1 Experimental Setup and Evaluation Protocol
We report our experimental study to assess the effectiveness of
DeepLSH in performing efficient, fast, and scalable approximate
nearest neighbors search, by providing appropriate hash functions
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that can approximate the stack trace similarity measures and allow
them to scale when used in large databases of bug reports.
Stack trace dataset and trainingmethodology.Our experiments
are conducted on a real-world dataset comprising stack traces auto-
matically reported by our ERP software. To establish a robust train-
ing dataset, we selectively choose the most frequent stack traces
from our historical incident database, creating distinct pairs of stack
traces. These pairs are then utilized to train our DeepLSH model.
Each pair is assigned a similarity value calculated using diverse
similarity functions. We evaluate the performance of DeepLSH on
twelve different similarity measures: Jaccard (bag-of-words and
bi-grams), Cosine (bag-of-words, bi-grams, and TF-IDF), Edit dis-
tance [1], PDM [8], Brodie [5], DURFEX [33], Lerch [22], Moroo [30],
and TraceSim [38]. It is important to note that these similarity met-
rics serve as a reference point and act as the ground truth in our
current setup. Our objective, therefore, is not to evaluate the effec-
tiveness of these similarity measures or compare them with each
other. This is because each measure is applied to a vast dataset
of stack traces, where labeled information is not always available,
or manual labeling is impractical, especially in cases of frequent
background process failures that may occur in the thousands per
day. Our goal is to ensure that regardless of the used similarity
measure employed for stack traces, DeepLSH approach can effec-
tively replicate this measure of similarity. Additionally, it should be
capable of scaling up and being utilized within large-scale systems.

Regarding the training methodology, the training set consists of
499500 pairs of stack traces, while the validation and test set are
constituted of 99900 pairs. The number of hash functions𝑀 and the
size of each hash code𝑏 can be parameterized by the user. By default
these values are respectively set to 64 hash functions of 8 bits. The
max iteration is fixed at 20 epochs with a batch size of 256 or 512.
The parameter optimization process is achieved with the readily
available Adam optimizer of TensorFlow with an adaptive learning
rate and a weight decay of 1𝑒−4. With this configuration, the train-
ing process takes barely 10 minutes. The source code and data with
all associated instructions required for experimental replication are
made available ∗

Baselines.As there is no explicit competing approach forDeepLSH
in the state-of-the-art, we chose to initially compare with (1) Stan-
dard LSHmethods, namelyMin-Hash and Sim-Hash. This compar-
ison should only be performed with the Jaccard and Cosine metrics
respectively since they are not generalizable to other measures com-
pared to DeepLSH. As mentioned in Sec 2, we compare against the
closest method to our work referred to as (2) CNNH+LSH [14]. This
approach uses the concept of learn to hash and then performs in a
post-processing step the Hamming LSH. The methodology followed
in this work is significantly different to ours. DeepLSH unlike the
latter incorporates the LSH component into the model learning
phase, resulting in a new loss function with related regularization
to meet the locality-sensitive property. Regarding the application
of [14] on stack-traces, since it was primarily designed for images,
we only needed to provide a list of one-hot encoded stack-frames
to the convolutional feature extractor instead of pixels. Finally, to
evaluate the scalability of our approach, we compare against (3) Na-
tive k-NN (k-Nearest neighbors) approach of linear complexity,

∗https://github.com/RemilYoucef/deep-locality-sensitive-hashing

using the exact computation of similarity functions between stack
traces. It is noteworthy that clustering techniques have not been
considered as baselines (as discussed in the introduction), since the
addressed problem is an ANN search.

Evaluation protocol. Through this experimental study, we ad-
dress the following research questions by proposing an evaluation
protocol to assess each point claimed in this work:
RQ1 [Model Evaluation]: Does DeepLSH model manage to con-
verge to the locality-sensitive property to mimic a diverse set of
stack-trace-based similarity metrics?We first highlight, by means of
the Kendall 𝜏 ranking coefficient [19], whether the model succeeds
in preserving the original order between the predicted pairwise
similarities. In addition, we study how accurately the generalized
Hamming similarity approximates the true Hamming similarity
between the discretized hash vectors in the test phase.
RQ2 [DeepLSH for ANN search]: Does DeepLSH model achieve
satisfactory performance in finding near-duplicate crash reports
using a given similarity measure? By querying the model to ob-
tain the hash vectors for unseen stack traces, we study the search
performance to retrieve approximately near-duplicate stack traces
based on two metrics that are widely used in the context of crash
deduplication: Recall Rate at the first 𝑘 positions (RR@𝑘) [35] and
the Mean Reciprocal Rank (MRR) [7].
RQ3 [Preserving LSHguarantees]: Towhat extent doesDeepLSH
succeed in preserving the guarantees of LSH compared to Standard
LSH methods and the baseline (CNNH+LSH) [14]. For this purpose,
we provide recall, precision and F-score measures adjusted to quan-
tify the extent to which the probability-similarity constraint (2) has
been satisfied (more details are provided hereafter).
RQ4 [Runtime Analysis]: How does the scalability of DeepLSH
compare to that of a native linear k-NN approach? We report the
execution time required for DeepLSH to find the near-duplicates,
compared to a k-NN approach of linear time complexity.

5.2 RQ1: Model Evaluation
In Fig. 4, we highlight the strong linear correlation between the
probability of hash collision and the similarity values for almost
all similarity measures performed on stack trace pairs. The result-
ing plots show that the model is able to converge perfectly to the
locality-sensitive property for almost all similarity measures. We
observed a few outliers in the TF-IDF, Lerch, and Moroo measures.
These outliers can be attributed to extremely low or high IDF values,
indicating frames that are either non-discriminatory or infrequent
among stack traces. Fortunately, their presence does not signifi-
cantly affect the model’s performance. However, to further address
this issue, we can consider augmenting the feature set by includ-
ing the IDF of the frame features from the training set. It is also
important to assess the capability of DeepLSH model to maintain
the order between pairwise similarity values. For instance, for a
triplet of stack traces 𝑠, 𝑝 and 𝑞 if 𝑠𝑖𝑚(𝑠, 𝑝) > 𝑠𝑖𝑚(𝑠, 𝑞), we aim to
evaluate whether the model is likely to provide hash functions s.t.
𝑃𝑟 [ℎ𝑘 (𝑠) = ℎ𝑘 (𝑝)] > 𝑃𝑟 [ℎ𝑘 (𝑠) = ℎ𝑘 (𝑞)] for 𝑘 ∈ 𝑀 . For this pur-
pose, we measure the Kendall rank correlation coefficient, between
the set of similarity values, and the set of generalized Hamming
similarities between the resulting hash vectors as shown in Fig. 5.

https://github.com/RemilYoucef/deep-locality-sensitive-hashing
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Figure 4: Locality-sensitive preserving: Correlation between the probability of hash collision and the similarity value

Figure 5: Kendall’s 𝜏 coefficient between the real and
predicted pairwise similarities

Remarkably, we obtained satisfactory results compared to our base-
line (on average, 0.82 for DeepLSH, against 0.60 for CNNH+LSH, that
is, 0.22 of improvement) which permitted to achieve better and accu-
rate results on the ANN search. Finally, thanks to the regularization
conditions (8) and (10) incorporated in the objective loss function,
the model yields approximate binary hash values extremely close to
{−1, 1} that are binarized/relaxed in the test phase. We seek to eval-
uate whether our proposed solution to deal with the binarization
problem using the generalized Hamming similarity (9) performed
in the training phase, is optimal and captures the true Hamming
similarity between the discritized hash values in the test phase. Con-
sidering the TraceSim measure as an example in Fig. 6 (on the left),
we notice a strong linear correlation between the true hamming
similarity calculated on the binary vectors and the approximate
generalized Hamming similarity used in the loss function during
the learning phase. This means that our loss optimization process
is as identical as the optimization of any loss function with strictly
binary values in the training phase. In the same Figure (on the right),
we show the impact of not incorporating the LSH component into

Figure 6: Comparison between DeepLSH and [14] in
preserving the Hamming similarity between hash vectors

the model, as has been done in [14]. Performing LSH on the dis-
cretized vectors in a post-processing step results in a sub-optimal
optimisation, since the correlation between the similarity calcu-
lated using basic embedding and the true Hamming similarity is
not even monotonic. Consequently, CNNH+LSH has failed to capture
TraceSim similarity.

5.3 RQ2: Evaluation of DeepLSH for ANN
The objective of ourDeepLSH approach, given a similarity measure,
is to generate, for a new stack trace 𝑠 reported by our monitoring
system, an appropriate hash vector to query a (𝐿, 𝐾)−parameterized
LSH for quickly and efficiently locate in a sub-linear time complex-
ity its near-duplicates. The hash vector contains𝑀 hash functions,
partitioned across 𝐿 hash tables, each consisting of a concatenation
of 𝐾 hash functions called a meta-hash function of size 𝐾 · 𝑏. A
stack trace 𝑞 ∈ R𝑠 is identified as a near-duplicate stack of 𝑠 if it
matches the stack trace 𝑠 at least in one meta-hash function. The
set of near-duplicate stack traces of 𝑠 is denoted by R𝑠 . It is worth
noting that the set R𝑠 is sorted in the original order with respect
to the similarity measure value.
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Table 1: Comparison between the search performances of DeepLSH against the standard LSH approaches w.r.t. their addressed
similarity measures and (CNNH+LSH) [14] in terms of Recall Rate (RR@𝑘) and Mean Reciprocal Rank (MRR).

Similarity Measure RR@1 RR@5 MRR

CNNH+LSH DeepLSH MinHash SimHash CNNH+LSH DeepLSH MinHash SimHash CNNH+LSH DeepLSH MinHash SimHash

Jaccard 0.71 0.87 0.90 − 0.79 0.92 0.92 − 0.85 0.96 0.95 −
Jaccard-bigram 0.67 0.87 0.90 − 0.76 0.91 0.92 − 0.82 0.93 0.94 −

Cosine 0.84 0.81 − 0.61 0.83 0.90 − 0.62 0.88 0.87 − 0.80
Cosine-bigram 0.76 0.84 − 0.58 0.79 0.93 − 0.58 0.89 0.91 − 0.80

TF-IDF 0.73 0.76 − 0.55 0.75 0.88 − 0.55 0.85 0.90 − 0.73
Edit Distance [1] 0.81 0.88 − − 0.75 0.94 − − 0.88 0.95 − −

PDM [8] 0.80 0.84 − − 0.76 0.90 − − 0.82 0.93 − −
Brodie [5] 0.79 0.84 − − 0.76 0.90 − − 0.82 0.93 − −

DURFEX [33] 0.72 0.83 − − 0.79 0.91 − − 0.82 0.91 − −
Lerch [22] 0.70 0.78 − − 0.70 0.85 − − 0.80 0.88 − −
Moroo [30] 0.75 0.80 − − 0.68 0.90 − − 0.80 0.93 − −

TraceSim [38] 0.81 0.79 − − 0.75 0.90 − − 0.84 0.92 − −

LSH offers the possibility to control the trade-off between preci-
sion and recall (w.r.t LSH guarantees) by setting the hyperparame-
ters values 𝐾 and 𝐿. We can simply choose to consider the tuple of
hyperparameters that maximizes the F-score. However, as shown in
Fig. 7 (e.g., (𝐿, 𝐾) = (16, 4) for PDM), we ignore extreme cases i.e.,
cases where the threshold is very small or very large, which refers
to a very large value of 𝐿 or 𝐾 , or cases where the variance is very
high (for more details on how the F-score is calculated, refer to 5.4).
As an example, when using the combination (𝐿, 𝐾) = (64, 1), we
observe higher F-score values. However, it’s important to note that
this is partly a result of selecting a very low threshold, which in
turn leads to a larger number of near-duplicates that need to be
analyzed.

In a first analysis, we were interested in the recall rate of order
𝑘 . For each stack trace 𝑠 that belongs to a query set Q, we yield
a set of its approximate nearest neighbors R𝑠 (i.e., potential near-
duplicates) such that |R𝑠 | ≥ 𝑘 and hence,

RR@k =
1

𝑘 · |Q|
∑︁
𝑠∈Q

𝑘∑︁
𝑖=1

1[𝑛𝑛𝑖 (𝑠,*args) ∈R𝑠 ] ,

where 𝑛𝑛𝑖 (𝑠, *args) is a function that returns the real nearest neigh-
bor of order 𝑖 for the stack trace 𝑠 given a set of historical stack
traces and the LSH hyperparameters 𝐿 and 𝐾 .

In order to evaluate the ranking quality of a set of near-duplicates
R𝑠 for a stack trace 𝑠 according to a (𝐿, 𝐾) combination, and relative
to the set of true nearest neighbors T𝑠 , we use the Mean reciprocal
rank (MRR) [7]. This measure seeks to compute the reciprocal rank
of a retrieved near-duplicate 𝑠′ ∈ R𝑠 relative to its actual position
in the set of true nearest neighbors. More concretely:

MRR =
1
|Q|

∑︁
𝑠∈Q

1
|R𝑠 |

∑︁
𝑠′∈R𝑠

𝑟𝑎𝑛𝑘 (𝑠′,R𝑠 )
𝑟𝑎𝑛𝑘 (𝑠′,T𝑠 )

E.g., let’s consider a given stack trace 𝑞, where we retrieve the set
of its approximate nearest neighbors and subsequently sort them
according to the original order R𝑞 = {𝑠2, 𝑠3, 𝑠5} and the set of its
true nearest neighbor is given as T𝑞 = {𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5}. The MRR is
then: 13 (

1
2 + 2

3 + 3
5 ) ≈ 0.63. The MRR in this case is over penalized

since we failed to find the true nearest neighbor 𝑠1 in R𝑞 . It is

Figure 7: F-score boxplots w.r.t. different values of (L,K)

noteworthy that the set R𝑞 is sorted according to the original order
w.r.t to the similarity measure.

The results are presented in detail in Table 1, according to the
identified similarity measures that have been proposed to address
the crash-deduplication problem. We choose 2 different values of
𝑘 = {1, 5} for the recall rate. We compare DeepLSH against Min-
Hash, SimHash and CNNH+LSH. Ideally, standard LSH techniques
should guarantee optimal search accuracy compared to DeepLSH,
since they are proven to converge to the locality-sensitive prop-
erty w.r.t. their similarity measures. Interestingly, we observe that
DeepLSH almost matches the search performances of MinHash
on Jaccard similarity, and outperforms SimHash. In fact, while
MinHash is a reliable probabilistic model designed for estimating
Jaccard similarity with guarantees, it lacks the versatility to be
extended to other similarity metrics, especially those intended for
comparing stack traces. This limitation significantly restricts its
applicability to the crash deduplication problem. Jaccard measure,
which it relies on, may not be the most suitable metric for stack
trace comparison as it does not account for the order of frames or
the sequential aspect of function invocation within stack traces.
This demonstrates also that DeepLSH is not only generalizable to
other complex measures, but can even be used for measures where
an existing LSH is already known. We also show that DeepLSH out-
performs CNNH+LSH with a large margin on 3 different comparison
metrics and for almost all similarity measures. More specifically,
we notice that DeepLSH search performance is enhanced with a
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Table 2: Comparison between the precision/recall and f-score of DeepLSH in preserving the probability-similarity relation (2)
against the standard LSH approaches w.r.t. theirs addressed similarity measures and (CNNH+LSH) [14].

Similarity Measure Precision Recall F-score

CNNH+LSH DeepLSH MinHash SimHash CNNH+LSH DeepLSH MinHash SimHash CNNH+LSH DeepLSH MinHash SimHash

Jaccard 0.64 0.78 0.76 − 0.78 0.85 0.85 − 0.70 0.81 0.80 −
Jaccard-bigram 0.56 0.76 0.70 − 0.70 0.74 0.83 − 0.62 0.75 0.75 −

Cosine 0.77 0.72 − 0.74 0.74 0.84 − 0.6 0.75 0.78 − 0.66
Cosine-bigram 0.74 0.74 − 0.66 0.72 0.82 − 0.41 0.73 0.78 − 0.50

TF-IDF 0.85 0.76 − 0.49 0.61 0.86 − 0.62 0.71 0.81 − 0.55
Edit Distance [1] 0.37 0.78 − − 0.78 0.88 − − 0.50 0.83 − −

PDM [8] 0.68 0.85 − − 0.76 0.86 − − 0.72 0.85 − −
Brodie [5] 0.36 0.83 − − 0.81 0.86 − − 0.50 0.84 − −

DURFEX [33] 0.73 0.78 − − 0.70 0.79 − − 0.71 0.78 − −
Lerch [22] 0.74 0.76 − − 0.57 0.76 − − 0.64 0.76 − −
Moroo [30] 0.66 0.73 − − 0.85 0.82 − − 0.74 0.77 − −

TraceSim [38] 0.31 0.80 − − 0.84 0.88 − − 0.45 0.84 − −

larger value of 𝑘 up to 0.94 for Edit distance with an improvement
of ∼ 0.2 over CNNH+LSH.

5.4 RQ3: LSH guarantees Preserving
In what follows, we aim to evaluate whether DeepLSH succeeds
in preserving the guarantees of LSH regarding the probability-
similarity relation in (2). To this end, for a specific stack trace 𝑠
we look for the true near-duplicate stack traces 𝑞 ∈ RTrue

𝑠 that the
model should return with a (𝐾, 𝐿) setting, s.t. 𝑃𝐾,𝐿 (𝑠, 𝑞) = 1 − (1 −
𝑠𝑖𝑚(𝑠, 𝑞)𝐾 )𝐿 ≥ 0.5, i.e., the probability to belong to the set is equal
or higher than 0.5. We then derive the precision, recall and F-score
between the returned set of near-duplicates R𝑠 and RTrue

𝑠 . More
formally we derive this values, s.t:

Recall =
1
|Q|

∑︁
𝑠∈Q

|R𝑠 ∩ RTrue
𝑠 |

|RTrue
𝑠 |

Precision =
1
|Q|

∑︁
𝑠∈Q

|R𝑠 ∩ RTrue
𝑠 |

|R𝑠 |

F-score =
2

Recall−1 + Precision−1
As detailed in Table 2, one can notice that DeepLSH is much bet-

ter than all baselines in terms of F-score on almost all similarity mea-
sures including the accurate Minhash for Jaccard. DeepLSH showed
significantly better performance in terms of recall, i.e., its ability to
capture all similarities that are beyond the threshold imposed by an
optimal parameterization of (𝐾, 𝐿). On the other hand, the reported
precision values, as opposed to CNNH+LSH, show that DeepLSH does
not generate false positives, so that false near-duplicates are not
grouped in the same bucket. In particular, on similarity measures
that use the Levenshtein distance (e.g. ED, Brodie and TraceSim), we
observe a rather low precision for CNNH+LSH, which shows on the
one hand the limitation of CNNH+LSH to generalize to such metrics,
and on the other hand agrees with the explanation of Fig. 6.

5.5 RQ4: Runtime Analysis
We evaluate the scalability of DeepLSH and how quickly this ap-
proach identifies, for a batch of stack traces in a large historical
crash database, the most similar stacks w.r.t. a given similarity

Table 3: Comparison between the runtime required to find
near-duplicate stack traces for DeepLSH, k-NN based

approach and standard LSH techniques.

Similarity Measure Runtime (∼ Seconds)

k-NN CNNH+LSH DeepLSH MinHash SimHash

Jaccard 258 30 26 57 -
Cosine 8288 15 14 - 3
TF-IDF 8510 16 15 - 4

Edit Distance [1] 4911 29 29 - -
PDM [8] 10047 16 16 - -
Brodie [5] Limit 27 27 - -

DURFEX [33] 12160 26 24 - -
Lerch [22] 3118 24 24 - -
Moroo [30] 15253 25 25 - -

TraceSim [38] 13050 30 30 - -

measure. We report the execution time required to find the near-
duplicate candidates for 1, 000 new stack traces when querying
on more than 100, 000 historical crashes (100 million queries). We
compare basically against the native k-NN based approach for all
similarity measures. Recall that uni-gram and big-gram represen-
tations yield identical results for the cosine, Jaccard, and TF-IDF
measures. The reported results are depicted in Table 3. The execu-
tion time for a native k-NN approach depends on the batch size, the
size of the database and the computational complexity of the simi-
larity measure. With the latter, most similarity measures under the
conditions described above require more than an hour to return any
results (more than 3 hours for DURFEX, Moroo and TraceSim) and
no results returned by Brodie within 10 hours. On the other hand,
DeepLSH only depends on the number of hash tables which does
not exceed 64 tables. We notice that the runtime is roughly constant
and around 24 ∼ 27 seconds on average. Remarkably, DeepLSH is
even faster than MinHash for Jaccard Similarity. SimHash, on the
other hand, has proven to be faster, and CNNH+LSH has been similar
to DeepLSH in runtime, but as seen above, both approaches show
poor search performance and lower guarantees.
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5.6 Experiments Discussion and Perspectives
Through our experiments, we have successfully demonstrated the
effective utilization of DeepLSH w.r.t. a diverse range of similar-
ity measures, specifically designed for comparing bug reports. By
preserving the locality-sensitive hashing property, our approach
offers reliable guarantees on the search accuracy of retrieving near-
duplicates while significantly enhancing the retrieval time. When
evaluated against baseline methods, DeepLSH exhibited highly
satisfactory performance, successfully identifying the most simi-
lar stack traces based on the chosen similarity measure used as a
reference point. Notably, DeepLSH is a groundbreaking similarity-
agnostic approach that applies hashing techniques in this specific
context, while matching well-known hashing technique such as
MinHash and even surpassing SimHash which are tailored for only
a single similarity measure. It may be questioned why we don’t
simply employ MinHash with the Jaccard coefficient, as it already
delivers satisfactory performance and scalable results. However,
the Jaccard coefficient is not the most appropriate measure for com-
paring stack traces. That is why various similarity measures have
been proposed in the field of crash deduplication to address the
unique characteristics of stack traces. Unfortunately, MinHash is
not suitable for these alternative similarity measures and cannot
be effectively applied. Furthermore, our runtime analysis has re-
vealed that DeepLSH exhibits impressive computational efficiency,
regardless of the complexity of the chosen similarity measure. This
remarkable finding allows users to freely choose any similarity mea-
sure suitable for their system, ensuring both high search accuracy
and fast retrieval. Moreover, our method does not only offer users
the flexibility to adjust the trade-off between recall and precision
through the values of 𝐾 and 𝐿 but also provides a systematic ap-
proach to selecting the optimal hyperparameters’ combination that
maximizes the F-score w.r.t. LSH property preserving, as explained
in Figure 7. It’s worth mentioning that augmenting the number of
hash tables may slightly increase computation time but remains
well within the order of a few seconds. Overall, the experimental
results clearly demonstrate the superiority of DeepLSH in terms of
both performance and flexibility and offer an innovative solution
for fast near-duplicate stack traces retrieval.

As a future perspective, we intend to evaluate our approach on
other large public datasets of stack traces, which might be avail-
able but not exclusively specified for Java stack traces. It is also
noteworthy that this method can be easily adapted to various set-
tings, applied to other datasets, and generalized to many other use
cases. For instance, it could be utilized for text similarity tasks with
complex metrics like Word Mover’s Distance [15], in conjunction
with natural language processing techniques. This area presents an
exciting opportunity for exploration that we plan to delve into.

6 CONCLUSION
In this paper, we tackle the important task of fast and efficient au-
tomatic crash bucketing in software development. We investigate
the potential of locality-sensitive hashing (LSH) for this purpose,
leveraging its sublinear performance and theoretical guarantees in
terms of accuracy for similarity search. This approach offers signifi-
cant advantages when dealing with large datasets, yet surprisingly,
LSH has not been explored in the crash bucketing literature. The

main reason for the lack of consideration of LSH in crash bucketing
research is the challenge of deriving hash functions that satisfy
the locality-sensitive property for advanced and complex crash
bucketing metrics. To address this gap, we propose a novel, pa-
rameterizable approach named DeepLSH. We introduce an original
objective loss function, complemented by appropriate regulariza-
tions, enabling convergence to the desired locality-sensitive prop-
erty. By doing so, DeepLSH can mimic any given similarity metric,
thereby enhancing and improving the time and efficiency of near-
duplicate crash report detection. Overall, our findings highlight
the untapped potential of LSH in the crash bucketing domain. We
present DeepLSH as a practical solution that effectively improves
the time and efficiency of automatic crash bucketing. Furthermore,
DeepLSH maintains compatibility with various similarity metrics,
making it a versatile tool for software developers.
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